
Unstable
Version 5.1.1

April 30, 2011

(require unstable)

This manual documents some of the libraries available in the unstable collection.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for developing
unstable libraries”.

1

1 Guidelines for developing unstable libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

• If you add a module, you are its owner. Add a comment with your name at the top of
the module.

• If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

• Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

• GUI modules go under unstable/gui. Put the documentation in un-

stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

• Do not add modules depending on DrRacket to the unstable collection.

• Put tests in tests/unstable.

Keep documentation and tests up to date.

2

2 Bytes

(require unstable/bytes)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(bytes-ci=? b1 b2) → boolean?

b1 : bytes?

b2 : bytes?

Compares two bytes case insensitively.

(read/bytes b) → serializable?

b : bytes?

reads a value from b and returns it.

(write/bytes v) → bytes?

v : serializable?

writes v to a bytes and returns it.

3

3 Contracts

(require unstable/contract)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(non-empty-string? x) → boolean?

x : any/c

(non-empty-list? x) → boolean?

x : any/c

(non-empty-bytes? x) → boolean?

x : any/c

(non-empty-vector? x) → boolean?

x : any/c

Returns #t if x is of the appropriate data type (string, list, bytes, or vector, respectively) and
is not empty; returns #f otherwise.

(singleton-list? x) → boolean?

x : any/c

Returns #t if x is a list of one element; returns #f otherwise.

port-number? : contract?

Equivalent to (between/c 1 65535).

tcp-listen-port? : contract?

Equivalent to (between/c 0 65535).

path-element? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)). The subsequent
bindings were
added by Ryan
Culpepper.(if/c predicate then-contract else-contract) → contract?

predicate : (-> any/c any/c)

then-contract : contract?

else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if

4

predicate returns true, the then-contract is applied; otherwise, the else-contract

is applied. The resulting contract is a flat contract if both then-contract and else-

contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

(rename-contract contract name) → contract?

contract : contract?

name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract. The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

3.1 Flat Contracts

nat/c : flat-contract?

This contract recognizes natural numbers that satisfy exact-nonnegative-integer?.

pos/c : flat-contract?

This contract recognizes positive integers that satisfy exact-positive-integer?.

5

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

truth/c : flat-contract?

This contract recognizes Scheme truth values, i.e., any value, but with a more informative
name and description. Use it in negative positions for arguments that accept arbitrary truth
values that may not be booleans.

3.2 Syntax Object Contracts

(syntax-datum/c datum/c) → flat-contract?

datum/c : any/c

Recognizes syntax objects stx such that (syntax->datum stx) satisfies datum/c .

(syntax-listof/c elem/c) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (listof

elem/c).

(syntax-list/c elem/c ...) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (list/c elem/c

...).

3.3 Higher-Order Contracts

thunk/c : contract?

unary/c : contract?

binary/c : contract?

These contracts recognize functions that accept 0, 1, or 2 arguments, respectively, and pro-
duce a single result.

predicate/c : contract?

predicate-like/c : contract?

These contracts recognize predicates: functions of a single argument that produce a boolean
result.

6

The first constrains its output to satisfy boolean?. Use predicate/c in positive position
for predicates that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use predicate-like/c in negative
position for predicates passed as arguments that may return arbitrary values as truth values.

comparison/c : contract?

comparison-like/c : contract?

These contracts recognize comparisons: functions of two arguments that produce a boolean
result.

The first constrains its output to satisfy boolean?. Use comparison/c in positive position
for comparisons that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use comparison-like/c in negative
position for comparisons passed as arguments that may return arbitrary values as truth values.

(sequence/c elem/c ...) → contract?

elem/c : contract?

Wraps a sequence, obligating it to produce as many values as there are elem/c contracts,
and obligating each value to satisfy the corresponding elem/c . The result is not guaranteed
to be the same kind of sequence as the original value; for instance, a wrapped list is not
guaranteed to satisfy list?.

Examples:

> (define/contract predicates

(sequence/c (-> any/c boolean?))

(list integer? string->symbol))

> (for ([P predicates])

(printf "∼s\n" (P "cat")))

#f

self-contract violation: expected <boolean?>, given: ’cat
contract on predicates from (definition predicates),

blaming (definition predicates)
contract:

(sequence/c (-> any/c boolean?))
at: eval:3.0

(dict/c key/c value/c) → contract?

key/c : contract?

value/c : contract?

Wraps a dictionary, obligating its keys to satisfy key/c and their corresponding values to

7

satisfy value/c . The result is not guaranteed to be the same kind of dictionary as the
original value; for instance, a wrapped hash table is not guaranteed to satisfy hash?.

Examples:

> (define/contract table

(dict/c symbol? string?)

(make-immutable-hash (list (cons 'A "A") (cons 'B 2) (cons 3 "C"))))

> (dict-ref table 'A)

"A"

> (dict-ref table 'B)

self-contract violation: expected <string?>, given: 2
contract on table from (definition table), blaming

(definition table)
contract: (dict/c symbol? string?)

at: eval:4.0
> (dict-ref table 3)

contract violation: expected <symbol?>, given: 3
contract on table from top-level, blaming (definition

table)
contract: (dict/c symbol? string?)

at: eval:4.0

Warning: Bear in mind that key and value contracts are re-wrapped on every dictionary
operation, and dictionaries wrapped in dict/c multiple times will perform the checks as
many times for each operation. Especially for immutable dictionaries (which may be passed
through a constructor that involves dict/c on each update), contract-wrapped dictionaries
may be much less efficient than the original dictionaries.

8

4 Contracts for macro subexpressions

This library provides a procedure wrap-expr/c for applying contracts to macro subexpres-
sions.

(require unstable/wrapc)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(wrap-expr/c contract-expr

expr

[#:positive pos-blame

#:negative neg-blame

#:name expr-name

#:macro macro-name

#:context context]) → syntax?

contract-expr : syntax?

expr : syntax?

pos-blame : (or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'use-site

neg-blame : (or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'from-macro

expr-name : (or/c identifier? symbol? string? #f) = #f

macro-name : (or/c identifier? symbol? string? #f) = #f

context : (or/c syntax? #f) = (current-syntax-context)

Returns a syntax object representing an expression that applies the contract represented by
contract-expr to the value produced by expr .

The contract’s positive blame represents the obligations of the expression being wrapped.
The negative blame represents the obligations of the macro imposing the contract—the ulti-
mate caller of wrap-expr/c. By default, the positive blame is taken as the module currently
being expanded, and the negative blame is inferred from the definition site of the macro
(itself inferred from the context argument). But both blame locations can be overridden.

Positive and negative blame locations are determined from pos-blame and neg-blame ,
respectively, as follows:

• If the argument is a string, it is used directly as the blame label.

• If the argument is syntax, its source location is used to produce the blame label.

• If the argument is a module path index, its resolved module path is used.

9

• If the argument is 'from-macro, the macro is inferred from either the macro-name

argument (if macro-name is an identifier) or the context argument, and the module
where it is defined is used as the negative blame location. If neither an identifier
macro-name nor a context argument is given, the location is "unknown".

• If the argument is 'use-site, the module being expanded is used.

• If the argument is 'unknown, the blame label is "unknown".

The macro-name argument is used to determine the macro’s binding, if it is an identifier. If
expr-name is given, macro-name is also included in the contract error message. If macro-
name is omitted or #f, but context is a syntax object, then macro-name is determined
from context .

If expr-name is not #f, it is used in the contract’s error message to describe the expression
the contract is applied to.

