The Typed Racket Reference

Version 5.3

Sam Tobin-Hochstadt <samth @racket-lang . org>
and Vincent St-Amour <stamourv@racket-lang . org>

August 6, 2012

#lang typed/racket/base
#lang typed/racket

mailto:samth@racket-lang.org
mailto:stamourv@racket-lang.org

1 Type Reference

Any

Any Racket value. All other types are subtypes of Any.

Nothing

The empty type. No values inhabit this type, and any expression of this type will not evaluate
to a value.

1.1 Base Types
1.1.1 Numeric Types

These types represent the hierarchy of numbers of Racket.

Number

Complex
Number and Complex are synonyms. This is the most general numeric type, including all
Racket numbers, both exact and inexact, including complex numbers.

Integer
Includes Racket’s exact integers and corresponds to the exact-integer? predicate. This is

the most general type that is still valid for indexing and other operations that require integral
values.

Float
Flonum

Includes Racket’s double-precision (default) floating-point numbers and corresponds to the
flonum? predicate. This type excludes single-precision floating-point numbers.

Single-Flonum

Includes Racket’s single-precision floating-point numbers and corresponds to the single-
flonum? predicate. This type excludes double-precision floating-point numbers.

Inexact-Real

Includes all of Racket’s floating-point numbers, both single- and double-precision.

Exact-Rational

Includes Racket’s exact rationals, which include fractions and exact integers.

Real

Includes all of Racket’s real numbers, which include both exact rationals and all floating-
point numbers. This is the most general type for which comparisons (e.g. <) are defined.

Exact-Number
Float-Complex
Single-Flonum-Complex
Inexact-Complex

These types correspond to Racket’s complex numbers.

The above types can be subdivided into more precise types if you want to enforce tighter
constraints. Typed Racket provides types for the positive, negative, non-negative and non-
positive subsets of the above types (where applicable).

Positive-Integer
Exact-Positive-Integer
Nonnegative-Integer
Exact-Nonnegative-Integer
Natural
Negative-Integer
Nonpositive-Integer
Zero

Positive-Float
Positive-Flonum
Nonnegative-Float
Nonnegative-Flonum
Negative-Float
Negative-Flonum
Nonpositive-Float
Nonpositive-Flonum
Float-Negative-Zero
Flonum-Negative-Zero
Float-Positive-Zero
Flonum-Positive-Zero
Float-Zero
Flonum-Zero
Float-Nan

Flonum-Nan
Positive-Single-Flonum
Nonnegative-Single-Flonum
Negative-Single-Flonum
Nonpositive-Single-Flonum
Single-Flonum-Negative-Zero
Single-Flonum-Positive-Zero
Single-Flonum-Zero
Single-Flonum-Nan
Positive-Inexact-Real
Nonnegative-Inexact-Real
Negative-Inexact-Real
Nonpositive-Inexact-Real
Inexact-Real-Negative-Zero
Inexact-Real-Positive-Zero
Inexact-Real-Zero
Inexact-Real-Nan
Positive-Exact-Rational
Nonnegative-Exact-Rational
Negative-Exact-Rational
Nonpositive-Exact-Rational
Positive-Real
Nonnegative-Real
Negative-Real
Nonpositive-Real

Real-Zero

Natural and Exact-Nonnegative-Integer are synonyms. So are the integer and exact-
integer types, and the float and flonum types. Zero includes only the integer 0. Real-Zero
includes exact 0 and all the floating-point zeroes.

These types are useful when enforcing that values have a specific sign. However, programs
using them may require additional dynamic checks when the type-checker cannot guarantee
that the sign constraints will be respected.

In addition to being divided by sign, integers are further subdivided into range-bounded

types.

One

Byte
Positive-Byte
Index
Positive-Index
Fixnum
Positive-Fixnum

Nonnegative-Fixnum
Negative-Fixnum
Nonpositive-Fixnum

One includes only the integer 1. Byte includes numbers from O to 255. Index is bounded
by 0 and by the length of the longest possible Racket vector. Fixnum includes all numbers
represented by Racket as machine integers. For the latter two families, the sets of values in-
cluded in the types are architecture-dependent, but typechecking is architecture-independent.

These types are useful to enforce bounds on numeric values, but given the limited amount
of closure properties these types offer, dynamic checks may be needed to check the desired
bounds at runtime.

