Pict: Functional Pictures

Version 6.0.1

May 5, 2014

(require pict) package: pict-1ib

The pict library is one of the standard Racket functional picture libraries (the other be-
ing 2htdp/image). This library was original designed for use with Slideshow, and is re-
provided by the slideshow language.

1 Pict Datatype

A pict is a pict structure representing an image. Some functions, such as hline, create new
simple picts. Other functions, such as ht-append, build new picts out of existing picts. In
the latter case, the embedded picts retain their identity, so that offset-finding functions, such
as 1t-find, can find the offset of an embedded pict in a larger pict.

In addition to its drawing part, a pict has the following bounding box structure:

___la_|

-7

That is, the bounding box has a width w and a height 4. For a single text line, d is descent
below the baseline, and a+d=h. For multiple text lines (often created with a function like
vc-append), a is the ascent of the top line, and d is the descent of the bottom line, so a+d<h.
Many picts have d=0 and a=h.

In addition, a pict can have a last sub-pict that corresponds to the last item on the last line of
text, so that extra lines can be added to the last line. In particular, the last element is useful
for adding closing parentheses to a block of Racket code, where the last line of code not the
longest line in the block.

The size information for a pict is computed when the pict is created. This strategy supports
programs that create new picts though arbitrarily complex computations on the size and
shape of existing picts. The functions pict-width, pict-height, pict-descent, and
pict-ascent extract bounding box information from a pict.

A pict is a convertible datatype through the file/convertible protocol. Supported con-
versions include ’png-bytes, ’eps-bytes, and *pdf-bytes.

(struct pict (draw
width
height
ascent
descent
children
panbox
last)

#:extra-constructor-name make-pict)
draw : any/c
width : real?
height : real?

ascent : real?

descent : real?

children : (listof child?)
panbox : (or/c #f any/c)
last : (or/c #f pict-path?)

A pict structure is normally not created directly with make-pict. Instead, functions like
text, hline, and dc are used to construct a pict.

The draw field contains the pict’s drawing information in an internal format. Roughly, the
drawing information is a procedure that takes a dc<%> drawing context and an offset for the
pict’s top-left corner (i.e., it’s bounding box’s top left corner relative to the dc<%> origin).
The state of the dc<%> is intended to affect the pict’s drawing; for example, the pen and
brush will be set for a suitable default drawing mode, and the dc<%> scale will be set to
scale the resulting image. Use draw-pict (as opposed to pict-draw) to draw the picture.

The panbox field is internal and initialized to #f.

The last field indicates a pict within the children list (transitively) that can be treated as
the last element of the last line in the pict. A #f value means that the pict is its own last
sub-pict.

(struct child (pict dx dy sx sy sxy syx)
#:extra-constructor-name make-child)
pict : pict?
dx : real?
dy : real?
sx : real?
sy : real?
sxy : real?
syx : real?

Records, for a pict constructed of other picts, the transformation to arrive at a inverted point
in the composed pict from an inverted point in a constituent pict’s. An inverted point is a
point relative to a pict’s lower-left corner with an increasing value moving upward.

A child structure is normally not created directly with make-child. Instead, functions like
hc-append create child structures when combining picts to create a new one.

2 Basic Pict Constructors

(dc draw w h) — pict?
draw : ((is-a?/c dc<}>) real? real? . -> . any)
w . real?
h : real?
(dc draw w h a d) — pict?
draw : ((is-a?/c dc<%>) real? real? . -> . any)
w @ real?
h : real?
a : real?
d : real?

Creates an arbitrary self-rendering pict. The arguments to the rendering procedure will be a

drawing context and top-left location for drawing.

The w and h arguments determine the width and height of the resulting pict’s bounding box.
In the three-argument case, the descent is O and the ascent is h for the bounding box; in the
five-argument case, a and d are used as the bounding box’s ascent and descent.

When the rendering procedure is called, the current pen and brush will be solid and in the
pict’s color (and linewidth), and the scale and offset of the drawing context will be set. The
text mode will be transparent, but the font and text colors are not guaranteed to be anything

in particular.

Example:

> (dc (A (dc dx dy)
(define old-brush (send dc get-brush))
(define old-pen (send dc get-pen))

(send

dc set-brush

(new brushy [style ’fdiagonal-hatch]

(send

[color "darkslategray"]))
dc set-pen

(new pen), [width 3] [color "slategray"l))
(define path (new dc-pathy))

(send
(send
(send
(send
(send
(send
(send
50 50)

path move-to 0 0)

path line-to 50 0)

path line-to 25 50)
path close)

dc draw-path path dx dy)
dc set-brush old-brush)
dc set-pen old-pen))

(blank [size]) — pict?

: real? =0

(blank w h) — pict?

size
w . real?
h : real?
(blank w a
w . real?
a : real?
d : real?
(blank w h
w . real?
h : real?
a : real?
d : real?

Creates a pict that draws nothing. The one-argument case supplies a value used for both the
width and height of the resulting pict’s bounding box. In the one- and two-argument case,
the ascent and descent are O for the resulting pict’s bounding box; in the three-argument
case, the height is computed by adding the given ascent and descent.

Example:

d) — pict?

a d) — pict?

> (blank 50)

(text content [style size angle]) — pict?
. string?

text-style/c = null

: (integer-in 1 1024) = 12
: real? = 0

content
style :
size
angle

Creates a pict that draws text. For creating text picts within a slide presentation, see t. The
size of the resulting pict may depend on the value of dc-for-text-size.

The style argument must be one of the following:

e null — the default, same as default

e afontY, object

a font family symbol, such a ’roman (see font%)
a font face string, such as "Helvetica" (see font%)

(cons str sym) combining a face string and a font family (in case the face is un-
available; see font?,)

(cons ’bold style) foravalid style
(cons ’italic style)

(cons ’subscript style)

(cons ’superscript style)

(cons ’caps style)

(cons ’combine style) — allows kerning and ligatures (the default, unless the
’modern family is specified)

(cons ’no-combine style) — renders characters individually
(cons ’aligned style) — enables hinting, which rounds metrics to integers

(cons ’unaligned style) — disables hinting (which is the default), so that met-
rics are scalable

(cons color style) — where color is a colory object, colorizes the text

If both ’combine and ’no-combine are specified, the first one in style takes precedence.
Similarly, if both aligned and ’unaligned are specified, the first one in style takes
precedence. If ’ caps is specified, the angle must be zero.

The given size is in pixels, but it is ignored if a font? object is provided in the text-style.

The angle is in radians, and positive values rotate counter-clockwise. For a non-zero an-
gle, the resulting pict’s bounding box covers the rotated text, and the descent is zero and
the ascent is the height.