The context argument is used, when necessary, to infer the macro name for the negative
blame party and the contract error message. The context should be either an identifier or
a syntax pair with an identifer in operator position; in either case, that identifier is taken as
the macro ultimately requesting the contract wrapping.

Examples:

> (define-syntax (myparameterize1 stx)

(syntax-case stx ()

[(_ ((p v)) body)

(with-syntax ([cp (wrap-expr/c

#'parameter? #'p

#:name "the parameter argument"

#:context stx)])

#'(parameterize ((cp v)) body))]))

> (myparameterize1 ((current-input-port

(open-input-string "(1 2 3)")))

(read))

'(1 2 3)

> (myparameterize1 (('whoops 'something))

'whatever)

self-contract violation: expected <parameter?>, given:
’whoops

contract on
the parameter argument of myparameterize1

from top-level, blaming top-level
contract: parameter?

at: eval:4.0
> (module mod racket

(require (for-syntax unstable/wrapc))

10

(define-syntax (app stx)

(syntax-case stx ()

[(app f arg)

(with-syntax ([cf (wrap-expr/c

#'(-> number? number?)

#'f

#:name "the function argument"

#:context stx)])

#'(cf arg))]))

(provide app))

> (require 'mod)

> (app add1 5)

6

> (app add1 'apple)

contract violation: expected <number?>, given: ’apple
contract on the function argument of app from top-level,

blaming (quote mod)
contract: (-> number? number?)

at: eval:8.0
> (app (lambda (x) 'pear) 5)

self-contract violation: expected <number?>, given: ’pear
contract on the function argument of app from top-level,

blaming top-level
contract: (-> number? number?)

at: eval:9.0

11

5 Contracts for struct type properties

(require unstable/prop-contract)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(struct-type-property/c value-contract) → contract?

value-contract : contract?

Produces a contract for struct type properties. When the contract is applied to a struct type
property, it produces a wrapped struct type property. When the wrapped struct type property
is used to create a new struct type (via struct, make-struct-type, etc), it applies value-
contract to the value associated with the property.

The contract has no effect on the struct type property accessor.

Examples:

> (define-values (prop prop? prop-ref)

(make-struct-type-property 'prop))

> (define/contract wrapped

(struct-type-property/c (-> any/c (-> number? number?)))

prop)

> (struct s (f)

#:property wrapped (lambda (s) (s-f s)))

> (define (get-f s) ((prop-ref s) s))

> (define s1 (s add1))

> ((get-f s1) 5)

6

> ((get-f s1) 'apple)

self-contract violation: expected <number?>, given: ’apple
contract on wrapped from (definition wrapped), blaming

(definition wrapped)
contract:

(struct-type-property/c
(-> any/c (-> number? number?)))

at: eval:3.0
> (define s2 (s (lambda (n) (if (zero? n) 'zero 'nonzero))))

> ((get-f s2) 5)

contract violation: expected <number?>, given: ’nonzero
contract on wrapped from (definition wrapped), blaming

top-level
contract:

(struct-type-property/c
(-> any/c (-> number? number?)))

12

at: eval:3.0
> ((get-f s2) 'apple)

self-contract violation: expected <number?>, given: ’apple
contract on wrapped from (definition wrapped), blaming

(definition wrapped)
contract:

(struct-type-property/c
(-> any/c (-> number? number?)))

at: eval:3.0

13

6 Debugging

(require unstable/debug)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides macros and functions for printing out debugging information.

(debug options ... expr)

options = #:name name-expr

| #:source srcloc-expr

Writes debugging information about the evaluation of expr to the current error port. The
name and source location of the expression may be overridden by keyword options; their de-
faults are the syntactic form of the expression and its syntactic source location, respectively.

Examples:

> (debug 0)

>> eval:2.0: 0
result: 0

<< eval:2.0: 0
0

> (debug #:name "one, two, three" (values 1 2 3))

>> eval:3.0: "one, two, three"
results: (values 1 2 3)

<< eval:3.0: "one, two, three"
1

2

3

> (debug #:source (make-srcloc 'here 1 2 3 4)

(error 'function "something went wrong"))

>> here:1.2: (error ’function "something went wrong")
raised exception: function: something went wrong

<< here:1.2: (error ’function "something went wrong")
function: something went wrong

(dprintf fmt arg ...) → void?

fmt : string?

arg : any/c

Constructs a message in the same manner as format and writes it to (current-error-

port), with indentation reflecting the number of nested debug forms.

14

Examples:

> (dprintf "level: ∼a" 0)

level: 0
> (debug (dprintf "level: ∼a" 1))

>> eval:3.0: (dprintf "level: ∼a" 1)
level: 1
result: #<void>

<< eval:3.0: (dprintf "level: ∼a" 1)
> (debug (debug (dprintf "level: ∼a" 2)))

>> eval:4.0: (debug (dprintf "level: ∼a" 2))
>> eval:4.0: (dprintf "level: ∼a" 2)

level: 2
result: #<void>

<< eval:4.0: (dprintf "level: ∼a" 2)
result: #<void>

<< eval:4.0: (debug (dprintf "level: ∼a" 2))

(debugf function-expr argument ...)

argument = argument-expr

| argument-keyword argument-expr

Logs debugging information for (#%app function-expr argument ...), including the
evaluation and results of the function and each argument.

Example:

> (debugf + 1 2 3)

>> eval:2.0: debugf
>> eval:2.0: +

result: #<procedure:+>
<< eval:2.0: +
>> eval:2.0: 1

result: 1
<< eval:2.0: 1
>> eval:2.0: 2

result: 2
<< eval:2.0: 2
>> eval:2.0: 3

result: 3
<< eval:2.0: 3
result: 6

<< eval:2.0: debugf
6

15

(begin/debug expr ...)

(define/debug id expr)

(define/debug (head args) body ...+)

(define/private/debug id expr)

(define/private/debug (head args) body ...+)

(define/public/debug id expr)

(define/public/debug (head args) body ...+)

(define/override/debug id expr)

(define/override/debug (head args) body ...+)

(define/augment/debug id expr)

(define/augment/debug (head args) body ...+)

(let/debug ([lhs-id rhs-expr] ...) body ...+)

(let/debug loop-id ([lhs-id rhs-expr] ...) body ...+)

(let*/debug ([lhs-id rhs-expr] ...) body ...+)

(letrec/debug ([lhs-id rhs-expr] ...) body ...+)

(let-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(let*-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(letrec-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(with-syntax/debug ([pattern stx-expr] ...) body ...+)

(with-syntax*/debug ([pattern stx-expr] ...) body ...+)

(parameterize/debug ([param-expr value-expr] ...) body ...+)

These macros add logging based on debug to the evaluation of expressions in begin, de-
fine, define/private, define/public, define/override, define/augment, let,
let*, letrec, let-values, let*-values, letrec-values, with-syntax, with-

syntax*, and parameterize.

16

7 Definitions

(require unstable/define)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

Provides macros for creating and manipulating definitions.

7.1 Deferred Evaluation in Modules

(at-end expr)

When used at the top level of a module, evaluates expr at the end of the module. This can
be useful for calling functions before their definitions.

Examples:

> (module Failure scheme

(f 5)

(define (f x) x))

> (require 'Failure)

reference to an identifier before its definition: f in
module: ’Failure
> (module Success scheme

(require unstable/define)

(at-end (f 5))

(define (f x) x))

> (require 'Success)

7.2 Conditional Binding

(define-if-unbound x e)

(define-if-unbound (f . args) body ...)

(define-values-if-unbound [x ...] e)

(define-syntax-if-unbound x e)

(define-syntax-if-unbound (f . args) body ...)

