
Unstable: May Change Without Warning
Version 5.1.2

August 3, 2011

(require unstable)

This manual documents some of the libraries available in the unstable collection.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for developing
unstable libraries”.

1

1 Guidelines for developing unstable libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

• If you add a module, you are its owner. Add a comment with your name at the top of
the module.

• If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

• Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

• GUI modules go under unstable/gui. Put the documentation in un-

stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

• Do not add modules depending on DrRacket to the unstable collection.

• Put tests in tests/unstable.

Keep documentation and tests up to date.

2

2 Automata: Compiling State Machines

(require unstable/automata)

This package provides macros and functions for writing state machines over racket/match
patterns (as opposed to concrete characters.)

2.1 Machines

(require unstable/automata/machine)

Each of the subsequent macros compile to instances of the machines provided by this mod-
ule. This is a documented feature of the modules, so these functions should be used to, for
example, determine if the machine is currently accepting.

(struct machine (next))

next : (any/c . -> . machine?)

An applicable structure for machines. When the structure is applied, the next field is used
as the procedure.

(struct machine-accepting machine (next))

next : (any/c . -> . machine?)

A sub-structure of machine that is accepting.

(machine-accepts? m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m ends in an accepting state after consuming every element of i .

(machine-accepts?/prefix-closed m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m stays in an accepting state during the consumption of every element of i .

machine-null : machine?

A machine that is never accepting.

3

machine-epsilon : machine?

A machine that is initially accepting and never accepting afterwards.

machine-sigma* : machine?

A machine that is always accepting.

(machine-complement m) → machine?

m : machine?

A machine that inverts the acception criteria of m .

(machine-star m) → machine?

m : machine?

A machine that simulates the Kleene star of m . m may be invoked many times.

(machine-union m0 m1) → machine?

m0 : machine?

m1 : machine?

A machine that simulates the union of m0 and m1 .

(machine-intersect m0 m1) → machine?

m0 : machine?

m1 : machine?

A machine that simulates the intersection of m0 and m1 .

(machine-seq m0 m1) → machine?

m0 : machine?

m1 : machine?

A machine that simulates the sequencing of m0 and m1 . m1 may be invoked many times.

(machine-seq* m0 make-m1) → machine?

m0 : machine?

make-m1 : (-> machine?)

4

A machine that simulates the sequencing of m0 and (make-m1). (make-m1) may be in-
voked many times.

2.2 Deterministic Finite Automata

(require unstable/automata/dfa)

This module provides a macro for deterministic finite automata.

(dfa start

(end ...)

[state ([evt next-state]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state start where each state behaves as specified in the rules. If
a state is in (end ...), then it is constructed with machine-accepting. next-state
need not be a state from this DFA.

Examples:

(define M

(dfa s1 (s1)

[s1 ([0 s2]

[(? even?) s1])]

[s2 ([0 s1]

[(? even?) s2])]))

> (machine-accepts? M (list 2 0 4 0 2))

#t

> (machine-accepts? M (list 0 4 0 2 0))

#f

> (machine-accepts? M (list 2 0 2 2 0 8))

#t

> (machine-accepts? M (list 0 2 0 0 10 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 4 0))

5

#f

2.3 Non-Deterministic Finite Automata

(require unstable/automata/nfa)

This module provides a macro for non-deterministic finite automata.

(nfa (start:id ...)

(end:id ...)

[state:id ([evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state (set start ...) where each state behaves as specified in
the rules. If a state is in (end ...), then the machine is accepting. next-state must be a
state from this NFA.

These machines are efficiently compiled to use the smallest possible bit-string as a set repre-
sentation and unsafe numeric operations where appropriate for inspection and adjusting the
sets.

Examples:

(define M

(nfa (s1 s3) (s1 s3)

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

[1 (s2)])]

[s3 ([0 (s3)]

[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

6

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.4 Non-Deterministic Finite Automata (with epsilon transitions)

(require unstable/automata/nfa-ep)

This module provides a macro for non-deterministic finite automata with epsilon transitions.

epsilon

A binding for use in epsilon transitions.

(nfa/ep (start:id ...)

(end:id ...)

[state:id ([epsilon (epsilon-state:id ...)]

...

[evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

epsilon-state : identifier?

next-state : identifier?

Extends nfa with epsilon transitions, which must be listed first for each state.

Examples:

(define M

(nfa/ep (s0) (s1 s3)

[s0 ([epsilon (s1)]

[epsilon (s3)])]

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

7

[1 (s2)])]

[s3 ([0 (s3)]

[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.5 Regular Expressions

(require unstable/automata/re)

This module provides a macro for regular expression compilation.

(re re-pat)

re-pat = (rec id re-pat)

| ,expr

| (complement re-pat)

| (seq re-pat ...)

| (union re-pat ...)

| (star re-pat)

| epsilon

| nullset

| re-transformer

| (re-transformer . datum)

| (dseq pat re-pat)

| pat

Compiles a regular expression over match patterns to a machine.