Examples:

> (text "tom collins'")

tom collins
> (text "g & t" (cons ’bold ’roman))
g&t

martin

> (text "martini" null 13 (/ pi 2))

(hline w h [#:segment seg-length]) — pict?
w . real?
h : real?
seg-length : (or/c #f real?) = #f

(vline w h [#:segment seg-length]) — pict?
w @ real?
h : real?
seg-length : (or/c #f real?) = #f

Straight lines, centered within their bounding boxes.
Examples:

> (hline 40 5)

> (vline 5 40 #:segment 5)
I
[
|
|

(frame pict
[#:segment seg-length
#:color color
#:1line-width width]) — pict?
pict : pict?
seg-length : (or/c #f real?) = #f

color : (or/c #f string? (is-a?/c color<}>)) = #f

width : (or/c #f real?) = #f

Frames a given pict. If the color or line width are provided, the override settings supplied by

the context.
Examples:
> (frame (circle 30))

@

> (frame (circle 30) #:segment 5)

@

> (frame (circle 30) #:color "chartreuse" #:line-width 3)

7N\
N/

(ellipse w h) — pict?

w . real?
h : real?
(circle diameter) — pict?
diameter : real?
(filled-ellipse w
h
[#:draw-border? draw-border?]) — pict?
w . real?
h : real?
draw-border? : any/c = #t
(disk diameter [#:draw-border? draw-border?]) — pict?
diameter : real?
draw-border? : any/c = #t

Unfilled and filled ellipses.
If draw-border?is #£, then the pen is set to be transparent before drawing the ellipse.
Examples:

> (ellipse 40 30)

O

> (circle 30)

O

> (filled-ellipse 30 40)

> (disk 30)

(rectangle w h) — pict?

w . real?
h : real?
(filled-rectangle w
h
[#:draw-border? draw-border?]) — pict?
w . real?
h : real?

draw-border? : any/c = #t

Unfilled and filled rectangles.

If draw-border?is #£, then the pen is set to be transparent before drawing the rectangle.

Examples:

> (rectangle 50 50)

> (filled-rectangle 50 80)

(rounded-rectangle w
h
[corner-radius
#:angle angle]) — pict?

w . real?
h : real?
corner-radius : real? = -0.25

angle : real? =0
(filled-rounded-rectangle w
h
[corner-radius
#:angle angle
#:draw-border? draw-border?]) — pict?

w : real?
h : real?
corner-radius : real? = -0.25

angle : real? = 0
draw-border? : any/c = #t

Unfilled and filled rectangles with rounded corners. The corner-radius is used to deter-
mine how much rounding occurs in the corners. If it is a positive number, then it determines
the radius of a circle touching the edges in each corner, and the rounding of the rectangle
follow the edge of those circles. If it is a negative number, then the radius of the circles
in the corners is the absolute value of the corner-radius times the smaller of width and
height.

The angle determines how much the rectangle is rotated, in radians.
If draw-border? is #£, then the pen is set to be transparent before drawing the rectangle.

Examples:

> (rounded-rectangle 40 40 -0.3 #:angle (/ pi 4))

> (filled-rounded-rectangle 50 40)

(bitmap img) — pict
(or/c path-string?
img : (is-a?/c bitmaph)
(is-a?/c image-snip%))

A pict that display a bitmap. When a path is provided, the image is loaded with the ’un-
known/mask flag, which means that a mask bitmap is generated if the file contains a mask.

If the bitmap cannot be loaded, if the given bitmap?, object is not valid, or if the bitmap-
draft-mode parameter is set to #t, the result pict draws the word “bitmap failed”.

(arrow size radians) — pict?
size : real?
radians : real?

(arrowhead size radians) — pict?
size : real?
radians : real?

Creates an arrow or arrowhead in the specific direction within a size by size pict. Points
on the arrow may extend slightly beyond the bounding box.

Examples:

> (arrow 30 0)

5

> (arrow 30 (/ pi 2))

Ll

> (arrowhead 30 0)

(pip-line dx dy size) — pict?
dx : real?
dy : real?
size : real?

10

(pip-arrow-line dx dy size) — pict?
dx : real?
dy : real?
size : real?

(pip-arrows-line dx dy size) — pict?
dx : real?
dy : real?
size : real?

Creates a line (with some number of arrowheads) as a zero-sized pict suitable for use with
pin-over. The 0-sized picture contains the starting point.

The size is used for the arrowhead size. Even though pip-1line creates no arrowheads, it
accepts the size argument for consistency with the other functions.

(pin-line pict

src

find-src

dest

find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color

#:alpha alpha

#:style style

#:under? under?]) — pict?

pict : pict?
src : pict-path?

find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c #f real?) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0.0 1.0) = #f

(one-of/c ’transparent ’solid ’xor ’hilite
’dot ’long-dash ’short-dash ’dot-dash
’xor-dot ’xor-long-dash ’xor-short-dash
’xor-dot-dash)

style :

= ’golid

11

under? : any/c = #f

(pin-arrow-line arrow-size

pict

src

find-src

dest

find-dest
:start-angle start-angle
:end-angle end-angle
:start-pull start-pull
:end-pull end-pull
:line-width line-width
:color color
:alpha alpha
:style style
:under? under?
:s01id? solid?
:hide-arrowhead? hide-arrowhead?]) — pict?
arrow-size : real?
pict : pict?
src : pict-path?

B T T T T T O T

find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c #f real?) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0.0 1.0) = #f

(one-of/c ’transparent ’solid ’xor ’hilite
’dot ’long-dash ’short-dash ’dot-dash
’xor-dot ’xor-long-dash ’xor-short-dash
’xor-dot-dash)

style :

= ’solid
under? : any/c = #f
s0lid? : any/c = #t
hide-arrowhead? : any/c = #f

12

(pin-arrows-line arrow-size

pict

src

find-src

dest

find-dest
:start-angle start-angle
:end-angle end-angle
:start-pull start-pull
:end-pull end-pull
:line-width line-width
:color color
:alpha alpha]
:style style
:under? under?
:s01id? solid?
:hide-arrowhead? hide-arrowhead?]) — pict?
arrow-size : real?
pict : pict?
src : pict-path?

— —
H oHF HF OHF H H H R

find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c #f real?) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0.0 1.0) = #f

(one-of/c ’transparent ’solid ’xor ’hilite
’dot ’long-dash ’short-dash ’dot-dash
’xor-dot ’xor-long-dash ’xor-short-dash
’xor-dot-dash)

under? : any/c = #f

solid? : any/c = #t

hide-arrowhead? : any/c = #f

style :

Adds a line or line-with-arrows onto pict, using one of the pict-finding functions (e.g.,
1t-find) to extract the source and destination of the line.

If under? is true, then the line and arrows are added under the existing pict drawing,
instead of on top. If so1id? is false, then the arrowheads are hollow instead of filled.

The start-angle, end-angle, start-pull, and end-pull arguments control the curve
of the line (and the defaults produce a straight line):

13

e The start-angle and end-angle arguments specify the direction of curve at its
start and end positions; if either is #£, it defaults to the angle of a straight line from
the start position to end position.

e The start-pull and end-pull arguments specify a kind of momentum for the start-
ing and ending angles; larger values preserve the angle longer.

The line-width, color, alpha, and style arguments apply to the added line.

When the hide-arrowhead? argument is a true value, then space for an arrowhead is kept
around the line, but the arrowhead itself is not drawn.

Examples:

(define pict-a (rectangle 40 40))

(define pict-b (circle 40))

(define combined (hc-append 200 pict-a pict-b))
> (pin-line combined

pict-a cc-find
pict-b cc-find)

> (pin-arrow-line 30 combined
pict-a rc-find
pict-b lc-find
#:1line-width 3
#:style ’long-dash
#:color "medium goldenrod")

|

_—

> (pin-arrows-line 30 combined
pict-a rc-find
pict-b lc-find
#:start-angle (/ pi 11)

#:end-angle (- (/ pi 11))
#:s501id? #f)

text-style/c : contract?

A contract that matches the second argument of text.

14

(bitmap-draft-mode) — boolean?
(bitmap-draft-mode on?) — void?
on? : any/c

A parameter that determines whether bitmap loads/uses a bitmap.

15

3 Pict Combiners

(vl-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(vc-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(vr-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(ht-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(htl-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(hc-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(hbl-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

(hb-append [d] pict ...) — pict?
d : real? = 0.0
pict : pict?