(define-syntaxes-if-unbound [x ...] e)

Define each x (or f) if no such binding exists, or do nothing if the name(s) is(are) already
bound. The define-values-if-unbound and define-syntaxes-if-unbound forms
raise a syntax error if some of the given names are bound and some are not.

17

These are useful for writing programs that are portable across versions of Racket with dif-
ferent bindings, to provide an implementation of a binding for versions that do not have it
but use the built-in one in versions that do.

Examples:

> (define-if-unbound x 1)

> x

1

(define y 2)

> (define-if-unbound y 3)

> y

3

7.3 Renaming Definitions

(define-renamings [new old] ...)

Establishes a rename transformer for each new identifier, redirecting it to the corresponding
old identifier.

Examples:

> (define-renamings [def define] [lam lambda])

> (def plus (lam (x y) (+ x y)))

> (plus 1 2)

3

7.4 Forward Declarations

(declare-names x ...)

Provides forward declarations of identifiers to be defined later. It is useful for macros which
expand to mutually recursive definitions, including forward references, that may be used at
the Racket top level.

7.5 Definition Shorthands

(define-with-parameter name parameter)

18

Defines the form name as a shorthand for setting the parameter parameter . Specifically,
(name value body ...) is equivalent to (parameterize ([parameter value])

body ...).

Examples:

> (define-with-parameter with-input current-input-port)

> (with-input (open-input-string "Tom Dick Harry") (read))

'Tom

(define-single-definition define-one-name define-many-name)

Defines a marco define-one-name as a single identifier definition form with function
shorthand like define and define-syntax, based on an existing macro define-many-

name which works like define-values or define-syntaxes.

Examples:

> (define-single-definition define-like define-values)

> (define-like x 0)

> x

0

> (define-like (f a b c) (printf "∼s, ∼s\n" a b) c)

> (f 1 2 3)

1, 2

3

7.6 Macro Definitions

(define-syntax-block (macro-decl ...) body ...)

macro-decl = macro-id

| [macro-id expander-id]

Defines a syntax transformer for each macro-id based on the local definition of each
expander-id (defaulting to macro-id/proc) in body Especially useful for mu-
tually recursive expander functions and phase 1 macro definitions. Subsumes the behavior
of define-syntax-set.

Examples:

> (define-syntax-block

([implies expand-implies]

nand)

19

(define-syntax-rule (==> pattern template)

(syntax-rules () [pattern template]))

(define expand-implies (==> (_ a b) (or (not a) b)))

(define nand/proc (==> (_ a ...) (not (and a ...)))))

> (implies #t (printf "True!\n"))

True!

> (implies #f (printf "False!\n"))

#t

> (nand #t #t (printf "All True!\n"))

All True!

#f

> (nand #t #f (printf "Some False!\n"))

#t

> (define-syntax-block (undefined-macro)

(define irrelevant "Whoops!"))

eval:8:0: undefined-macro/proc: transformer must be defined
within define-syntax-block in: undefined-macro/proc

7.7 Effectful Transformation

(in-phase1 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 1 if it occurs in a head expansion position.

(in-phase1/pass2 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 2 (after head expansion).

20

8 Dictionaries

(require unstable/dict)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating dictionary values.

(dict-empty? d) → boolean?

d : dict?

Reports whether d is empty (has no keys).

Examples:

> (dict-empty? '())

#t

> (dict-empty? '([1 . one] [2 . two]))

#f

(dict-union d0

d ...

[#:combine combine

#:combine/key combine/key])
→ (and/c dict? dict-can-functional-set?)

d0 : (and/c dict? dict-can-functional-set?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by functional update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (dict-union '([1 . one]) '([2 . two]) '([3 . three]))

'((1 . one) (2 . two) (3 . three))

> (dict-union '([1 one uno] [2 two dos])

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'((1 one uno ein une) (2 two dos zwei deux))

21

(dict-union! d0

d ...

[#:combine combine

#:combine/key combine/key]) → void?

d0 : (and/c dict? dict-mutable?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union! ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by mutable update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define d (make-hash))

> d

'#hash()

> (dict-union! d '([1 one uno] [2 two dos]))

> d

'#hash((1 . (one uno)) (2 . (two dos)))

> (dict-union! d

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> d

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

22

9 Directories

(require unstable/dirs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library defines utilities dealing with the directory paths used by the Racket distribution.

(path->directory-relative-string path

[#:default default

#:dirs dirs])
→ (or/c string? (one-of/c default))

path : path-string?

default : any/c = (if (path? path) (path->string path) path)

dirs : (listof (cons/c (-> path?) any/c))

= library-relative-directories

Produces a string rendering of path , replacing distribution-specific paths (normally: collec-
tions, user-installed collections, or PLanet cache) with short abbreviations.

The set of paths and their abbreviations may be overridden by the #:dirs option, which
accepts an association list. Its keys must be thunks which produce a path. Its values may be
either #f for no abbreviation (the directory prefix is simply omitted) or any other value to
be displayed in the output. For instance, "document.txt" relative to a path abbreviated
"path" would be rendered as "<path>/document.txt".

If the path is not relative to one of the given directories, the default return value is a string
rendering of the unmodified path. This default may be overridden by providing default .

Examples:

> (path->directory-relative-string

(build-path "source" "project.rkt"))

"source/project.rkt"

> (path->directory-relative-string

(build-path (current-directory) "source" "project.rkt"))

"<collects>/unstable/source/project.rkt"

> (path->directory-relative-string

(build-path "/" "source" "project.rkt"))

"/source/project.rkt"

> (path->directory-relative-string

(build-path "/" "source" "project.rkt")

#:default #f)

#f

> (path->directory-relative-string

23

(build-path "/" "source" "project.rkt")

#:dirs (list

(cons (lambda () (build-path "/" "source"))

'src)))

"<src>/project.rkt"

library-relative-directories : (listof (cons (-> path?) any/c))

Represents the default directory substitutions for path->directory-relative-string.
By default, the collections directory is replaced by collects, the user-installed collections
directory is replaced by user, and the PLaneT cache is replaced by planet.

setup-relative-directories : (listof (cons (-> path?) any/c))

Represents the directory substitutions used by setup-plt. The collections directory is omit-
ted, the user-installed collections directory is replaced by user, and the PLaneT cache is
replaced by planet.

24

10 Exceptions

(require unstable/exn)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(network-error s fmt v ...) → void

s : symbol?

fmt : string?

v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) → string?

exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string. The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(try expr ...+)

Executes the first expression expr in the sequence, producing its result value(s) if it returns
any. If it raises an exception instead, try continues with the next expr . Exceptions raised
by intermediate expressions are reported to the current logger at the 'debug level before
continuing. Exceptions raised by the final expression are not caught by try.

Examples:

> (try (+ 1 2) (+ 3 4))

3

> (try (+ 'one 'two) (+ 3 4))

7

> (try (+ 'one 'two) (+ 'three 'four))

+: expects type <number> as 1st argument, given: ’three;
other arguments were: ’four

25

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

11 Filesystem

(require unstable/file)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make-directory*/ignore-exists-exn pth) → void

pth : path-string?

Like make-directory*, except it ignores errors when the path already exists. Useful to
deal with race conditions on processes that create directories.

26

12 Find

(require unstable/find)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find pred

x

[#:stop-on-found? stop-on-found?

#:stop stop

#:get-children get-children]) → list?

pred : (-> any/c any/c)

x : any/c

stop-on-found? : any/c = #f

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

Returns a list of all values satisfying pred contained in x (possibly including x itself).

