1 About This Teachpack
2 Installation
3 Functions from image.rkt and universe.rkt
4 New image functions
rotate-cw
rotate-ccw
rotate-180
crop-top
crop-bottom
crop-left
crop-right
show-it
reflect-vert
reflect-horiz
5 Variables
pic: bloch
pic: hieroglyphics
pic: hacker
pic: book
pic: stick-figure
pic: scheme-logo
pic: calendar
6 Pixel functions
6.1 Colors and pixels
name->color
colorize
color=?
get-pixel-color
6.2 Specifying the color of each pixel of an image
build-image
build4-image
build3-image
map-image
map4-image
map3-image
real->int
7 Input and Output
with-input-from-string
with-output-to-string
with-input-from-file
with-output-to-file
with-input-from-url
with-io-strings
Version: 5.1.1

Picturing Programs Teachpack

Stephen Bloch

 (require picturing-programs)

1 About This Teachpack

Provides a variety of functions for combining and manipulating images and running interactive animations. It’s intended to be used with the textbook Picturing Programs.

2 Installation

This package should be bundled with DrRacket version 5.1 and later, so there should be no installation procedure.

3 Functions from image.rkt and universe.rkt

This package includes all of the image teachpack and and the universe teachpack, so if you’re using this teachpack, don’t also load either of those. See the above links for how to use those teachpacks.

It also supersedes the older tiles and sb-world teachpacks, so if you have those, don’t load them either; use this instead.

This package also provides the following additional functions:

4 New image functions

(rotate-cw img)  image?
  img : image?
Rotates an image 90 degrees clockwise.

(rotate-ccw img)  image?
  img : image?
Rotates an image 90 degrees counterclockwise.

(rotate-180 img)  image?
  img : image?
Rotates an image 180 degrees around its center.

(crop-top img pixels)  image?
  img : image?
  pixels : natural-number/c
Chops off the specified number of pixels from the top of the image.

(crop-bottom img pixels)  image?
  img : image?
  pixels : natural-number/c
Chops off the specified number of pixels from the bottom of the image.

(crop-left img pixels)  image?
  img : image?
  pixels : natural-number/c
Chops off the specified number of pixels from the left side of the image.

(crop-right img pixels)  image?
  img : image?
  pixels : natural-number/c
Chops off the specified number of pixels from the right side of the image.

(show-it img)  image?
  img : image?
Returns the given image unaltered. Useful as a draw handler for animations whose model is an image.

(reflect-vert img)  image?
  img : image?
The same as flip-vertical; retained for compatibility.

(reflect-horiz img)  image?
  img : image?
The same as flip-horizontal; retained for compatibility.

5 Variables

This teachpack also defines variable names for some of the pictures used in the textbook.

A picture of the author, c. 2005.
A picture of a stone tablet with hieroglyphics on it.
A picture of a student sitting at a computer.
A picture of a book with a question mark.
A picture of a stick figure, built from geometric primitives.
A picture of a DrScheme/DrRacket logo.
A picture of an appointment calendar.

Note that these seven variable names happen to start with "pic:", to distinguish them from anything you might define that happens to be named "calendar" or "book", but you can name a variable anything you want; in particular, there’s no requirement that your names start with "pic:".

6 Pixel functions

The above functions allow you to operate on a picture as a whole, but sometimes you want to manipulate a picture pixel-by-pixel.

6.1 Colors and pixels

Each pixel of a bitmap image has a color, a built-in structure with four components – red, green, blue, and alpha – each represented by an integer from 0 to 255. Larger alpha values are "more opaque": an image with alpha=255 is completely opaque, and one with alpha=0 is completely transparent.

Even if you’re not trying to get transparency effects, alpha is also used for dithering to smooth out jagged edges. In (circle 50 "solid" "red"), the pixels inside the circle are pure red, with alpha=255; the pixels outside the circle are transparent (alpha=0); and the pixels on the boundary are red with various alpha values (for example, if one quarter of a pixel’s area is inside the mathematical boundary of the circle, that pixel’s alpha value will be 63).