Creates a new pict as a column (for v. . . -append) or row (for h. . . ~append) of other picts.
The optional d argument specifies amount of space to insert between each pair of pictures in
making the column or row.

Different procedures align pictures in the orthogonal direction in different ways. For exam-
ple, v1-append left-aligns all of the pictures.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. If at least one pict is supplied, then the last element (as
reported by pict-last) for the result is (or (pict-last pict) pict) for the using
last supplied pict.

Examples:

(define combiners (list vl-append vc-append vr-append
ht-append htl-append hc-append
hbl-append hb-append))

16

(define names (list "vl-append" "vc-append" "vr-append"
"ht-append" "htl-append" "hc-append"
"hbl-append" "hb-append"))

(define pict-a (colorize (filled-rectangle 60 30) "tomato"))

(define pict-b (colorize (disk 45) "cornflower blue"))

(define picts

(for/list ([combiner combiners] [name names])
(list (text name null 15)

(combiner pict-a pict-b))))

> (take picts 4)

» ((vl-append r) (vc-append ')

(vr-append 1) (ht-append .))

> (drop picts 4)

»((htl-append ”) (hc-append “)

(1t-superimpose pict ...) — pict?
pict : pict?

(1tl-superimpose pict ...) — pict?
pict : pict?

(lc-superimpose pict ...) — pict?
pict : pict?

(1bl-superimpose pict ...) — pict?
pict : pict?

(1b-superimpose pict ...) — pict?
pict : pict?

(ct-superimpose pict ...) — pict?
pict : pict?

(ctl-superimpose pict ...) — pict?

17

pict : pict?

(cc-superimpose pict ...) — pict?
pict : pict?

(cbl-superimpose pict ...) — pict?
pict : pict?

(cb-superimpose pict ...) — pict?
pict : pict?

(rt-superimpose pict ...) — pict?
pict : pict?

(rtl-superimpose pict ...) — pict?
pict : pict?

(rc-superimpose pict ...) — pict?
pict : pict?

(rbl-superimpose pict ...) — pict?
pict : pict?

(rb-superimpose pict ...) — pict?

pict : pict?

Creates a new picture by superimposing a set of pictures. The name prefixes are alignment
indicators: horizontal alignment then vertical alignment.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. The last element (as reported by pict-1last) for the result
is the lowest, right-most among the last-element picts of the pict arguments, as determined
by comparing the last-element bottom-right corners.

Examples:

(define combiners (list lt-superimpose ltl-superimpose lc-
superimpose
1bl-superimpose lb-superimpose ct-

superimpose

ctl-superimpose cc-superimpose cbl-
superimpose

cb-superimpose rt-superimpose rtl-
superimpose

rc-superimpose rbl-superimpose rb-
superimpose))

(define names (list "lt-superimpose'" '"ltl-superimpose'" "lc-
superimpose"

"1lbl-superimpose" "lb-superimpose" '"ct-
superimpose"

"ctl-superimpose" "cc-superimpose" "cbl-
superimpose"

18

"cb-superimpose" 'rt-superimpose" "rtl-
superimpose"

"rc-superimpose" '"rbl-superimpose" '"rb-
superimpose"))
(define pict-a (colorize (filled-rectangle 60 30) "tomato"))
(define pict-b (colorize (disk 45) "cornflower blue"))
(define picts

(for/list ([combiner combiners] [name names])
(list (text name null 15)
(combiner pict-a pict-b))))

> (take picts 3)

»((It-superimpose ') (Itl-superimpose -)
(Ic-superimpose -

> (take (drop picts 3) 3)

» ((Ibl-superimpose .) (Ib-superimpose
(ct-superimpose '

> (take (drop picts 6) 3)

s ((ctl-superimpose .) (cc-superimpose ‘)

(cbl-superimpose .

> (take (drop picts 9) 3)

» ((Cb-superimpose .) (rt-superimpose
(rtl-superimpose .))

> (take (drop picts 12) 3)

19

) ((rc-superimpose) (rbl-superimpose

(rb-superimpose))

(pin-over base dx dy pict) — pict?
base : pict?
dx : real?
dy : real?
pict : pict?
(pin-over base find-pict find pict) — pict?
base : pict?
find-pict : pict-path?
find : (pict? pict-path? . -> . (values real? real?))
pict : pict?

Creates a pict with the same bounding box, ascent, and descent as base, but with pict
placed on top. The dx and dy arguments specify how far right and down the second pict’s
corner is from the first pict’s corner. Alternately, the find-pict and find arguments find
a point in base for find-pict;the find procedure should be something like 1t-find.

(pin-under base dx dy pict) — pict?
base : pict?
dx : real?
dy : real?
pict : pict?
(pin-under base find-pict find pict) — pict?
base : pict?
find-pict : pict?
find : (pict? pict? . -> . (values real? real?))
pict : pict?

Like pin-over, but pict is drawn before base in the resulting combination.

(table ncols

picts
col-aligns
row-aligns
col-seps
row-seps) — pict?

ncols : exact-positive-integer?

picts : (non-empty-listof pict?)

col-aligns : (list*of (pict? pict? -> pict?))

20

row-aligns : (list*of (pict? pict? -> pict?))
col-seps : (list*of real?)
row-seps : (listx*of real?)

Creates a table given a list of picts. The picts list is a concatenation of the table’s rows
(which means that a Racket 1ist call can be formatted to reflect the shape of the output
table).

The col-aligns, row-aligns, col-seps, and row-seps arguments are “lists” specify-
ing the row and columns alignments separation between rows and columns. For ¢ columns
and r rows, the first two should have ¢ and r superimpose procedures, and the last two should
have c-1 and r-1 numbers, respectively. The lists can be “improper” (i.e., ending in a num-
ber instead of an empty list), in which case the non-pair cdr is used as the value for all
remaining list items that were expected. The col-aligns and row-aligns procedures are
used to superimpose all of the cells in a column or row; this superimposition determines the
total width or height of the column or row, and also determines the horizontal or vertical
placement of each cell in the column or row.

21

4 Pict Drawing Adjusters

(scale pict factor) — pict?
pict : pict?
factor : real?
(scale pict w-factor h-factor) — pict?
pict : pict?
w-factor : real?
h-factor : real?

Scales a pict drawing, as well as its bounding box. The drawing is scaled by adjusting the
destination dc<%>’s scale while drawing the original pict.

(scale-to-fit pict size-pict) — pict?
pict : pict?
size-pict : pict?

(scale-to-fit pict width height) — pict?
pict : pict?
width : real?
height : real?

Scales pict so that it fits within the bounding box of size-pict (if two arguments are
supplied) or into a box of size width by height (if three arguments are supplied).

The aspect ratio of the pict is preserved, so the resulting pict will have either the width or the
height of the size-pict (or width by height box), but not necessarily both.

(rotate pict theta) — pict?
pict : pict?
theta : real?

Rotates a pict’s drawing by theta radians counter-clockwise.

The bounding box of the resulting pict is the box encloses the rotated corners of pict (which
inflates the area of the bounding box, unless theta is a multiple of half of pi). The ascent
and descent lines of the result’s bounding box are the horizontal lines that bisect the rotated
original lines; if the ascent line drops below the descent line, the two lines are flipped.

(ghost pict) — pict?
pict : pict?

Creats a container picture that doesn’t draw the child picture, but uses the child’s size.

(linewidth w pict) — pict?
w : (or/c real? #f)
pict : pict?