If stop-on-found? is true, the children of values satisfying pred are not examined. If
stop is a procedure, then the children of values for which stop returns true are not exam-
ined (but the values themselves are; stop is applied after pred). Only the current branch of
the search is stopped, not the whole search.

The search recurs through pairs, vectors, boxes, and the accessible fields of structures. If
get-children is a procedure, it can override the default notion of a value’s children by
returning a list (if it returns false, the default notion of children is used).

No cycle detection is done, so find on a cyclic graph may diverge. To do cycle checking
yourself, use stop and a mutable table.

Examples:

> (find symbol? '((all work) and (no play)))

'(all work and no play)

> (find list? '#((all work) and (no play)) #:stop-on-found? #t)

'((all work) (no play))

> (find negative? 100

#:stop-on-found? #t

#:get-children (lambda (n) (list (- n 12))))

'(-8)

> (find symbol? (shared ([x (cons 'a x)]) x)

#:stop (let ([table (make-hasheq)])

(lambda (x)

(begin0 (hash-ref table x #f)

27

(hash-set! table x #t)))))

'(a)

(find-first pred

x

[#:stop stop

#:get-children get-children

#:default default]) → any/c

pred : (-> any/c any/c)

x : any/c

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

default : any/c = (lambda () (error))

Like find, but only returns the first match. If no matches are found, default is applied as
a thunk if it is a procedure or returned otherwise.

Examples:

> (find-first symbol? '((all work) and (no play)))

'all

> (find-first list? '#((all work) and (no play)))

'(all work)

> (find-first negative? 100

#:get-children (lambda (n) (list (- n 12))))

-8

> (find-first symbol? (shared ([x (cons 'a x)]) x))

'a

28

13 Finding Mutated Variables

(require unstable/mutated-vars)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find-mutated-vars stx [dict]) → dict?

stx : syntax?

dict : dict? = (make-immutable-free-id-table)

Traverses stx , which should be module-level-form in the sense of the grammar for fully-
expanded forms, and records all of the variables that are mutated. Each mutated variable is
added to dict , mapped to #t. If dict is mutable, as determined by dict-mutable?, then
the table is updated destructively. Otherwise, the table is updated functionally.

Examples:

> (define t (find-mutated-vars #'(begin (set! var 'foo) 'bar)))

> (dict-ref t #'var #f)

#t

> (dict-ref t #'other-var #f)

#f

> (define tbl (make-free-id-table))

> (find-mutated-vars #'(begin (set! var 'foo) 'bar) tbl)

#<mutable-free-id-table>

> (dict-ref tbl #'var #f)

#t

}

29

14 Functions

(require unstable/function)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for higher-order programming and creating functions.

14.1 Simple Functions

(identity x) → (one-of/c x)

x : any/c

Returns x .

(thunk body ...)

Creates a function that ignores its inputs and evaluates the given body. Useful for creating
event handlers with no (or irrelevant) arguments.

Examples:

(define f (thunk (define x 1) (printf "∼a\n" x)))

> (f)

1

> (f 'x)

1

> (f #:y 'z)

1

14.2 Higher Order Predicates

((negate f) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Negates the results of f ; equivalent to (not (f x ...)).

This function is reprovided from scheme/function.

30

Examples:

(define f (negate exact-integer?))

> (f 1)

#f

> (f 'one)

#t

((conjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:

(define f (conjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#f

> (f 1/2)

#f

> (f 0.5)

#f

((disjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#t

> (f 1/2)

#t

> (f 0.5)

#f

31

14.3 Currying and (Partial) Application

(call f x ...) → B

f : (-> A ... B)

x : A

Passes x ... to f . Keyword arguments are allowed. Equivalent to (f x ...). Useful for
application in higher-order contexts.

Examples:

> (map call

(list + - * /)

(list 1 2 3 4)

(list 5 6 7 8))

'(6 -4 21 1/2)

(define count 0)

(define (inc)

(set! count (+ count 1)))

(define (reset)

(set! count 0))

(define (show)

(printf "∼a\n" count))

> (for-each call (list inc inc show reset show))

2

0

(papply f x ...) → (B ... -> C)

f : (A ... B ... -> C)

x : A

(papplyr f x ...) → (A ... -> C)

f : (A ... B ... -> C)

x : B

The papply and papplyr functions partially apply f to x ..., which may include keyword
arguments. They obey the following equations:

((papply f x ...) y ...) = (f x ... y ...)

((papplyr f x ...) y ...) = (f y ... x ...)

Examples:

(define reciprocal (papply / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

32

(define halve (papplyr / 2))

> (halve 3)

3/2

> (halve 4)

2

(curryn n f x ...) → (A1 ... -> ooo -> An ... -> B)

n : exact-nonnegative-integer?

f : (A0 ... A1 ... ooo An ... -> B)

x : A0

(currynr n f x ...) → (An ... -> ooo -> A1 ... -> B)

n : exact-nonnegative-integer?

f : (A1 ... ooo An ... An+1 ... -> B)

x : An+1

Note: The ooo above denotes a loosely associating ellipsis.

The curryn and currynr functions construct a curried version of f , specialized at x ...,
that produces a result after n further applications. Arguments at any stage of application may
include keyword arguments, so long as no keyword is duplicated. These curried functions
obey the following equations:

(curryn 0 f x ...) = (f x ...)

((curryn (+ n 1) f x ...) y ...) = (curryn n f x ... y ...)

(currynr 0 f x ...) = (f x ...)

((currynr (+ n 1) f x ...) y ...) = (currynr n f y ... x ...)

The call, papply, and papplyr utilities are related to curryn and currynr in the follow-
ing manner:

(call f x ...) = (curryn 0 f x ...) = (currynr 0 f x ...)

(papply f x ...) = (curryn 1 f x ...)

(papplyr f x ...) = (currynr 1 f x ...)

Examples:

(define reciprocal (curryn 1 / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

(define subtract-from (curryn 2 -))

(define from-10 (subtract-from 10))

> (from-10 5)

5

33

> (from-10 10)

0

(define from-0 (subtract-from 0))

> (from-0 5)

-5

> (from-0 10)

-10

(define halve (currynr 1 / 2))

> (halve 3)

3/2

> (halve 4)

2

(define subtract (currynr 2 -))

(define minus-10 (subtract 10))

> (minus-10 5)

-5

> (minus-10 10)

0

(define minus-0 (subtract 0))

> (minus-0 5)

5

> (minus-0 10)

10

14.4 Eta Expansion

(eta f)

Produces a function equivalent to f , except that f is evaluated every time it is called.

This is useful for function expressions that may be run, but not called, before f is defined.
The eta expression will produce a function without evaluating f .

Examples:

(define f (eta g))

> f

#<procedure:eta>

(define g (lambda (x) (+ x 1)))

> (f 1)

2

(eta* f x ...)

34

Produces a function equivalent to f , with argument list x In simple cases, this is equiv-
alent to (lambda (x ...) (f x ...)). Optional (positional or keyword) arguments are
not allowed.

This macro behaves similarly to eta, but produces a function with statically known arity
which may improve efficiency and error reporting.

Examples:

(define f (eta* g x))

> f

#<procedure:f>

> (procedure-arity f)

1

(define g (lambda (x) (+ x 1)))

> (f 1)

2

14.5 Parameter Arguments

(lambda/parameter (param-arg ...) body ...)

param-arg = param-arg-spec

| keyword param-spec

param-arg-spec = id

| [id default-expr]

| [id #:param param-expr]

Constructs a function much like lambda, except that some optional arguments correspond
to the value of a parameter. For each clause of the form [id #:param param-expr],
param-expr must evaluate to a value param satisfying parameter?. The default value of
the argument id is (param); param is bound to id via parameterize during the function
call.