(name->color name)  (or/c color? false/c)
  name : (or/c string? symbol?)
Given a color name like "red", ’turquoise, "forest green", etc., returns the corresponding color struct, showing the red, green, blue, and alpha components. If the name isn’t recognized, returns false.

(colorize thing)  (or/c color? false/c)
  thing : (or/c color? string? symbol? false/c)
Similar to name->color, but accepts colors and false as well: colors produce themselves, while false produces a transparent color.

(color=? c1 c2)  boolean?
  c1 : (or/c color? string? symbol? false/c)
  c2 : (or/c color? string? symbol? false/c)
Compares two colors for equality. As with colorize, treats false as a transparent color (i.e. with an alpha-component of 0). All colors with alpha=0 are considered equal to one another, even if they have different red, green, or blue components.

(get-pixel-color x y pic)  color?
  x : natural-number/c
  y : natural-number/c
  pic : image?
Gets the color of a specified pixel in the given image. If x and/or y are outside the bounds of the image, returns a transparent color.

6.2 Specifying the color of each pixel of an image

(build-image width height f)  image?
  width : natural-number/c
  height : natural-number/c
  f : (-> natural-number/c natural-number/c color?)
Builds an image of the specified size and shape by calling the specified function on the coordinates of each pixel. For example,
(define (fuzz pic)
  (local [(define (near-pixel x y)
            (get-pixel-color (+ x -3 (random 7))
                             (+ y -3 (random 7))
                             pic))]
    (build-image (image-width pic)
                 (image-height pic)
                 near-pixel)))
produces a fuzzy version of the given picture by replacing each pixel with a randomly chosen pixel near it.

(build4-image width    
  height    
  red-function    
  green-function    
  blue-function    
  alpha-function)  image?
  width : natural-number/c
  height : natural-number/c
  red-function : (-> natural-number/c natural-number/c natural-number/c)
  green-function : (-> natural-number/c natural-number/c natural-number/c)
  blue-function : (-> natural-number/c natural-number/c natural-number/c)
  alpha-function : 
(-> natural-number/c natural-number/c
natural-number/c)
A version of build-image for students who don’t know about structs yet. Each of the four functions takes in the x and y coordinates of a pixel, and should return an integer from 0 through 255 to determine that color component.

(build3-image width    
  height    
  red-function    
  green-function    
  blue-function)  image?
  width : natural-number/c
  height : natural-number/c
  red-function : (-> natural-number/c natural-number/c natural-number/c)
  green-function : (-> natural-number/c natural-number/c natural-number/c)
  blue-function : (-> natural-number/c natural-number/c natural-number/c)
Just like build4-image, but without specifying the alpha component (which defaults to 255, fully opaque).

(map-image f img)  image?
  f : (-> natural-number/c natural-number/c color? color?)
  img : image?
Applies the given function to each pixel in a given image, producing a new image the same size and shape. For example,
(define (lose-red x y old-color)
  (make-color 0 (color-green old-color) (color-blue old-color)))
 
(map-image lose-red my-picture)
produces a copy of my-picture with all the red leached out, leaving only the blue and green components.

Since make-color with three arguments defaults alpha to 255, this definition of lose-red discards any alpha information (including edge-dithering) that was in the original image. To preserve this information, one could write
(define (lose-red-but-not-alpha x y old-color)
  (make-color 0 (color-green old-color) (color-blue old-color) (color-alpha
old-color)))

Another example:
(define (apply-gradient x y old-color)
  (make-color (min (* 3 x) 255)
              0
              (min (* 3 y) 255)))
 
(map-image apply-gradient my-picture)
produces a picture the size of my-picture’s bounding rectangle, with a smooth color gradient with red increasing from left to right and blue increasing from top to bottom.

A version of map-image for students who don’t know about structs yet. Each of the four given functions is assumed to have the contract

num(x) num(y) num(r) num(g) num(b) num(alpha) -> num

For each pixel in the original picture, applies the four functions to the x coordinate, y coordinate, red, green, blue, and alpha components of the pixel. The results of the four functions are used as the red, green, blue, and alpha components in the corresponding pixel of the resulting picture.