Examples:
> 7
- : Integer [generalized from Positive-Byte]
7
> 8.3
- : Flonum [generalized from Positive-Float]
8.3
> (/ 8 3)
- : Exact-Rational [generalized from Positive-Exact-Rationall
8/3
>0
- : Integer [generalized from Zero]
0
> -12
- : Integer [generalized from Negative-Fixnum]
-12
> 3+41
- : Exact-Number
3+4i

1.1.2 Other Base Types

Boolean
True
False
String
Keyword
Symbol
Char
Void

Input-Port
Output-Port

Port

Path
Path-For-Some-System
Regexp

PRegexp

Byte-Regexp
Byte-PRegexp

Bytes

Namespace
Namespace-Anchor
Variable-Reference
Null

EOF
Continuation-Mark-Set
Prompt-Tag

Undefined
Module-Path
Module-Path-Index
Resolved-Module-Path
Compiled-Module-Expression
Compiled-Expression
Internal-Definition-Context
Pretty-Print-Style-Table
Special-Comment
Struct-Type-Property
Impersonator-Property
Read-Table
Bytes-Converter
Parameterization
Custodian

Inspector
Security-Guard
UDP-Socket
TCP-Listener

Logger

Log-Receiver
Log-Level

Thread

Thread-Group
Subprocess

Place

Place-Channel
Semaphore

Will-Executor
Pseudo-Random-Generator

These types represent primitive Racket data.
Examples:

> #t

- : Boolean [generalized from True]
#t

> #f

- : False

#f

> '"hello"

- : String

"hello"

> (current-input-port)
- : Input-Port
#<input-port:string>
> (current-output-port)
- : Output-Port
#<output-port:string>
> (string->path "/")

- : Path

#<path:/>

> #rx"axbx*"

- : Regexp

#rx"axbx"

> #pX”a*b*”

- : PRegexp

#px"axbx*"

> #"bytes"

- : Bytes

#"bytes"

> (current-namespace)
- : Namespace
#<namespace:0>

> #\b

- : Char

#\b

> (thread (lambda () (addl 7)))
- : Thread

#<thread>

Path-String

The union of the Path and String types. Note that this does not match exactly what the
predicate path-string? recognizes. For example, strings that contain the character #\nul
have the type Path-String but path-string? returns #f for those strings. For a complete
specification of which strings path-string? accepts, see its documentation.

1.2 Singleton Types

Some kinds of data are given singleton types by default. In particular, booleans, symbols,
and keywords have types which consist only of the particular boolean, symbol, or keyword.
These types are subtypes of Boolean, Symbol and Keyword, respectively.

Examples:

> #t

- : Boolean [generalized from True]
#t

> #:foo

- : #:foo

‘#:foo

> ’bar

- : Symbol [generalized from ’bar]
’bar

1.3 Containers

The following base types are parameteric in their type arguments.

(Pairof s t)

is the pair containing s as the car and t as the cdr

Examples:

> (cons 1 2)

- : (Pairof One Positive-Byte)
(1. 2)

> (cons 1 "one")

- : (Pairof One String)

(1 . "one")

(Listof t)

Homogenous lists of t

(List t ...)

is the type of the list with one element, in order, for each type provided to the List type
constructor.

(List t ... trest ... bound)

is the type of a list with one element for each of the ts, plus a sequence of elements corre-
sponding to trest, where bound must be an identifier denoting a type variable bound with

(List* t t1 ... s)
is equivalent to (Pairof t (List* t1 ... s)).
Examples:

> (list ’a ’b ’c)

- : (Listof (U ’a ’b ’c)) [generalized from (List ’a ’b ’c)]
’>(a b c)

> (map symbol->string (list ’a ’b ’c))

- : (Listof String) [generalized from (Pairof String (Listof
String))]

Y("a" "b" "c")

(MListof t)
Homogenous mutable lists of t.
(MPairof t u)

Mutable pairs of t and u.

(Boxof t)

Aboxof t
Example:

> (box "hello world")
- : (Boxof String)
‘#&"hello world"

(Vectorof t)
Homogenous vectors of t

(Vector t ...)

is the type of the list with one element, in order, for each type provided to the Vector type
constructor.