Examples:

(define p (open-output-string))

(define hello-world

(lambda/parameter ([port #:param current-output-port])

(display "Hello, World!")

(newline port)))

> (hello-world p)

> (get-output-string p)

"Hello, World!\n"

35

15 Generics

(require unstable/generics)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

kw-formals* = (arg* ...)

| (arg* ...+ . rest-id)

| rest-id

arg* = id

| [id]

| keyword id

| keyword [id]

name : identifier?

prop:name : identifier?

name? : identifier?

method : identifier?

Defines name as a transformer binding for the static information about a new generic group.

Defines prop:name as a structure type property. Structure types implementing this generic
group should have this property where the value is a vector with one element per method
where each value is either #f or a procedure with the same arity as specified by kw-

formals* . (kw-formals* is similar to the kw-formals used by lambda, except no ex-
pression is given for optional arguments.) The arity of each method is checked by the guard
on the structure type property.

Defines name? as a predicate identifying instances of structure types that implement this
generic group.

Defines each method as a generic procedure that calls the corresponding method on val-
ues where name? is true. Each method must have a required by-position argument that is
free-identifier=? to name . This argument is used in the generic definition to locate the
specialization.

36

(generics name

[method . kw-formals*]

...)

name : identifier?

method : identifier?

Expands to

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

where prop:name and name? are created with the lexical context of name .

(define-methods name definition ...)

name : identifier?

name must be a transformer binding for the static information about a new generic group.

Expands to a value usable as the property value for the structure type property of the name

generic group.

If the definitions define the methods of name , then they are used in the property value.

If any method of name is not defined, then #f is used to signify that the structure type does
not implement the particular method.

Allows define/generic to appear in definition

(define/generic local-name method-name)

local-name : identifier?

method-name : identifier?

When used inside define-methods, binds local-name to the generic for method-name .
This is useful for method specializations to use the generic methods on other values.

Syntactically an error when used outside define-methods.

Examples:

> (define-generics (printable prop:printable printable?)

37

(gen-print printable [port])

(gen-port-print port printable)

(gen-print* printable [port] #:width width #:height [height]))

> (define-struct num (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print n [port (current-output-port)])

(fprintf port "Num: ∼a" (num-v n)))

(define (gen-port-print port n)

(super-print n port))

(define (gen-print* n [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Num (∼ax∼a): ∼a" w h (num-v n)))))

> (define-struct bool (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print b [port (current-output-port)])

(fprintf port "Bool: ∼a"
(if (bool-v b) "Yes" "No")))

(define (gen-port-print port b)

(super-print b port))

(define (gen-print* b [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Bool (∼ax∼a): ∼a" w h

(if (bool-v b) "Yes" "No")))))

> (define x (make-num 10))

> (gen-print x)

Num: 10

> (gen-port-print (current-output-port) x)

Num: 10

> (gen-print* x #:width 100 #:height 90)

Num (100x90): 10

> (define y (make-bool #t))

> (gen-print y)

Bool: Yes

> (gen-port-print (current-output-port) y)

Bool: Yes

> (gen-print* y #:width 100 #:height 90)

Bool (100x90): Yes

38

16 Hash Tables

(require unstable/hash)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating hash tables.

(hash-union h0

h ...

[#:combine combine

#:combine/key combine/key])
→ (and/c hash? hash-can-functional-set?)

h0 : (and/c hash? hash-can-functional-set?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (hash-union (make-immutable-hash '([1 . one])) (make-immutable-

hash '([2 . two])) (make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))

> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

(hash-union! h0

h ...

[#:combine combine

#:combine/key combine/key]) → void?

h0 : (and/c hash? hash-mutable?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

39

Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define h (make-hash))

> h

'#hash()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h

'#hash((1 . (one uno)) (2 . (two dos)))

> (hash-union! h

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

40

17 Interface-Oriented Programming for Classes

(require unstable/class-iop)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-

ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:

> (define-interface stack<%> () (empty? push pop))

> stack<%>

#<|interface:stack<%>|>

> (define stack%

(class* object% (stack<%>)

(define items null)

(define/public (empty?) (null? items))

(define/public (push x) (set! items (cons x items)))

(define/public (pop) (begin (car items) (set! items (cdr items))))

(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr , which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-id is not a member of the dynamic
interface ifc-expr .

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:

> (define-interface/dynamic object<%> (class->interface object%) ())

> object<%>

#<interface:object%>

(send/i obj-exp static-ifc-id method-id arg-expr ...)

41

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-

id must be a member of the static interface static-ifc-id ; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id ; otherwise, a
run-time error is raised.

Examples:

> (define s (new stack%))

> (send/i s stack<%> push 1)

> (send/i s stack<%> popp)

eval:9:0: send/i: method not in static interface in: popp
> (send/i (new object%) stack<%> push 2)

send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)

Checked variant of send*.

Example:

> (send*/i s stack<%>

(push 2)

(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-arg-expr)

Checked variant of send/apply.

Example:

> (send/apply/i s stack<%> push (list 5))

(define/i id static-ifc-id expr)

Checks that expr evaluates to an instance of static-ifc-id before binding it to id . If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
defined via define/i.

(init/i (id static-ifc-id maybe-default-expr) ...)

42

(init-field/i (id static-ifc-id maybe-default-expr) ...)

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()

| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

43

18 Lists

(require unstable/list)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(list-prefix? l r) → boolean?

l : list?

r : list?

True if l is a prefix of r .

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))

#t The subsequent
bindings were
added by Sam
Tobin-Hochstadt.(filter-multiple l f ...) → list? ...

l : list?

f : procedure?

Produces (values (filter f l) ...).

Example:

> (filter-multiple (list 1 2 3 4 5) even? odd?)

'(2 4)

'(1 3 5)

(extend l1 l2 v) → list?

l1 : list?

l2 : list?

v : any/c

Extends l2 to be as long as l1 by adding (- (length l1) (length l2)) copies of v
to the end of l2 .

Example:

> (extend '(1 2 3) '(a) 'b)

'(a b b) The subsequent
bindings were
added by Ryan
Culpepper.(check-duplicate lst

[#:key extract-key

#:same? same?]) → (or/c any/c #f)

44

lst : list?

extract-key : (-> any/c any/c) = (lambda (x) x)

same? : (or/c (any/c any/c . -> . any/c)

dict?)

= equal?

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

Examples:

> (check-duplicate '(1 2 3 4))

#f

> (check-duplicate '(1 2 3 2 1))

2

> (check-duplicate '((a 1) (b 2) (a 3)) #:key car)

'(a 3)

> (define id-t (make-free-id-table))

> (check-duplicate (syntax->list #'(a b c d a b))

#:same? id-t)

#<syntax:10:0 a>

> (dict-map id-t list)

'((#<syntax:10:0 d> #t) (#<syntax:10:0 a> #t) (#<syntax:10:0 b> #t)

(#<syntax:10:0 c> #t)) The subsequent
bindings were
added by Carl
Eastlund.(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:

> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

'(1 2 3)

'(0 1 2)

45

(map2 f lst ...) → (listof B) (listof C)

f : (-> A ... (values B C))

lst : (listof A)

Produces a pair of lists of the respective values of f applied to the elements in lst ...

sequentially.

Example:

> (map2 (lambda (x) (values (+ x 1) (- x 1))) (list 1 2 3))

'(2 3 4)

'(0 1 2) The subsequent
bindings were
added by David Van
Horn.(remf pred lst) → list?

pred : procedure?

lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))

'(1 3 4 -5)

46

19 Mark Parameters

(require unstable/markparam)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag]) → any/c

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the first value of mp up to tag .