22

Selects a specific pen width for drawing, which applies to pen drawing for pict that does
not already use a specific pen width. A #f value for v makes the pen transparent (in contrast
to a zero value, which means “as thin as possible for the target device”).

(linestyle style pict) — pict?

(one-of/c ’transparent ’solid ’xor ’hilite
’dot ’long-dash ’short-dash ’dot-dash
’xor-dot ’xor-long-dash ’xor-short-dash
’xor-dot-dash)

style :

pict : pict?

Selects a specific pen style for drawing, which applies to pen drawing for pict that does not
already use a specific pen style.

(colorize pict color) — pict?
pict : pict?
(or/c string? (is-a?/c color’)

color : (list byte? byte? byte?))

Selects a specific color drawing, which applies to drawing in pict that does not already
use a specific color. The black-and-white parameter causes all non-white colors to be
converted to black.

(cellophane pict opacity) — pict?
pict : pict?
opacity : (real-in 0 1)

Makes the given pict semi-transparent, where an opacity of 0 is fully transparent, and an
opacity of 1 is fully opaque. See set-alpha for information about the contexts and cases
when semi-transparent drawing works.

(clip pict) — pict
pict : pict?

Clips a pict’s drawing to its bounding box.

(inset/clip pict amt) — pict?
pict : pict?
amt : real?
(inset/clip pict h-amt v-amt) — pict?
pict : pict?
h-amt : real?
v-amt : real?
(inset/clip pict l-amt t-amt r-amt b-amt) — pict?
pict : pict?

23

l-amt : real?
t-amt . real?
r-amt : real?
b-amt : real?

Insets and clips the pict’s drawing to its bounding box. Usually, the inset amounts are nega-
tive.

(scale/improve-new-text pict-expr scale-expr)
(scale/improve-new-text pict-expr x-scale-expr y-scale-expr)

Like the scale procedure, but also sets current-expected-text-scale while evaluating
pict-expr.

(black-and-white) — boolean?
(black-and-white on?) — void?
on? : any/c

A parameter that determines whether colorize uses color or black-and-white colors.

24

5 Bounding Box Adjusters

(inset pict amt) — pict?
pict : pict?
amt : real?
(inset pict h-amt v-amt) — pict?
pict : pict?
h-amt : real?
v-amt : real?
(inset pict l-amt t-amt r-amt b-amt) — pict?
pict : pict?
l-amt : real?
t-amt : real?
r-amt : real?
b-amt : real?

Extends pict’s bounding box by adding the given amounts to the corresponding sides;
ascent and descent are extended, too.

(clip-descent pict) — pict?
pict : pict?

Truncates pict’s bounding box by removing the descent part.

(lift-above-baseline pict amt) — pict?
pict : pict?
amt : real?

Lifts pict relative to its baseline, extending the bounding box height if necessary.

(drop-below-ascent pict amt) — pict?
pict : pict?
amt : real?

Drops pict relative to its ascent line, extending the bounding box height if necessary.

(baseless pict) — pict?
pict : pict?
Makes the descent 0 and the ascent the same as the height.

(refocus pict sub-pict) — pict?
pict : pict?
sub-pict : pict?

25

Assuming that sub-pict can be found within pict, shifts the overall bounding box to that
of sub-pict (but preserving all the drawing of pict). The last element, as reported by
pict-lastisalsosetto (or (pict-last sub-pict) sub-pict).

(panorama pict) — pict?
pict : pict?

Shifts the given pict’s bounding box to enclose the bounding boxes of all sub-picts (even
laundered picts).

(use-last pict sub-pict) — pict?
pict : pict?
sub-pict : pict-path?

Returns a pict like pict, but with the last element (as reported by pict-last) set to sub-
pict. The sub-pict must exist as a sub-pict (or path of sub-picts) within pict.
(use-last* pict sub-pict) — pict?
pict : pict?
sub-pict : pict-path?
Propagates the last element of sub-pict to pict.

That is, use-last* is like use-last, but the last element of sub-pict is used as the new
last element for pict, instead of sub-pict itself—unless (pict-last sub-pict) is #f,
in which case sub-pict is used as the last element of pict.

26

6 Pict Finders

(1t-find pict find) — real? real?
pict : pict?
find : pict-path?

(1tl-find pict find) — real? real?
pict : pict?
find : pict-path?

(lc-find pict find) — real? real?
pict : pict?
find : pict-path?

(1bl-find pict find) — real? real?
pict : pict?
find : pict-path?

(1b-find pict find) — real? real?
pict : pict?
find : pict-path?

(ct-find pict find) — real? real?
pict : pict?
find : pict-path?

(ctl-find pict find) — real? real?
pict : pict?
find : pict-path?

(cc-find pict find) — real? real?
pict : pict?
find : pict-path?

(cbl-find pict find) — real? real?
pict : pict?
find : pict-path?

(cb-find pict find) — real? real?
pict : pict?
find : pict-path?

(rt-find pict find) — real? real?
pict : pict?
find : pict-path?

(rtl-find pict find) — real? real?
pict : pict?
find : pict-path?

(rc-find pict find) — real? real?
pict : pict?
find : pict-path?

(rbl-find pict find) — real? real?
pict : pict?
find : pict-path?

(rb-find pict find) — real? real?

27

pict : pict?
find : pict-path?

Locates a pict designated by find is within pict. If find is a pict, then the pict must
have been created as some combination involving find.

If £ind is a list, then the first element of find must be within pict, the second element of
find must be within the second element, and so on.

(pict-path? v) — boolean?
v : any/c

Returns #t if v is a pict or a non-empty list of picts.
(launder pict) — pict?

pict : pict?

Creates a pict that has the same drawing and bounding box of pict, but which hides all of its
sub-picts so that they cannot be found with functions like 1t-find. If pict has a last-line
pict, then the laundered pict has a fresh last-line pict with the same shape and location.

28

7 More Pict Constructors

7.1 Dingbats

(cloud w h [color]) — pict?

w . real?
h : real?
color : (or/c string? (is-a?/c colory%)) = '"gray"

Creates a fluffy cloud.
Examples:

> (cloud 100 75)

> (cloud 100 75 "lavenderblush'")

(file-icon w h color [shaded?]) — pict?
w . real?
h : real?
color : (or/c string? (is-a?/c color}) any/c)
shaded? : any/c = #f

Creates a Mac-like file icon, optionally shaded. If color is not a string or color?, object, it
is treated as a boolean, in which case true means "gray" and false means "white".
Examples:

> (file-icon 50 60 "bisque")

> (file-icon 50 60 "honeydew" #t)

29

(standard-fish w

h
[#:direction direction
#:color color
#:eye-color eye-color
#:open-mouth open-mouth]) — pict?
w . real?
h : real?
direction : (or/c ’left ’right) = ’left
color : (or/c string? (is-a?/c colory%)) = "blue"
eye-color : (or/c string? (is-a?/c color),) #f) = "black"

open-mouth : (or/c boolean? real?) = #f

Creates a fish swimming either *1left or *right. If eye-color is #f, no eye is drawn.

The open-mouth argument can be either #f (mouth closed), #t (mouth fully open), or a
number: 0.0 is closed, 1.0 is fully open, and numbers in between are partially open.

Examples:

> (standard-fish 100 50)

> (standard-fish 100 50 #:direction ’right #:color "chocolate")

> (standard-fish 100 50 #:eye-color "saddlebrown" #:color "salmon")

> (standard-fish 100 50 #:open-mouth #t #:color "olive")

(jack-o-lantern size
[pumpkin-color
face-color]) — pict?