The interpretation of the pattern language is mostly intuitive. The pattern language may be
extended with define-re-transformer. dseq allows bindings of the match pattern to be
used in the rest of the regular expression. (Thus, they are not really regular expressions.)

8

unquote escapes to Racket to evaluate an expression that evaluates to a regular expression
(this happens once, at compile time.) rec binds a Racket identifier to a delayed version
of the inner expression; even if the expression is initially accepting, this delayed version is
never accepting.

The compiler will use an NFA, provided complement and dseq are not used. Oth-
erwise, many NFAs connected with the machine simulation functions from unsta-

ble/automata/machine are used.

complement

seq

union

star

epsilon

nullset

dseq

rec

Bindings for use in re.

(define-re-transformer id expr)

Binds id as an regular expression transformer used by the re macro. The expression should
evaluate to a function that accepts a syntax object and returns a syntax object that uses the
regular expression pattern language.

2.5.1 Extensions

(require unstable/automata/re-ext)

This module provides a few transformers that extend the syntax of regular expression pat-
terns.

(opt re-pat)

Optionally matches re-pat .

(plus re-pat)

Matches one or more re-pat in sequence.

(rep re-pat num)

9

Matches re-pat in sequence num times, where num must be syntactically a number.

(difference re-pat_0 re-pat_1)

Matches everything that re-pat_0 does, except what re-pat_1 matches.

(intersection re-pat_0 re-pat_1)

Matches the intersection of re-pat_0 and re-pat_1 .

(seq/close re-pat ...)

Matches the prefix closure of the sequence (seq re-pat ...).

2.5.2 Examples

Examples:

> (define-syntax-rule (test-re R (succ ...) (fail ...))

(let ([r (re R)])

(printf "Success: ∼v => ∼v\n" succ (machine-accepts? r succ))

...

(printf "Failure: ∼v => ∼v\n" fail (machine-accepts? r fail))

...))

> (test-re epsilon

[(list)]

[(list 0)])

Success: '() => #t

Failure: '(0) => #f

> (test-re nullset

[]

[(list) (list 1)])

Failure: '() => #f

Failure: '(1) => #f

> (test-re "A"

[(list "A")]

[(list)

(list "B")])

Success: '("A") => #t

Failure: '() => #f

Failure: '("B") => #f

> (test-re (complement "A")

[(list)

10

(list "B")

(list "A" "A")]

[(list "A")])

Success: '() => #t

Success: '("B") => #t

Success: '("A" "A") => #t

Failure: '("A") => #f

> (test-re (union 0 1)

[(list 1)

(list 0)]

[(list)

(list 0 1)

(list 0 1 1)])

Success: '(1) => #t

Success: '(0) => #t

Failure: '() => #f

Failure: '(0 1) => #f

Failure: '(0 1 1) => #f

> (test-re (seq 0 1)

[(list 0 1)]

[(list)

(list 0)

(list 0 1 1)])

Success: '(0 1) => #t

Failure: '() => #f

Failure: '(0) => #f

Failure: '(0 1 1) => #f

> (test-re (star 0)

[(list)

(list 0)

(list 0 0)]

[(list 1)])

Success: '() => #t

Success: '(0) => #t

Success: '(0 0) => #t

Failure: '(1) => #f

> (test-re (opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (define-re-transformer my-opt

(syntax-rules ()

[(_ pat)

11

(union epsilon pat)]))

> (test-re (my-opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (test-re (plus "A")

[(list "A")

(list "A" "A")]

[(list)])

Success: '("A") => #t

Success: '("A" "A") => #t

Failure: '() => #f

> (test-re (rep "A" 3)

[(list "A" "A" "A")]

[(list)

(list "A")

(list "A" "A")])

Success: '("A" "A" "A") => #t

Failure: '() => #f

Failure: '("A") => #f

Failure: '("A" "A") => #f

> (test-re (difference (? even?) 2)

[(list 4)

(list 6)]

[(list 3)

(list 2)])

Success: '(4) => #t

Success: '(6) => #t

Failure: '(3) => #f

Failure: '(2) => #f

> (test-re (intersection (? even?) 2)

[(list 2)]

[(list 1)

(list 4)])

Success: '(2) => #t

Failure: '(1) => #f

Failure: '(4) => #f

> (test-re (complement (seq "A" (opt "B")))

[(list "A" "B" "C")]

[(list "A")

(list "A" "B")])

Success: '("A" "B" "C") => #t

Failure: '("A") => #f

12

Failure: '("A" "B") => #f

> (test-re (seq epsilon 1)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq 1 epsilon)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq epsilon

(union (seq (star 1) (star (seq 0 (star 1) 0 (star 1))))

(seq (star 0) (star (seq 1 (star 0) 1 (star 0)))))

epsilon)

[(list 1 0 1 0 1)

(list 0 1 0 1 0)

(list 1 0 1 1 0 1)

(list 0 1 0 0 1 0)

(list)]

[(list 1 0)])

Success: '(1 0 1 0 1) => #t

Success: '(0 1 0 1 0) => #t

Success: '(1 0 1 1 0 1) => #t

Success: '(0 1 0 0 1 0) => #t

Success: '() => #t

Failure: '(1 0) => #f

> (test-re (star (complement 1))