(mark-parameter-all mp [tag]) → list?

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of mp up to tag .

(mark-parameters-all mps none-v [tag]) → (listof vector?)

mps : (listof mark-parameter?)

none-v : [any/c #f]

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of the mps up to tag . The length of each vector in the result list is
the same as the length of mps , and a value in a particular vector position is the value for
the corresponding mark parameter in mps . Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.

47

(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

48

20 Match

(require unstable/match)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(== val comparator)

(== val)

A match expander which checks if the matched value is the same as val when compared by
comparator . If comparator is not provided, it defaults to equal?.

Examples:

> (match (list 1 2 3)

[(== (list 1 2 3)) 'yes]

[_ 'no])

'yes

> (match (list 1 2 3)

[(== (list 1 2 3) eq?) 'yes]

[_ 'no])

'no

> (match (list 1 2 3)

[(list 1 2 (== 3 =)) 'yes]

[_ 'no])

'yes The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(match? val-expr pat ...)

Returns #t if the result of val-expr matches any of pat , and returns #f otherwise.

Examples:

> (match? (list 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (vector 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (+ 1 2 3)

(list a b c)

(vector x y z))

49

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

#f

(as ([lhs-id rhs-expr] ...) pat ...)

As a match expander, binds each lhs-id as a pattern variable with the result value of rhs-
expr , and continues matching each subsequent pat .

Example:

> (match (list 1 2 3)

[(as ([a 0]) (list b c d)) (list a b c d)])

'(0 1 2 3)

50

21 Net

(require unstable/net)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

21.1 URLs

(require unstable/net/url)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(url-replace-path proc u) → url?

proc : ((listof path/param?) . -> . (listof path/param?))

u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) → string?

url-path : (listof path/param?)

Formats url-path as a string with "/" as a delimiter and no params.

51

22 Path

(require unstable/path)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(explode-path* p) → (listof path-element?)

p : path-string?

Like normalize-path, but does not resolve symlinks.

(path-without-base base p) → (listof path-element?)

base : path-string?

p : path-string?

Returns, as a list, the portion of p after base , assuming base is a prefix of p .

(directory-part p) → path?

p : path-string?

Returns the directory part of p , returning (current-directory) if it is relative.

(build-path-unless-absolute base p) → path?

base : path-string?

p : path-string?

Prepends base to p , unless p is absolute.

(strip-prefix-ups p) → (listof path-element?)

p : (listof path-element?)

Removes all the prefix ".."s from p .

52

23 Ports

(require unstable/port)

This module provides tools for port I/O.

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(read-all [reader port]) → list?

reader : (-> any/c) = read

port : input-port? = (current-input-port)

This function produces a list of all the values produced by calling (reader) while
current-input-port is set to port , up until it produces eof.

Examples:

> (read-all read (open-input-string "1 2 3"))

'(1 2 3)

> (parameterize ([current-input-port (open-input-string "a b c")])

(read-all))

'(a b c)

(read-all-syntax [reader port]) → (syntax/c list?)

reader : (-> (or/c syntax? eof-object?)) = read

port : input-port? = (current-input-port)

This function produces a syntax object containing a list of all the syntax objects produced
by calling (reader) while current-input-port is set to port , up until it produces eof.
The source location of the result spans the entire portion of the port that was read.

Examples:

(define port1 (open-input-string "1 2 3"))

> (port-count-lines! port1)

> (read-all-syntax read-syntax port1)

#<syntax:1:0 (1 2 3)>

(define port2 (open-input-string "a b c"))

> (port-count-lines! port2)

> (parameterize ([current-input-port port2])

(read-all-syntax))

#<syntax:1:0 (a b c)>

(port->srcloc port [source span]) → srcloc?

53

port : port?

source : any/c = (object-name port)

span : exact-nonnegative-integer? = 0

Produces a srcloc structure representing the current position of a port, using the provided
source and span values to fill in missing fields. This function relies on port-next-

location, so line counting must be enabled for port to get meaningful results.

Examples:

(define port (open-input-string "1 2 3"))

> (port-count-lines! port)

> (read port)

1

> (port->srcloc port)

(srcloc 'string 1 1 2 0)

> (port->srcloc port "1 2 3" 1)

(srcloc "1 2 3" 1 1 2 1)

54

24 Pretty-Printing

(require unstable/pretty)

This module provides tools for pretty-printing.

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(pretty-format/write x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with write

instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/write (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (\"a\" \"b\")))\n"

(pretty-format/display x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with dis-

play instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/display (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (a b)))\n"

(pretty-format/print x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves the same as pretty-format, but is named more explicitly to de-
scribe how it formats values. It is included for symmetry with pretty-format/write and
pretty-format/display.

55

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/print (list (both (list 'a 'b) (list "a" "b"))))

"(list (both '(a b) '(\"a\" \"b\")))\n"

56

25 Requiring Modules

(require unstable/require)

This module provides tools for importing from modules.

(require/provide module-path ...)

Re-exports all bindings provided by each module-path . Equivalent to:

(require module-path ...)

(provide (all-from-out module-path ...))

(quote-require require-spec ...)

Produces the names exported by the require-specs as a list of symbols.

Example:

> (quote-require racket/bool racket/function)

'(false true symbol=? false? boolean=? negate curryr curry const)

57

26 Sequences

(require unstable/sequence)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(in-syntax stx) → sequence?

stx : syntax?

Produces a sequence equivalent to (syntax->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))])

x)

'(#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) → sequence?

seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)

(sequence-lift cdr seq)).

(in-sequence-forever seq val) → sequence?

seq : sequence?

val : any/c

Produces a sequence whose values are the elements of seq , followed by val repeated.

(sequence-lift f seq) → sequence?

f : procedure?

seq : sequence?

Produces the sequence of f applied to each element of seq .

Example:

> (for/list ([x (sequence-lift add1 (in-range 10))])

x)

'(1 2 3 4 5 6 7 8 9 10)

58

27 Strings

(require unstable/string)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(lowercase-symbol! sb) → symbol?

sb : (or/c string? bytes?)

Returns sb as a lowercase symbol.

(read/string s) → serializable?

s : string?

reads a value from s and returns it.

(write/string v) → string?

v : serializable?

writes v to a string and returns it.

59

28 Structs

(require unstable/struct)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make struct-id expr ...)

Creates an instance of struct-id , which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id . If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:

> (define-struct triple (a b c))

> (make triple 3 4 5)

#<triple>

> (make triple 2 4)

eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2) in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque]) → (or/c list? #f)

v : any/c

on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:

> (define-struct open (u v) #:transparent)

> (struct->list (make-open 'a 'b))

'(a b)

> (struct->list #s(pre 1 2 3))

'(1 2 3)

> (define-struct (secret open) (x y))

> (struct->list (make-secret 0 1 17 22))

struct->list: expected argument of type <non-opaque
struct>; given (secret 0 1 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)

60

#f

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)

'(0 1)

> (struct->list 'not-a-struct #:on-opaque 'return-false)

#f

> (struct->list 'not-a-struct #:on-opaque 'skip)

'()

61

29 Syntax

(require unstable/syntax)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation. This binding was

added by Vincent
St-Amour.

(format-unique-id lctx

[#:source src

#:props props

#:cert cert]
fmt

v ...) → identifier?

lctx : (or/c syntax? #f)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

Like format-id, but returned identifiers are guaranteed to be unique. The subsequent
bindings were
added by Sam
Tobin-Hochstadt.(syntax-map f stxl ...) → (listof A)

f : (-> syntax? A)

stxl : syntax?