FlVector

An flvector.
Examples:

> (vector 1 2 3)

- : (Vector Integer Integer Integer)
#(1 2 3)

> #(a b c)

- : (Vector Symbol Symbol Symbol)
#(a b c)

(HashTable k v)

is the type of a hash table with key type k and value type v.
Example:

> #hash((a . 1) (b . 2))
- : (HashTable Symbol Integer)
‘#hash((b . 2) (a . 1))

(Setof t)

is the type of a set of t.
Example:

> (set 01 2 3)
- : (Setof Byte)
(set 01 2 3)

(Channelof t)

10

A channel on which only ts can be sent.

Example:

> (ann (make-channel) (Channelof Symbol))
- : (Channelof Symbol)
#<channel>

(Parameterof t)
(Parameterof s t)

A parameter of t. If two type arguments are supplied, the first is the type the parameter
accepts, and the second is the type returned.

Examples:

> current-input-port

- : (Parameterof Input-Port)
#<procedure:current-input-port>

> current-directory

- : (Parameterof Path-String Path)
#<procedure:current-directory>

(Promise t)

A promise of t.

Example:

> (delay 3)

- : (Promise Positive-Byte)
#<promise:eval:35:0>
(Futureof t)

A future which produce a value of type t when touched.

(Sequenceof t)

A sequence that produces values of type t on each iteration.

(Custodian-Boxof t)

A custodian box of t.

(Thread-Cellof t)
A thread cell of t.

11

1.4 Syntax Objects

The following types represent syntax objects and their content.

(Syntaxof t)

A syntax object with content of type t. Applying syntax-e to a value of type (Syntaxof
t) produces a value of type t.

Identifier

A syntax object containing a symbol. Equivalent to (Syntaxof Symbol).

Syntax

A syntax object containing only symbols, keywords, strings, characters, booleans, numbers,
boxes containing Syntax, vectors of Syntax, or (possibly improper) lists of Syntax. Equiv-
alent to (Syntaxof Syntax-E).

Syntax-E

The content of syntax objects of type Syntax. Applying syntax-e to a value of type Syn-
tax produces a value of type Syntax-E.

(Sexpof t)

The recursive union of t with symbols, keywords, strings, characters, booleans, numbers,
boxes, vectors, and (possibly improper) lists.

Sexp

Applying syntax->datum to a value of type Syntax produces a value of type Sexp. Equiv-
alent to (Sexpof Nothing).

Datum

Applying datum->syntax to a value of type Datum produces a value of type Syntax.
Equivalent to (Sexpof Syntax).
(Ephemeronof t)

An ephemeron whose value is of type t.

12

1.5 Other Type Constructors

(dom ... -> rng)
(dom ... rest * -> rng)
(dom ... rest . bound -> rng)

(dom -> rng : pred)

is the type of functions from the (possibly-empty) sequence dom
second form specifies a uniform rest argument of type rest, and the third form specifies a
non-uniform rest argument of type rest with bound bound. In the third form, the second
occurrence of . . . is literal, and bound must be an identifier denoting a type variable. In the
fourth form, there must be only one dom and pred is the type checked by the predicate.

((! False @ 0) |

: String *)

(False @ 0)) (0))

(length y))

Examples:
> (A: ([x : Number]) x)
- : (Complex -> Complex :
#<procedure>
> (A: ([x : Number] y
- : (Complex String * -> Index)
#<procedure>
> ormap
- : (A1l (acb ...) ((ab ...

-> (U False c¢)))
#<procedure:ormap>

> string?

- : (Any -> Boolean :
#<procedure:string?>

Procedure

is the supertype of all function types.

Ut ...

is the union of the types t

Example:
> (A ([x :
- : (Real -> (U String ’no)
#<procedure>
(case-> fun-ty ...)

String)

b -> ¢) (Listof a) (Listof b)

Real]) (if (> 0 x) "yes" ’no))

(Top | Bot))

13

... to the rng type. The

is a function that behaves like all of the fun-tys, considered in order from first to last. The
fun-tys must all be function types constructed with ->.

Example:

> (: add-map : (case->
[(Listof Integer) -> (Listof Integer)]
[(Listof Integer) (Listof Integer) -> (Listof Integer)]))

For the definition of add-map look into case-lambda:.

(t t1 t2 ...)

is the instantiation of the parametric type t at types t1 t2

(A1l (v ...) t)

is a parameterization of type t, with type variables v If t is a function type constructed
with ->, the outer pair of parentheses around the function type may be omitted.