30

size : real?
pumpkin-color : (or/c string? (is-a?/c colory)) = "orange"
face-color : (or/c string? (is-a?/c color})) = "black"

Creates a jack-o-lantern; use the same pumpkin and face color to get a plain pumpkin. The
size determines the width.
Examples:

> (jack-o-lantern 100)

> (jack-o-lantern 100 "cadet blue" '"khaki')

(angel-wing w h left?) — pict?
w . real?
h : real?
left? : any/c

Creates an angel wing, left or right, or any size. The color and pen width for drawing the
wing outline is the current one.
Examples:

> (angel-wing 100 40 #f)

> (angel-wing 100 40 #t)

31

(desktop-machine scale [style]) — pict?
scale : real?
style : (listof symbol?) = null

Produces a picture of ancient desktop computer. The scale argument scales the size relative
to the base size of 120 by 115.

The style can include any of the following:

¢ ’plt — include a Racket logo on the machine’s screen
* ’binary — put Is and Os on the machine’s screen

e ’devil — like ’binary, and also give the machine horns and a tail
Examples:

> (desktop-machine 1)

> (desktop-machine 1 ’(devil plt))

> (desktop-machine 1 ’(plt binary))

32

(thermometer [#:height-J height-7

:color-% color-j

:ticks ticks

:start-color start-color

:end-color end-color

:top-circle-diameter top-circle-diameter
:bottom-circle-diameter bottom-circle-diameter
:stem-height stem-height

:mercury-inset mercury-inset])

H o H O H OH HH

— pict?

height-7, : (between/c 0 1) =1

color-7 : (between/c 0 1) = height-J

ticks : non-exact-negative-integer? = 4

start-color : (or/c string? (is-a?/c colory%)) = "lightblue"
end-color : (or/c string? (is-a?/c colory%)) = "lightcoral"
top-circle-diameter : positive-real? = 40
bottom-circle-diameter : positive-real? = 80

stem-height : positive-real? = 180

mercury-inset : positive-real? = 8

Produces a thermometer that consists of a semi-circle on top of a rectangle on top of a circle.
The sizes of the three components are controlled via the top-circle-diameter, stem-
height, and bottom-circle-diameter arguments.

The mercury is drawn the same way, but by creating the three components inset from the
versions that draw the boundary of the thermometer. This inset is conrolled by the mercury-
inset argument.

The height of the mercury in the thermometer is controlled by the height-7 argument.
Its color is interpolated between the start-color and end-color, as determined by the
color-7 argument.

Finally, some number of ticks are drawn, basd on the ticks argument.
Example:

> (thermometer #:stem-height 90
#:bottom-circle-diameter 40
#:top-circle-diameter 20
#:mercury-inset 4)

33

7.2 Balloon Annotations

(require pict/balloon) package: pict-1ib

The pict/balloon library provides functions for creating and placing cartoon-speech bal-
loons.

(wrap-balloon pict
spike
dx
dy
[color
corner-radius]) — balloon?
pict : pict?
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c colory%)) = balloon-color
corner-radius : (and/c real? (not/c negative?)) = 32

Superimposes pict on top of a balloon that wraps it.
The spike argument indicates the corner from which a spike protrudes from the balloon
(i.e., the spike that points to whatever the balloon is about). For example, ’n means “north,”,

which is a spike in the top middle of the balloon.

The dx and dy arguments specify how far the spike should protrude. For a ’w spike, dx
should be negative, etc.

The color argument is the background color for the balloon.

The corner-radius argument determines the radius of the cicle used to roun the balloon’s
corners. As usual, if it is less than 1, then it acts as a ratio of the balloon’s width or height.

The result is a balloon, not a pict. The balloon-pict function extracts a pict whose bound-
ing box does not include the spike, but includes the rest of the image, and the balloon-

34

point-x and balloon-point-y functions extract the location of the spike point.

typically, the pin-balloon function is used to add a balloon to a pict.

(pip-wrap-balloon pict
spike
dx
dy
[color
corner-radius]) — pict?
pict : pict?
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color}%)) = balloon-color
corner-radius : (and/c real? (not/c negative?)) = 32

Like wrap-balloon, but produces a zero-sized pict suitable for use with pin-over.

(pin-balloon balloon base x y) — pict?
balloon : balloon?
base : pict?
x @ real?
y : real?
(pin-balloon balloon base at-pict find) — pict?
balloon : balloon?
base : pict?
at-pict : pict-path?
find : (pict? pict-path? . -> . (values real? real?))

More

Superimposes the pict in balloon onto base to produce a new pict. The balloon is posi-
tioned so that its spike points to the location specified by either x and y (numbers) or at the
position determined by combining base and at-pict with find. The find function uses

its arguments like 1t-find.

The resulting pict has the same bounding box, descent, and ascent as base, even if the

balloon extends beyond the bounding box.
Examples:

> (define a-pict (standard-fish 70 40))

> (pin-balloon (balloon 40 30 5 ’se 5 5)
(cc-superimpose (blank 300 150) a-pict)
a-pict
lc-find)

35

> (pin-balloon (wrap-balloon (text "Hello!") ’sw -5 3)
(cc-superimpose (blank 300 150) a-pict)
a-pict
rt-find)

(balloon w h corner-radius spike dx dy [color]) — balloon?
w @ real?
h : real?
corner-radius : (and/c real? (not/c negative?))
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color}%)) = balloon-color

Creates a balloon, much like wrap-balloon except that the balloon’s width is w and its
height is h.

(balloon? v) — boolean?
v : any/c
(make-balloon pict x y) — balloon?
pict : pict?
x @ real?
y @ real?
(balloon-pict balloon) —» pict?
balloon : balloon?
(balloon-point-x balloon) — real?

36

balloon : balloon?
(balloon-point-y balloon) — real?
balloon : balloon?

A balloon encapsulates a pict and the position of the balloon’s spike relative to the balloon’s
top-left corner.

balloon-color : (or/c string? (is-a?/c color’%))

The default background color for a balloon.

(balloon-enable-3d) — boolean?
(balloon-enable-3d on?) — void?
on? : any/c

A parameter that determines whether balloons are drawn with 3-D shading.

7.3 Face

(require pict/face) package: pict-1ib
The pict/face library provides functions for a kind of Mr. Potatohead-style face library.

default-face-color : (or/c string (is-a?/c color%))

Orange.

(face mood [color]) — pict?
mood : symbol?
color : (or/c string (is-a?/c color’)) = default-face-color

Returns a pict for a pre-configured face with the given base color. The built-in configurations,
selected by mood-symbol, are as follows:

’unha — (facex ’none ’plain #t default-face-color 6)
PPy p

’sortof-unhappy — (facex ’worried ’grimace #t default-face-color 6)

37

’sortof-happy — (face* ’worried ’medium #f default-face-color 6)

’happy — (face* ’none ’plain #f default-face-color 6)

’happier — (facex ’none ’large #f default-face-color 3)

’embarrassed — (face* ’worried ’medium #f default-face-color 3)

’badly-embarrassed — (face* ’worried ’medium #t default-face-color 3)

’unhappier — (face* ’normal ’large #t default-face-color 3)

’happiest — (face* ’normal ’huge #f default-face-color 0 -3)

G000 66

’unhappiest — (face*x ’normal ’huge #t default-face-color 0 -3)

38

‘mad — (face* ’angry ’grimace #t default-face-color 0)

‘mean — (face* ’angry ’narrow #f default-face-color 0)

’surprised — (face* ’worried ’oh #t default-face-color -4 -3 2)

(face* eyebrow-kind
mouth-kind
frown?
color
eye-inset
eyebrow-dy
pupil-dx
pupil-dy
[#:eyebrow-shading? eyebrow-on?
#:mouth-shading? mouth-on?
#:eye-shading? eye-on?
#:tongue-shading? tongue-on?
#:face-background-shading? face-bg-on?
#:teeth? teeth-on?]) — pict?
eyebrow-kind : (or/c ’none ’normal ’worried ’angry)
mouth-kind : (or/c :plain ’sgaller ’narrow ’medium ’large
huge ’grimace ’oh ’tongue)
frown? : any/c
color : (or/c string (is-a?/c color%))
eye-inset : real?
eyebrow-dy : real?
pupil-dx : real?
pupil-dy : real?
eyebrow-on? : any/c = #t
mouth-on? : any/c = #t
eye-on? : any/c = #t
tongue-on? : any/c = #t
face-bg-on? : any/c = #t
teeth-on? : any/c = #t

39

Returns a pict for a face:

* eyebrow-kind determines the eyebrow shape.

