
Syntax Color: Utilities
Version 5.1.2

Scott Owens

August 3, 2011

The "syntax-color" collection provides the underlying data structures and some helpful
utilities for the color:text% class of the Framework: Racket GUI Application Framework.

1

1 Parenthesis Matching

(require syntax-color/paren-tree)

paren-tree% : class?

superclass: object%

Parenthesis matching code built on top of token-tree%.

2

2 Scheme Lexer

(require syntax-color/scheme-lexer)

(scheme-lexer in) → (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

in : input-port?

A lexer for Scheme, including reader extensions (§12.9 “Reader Extension”), built specifi-
cally for color:text%.

The scheme-lexer function returns 5 values:

• Either a string containing the matching text or the eof object. Block comments and
specials currently return an empty string. This may change in the future to other string
or non-string data.

• A symbol in '(error comment sexp-comment white-space constant

string no-color parenthesis other symbol eof).

• A symbol in '(|(| |)| |[| |]| |{| |}|) or #f.

• A number representing the starting position of the match (or #f if eof).

• A number representing the ending position of the match (or #f if eof).

(scheme-lexer/status in) → (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

(or/c 'datum 'open 'close 'continue)

in : input-port?

Like scheme-lexer, but returns an extra value. The last return value indicates whether the
consumed token should count as a datum, an opening parenthesis (or similar starting token
to group other tokens), a closing parenthesis (or similar), or a prefix (such as whitespace) on
a datum.

(scheme-nobar-lexer/status in)

3

→ (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

(or/c 'datum 'open 'close 'continue)

in : input-port?

Like scheme-lexer/status, but for a dialect of Scheme where | is a delimiter instead of
quoting syntax for a symbol. This function is used by scribble-lexer.

4

3 Default lexer

(require syntax-color/default-lexer)

(default-lexer in) → (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

in : input-port?

A lexer that only identifies (,), [,], {, and } built specifically for color:text%.

default-lexer returns 5 values:

• Either a string containing the matching text or the eof object. Block specials currently
return an empty string. This may change in the future to other string or non-string
data.

• A symbol in '(comment white-space no-color eof).

• A symbol in '(|(| |)| |[| |]| |{| |}|) or #f.

• A number representing the starting position of the match (or #f if eof).

• A number representing the ending position of the match (or #f if eof).

5

4 Module Lexer

(require syntax-color/module-lexer)

(module-lexer in offset mode)

→ (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

exact-nonnegative-integer?

(or/c #f

(-> input-port? any)

(cons/c (-> input-port? any/c any) any/c))

in : input-port?

offset : exact-nonnegative-integer?

mode : (or/c #f

(-> input-port? any)

(cons/c (-> input-port? any/c any) any/c))

Like scheme-lexer, but with several differences:

• The module-lexer function accepts an offset and lexer mode, instead of just an input
port.

• In addition to the results of scheme-lexer, module-lexer returns a backup distance
and a new lexer mode.

• When mode is #f (indicating the start of the stream), the lexer checks in for a #lang
specification.

If a #lang line is present but the specified language does not exist, the entire in input
is consumed and colored as 'error.

If the language exists and the language provides a get-info function, then it is called
with 'color-lexer. If the result is not #f, then it should be a lexer function for use
with color:text%. The result mode is the lexer—paired with #f if the lexer is a
procedure arity 3—so that future calls will dispatch to the language-supplied lexer.

If the language is specified but it provides no get-info or 'color-lexer result, then
scheme-lexer is returned as the mode.

• When mode is a lexer procedure, the lexer is applied to in . The lexer’s results are
returned, plus the lexer again as the mode.

• When mode is a pair, then the lexer procedure in the car is applied to in , offset ,
and the mode in the cdr. The lexer’s results are returned, except that its mode result
is paired back with the lexer procedure.

6

5 Scribble Lexer

(require syntax-color/scribble-lexer)

(scribble-lexer in offset mode) → (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

exact-nonnegative-integer?

any/c

in : input-port?

offset : exact-nonnegative-integer?

mode : any/c

Like scheme-lexer, but for Scheme extended with Scribbles @ notation (see §2 “@ Syn-
tax”).

(scribble-inside-lexer in offset mode)

→ (or/c string? eof-object?)

symbol?

(or/c symbol? false/c)

(or/c number? false/c)

(or/c number? false/c)

exact-nonnegative-integer?

any/c

in : input-port?

offset : exact-nonnegative-integer?

mode : any/c

Like scribble-lexer, but starting in “text” mode instead of Scheme mode.

7

6 Splay Tree for Tokenization

(require syntax-color/token-tree)

token-tree% : class?

superclass: object%

A splay-tree class specifically geared for the task of on-the-fly tokenization. Instead of
keying nodes on values, each node has a length, and they are found by finding a node that
follows a certain total length of preceding nodes.

FIXME: many methods are not yet documented.

(new token-tree% [len len] [data data])

→ (is-a?/c token-tree%)

len : (or/c exact-nonnegative-integer? fasle/c)

data : any/c

Creates a token tree with a single element.

(send a-token-tree get-root) → (or/c node? false/c)

Returns the root node in the tree.

(send a-token-tree search! key-position) → void?

key-position : natural-number/c

Splays, setting the root node to be the closest node to offset key-position
(i.e., making the total length of the left tree at least key-position , if possible).

(node? v) → boolean?

v : any/c

(node-token-length n) → natural-number/c

n : node?

(node-token-data n) → any/c

n : node?

(node-left-subtree-length n) → natural-number/c

n : node?

(node-left n) → (or/c node? false/c)

n : node?

(node-right n) → (or/c node? false/c)

n : node?

Functions for working with nodes in a token-tree%.

8

(insert-first! tree1 tree2) → void?

tree1 : (is-a?/c token-tree%)

tree2 : (is-a?/c token-tree%)

Inserts tree1 into tree2 as the first thing, setting tree2 ’s root to #f.

(insert-last! tree1 tree2) → void?

tree1 : (is-a?/c token-tree%)

tree2 : (is-a?/c token-tree%)

Inserts tree1 into tree2 as the last thing, setting tree2 ’s root to #f.

(insert-last-spec! tree n v) → void?

tree : (is-a?/c token-tree%)

n : natural-number/c

v : any/c

Same as (insert-last! tree (new token-tree% [length n] [data v])). This
optimization is important for the colorer.

9

	1 Parenthesis Matching
	2 Scheme Lexer
	3 Default lexer
	4 Module Lexer
	5 Scribble Lexer
	6 Splay Tree for Tokenization