Examples:

> (: list-length : (A1l (A) (Listof A) -> Natural))

\%

(define (list-length 1st)
(if (null? 1st)
0
(addl (list-length (cdr 1st)))))

Vv

(list-length (list 1 2 3))
: Integer [generalized from Natural]

(Values t ...)

is the type of a sequence of multiple values, with types t This can only appear as the
return type of a function.

Example:

> (values 1 2 3)

- : (Values Integer Integer Integer) [generalized from (Values One
Positive-Byte Positive-Byte)]

1

2

3

14

where v is a number, boolean or string, is the singleton type containing only that value

(quote val)

where val is a Racket value, is the singleton type containing only that value

where 1 is an identifier can be a reference to a type name or a type variable

(Rec n t)

is a recursive type where n is bound to the recursive type in the body t
Examples:

> (define-type IntList (Rec List (Pair Integer (U List Null))))

> (define-type (List A) (Rec List (Pair A (U List Null))))

(Struct st)

is a type which is a supertype of all instances of the potentially-polymorphic structure type
st. Note that structure accessors for st will not accept (Struct st) as an argument.

—

An alias for ->.

case—

An alias for case->.

N

An alias for A11.

15

1.6 Other Types

(Option t)

Either t or #f
(Opaque t)

A type constructed using require-opaque-type.

16

2 Special Form Reference

Typed Racket provides a variety of special forms above and beyond those in Racket. They
are used for annotating variables with types, creating new types, and annotating expressions.

2.1 Binding Forms

loop, £, a, and v are names, t is a type. e is an expression and body is a block.

(let: ([v : t el ...) . body)
(let: loop : tO ([v : t el ...) . body)

Local bindings, like 1et, each with associated types. In the second form, t0 is the type of
the result of Zoop (and thus the result of the entire expression as well as the final expression
in body). Type annotations are optional.

Examples:

> (: filter-even : (Listof Natural) (Listof Natural) -> (Listof Natural))

> (define (filter-even lst accum)
(if (null? 1st)
accum
(let: ([first : Natural (car 1st)]
[rest : (Listof Natural) (cdr 1st)])
(if (even? first)

(filter-even rest (cons first accum))
(filter-even rest accum)))))

> (filter-even (list 1 2 3 4 5 6) null)
- : (Listof Natural)
(6 4 2)

Examples:

> (: filter-even-loop : (Listof Natural) -> (Listof Natural))

> (define (filter-even-loop lst)
(let: loop : (Listof Natural)

([accum : (Listof Natural) null]
[1st : (Listof Natural) 1st])

(cond
[(null? 1st) accum]
[(even? (car 1st)) (loop (cons (car 1lst) accum) (cdr 1lst))]
[else (loop accum (cdr 1st))1)))

17

> (filter-even-loop (list 1 2 3 4))
- : (Listof Natural)
(4 2)

(letrec: ([v : t el ...) . body)

(let*: ([v : t el ...) . body)

(let-values: ([([v : t] ...) el ...) . body)
(letrec-values: ([([v : t] ...) el ...) . body)
(let*-values: ([([v : t] ...) el ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-
values. As with let:, type annotations are optional.

(let/cc: v : t . body)
(let/ec: v : t . body)

Type-annotated versions of let/cc and let/ec.

2.2 Anonymous Functions

(lambda: formals . body)

formals = ([v : t] ...)
| ([v : t] v t %)
| ([v : t] v t)

A function of the formal arguments v, where each formal argument has the associated type.
If a rest argument is present, then it has type (Listof t).

(A: formals . body)
An alias for the same form using lambda:.
(plambda: (a ...) formals . body)

A polymorphic function, abstracted over the type variables a. The type variables a are
bound in both the types of the formal, and in any type expressions in the body .

(case-lambda: [formals body] ...)

18

A function of multiple arities. Note that each formals must have a different arity.

Example:

> (define add-map
(case-lambda:
[([1st : (Listof Integer)])
(map addl 1st)]
[([1stl : (Listof Integer)]
[1st2 : (Listof Integer)])
(map + 1stl 1st2)]1))

For the type declaration of add-map look at case-lambda.

(pcase-lambda: (a ...) [formals body] ...)

A polymorphic function of multiple arities.

(opt-lambda: formals . body)

formals = ([v : t] ... [v : t default] ...)
| (v : t] ... [v : t default] ... v ot %)
| (v : t] ... [v : t default] ... v it o...)

A function with optional arguments.

(popt-lambda: (a ...) formals . body)

A polymorphic function with optional arguments.