Performs (map f (syntax->list stxl) ...).

Example:

> (syntax-map syntax-e #'(a b c))

'(a b c) The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(syntax-list template ...)

This form constructs a list of syntax objects based on the given templates. It is equivalent to
(syntax->list #'(template ...)).

Example:

> (with-syntax ([(x ...) #'(1 2 3)]) (syntax-list x ...))

'(#<syntax:3:0 1> #<syntax:3:0 2> #<syntax:3:0 3>)

62

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

29.1 Syntax Object Source Locations

(syntax-source-directory stx) → (or/c path? #f)

stx : syntax?

(syntax-source-file-name stx) → (or/c path? #f)

stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-
ciated, or #f if stx is not associated with a path.

Examples:

(define loc

(list (build-path "/tmp" "dir" "somewhere.ss")

#f #f #f #f))

(define stx1 (datum->syntax #f 'somewhere loc))

> (syntax-source-directory stx1)

#<path:/tmp/dir/>

> (syntax-source-file-name stx1)

#<path:somewhere.ss>

(define stx2 (datum->syntax #f 'nowhere #f))

> (syntax-source-directory stx2)

#f

> (syntax-source-directory stx2)

#f

63

30 GUI libraries

30.1 DrRacket Language Levels

(require unstable/gui/language-level)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

language-level@ : unit?

This unit imports drracket:tool^ and exports language-level^.

language-level^ : signature

(make-language-level name

path

mixin ...

[#:number number

#:hierarchy hierarchy

#:summary summary

#:url url

#:reader reader])
→ (is-a?/c drracket:language:language<%>)

name : string?

path : module-path?

mixin : (-> class? class?)

number : integer? = ...

hierarchy : (listof (cons/c string? integer?)) = ...

summary : string? = name

url : (or/c string? #f) = #f

reader : (->* [] [any/c input-port?] (or/c syntax? eof-object?))

= read-syntax

Constructs a language level as an instance of
drracket:language:language<%> with the given name based on the lan-
guage defined by the module at path . Applies (drracket:language:get-
default-mixin) and the given mixins to simple-language-level% to
construct the class, and uses the optional keyword arguments to fill in the
language’s description and reader.

64

simple-language-level% : (and/c (implementation?/c drracket:language:language<%>)

(implementation?/c drracket:language:module-based-language<%>)

(implementation?/c drracket:language:simple-module-based-language<%>))

Equal to (drracket:language:module-based-language->language-

mixin (drracket:language:simple-module-based-language-

>module-based-language-mixin drracket:language:simple-

module-based-language%)).

(language-level-render-mixin to-sexp

show-void?)

→ (make-mixin-contract drracket:language:language<%>)

to-sexp : (-> any/c any/c)

show-void? : boolean?

Produces a mixin that overrides render-value/format to apply to-sexp to
each value before printing it, and to skip void? values (pre-transformation) if
show-void? is #f.

(language-level-capability-mixin dict)

→ (make-mixin-contract drracket:language:language<%>)

dict : dict?

Produces a mixin that augments capability-value to look up each key in
dict , producing the corresponding value if the key is found and deferring to
inner otherwise.

language-level-no-executable-mixin : (make-mixin-contract drracket:language:language<%>)

Overrides create-executable to print an error message in a dialog box.

language-level-eval-as-module-mixin : (make-mixin-contract drracket:language:language<%>

drracket:language:module-based-language<%>)

Overrides front-end/complete-program to wrap terms from the definition
in a module based on the language level’s definition module. This duplicates
the behavior of the HtDP teaching languages, for instance.

language-level-macro-stepper-mixin : (make-mixin-contract drracket:language:language<%>)

This mixin enables the macro stepper for its language level.

language-level-check-expect-mixin : (make-mixin-contract drracket:language:language<%>)

This mixin overrides on-execute to set up the check-expect test engine to a
language level similarly to the HtDP teaching languages.

65

(language-level-metadata-mixin reader-module

meta-lines

meta->settings

settings->meta)

→ (make-mixin-contract drracket:language:language<%>)

reader-module : module-path?

meta-lines : exact-nonnegative-integer?

meta->settings : (-> string? any/c any/c)

settings->meta : (-> symbol? any/c string?)

This mixin constructs a language level that stores metadata in saved files allow-
ing Drracket to automatically switch back to this language level upon open-
ing them. It overrides get-reader-module, get-metadata, metadata-

>settings, and get-metadata-lines.

The resulting language level uses the reader from reader-module , and is rec-
ognized in files that start with a reader directive for that module path within
the first meta-lines lines. Metadata about the language’s settings is mar-
shalled between a string and a usable value (based on a default value) by meta-

>settings , and between a usable value for a current module (with a symbolic
name) by settings->meta .

30.2 Notify-boxes

(require unstable/gui/notify)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

notify-box% : class?

superclass: object%

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:

> (define nb (new notify-box% (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'potato)

New value: potato

66

(new notify-box% [value value]) → (is-a?/c notify-box%)

value : any/c

Creates a notify-box initially containing value .

(send a-notify-box get) → any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) → void?

v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) → void?

listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

(send a-notify-box remove-listener listener) → void?

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) → void?

Removes all previously registered callbacks.

(notify-box/pref proc

[#:readonly? readonly?]) → (is-a?/c notify-box%)

proc : (case-> (-> any/c) (-> any/c void?))

readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:

> (define animal (make-parameter 'ant))

> (define nb (notify-box/pref animal))

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'bee)

67

New value: bee

> (animal 'cow)

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

(define-notify name value-expr)

value-expr : (is-a?/c notify-box%)

Class-body form. Declares name as a field and get-name , set-name , and listen-name

as methods that delegate to the get, set, and listen methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

> (define config%

(class object%

(define-notify food (new notify-box% (value 'apple)))

(define-notify animal (new notify-box% (value 'ant)))

(super-new)))

> (define c (new config%))

> (send c listen-food

(lambda (v) (when (eq? v 'honey) (send c set-

animal 'bear))))

> (let ([food (get-field food c)])

(send food set 'honey))

> (send c get-animal)

'bear

(menu-option/notify-box parent

label

notify-box)

→ (is-a?/c checkable-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a checkable-menu-item% tied to notify-box . The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of

68

notify-box and invokes its listeners.

(check-box/notify-box parent

label

notify-box) → (is-a?/c check-box%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a check-box% tied to notify-box . The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

(choice/notify-box parent

label

choices

notify-box) → (is-a?/c choice%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

choices : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Creates a choice% tied to notify-box . The choice control has the value (send notify-

box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices , either initially or upon an update, an error is
raised.

(menu-group/notify-box parent

labels

notify-box)

→ (listof (is-a?/c checkable-menu-item%))

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

labels : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Returns a list of checkable-menu-item% controls tied to notify-box . A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box ’s listeners.

69

30.3 Preferences

(require unstable/gui/prefs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(pref:get/set pref) → (case-> (-> any/c) (-> any/c void?))

pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref .

30.4 Slideshow Presentations

(require unstable/gui/slideshow)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

30.4.1 Text Formatting

(with-size size expr)

Sets current-font-size to size while running expr .

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

(big text)

(small text)

Scale current-font-size by 3/2 or 2/3, respectively, while running text .

(with-font font expr)

Sets current-main-font to font while running expr .

70

(with-style style expr)

Adds style to current-main-font (via cons) while running expr .