For example,
(define (zero x y r g b a) 0)
(define (same-g x y r g b a) g)
(define (same-b x y r g b a) b)
(define (same-alpha x y r g b a) a)
(map4-image zero same-g same-b same-alpha my-picture)
produces a copy of my-picture with all the red leached out, leaving only the blue, green, and alpha components.

(define (3x x y r g b a) (min (* 3 x) 255))
(define (3y x y r g b a) (min (* 3 y) 255))
(define (return-255 x y r g b a) 255)
(map4-image 3x zero 3y return-255 my-picture)
produces an opaque picture the size of my-picture’s bounding rectangle, with a smooth color gradient with red increasing from left to right and blue increasing from top to bottom.

Like map4-image, but not specifying the alpha component. Note that the red, green, and blue functions also don’t take in alpha values. Each of the three given functions is assumed to have the contract

num(x) num(y) num(r) num(g) num(b) -> num

For each pixel in the original picture, applies the three functions to the x coordinate, y coordinate, red, green, and blue components of the pixel. The results are used as a the red, green, and blue components in the corresponding pixel of the resulting picture.

The alpha component in the resulting picture is copied from the source picture. For example,
(define (zero x y r g b) 0)
(define (same-g x y r g b) g)
(define (same-b x y r g b) b)
(map3-image zero same-g same-b my-picture)
produces a copy of my-picture with all the red leached out; parts of the picture that were transparent are still transparent, and parts that were dithered are still dithered.
(define (3x x y r g b a) (min (* 3 x) 255))
(define (3y x y r g b a) (min (* 3 y) 255))
(map3-image zero 3x 3y my-picture)
produces a my-picture-shaped "window" on a color-gradient.

(real->int num)  integer?
  num : real?
Not specific to colors, but useful if you’re building colors by arithmetic. For example,
(define (bad-gradient x y)
  (make-color (* 2.5 x) (* 1.6 y) 0))
(build-image 50 30 bad-gradient)
(define (good-gradient x y)
  (make-color (real->int (* 2.5 x)) (real->int (* 1.6 y)) 0))
(build-image 50 30 good-gradient)
The version using bad-gradient crashes because color components must be exact integers. The version using good-gradient works.

7 Input and Output

This teachpack also provides several functions to help in testing I/O functions (in Advanced Student language; ignore this section if you’re in a Beginner or Intermediate language):

(with-input-from-string input thunk)  any/c
  input : string?
  thunk : (-> any/c)
Calls thunk, which presumably uses read, in such a way that read reads from input rather than from the keyboard.

(with-output-to-string thunk)  string?
  thunk : (-> any/c)
Calls thunk, which presumably uses display, print, write, and/or printf, in such a way that its output is accumlated into a string, which is then returned.

(with-input-from-file filename thunk)  any/c
  filename : string?
  thunk : (-> any/c)
Calls thunk, which presumably uses read, in such a way that read reads from the specified file rather than from the keyboard.

(with-output-to-file filename thunk)  any/c
  filename : string?
  thunk : (-> any/c)
Calls thunk, which presumably uses display, print, write, and/or printf, in such a way that its output is redirected into the specified file.

(with-input-from-url url thunk)  any/c
  url : string?
  thunk : (-> any/c)
Calls thunk, which presumably uses read, in such a way that read reads from the HTML source of the Web page at the specified URL rather than from the keyboard.

(with-io-strings input thunk)  string?
  input : string?
  thunk : (-> any/c)
Combines with-input-from-string and with-output-to-string: calls thunk with its input coming from input and accumulates its output into a string, which is returned. Especially useful for testing:
(define (ask question)
  (begin (display question)
         (read)))
(define (greet)
  (local [(define name (ask "What is your name?"))]
    (printf "Hello, ~a!" name)))
(check-expect
 (with-io-strings "Steve" greet)
 "What is your name?Hello, Steve!")