* mouth-kind determines the mouth shape, combined with frown?.

e frown? determines whether the mouth is up or down.

* color determines the face color.

* eye-inset adjusts the eye size; recommend values are between 0 and 10.
* eyebrow-dy adjusts the eyebrows; recommend values: between -5 and 5.
* pupil-dx adjusts the pupil; recommend values are between -10 and 10.

* pupil-dy adjusts the pupil; recommend values are between -15 and 15.

The #:eyebrow-shading? through #:face-background-shading? arguments control
whether a shading is used for on a particular feature in the face (shading tends to look worse
than just anti-aliasing when the face is small). The #: teeth? argument controls the visibility
of the teeth for some mouth shapes.

7.4 Flash

(require pict/flash) package: pict-1lib

(filled-flash width

height

[n-points

spike-fraction

rotation]) — pict?
width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25
rotation : real? = 0

Returns a pict for a “flash™: a spiky oval, like the yellow background that goes behind a
“new!” logo on web pages or a box of cereal.

The height and width arguments determine the size of the oval in which the flash is drawn,
prior to rotation. The actual height and width may be smaller if points is not a multiple of
4, and the actual height and width will be different if the flash is rotated.

The n-points argument determines the number of points on the flash.

40

The spike-fraction argument determines how big the flash spikes are compared to the
bounding oval.

The rotation argument specifies an angle in radians for counter-clockwise rotation.
The flash is drawn in the default color.
Examples:

> (filled-flash 100 50)

> (filled-flash 100 50 8 0.25 (/ pi 2))

(outline-flash width

height

[n-points

spike-fraction

rotation]) — pict?
width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25
rotation : real? = 0

Like filled-flash, but drawing only the outline.
Examples:

> (outline-flash 100 50)

> (outline-flash 100 50 8 0.25 (/ pi 2))

41

7.5 Typesetting Racket Code

(require pict/code) package: pict-1ib

This library is re-provided by s1ideshow/code, but initializes get-current-code-font-
size.

(typeset-code stx) — pict?
stx : syntax?

Produces a pict for code in the given syntax object. The source-location information of the
syntax object determines the line breaks, line indenting, and space within a row. Empty rows
are ignored.

Beware that if you use read-syntax on a file port, you may have to turn on line counting
via port-count-1lines! for the code to typeset properly. Also beware that when a source
file containing a syntax or quote-syntax form is compiled, source location information
is omitted from the compiled syntax object.

Normally, typeset-code is used through the code syntactic form, which works properly
with compilation, and that escapes to pict-producing code via unsyntax. See also define-
code.

Embedded picts within stx are used directly. Row elements are combined using and op-
erator like ht1-append, so use code-align (see below) as necessary to add an ascent to
ascentless picts. More precisely, creation of a line of code uses pict-last to determine
the end point of the element most recently added to a line; the main effect is that closing
parentheses are attached in the right place when a multi-line pict is embedded in stx.

An identifier that starts with _ is italicized in the pict, and the _ is dropped, unless the code-
italic-underscore-enabled parameter is set to #f. Also, unless code-scripts-
enabled is set to #f, _ and ~ in the middle of a word create superscripts and subscripts,
respectively (like TeX); for example foo~4_ok is displayed as the identifier foo with a 4
superscript and an ok subscript.

Further, uses of certain identifiers in stx typeset specially:

* code:blank — produces a space.

42

* (code:comment s ...) — produces a comment block, with each s on its own line,
where each s must be a string or a pict.

¢ (code:line datum ...) — typesets the datum sequence, which is mostly useful
for the top-level sequence, since typeset-code accepts only one argument.

¢ (code:contract datum ...) — like code:line, butevery datum is colored as a
comment, and a ; is prefixed to every line.

¢ (code:template datum ...) — like code:line, buta ; is prefixed to every line.

* $ — typesets as a vertical bar (for no particularly good reason).

(code datum ...)

The macro form of typeset-code. Within a datum, unsyntax can be used to escape to an
expression, and identifiers bound as syntax to code transformers trigger transformations.

For more information, see typeset-code and define-code, since code is defined as
(define-code code typeset-code)

Examples:

> (code (+ 1 2))

(+ 1 2)

> (code (+ 1 #,(+ 1 1)))

(+ 1 2)

> (code (+ 1 #,(frame (code 2))))

(+ 1)

> (define-syntax two (make-code-transformer #’(code 2)))

> (code (+ 1 two))

(+ 1 2)

(current-code-font) — text-style/c
(current-code-font style) — void?
style : text-style/c

Parameter for a base font used to typeset text. The default is ¢ (bold . modern). For even
more control, see current-code-tt.

(current-code-tt) — (string? . -> . pict?)
(current-code-tt proc) — void?
proc : (string? . -> . pict?)

Parameter for a one-argument procedure to turn a string into a pict, used to typeset text. The
default is

43

(lambda (s) (text s (current-code-font) ((get-current-code-font-

size))))

This procedure is not used to typeset subscripts or other items that require font changes,
where current-code-font is used directly.

(get-current-code-font-size) — (-> exact-nonnegative-integer?)
(get-current-code-font-size proc) — void?
proc : (-> exact-nonnegative-integer?)

A parameter used to access the default font size. The slideshow/code library initializes
this parameter to current-font-size.

(current-code-line-sep) — real?
(current-code-line-sep amt) — void?
amt : real?

A parameter that determines the spacing between lines of typeset code. The default is 2.

(current-comment-color) — (or/c string? (is-a?/c colori))
(current-comment-color color) — void?
color : (or/c string? (is-a?/c colory))

A parameter for the color of comments.

(current-keyword-color) — (or/c string? (is-a?/c colori))
(current-keyword-color color) — void?
color : (or/c string? (is-a?/c colory))

A parameter for the color of syntactic-form names. See current-keyword-1list.

(current-id-color) — (or/c string? (is-a?/c color%))
(current-id-color color) — void?
color : (or/c string? (is-a?/c colory))

A parameter for the color of identifiers that are not syntactic form names or constants.

(current-literal-color) — (or/c string? (is-a?/c color’))
(current-literal-color color) — void?
color : (or/c string? (is-a?/c colory))

A parameter for the color of literal values, such as strings and numbers. See also current-
literal-list

44

(current-const-color) — (or/c string? (is-a?/c colori))
(current-const-color color) — void?
color : (or/c string? (is-a?/c color%))

A parameter for the color of constant names. See current-const-1list.