(bold text)

(italic text)

(subscript text)

(superscript text)

(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

30.4.2 Pict Colors

(color c p) → pict?

c : color/c

p : pict?

Applies color c to picture p . Equivalent to (colorize p c).

(red pict) → pict?

pict : pict?

(orange pict) → pict?

pict : pict?

(yellow pict) → pict?

pict : pict?

(green pict) → pict?

pict : pict?

(blue pict) → pict?

pict : pict?

(purple pict) → pict?

pict : pict?

(black pict) → pict?

pict : pict?

(brown pict) → pict?

pict : pict?

(gray pict) → pict?

pict : pict?

(white pict) → pict?

pict : pict?

71

(cyan pict) → pict?

pict : pict?

(magenta pict) → pict?

pict : pict?

These functions apply appropriate colors to picture p.

(light color) → color/c

color : color/c

(dark color) → color/c

color : color/c

These functions produce ligher or darker versions of a color.

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

30.4.3 Pict Manipulation

(fill pict width height) → pict?

pict : pict?

width : (or/c real? #f)

height : (or/c real? #f)

Extends pict ’s bounding box to a minimum width and/or height , placing the original
picture in the middle of the space.

Conditional Manipulations

These pict transformers all take boolean arguments that determine whether to transform
the pict or leave it unchanged. These transformations can be useful for staged slides, as
the resulting pict always has the same size and shape, and its contents always appear at
the same position, but changing the boolean argument between slides can control when the
transformation occurs.

(show pict [show?]) → pict?

pict : pict?

show? : truth/c = #t

72

(hide pict [hide?]) → pict?

pict : pict?

hide? : truth/c = #t

These functions conditionally show or hide an image, essentially choosing between pict

and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

(strike pict [strike?]) → pict?

pict : pict?

strike? : truth/c = #t

Displays a strikethrough image by putting a line through the middle of pict if strike? is
true; produces pict unchanged otherwise.

(shade pict [shade? #:ratio ratio]) → pict?

pict : pict?

shade? : truth/c = #t

ratio : (real-in 0 1) = 1/2

Shades pict to show with ratio of its normal opacity; if ratio is 1 or shade? is #f,
shows pict unchanged.

Conditional Combinations

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accommodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to pict-combine.

(pict-cond maybe-combine [test-expr pict-expr] ...)

73

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to pict-combine.

(pict-match test-expr maybe-combine [pattern pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each pattern , similarly to match. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

pict-combine

This syntax parameter determines the default pict combining form used by the above macros.
It defaults to lbl-superimpose.

(with-pict-combine combine-id body ...)

Sets pict-combine to refer to combine-id within each of the body terms, which are
spliced into the containing context.

30.4.4 Staged Slides

(staged [name ...] body ...)

Executes the body terms once for each stage name . The terms may include expressions and
mutually recursive definitions. Within the body, each name is bound to a number from 1 to

74

the number of stages in order. Furthermore, during execution stage is bound to the number
of the current stage and stage-name is bound to a symbol representing the name of the
current stage. By comparing stage to the numeric value of each name , or stage-name to
quoted symbols of the form 'name, the user may compute based on the progression of the
stages.

stage

stage-name

These keywords are bound during the execution of staged and should not be used otherwise.

(slide/staged [name ...] arg ...)

Creates a staged slide. Equivalent to (staged [name ...] (slide arg ...)).

Within a staged slide, the boolean arguments to hide, show, strike, and shade can be
used to determine in which stages to perform a transformation. The macros pict-if, pict-
cond, pict-case, and pict-match may also be used to create images which change natu-
rally between stages.

30.4.5 Tables

(tabular row

...

[#:gap gap

#:hgap hgap

#:vgap vgap

#:align align

#:halign halign

#:valign valign]) → pict?

row : (listof (or/c string? pict?))

gap : natural-number/c = gap-size

hgap : natural-number/c = gap

vgap : natural-number/c = gap

align : (->* [] [] #:rest (listof pict?) pict?)

= lbl-superimpose

halign : (->* [] [] #:rest (listof pict?) pict?) = align

valign : (->* [] [] #:rest (listof pict?) pict?) = align

Constructs a table containing the given rows, all of which must be of the same length.
Applies t to each string in a row to construct a pict. The hgap , vgap , halign , and valign

are used to determine the horizontal and vertical gaps and alignments as in table (except
that every row and column is uniform).

75

30.4.6 Multiple Columns

(two-columns one two)

Constructs a two-column pict using one and two as the two columns. Sets current-para-
width appropriately in each column.

(mini-slide pict ...) → pict?

pict : pict?

Appends each pict vertically with space between them, similarly to the slide function.

(columns pict ...) → pict?

pict : pict?

Combines each pict horizontally, aligned at the top, with space in between.

(column width body ...)

Sets current-para-width to width during execution of the body expressions.

(column-size n [r]) → real?

n : exact-positive-integer?

r : real? = (/ n)

Computes the width of one column out of n that takes up a ratio of r of the available space
(according to current-para-width). The subsequent

bindings were
added by Vincent
St-Amour.(ellipse/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

76

(circle/border diameter

#:color color

#:border-color border-color

#:border-width border-width) → pict?

diameter : real?

color : color/c

border-color : color/c

border-width : real?

(rectangle/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

(rounded-rectangle/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

These functions create shapes with border of the given color and width. The subsequent
bindings were
added by Scott
Owens.(blank-line) → pict?

Adds a blank line of the current font size’s height.

77

(pin-label-line label

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:x-adjust x-adjust

#:y-adjust y-adjust) → pict?

label : pict?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

x-adjust : real?

y-adjust : real?

78

(pin-arrow-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust)

→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

hide-arrowhead? : any/c

x-adjust : real?

y-adjust : real?

79

(pin-arrows-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust)

→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

hide-arrowhead? : any/c

x-adjust : real?

y-adjust : real?

These functions behave like pin-line, pin-arrow-line and pin-arrows-line with the
addition of a label attached to the line.

80

	1 Guidelines for developing blueIdentifierColorunstable libraries
	2 Bytes
	3 Contracts
	3.1 Flat Contracts
	3.2 Syntax Object Contracts
	3.3 Higher-Order Contracts

	4 Contracts for macro subexpressions
	5 Contracts for struct type properties
	6 Debugging
	7 Definitions
	7.1 Deferred Evaluation in Modules
	7.2 Conditional Binding
	7.3 Renaming Definitions
	7.4 Forward Declarations
	7.5 Definition Shorthands
	7.6 Macro Definitions
	7.7 Effectful Transformation

	8 Dictionaries
	9 Directories
	10 Exceptions
	11 Filesystem
	12 Find
	13 Finding Mutated Variables
	14 Functions
	14.1 Simple Functions
	14.2 Higher Order Predicates
	14.3 Currying and (Partial) Application
	14.4 Eta Expansion
	14.5 Parameter Arguments

	15 Generics
	16 Hash Tables
	17 Interface-Oriented Programming for Classes
	18 Lists
	19 Mark Parameters
	20 Match
	21 Net
	21.1 URLs

	22 Path
	23 Ports
	24 Pretty-Printing
	25 Requiring Modules
	26 Sequences
	27 Strings
	28 Structs
	29 Syntax
	29.1 Syntax Object Source Locations

	30 GUI libraries
	30.1 DrRacket Language Levels
	30.2 Notify-boxes
	30.3 Preferences
	30.4 Slideshow Presentations
	30.4.1 Text Formatting
	30.4.2 Pict Colors
	30.4.3 Pict Manipulation
	30.4.4 Staged Slides
	30.4.5 Tables
	30.4.6 Multiple Columns