2.3 Loops

(for: type-ann-maybe (for:-clause ...)
expr ...+)

type-ann-maybe
| :u

for:-clause = [id : t seqg-expr]

[id seg-expr]
| #:when guard

19

Like for, but each id having the associated type t. Since the return type is always Void,
annotating the return type of a for form is optional. Unlike for, multi-valued seq-exprs
are not supported. Type annotations in clauses are optional for all for: variants.

(for/list: type-ann-maybe (for:-clause ...) expr ...+)
(for/hash: type-ann-maybe (for:-clause ...) expr ...+)
(for/hasheq: type-ann-maybe (for:-clause ...) expr ...+)
(for/hasheqv: type-ann-maybe (for:-clause ...) expr ...+)
(for/vector: type-ann-maybe (for:-clause ...) expr ...+)
(for/flvector: type-ann-maybe (for:-clause ...) expr ...+)
(for/and: type-ann-maybe (for:-clause ...) expr ...+)
(for/or: type-ann-maybe (for:-clause ...) expr ...+)
(for/first: type-ann-maybe (for:-clause ...) expr ...+)
(for/last: type-ann-maybe (for:-clause ...) expr ...+)
(for/sum: type-ann-maybe (for:-clause ...) expr ...+)
(for/product: type-ann-maybe (for:-clause ...) expr ...+)
(for*/list: type-ann-maybe (for:-clause ...) expr ...+)
(for*/hash: type-ann-maybe (for:-clause ...) expr ...+)
(for*/hasheq: type-ann-maybe (for:-clause ...) expr ...+)
(forx/hasheqv: type-ann-maybe (for:-clause ...) expr ...+)
(for*/vector: type-ann-maybe (for:-clause ...) expr ...+)
(forx/flvector: type-ann-maybe (for:-clause ...) expr ...+)
(for*/and: type-ann-maybe (for:-clause ...) expr ...+)
(for*x/or: type-ann-maybe (for:-clause ...) expr ...+)
(forx/first: type-ann-maybe (for:-clause ...) expr ...+)
(for*/last: type-ann-maybe (for:-clause ...) expr ...+)
(for*/sum: type-ann-maybe (for:-clause ...) expr ...+)
(for*/product: type-ann-maybe (for:-clause ...) expr ...+)

These behave like their non-annotated counterparts, with the exception that #:when clauses
can only appear as the last for:-clause. The return value of the entire form must be
of type u. For example, a for/1list: form would be annotated with a Listof type. All
annotations are optional.

(for/lists: type-ann-maybe ([id : t] ...)

(for:-clause ...)
expr ...+)
(for/fold: type-ann-maybe ([id : t init-expr] ...)
(for:-clause ...)
expr ...+)

These behave like their non-annotated counterparts. Unlike the above, #:when clauses can
be used freely with these.

(for*: void-ann-maybe (for-clause ...)
expr ...+)

20

(forx/lists: type-ann-maybe ([id : t] ...)

(for:-clause ...)
expr ...+)
(forx/fold: type-ann-maybe ([id : t init-expr] ...)
(for:-clause ...)
expr ...+)

These behave like their non-annotated counterparts.

for
forx

These are identical to for and forx*, but provide additional annotations to help the type-
checker.

(do: : u ([id : t init-expr step-expr-maybel ...)
(stop?-expr finish-expr ...)
expr ...+)

step-expr-maybe =
| step-expr

Like do, but each id having the associated type t, and the final body expr having the type
u. Type annotations are optional.

2.4 Definitions

(define: v : t e)
(define: (f . formals) : t . body)
(define: (a ...) (f . formals) : t . body)

These forms define variables, with annotated types. The first form defines v with type t and
value e. The second and third forms defines a function f with appropriate types. In most
cases, use of : is preferred to use of define:.

Examples:

> (define: foo : Integer 10)
> (define: (add [first : Integer]

[rest : Integer]) : Integer
(+ first rest))

21

> (define: (A) (poly-app [func : (A A -> A)]
[first : A]
[rest : A]l) : A
(func first rest))

2.5 Structure Definitions

(struct: maybe-type-vars name-spec ([f : t] ...) options ...)

maybe-type-vars =

| (v ..

name-spec = name
name parent

options = #:transparent
| #:mutable

Defines a structure with the name name, where the fields £ have types t, similar to the
behavior of struct. When parent is present, the structure is a substructure of parent.
When maybe-type-vars is present, the structure is polymorphic in the type variables v.