(current-base-color) — (or/c string? (is-a?/c colori))
(current-base-color color) — void?
color : (or/c string? (is-a?/c colory))

A parameter for the color of everything else.

(current-reader-forms) — (listof symbol?)
(current-reader-forms syms) — void?
syms : (listof symbol?)

Parameter for a list of symbols indicating which built-in reader forms should be used. The
default is ’ ’quasiquote. Remove a symbol to suppress the corresponding reader output.

(code-align pict) — pict?
pict : pict?

Adjusts the ascent of pict so that its bottom aligns with the baseline for text; use this
function when pict has no ascent.

(current-keyword-list) — (listof string?)
(current-keyword-list names) — void?
names : (listof string?)

A list of strings to color as syntactic-form names. The default includes all of the forms
provided by racket/base and all of the forms provided by mzscheme.

(current-const-list) — (listof string?)
(current-const-list names) — void?
names : (listof string?)

A list of strings to color as constant names. The default is null.
(current-literal-list) — (listof string?)

(current-literal-list names) — void?
names : (listof string?)

A list of strings to color as literals, in addition to literals such as strings. The default is null.

45

racket/base-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-1ist parameter.

mzscheme-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-1list parameter.

(code-colorize-enabled) — boolean?
(code-colorize-enabled on?) — void?
on? : any/c

A parameter to enable or disable all code coloring. The default is #t.

(code-colorize-quote-enabled) — boolean?
(code-colorize-quote-enabled on?) — void?
on? : any/c

A parameter to control whether under a quote is colorized as a literal (as in this documen-
tation). The default is #t.

(code-italic-underscore-enabled) — boolean?
(code-italic-underscore-enabled on?) — void?
on? : any/c

A parameter to control whether _-prefixed identifiers are italicized (dropping the _). The
default is #t.

(code-scripts-enabled) — boolean?
(code-scripts-enabled on?) — void?
on? : any/c

A parameter to control whether TeX-style subscripts and subscripts are recognized in an
identifier.

(define-code code-id typeset-code-id)
(define-code code-id typeset-code-id escape-id)

Defines code-id as a macro that uses typeset-code-id, which is a function with the
same input as typeset-code. The escape-id form defaults to unsyntax.

The resulting code-id syntactic form takes a sequence of datums:

(code-id datum ...)

46

It produces a pict that typesets the sequence. Source-location information for the datum
determines the layout of code in the resulting pict. The code-id is expanded in such a
way that source location is preserved during compilation (so typeset-code-1id receives a
syntax object with source locations intact).

If a datum contains (escape-id expr)—perhaps as #,expr when escape-id is un-
syntax—then the expr is evaluated and the result datum is spliced in place of the escape-
id form in datum. If the result is not a syntax object, it is given the source location of the
escape-id form. A pict value intected this way as a datum is rendered as itself.

If a datum contains (transform-id datum ...) or transform-id for a transform-
id that is bound as syntax to a code transformer, then the (transform-id datum ...)
or transform-id may be replaced with an escaped expression, depending on the code
transformer’s result.

(make-code-transformer proc-or-stx) — code-transformer?

(or/c (syntax? . -> . (or/c syntax? #f))

proc-or-stx :
syntax?)

prop:code-transformer : struct-type-property?
(code-transformer? v) — boolean?
v : any/c

Exported for-syntax for creating code transformers.

For code transformer created with (make-code-transformer proc), proc takes a syntax
object representing the use of an identifier bound to the transformer, and it produces an
expression whose value replaces the identifier use within a code form or a form defined via
define-code. Like a macro transformer, a code transformer is triggered either by a use
of the bound identifier in an “application” position, in which case the transformer receives
the entire “application” form, or the identifier by itself can also trigger the transformer.
The code transformer’s proc can return #f, in which case the use of the identifier is left
untransformed; if the identifier was used in an “application” position, the transformer proc
will be called again for the identifier use by itself.

A code transformer produced by (make-code-transformer stx) is equivalent to

(make-code-transformer (lambda (use-stx)
(if (identifier? use-stx)
stx

#£)))

A structure type with the prop:code-transformer property implements a code trans-
former. The property value must be a procedure of one argument, which receives the struc-
ture and returns a procedure that is like a proc passed to make-code-transformer, except
that the property value takes the structure instance as an argument before the syntax object
to transform.

47

The code-transformer? predicate returns #t for a value produced by make-code-
transformer or for an instance of a structure type with the prop:code-transformer
property, #f otherwise.

Example:

> (let-syntax ([bag (make-code-transformer #’(code hat))]
[copy (make-code-transformer (syntax-rules ()
[(_ c) (code (x 2 ¢c))I))])
(inset (frame (code ((copy cat) in the bag))) 2))

[((* 2 cat) in the hat)|

(define-exec-code (pict-id runnable-id string-id)
datum ...)

Binds pict-id to the result of (code datum ...), except that if an identifier _ appears
anywhere in a datum, then the identifier and the following expression are not included for
code.

Meanwhile, runnable-id is bound to a syntax object that wraps the datums in a begin.
In this case, _s are removed from the datums, but not the following expression. Thus, an
_ identifier is used to comment out an expression from the pict, but have it present in the
syntax object for evaluation.

The string-id is bound to a string representation of the code that is in the pict. This string
is useful for copying to the clipboard with (send the-clipboard set-clipboard-
string string-id 0).

(define-exec-code/scale scale-expr (pict-id runnable-id string-id)
datum ...)

Like define-exec-code, but with a scale to use via scale/improve-new-text when
generating the pict.

comment-color : (or/c string? (is-a?/c color%))
keyword-color : (or/c string? (is-a?/c color%))
id-color : (or/c string? (is-a?/c color%))

literal-color : (or/c string? (is-a?/c color%))

For backward compatibility, the default values for current-comment-color, etc.
(code-pict-bottom-line-pict pict) — (or/c pict? #f)
pict : pict?

The same as pict-last, provided for backward compatibility.

48

(pict->code-pict pict bl-pict) — pict?
pict : pict?
bl-pict : (or/c pict? #f)

Mainly for backward compatibility: returns (if bl-pict (use-last pict (or
(pict-last bl-pict) bl-pict))).

49

8 Animation Helpers
These functions are designed to work with the slide constructors in slideshow/play.

8.1 Pict Interoplations

(fade-pict n pl p2 [#:combine combine]) — pict?
n : (real-in 0.0 1.0)

pl : pict?
p2 : pict?
combine : (pict? pict? . -> . pict?) = cc-superimpose

Interpolates p1 and p2, where the result with n as 0.0 is p1, and the result with n as 1.0 is
p2. For intermediate points, p1 fades out while p2 fades in as n changes from 0.0 to 1.0.
At the same time, the width and height of the generated pict are intermediate between p1
and p2, and the relative baselines and last pict correspondingly morph within the bounding
box.

The combine argument determines how p1 and p2 are aligned for morphing. For example,
if p1 and p2 both contain multiple lines of text with the same line height but different number
of lines, then using ct1-superimpose would keep the ascent line in a fixed location relative
to the top of the resulting pict as the rest of the shape morphs around it.

(fade-around-pict n pl make-p2) — pict?
n : (real-in 0.0 1.0)
pl : pict?
make-p2 : (pict? . -> . pict?)

Similar to fade-pict, but the target is not a fixed p2, but instead a function make-p2 that
takes a laundered ghost of p1 and places it into a larger scene. Also, p1 does not fade out
as n increases; instead, p1 is placed wherever its ghost appears in the result of make-p2.

For example,

(lambda (n)
(fade-around-pict n
(code x)
(lambda (g) (code (+ #,x 1)))))
animates the wrapping of x witha (+ 1) form.

(slide-pict base p p-from p-to n) — pict?
base : pict?

50

p @ pict?

p-from : pict?

p-to : pict?

n : (real-in 0.0 1.0)

Pins p onto base, sliding from p-from to p-to (which are picts within base) as n goes
from 0.0 to 1.0. The top-left locations of p-from and p-to determine the placement of
the top-left of p.

The p-from and p-to picts are typically laundered ghosts of p within base, but they
can be any picts within base.

8.2 Merging Animations

(sequence-animations gen ...) — (-> (real-in 0.0 1.0) pict?)
gen : (-> (real-in 0.0 1.0) pict?)

Converts a list of gen functions into a single function that uses each gen in sequence.

(reverse-animations gen ...) — (-> (real-in 0.0 1.0) pict?)
gen : (-> (real-in 0.0 1.0) pict?)

Converts a list of gen functions into a single function that run (sequence-animations
gen ...) inreverse.

8.3 Stretching and Squashing Time

(fast-start n) — (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-end n) — (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-edges n) — (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-middle n) — (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

Monotonically but non-uniformly maps n with fixed points at 0.0 and 1.0.
The fast-start mapping is convex, so that

(slide-pict base p pl p2 (fast-start n))

51

appears to move quickly away from p1 and then slowly as it approaches p2, assuming that
n increases uniformly.

The fast-end mapping is concave, so that
(slide-pict base p pl p2 (fast-end n))
appears to move slowly away from p1 and then quicly as it approaches p2, assuming that n
increases uniformly.
The fast-edges mapping is convex at first and concave at the end, so that
(slide-pict base p pl p2 (fast-edges n))
appears to move quickly away from p1, then more slowly, and then quickly again near p2,
assuming that n increases uniformly.
The fast-middle mapping is concave at first and convex at the end, so that
(slide-pict base p pl p2 (fast-middle n))

appears to move slowly away from p1, then more quickly, and then slowly again near p2,
assuming that n increases uniformly.

(split-phase n) — (real-in 0.0 1.0) (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

Splits the progression of n from 0.0 to 1.0 into a progression from (values 0.0 0.0) to
(values 1.0 0.0) and then (values 1.0 0.0) to (values 1.0 1.0).

52

9 Miscellaneous

(hyperlinkize pict) — pict?
yp p p
pict : pict?

Adds an underline and blue color. The pict’s height and descent are extended.

(scale-color factor color) — (is-a?/c color’)
factor : real?
color : (or/c string (is-a?/c colori))

Scales a color, making it brighter or darker. If the factor is less than 1, the color is darkened
by multiplying the RGB components by the factor. If the factor is greater tham 1, the color
is lightened by dividing the gap between the RGB components and 255 by the factor.

(color-series dc

max-step

step-delta

start

end

proc

set-pen?

set-brush?) — void?
dc : (is-a?/c dc<i>)
max-step : exact-nonnegative-integer?
step-delta : (and/c exact? positive?)
start : (or/c string? (is-a?/c color%))
end : (or/c string? (is-a?/c color’))
proc : (exact? . -> . any)
set-pen? : any/c
set-brush? : any/c

Calls a proc multiple times, gradually changing the pen and/or brush color for each call. For
the first call, the current pen and/or brush color matches start; for the last call, it matches
end; and for intermediate calls, the color is an intermediate color.

The max-step and step-delta arguments should be exact numbers; the procedure is
called with each number from 0 to max-step inclusive using a step-delta increment.

53

10 Rendering

(dc-for-text-size) — (or/c #f (is-a?/c dc<%>))
(dc-for-text-size dc) — void?
dc : (or/c #f (is-a?/c dc<%>))

A parameter that is used to determine the bounding box of picts created with text.

The drawing context installed in this parameter need not be the same as the ultimate drawing
context, but it should measure text in the same way. Under normal circumstances, font
metrics are the same for all drawing contexts, so the default value of dc-for-text-sizeis
a bitmap-dc that draws to a 1-by-1 bitmap.

(draw-pict pict dc x y) — void?
pict : pict?
dc : (is-a?/c dc<)>)
X : real?
y : real?

Draws pict to dc, with its top-left corner at offset (x, y).

(pict->bitmap pict) — (is-a?/c bitmap%)
pict : pict?

Returns a bitmapy with an alpha channel, no larger than pict, with pict drawn on it in
the top-left corner (0, 0).

(make-pict-drawer pict)
— ((is-a?/c dc<%>) real? real? . -> . void?)
pict : pict?

Generates a pict-drawer procedure for multiple renderings of pict. Using the generated
procedure can be faster than repeated calls to draw-pict.

(show-pict pict

[w

h]

#:frame-x frame-x

#:frame-y frame-y

#:frame-style frame-style) — void?
pict : pict?
w : (or/c #f exact-nonnegative-integer?) = #f
h : (or/c #f exact-nonnegative-integer?) = #f
frame-x : (or/c (integer-in -10000 10000) #f)

54

frame-y : (or/c (integer-in -10000 10000) #f£)
(listof (or/c ’no-resize-border ’no-caption
frame-style : ’no-system-menu ’hide-menu-bar
’toolbar-button ’float ’metal))

Opens a frame that displays pict. The frame adds one method, set-pict, which takes
a pict to display. The optional w and h arguments specify a minimum size for the frame’s
drawing area, and the frame-x, frame-y, and frame-style keyword arguments behave
in the same manner as x, y, and style arguments for the frame¥.

(current-expected-text-scale) — (list real? real?)
(current-expected-text-scale scales) — void?
scales : (list real? real?)

A parameter used to refine text measurements to better match an expected scaling of the
image. The scale/improve-new-text form sets this parameter while also scaling the
resulting pict.

55

11 Conversion to Picts

(require pict/convert) package: pict-1ib

The pict/convert library defines a protocol for values to convert themselves to picts. The
protocol is used by DrRacket’s interactions window, for example, to render values that it
prints.

prop:pict-convertible : struct-type-property?
A property whose value should be a procedure matching the contract (-> any/c pict?).

The procedure is called when a structure with the property is passed to pict-convert; the
argument to the procedure is the structure, and the procedure’s result should be a pict.

prop:pict-convertible? : struct-type-property?
A property whose value should be a predicate procedure (i.e., matching the contract pred-
icate/c).
If this property is not set, then it is assumed to be the function (A (x) #t).

If this property is set, then this procedure is called by pict-convertible? to determine if
this particular value is convertible (thereby supporting situations where some instances of a
given struct are convertible to picts, but others are not).

(pict-convertible? v) — boolean?

v : any/c

Returns #t if v supports the conversion protocol (by being a struct with the prop:pict-
convertible property) and #f otherwise.

(pict-convert v) — pict?

v : pict-convertible?

Requests a data conversion from v to a pict.

56

	1 Pict Datatype
	2 Basic Pict Constructors
	3 Pict Combiners
	4 Pict Drawing Adjusters
	5 Bounding Box Adjusters
	6 Pict Finders
	7 More Pict Constructors
	7.1 Dingbats
	7.2 Balloon Annotations
	7.3 Face
	7.4 Flash
	7.5 Typesetting Racket Code

	8 Animation Helpers
	8.1 Pict Interoplations
	8.2 Merging Animations
	8.3 Stretching and Squashing Time

	9 Miscellaneous
	10 Rendering
	11 Conversion to Picts