Options provided have the same meaning as for the struct form.

(define-struct: maybe-type-vars name-spec ([f : t] ...) options ...)

maybe-type-vars =

| (v ..

name-spec = name
| (name parent)

options = #:transparent
| #:mutable

Legacy version of struct:, corresponding to define-struct.

(define-struct/exec: name-spec ([f : t] ...) [e : proc-t])

name-spec = name
| (name parent)

Like define-struct:, but defines a procedural structure. The procdure e is used as the
value for prop:procedure, and must have type proc-t.

22

2.6 Names for Types

(define-type name t)
(define-type (name v ...) t)

The first form defines name as type, with the same meaning as t. The second form is
equivalent to (define-type name (A1l (v ...) t)). Type names may refer to other
types defined in the same module, but cycles among them are prohibited.

Examples:

> (define-type IntStr (U Integer String))

> (define-type (ListofPairs A) (Listof (Pair A A)))

2.7 Generating Predicates Automatically

(define-predicate name t)

Defines name as a predicate for the type t. name has the type (Any -> Boolean : t).t
may not contain function types.

2.8 Type Annotation and Instantiation

(: v t)

This declares that v has type t. The definition of v must appear after this declaration. This
can be used anywhere a definition form may be used.

Examples:

> (: varl Integer)

> (: var2 String)
(provide: [v t] ...)

This declares that the vs have the types t, and also provides all of the vs.

#{v : t}

23

This declares that the variable v has type t. This is legal only for binding occurrences of v.
(ann e t)

Ensure that e has type t, or some subtype. The entire expression has type t. This is legal

only in expression contexts.

#{e :: t}

A reader abbreviation for (ann e t).

(inst e t ...)
Instantiate the type of e with types t e must have a polymorphic type with the appro-
priate number of type variables. This is legal only in expression contexts.
Example:

> (foldl (inst cons Integer Integer) null (list 1 2 3 4))
- : (Listof Integer)
(4 321)

Examples:
> (: fold-list : (A1l (A) (Listof A) -> (Listof A)))

> (define (fold-list 1lst)
(foldl (inst cons A A) null 1st))

> (fold-1list (1ist "1" "2m n3m 141))

- : (Listof String)
b (l|4|l l|3|l |l2l| |l1l|)

#{feot ...}

A reader abbreviation for (inst e t ...).

2.9 Require
Here, m is a module spec, pred is an identifier naming a predicate, and r is an optionally-

renamed identifier.

(require/typed m rt-clause ...)

24

rt-clause = [r t]
| [struct name ([f : t] ...)
struct-option ...]
| [struct (name parent) ([f : t] ...)
struct-option ...]
| [opaque t pred]

struct-option = #:constructor-name constructor-id
| #:extra-constructor-name constructor-id

This form requires identifiers from the module m, giving them the specified types.
The first case requires r, giving it type t.

The second and third cases require the struct with name name with fields £ ..., where
each field has type t. The third case allows a parent structure type to be specified. The
parent type must already be a structure type known to Typed Racket, either built-in or via
require/typed. The structure predicate has the appropriate Typed Racket filter type so
that it may be used as a predicate in if expressions in Typed Racket.

Examples:

> (module UNTYPED racket/base
(define n 100)

(struct IntTree
(elem left right))

(provide n (struct-out IntTree)))

> (module TYPED typed/racket
(require/typed ’UNTYPED
[n Naturall
[struct IntTree
([elem : Integerl]
[left : IntTreel
[right : IntTreel)l))

The fourth case defines a new type t. pred, imported from module m, is a predicate for this
type. The type is defined as precisely those values to which pred produces #t. pred must
have type (Any -> Boolean). Opaque types must be required lexically before they are
used.

In all cases, the identifiers are protected with contracts which enforce the specified types. If
this contract fails, the module m is blamed.

25

Some types, notably the types of predicates such as number?, cannot be converted to con-
tracts and raise a static error when used in a require/typed form. Here is an example of
using case-> in require/typed

(require/typed racket/base
[file-or-directory-modify-seconds
(case->
[String -> Exact-Nonnegative-Integer]
[String (Option Exact-Nonnegative-Integer)
->
(U Exact-Nonnegative-Integer Void)]
[String (Option Exact-Nonnegative-
Integer) (-> Any)
->

Any1)1)

file-or-directory-modify-seconds has some arguments which are optional, so we
need to use case->.}

(require/typed/provide m rt-clause ...)

Similar to require/typed, but also provides the imported identifiers.

2.10 Other Forms

with-handlers
lambda
A

define

Identical to with-handlers, lambda, A, and define, respectively, but provide additional
annotations to assist the typechecker. The define:, lambda:, and A: forms are useful
replacements which support type annotation.

Note that unlike define, define does not bind functions with keyword arguments to static
information about those functions.

(#%module-begin form ...)

Legal only in a module begin context. The #%module-begin form of typed/racket
checks all the forms in the module, using the Typed Racket type checking rules. All provide
forms are rewritten to insert contracts where appropriate. Otherwise, the #/module-begin
form of typed/racket behaves like #/module-begin from racket.

26

(#%top-interaction . form)

Performs type checking of forms entered at the read-eval-print loop. The #%top-
interaction form also prints the type of form after type checking.

27

3 Libraries Provided With Typed Racket

The typed/racket language corresponds to the racket language—that is, any identifier
provided by racket, such as modulo is available by default in typed/racket.

#lang typed/racket
(modulo 12 2)
The typed/racket/base language corresponds to the racket/base language.

Some libraries have counterparts in the typed collection, which provide the same exports as
the untyped versions. Such libraries include srfi/14, net/url, and many others.

#lang typed/racket

(require typed/srfi/14)

(char-set= (string->char-set "hello")
(string->char-set "olleh"))

To participate in making more libraries available, please visit here,

Other libraries can be used with Typed Racket via require/typed.

#lang typed/racket
(require/typed version/check

[check-version (-> (U Symbol (Listof Any)))l)
(check-version)

28

http://www.ccs.neu.edu/home/samth/adapt/

4 Utilities

Typed Racket provides some additional utility functions to facilitate typed programming.

(assert v) — A

v : (U #f A)
(assert v p?) — B
v : A

p?: (A -> Any : B)

Verifies that the argument satisfies the constraint. If no predicate is provided, simply checks
that the value is not #£.

Examples:

> (define: x : (U #f String) (number->string 7))

> X

- : (U False String)

|l7l|

> (assert x)

- : String

|l7l|

> (define: y : (U String Symbol) "hello")

>y

- : (U Symbol String)
"hello"

> (assert y string?)
- : String

"hello"

> (assert y boolean?)
Assertion failed

(with-asserts ([id maybe-pred] ...) body ...+)

maybe-pred =
| predicate

Guard the body with assertions. If any of the assertions fail, the program errors. These
assertions behave like assert.
(defined? v) — boolean?
v : any/c

A predicate for determining if v is not #<undefined>.

29

(index? v) — boolean?
v : any/c

A predicate for the Index type.

(typecheck-fail orig-stx maybe-msg maybe-id)

maybe-msg

msg-string

maybe-id
| #:covered-id id

Explicitly produce a type error, with the source location or orig-stx. If msg-string is
present, it must be a literal string, it is used as the error message, otherwise the error message
"Incomplete case coverage' isused. If id is present and has type T, then the message
"missing coverage of T" is added to the error message.

Examples:

> (define-syntax (cond* stx)
(syntax-case stx ()

[(_ x clause ...)
#¢(cond clause ... [else (typecheck-fail #,stx "incomplete
coverage"
#:covered-
id x)11))

> (define: (f [x : (U String Integer)]) : Boolean
(cond* x
[(string? x) #t]
[(exact-nonnegative-integer? x) #£f]))
Type Checker: incomplete coverage; missing coverage of
Negative-Integer
in: #%top-interaction

30

5 Typed Racket Syntax Without Type Checking

#lang typed/racket/mno-check
#lang typed/racket/base/no-check

On occasions where the Typed Racket syntax is useful, but actual typechecking is
not desired, the typed/racket/mno-check and typed/racket/base/no-check lan-
guages are useful. They provide the same bindings and syntax as typed/racket and
typed/racket/base, but do no type checking.

Examples:

#lang typed/racket/no-check
(: x Number)
(define x "not-a-number")

31

6 Typed Regions

The with-type for allows for localized Typed Racket regions in otherwise untyped code.

(with-type result-spec fv-clause body ...+)
(with-type export-spec fv-clause body ...+)

fv-clause
| #:freevars ([id fv-typel ...)

result-spec = #:result type

export-spec ([export-id export-typel ...)

The first form, an expression, checks that body ...+ has the type type. If the last expres-
sion in body ...+ returns multiple values, type must be a type of the form (values t
...). Uses of the result values are appropriately checked by contracts generated from type.

The second form, which can be used as a definition, checks that each of the export-ids
has the specified type. These types are also enforced in the surrounding code with contracts.

The ids are assumed to have the types ascribed to them; these types are converted to con-
tracts and checked dynamically.

Examples:

> (with-type #:result Number 3)
3
> ((with-type #:result (Number -> Number)
(lambda: ([x : Number]) (addl x)))
#£)
contract violation:
expected: Number, given: #f
in: the st argument of
(-> Number Number)
contract from: (region typed-region)
blaming: top-level
> (let ([x "hello"])

(with-type #:result String
#:freevars ([x String])
(string-append x ", world")))

"hello, world"
> (let ([x ’hello])

(with-type #:result String
#:freevars ([x String])
(string-append x ", world")))

32

Xx: broke its contract
promised: String, produced: hello
in: String
contract from: top-level
blaming: top-level
at: eval:5.0
> (with-type ([fun (Number -> Number)]
[val Number])
(define (fun x) x)
(define val 17))

> (fun val)
17

33

7 Optimization in Typed Racket

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster. It should in no way make your programs slower or unsafe.

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

ISee §5 “Optimization in Typed Racket” in the guide for tips to get the most out of the optimizer.

34

8 Legacy Forms

The following forms are provided by Typed Racket for backwards compatibility.

define-type-alias

Equivalent to define-type.
define-typed-struct

Equivalent to define-struct:
require/opaque-type

Similar to using the opaque keyword with require/typed.
require-typed-struct

Similar to using the struct keyword with require/typed.
require-typed-struct/provide

Similar to require-typed-struct, but also provides the imported identifiers.
pdefine:

Defines a polymorphic function.
(pred t)

Equivalent to (Any -> Boolean : t).

Un
An alias for U.

mu

35

An alias for Rec.

Tuple

An alias for List.

Parameter

An alias for Parameterof.

Pair

An alias for Pairof.

values

An alias for Values.

36

9 Compatibility Languages

#lang typed/scheme
#lang typed/scheme/base
#lang typed-scheme

Typed versions of the

#lang scheme
and

#lang scheme/base
languages. The

#lang typed-scheme
language is equivalent to the

#lang typed/scheme/base

language.
(require/typed m rt-clause ...)
rt-clause = [r t]
| [struct name ([f : t] ...)
struct-option ...]
| [struct (name parent) ([f : t] ...)
struct-option ...]

| [opaque t pred]

struct-option = #:constructor-name constructor-id
| #:extra-constructor-name constructor-id

Similar to require/typed, but as if #:extra-constructor-name make-name was sup-
plied.

require-typed-struct

Similar to using the struct keyword with require/typed.

37

10 Experimental Features

These features are currently experimental and subject to change.

(Class args ...)
A type constructor for typing classes created using racket/class.
(Instance c¢)

A type constructor for typing objects created using racket/class.

(:type t)

Prints the type t.

(:print-type e)

Prints the type of e. This prints the whole type, which can sometimes be quite large.

(:query-result-type f t)

Given a function £ and a desired return type t, shows the arguments types £ should be given
to return a value of type t.

(declare-refinement id)

Declares id to be usable in refinement types.

(Refinement id)

Includes values that have been tested with the predicate id, which must have been specified
with declare-refinement.

(define-typed-struct/exec forms ...)

Defines an executable structure.

38

	1 Type Reference
	1.1 Base Types
	1.1.1 Numeric Types
	1.1.2 Other Base Types

	1.2 Singleton Types
	1.3 Containers
	1.4 Syntax Objects
	1.5 Other Type Constructors
	1.6 Other Types

	2 Special Form Reference
	2.1 Binding Forms
	2.2 Anonymous Functions
	2.3 Loops
	2.4 Definitions
	2.5 Structure Definitions
	2.6 Names for Types
	2.7 Generating Predicates Automatically
	2.8 Type Annotation and Instantiation
	2.9 Require
	2.10 Other Forms

	3 Libraries Provided With Typed Racket
	4 Utilities
	5 Typed Racket Syntax Without Type Checking
	6 Typed Regions
	7 Optimization in Typed Racket
	8 Legacy Forms
	9 Compatibility Languages
	10 Experimental Features