[(list 0 2 3 4)

(list)

(list 2)

(list 234 5 9 1 9 0)

(list 1 0)

(list 0 1)]

[(list 1)])

Success: '(0 2 3 4) => #t

Success: '() => #t

Success: '(2) => #t

Success: '(234 5 9 1 9 0) => #t

Success: '(1 0) => #t

Success: '(0 1) => #t

Failure: '(1) => #f

13

> (test-re (dseq x (? (curry equal? x)))

[(list 0 0)

(list 1 1)]

[(list)

(list 1)

(list 1 0)])

Success: '(0 0) => #t

Success: '(1 1) => #t

Failure: '() => #f

Failure: '(1) => #f

Failure: '(1 0) => #f

14

3 Bytes

(require unstable/bytes)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(bytes-ci=? b1 b2) → boolean?

b1 : bytes?

b2 : bytes?

Compares two bytes case insensitively.

(read/bytes b) → serializable?

b : bytes?

reads a value from b and returns it.

(write/bytes v) → bytes?

v : serializable?

writes v to a bytes and returns it.

15

4 Contracts

(require unstable/contract)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(non-empty-string? x) → boolean?

x : any/c

(non-empty-list? x) → boolean?

x : any/c

(non-empty-bytes? x) → boolean?

x : any/c

(non-empty-vector? x) → boolean?

x : any/c

Returns #t if x is of the appropriate data type (string, list, bytes, or vector, respectively) and
is not empty; returns #f otherwise.

(singleton-list? x) → boolean?

x : any/c

Returns #t if x is a list of one element; returns #f otherwise.

port-number? : contract?

Equivalent to (between/c 1 65535).

tcp-listen-port? : contract?

Equivalent to (between/c 0 65535).

path-element? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)). The subsequent
bindings were
added by Ryan
Culpepper.(if/c predicate then-contract else-contract) → contract?

predicate : (-> any/c any/c)

then-contract : contract?

else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if

16

predicate returns true, the then-contract is applied; otherwise, the else-contract

is applied. The resulting contract is a flat contract if both then-contract and else-

contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

(rename-contract contract name) → contract?

contract : contract?

name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract. The subsequent
bindings were
added by Asumu
Takikawa.(option/c contract) → contract?

contract : contract?

Creates a contract that acts like contract but will also accept #f. Intended to describe
situations where a failure or default value may be used. The subsequent

bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

4.1 Flat Contracts

nat/c : flat-contract?

This contract recognizes natural numbers that satisfy exact-nonnegative-integer?.

17

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

pos/c : flat-contract?

This contract recognizes positive integers that satisfy exact-positive-integer?.

truth/c : flat-contract?

This contract recognizes Scheme truth values, i.e., any value, but with a more informative
name and description. Use it in negative positions for arguments that accept arbitrary truth
values that may not be booleans.

4.2 Syntax Object Contracts

(syntax-datum/c datum/c) → flat-contract?

datum/c : any/c

Recognizes syntax objects stx such that (syntax->datum stx) satisfies datum/c .

(syntax-listof/c elem/c) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (listof

elem/c).

(syntax-list/c elem/c ...) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (list/c elem/c

...).

4.3 Higher-Order Contracts

thunk/c : contract?

unary/c : contract?

binary/c : contract?

These contracts recognize functions that accept 0, 1, or 2 arguments, respectively, and pro-
duce a single result.

18

predicate/c : contract?

predicate-like/c : contract?

These contracts recognize predicates: functions of a single argument that produce a boolean
result.

The first constrains its output to satisfy boolean?. Use predicate/c in positive position
for predicates that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use predicate-like/c in negative
position for predicates passed as arguments that may return arbitrary values as truth values.

comparison/c : contract?

comparison-like/c : contract?

These contracts recognize comparisons: functions of two arguments that produce a boolean
result.

The first constrains its output to satisfy boolean?. Use comparison/c in positive position
for comparisons that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use comparison-like/c in negative
position for comparisons passed as arguments that may return arbitrary values as truth values.

(sequence/c elem/c ...) → contract?

elem/c : contract?

Wraps a sequence, obligating it to produce as many values as there are elem/c contracts,
and obligating each value to satisfy the corresponding elem/c . The result is not guaranteed
to be the same kind of sequence as the original value; for instance, a wrapped list is not
guaranteed to satisfy list?.

Examples:

> (define/contract predicates

(sequence/c (-> any/c boolean?))

(list integer? string->symbol))

> (for ([P predicates])

(printf "∼s\n" (P "cat")))

#f

predicates: self-contract violation, expected <boolean?>,
given: ’cat

contract from (definition predicates), blaming
(definition predicates)

contract:

19

(sequence/c (-> any/c boolean?))
at: eval:2.0

(dict/c key/c value/c) → contract?

key/c : contract?

value/c : contract?

Wraps a dictionary, obligating its keys to satisfy key/c and their corresponding values to
satisfy value/c . The result is not guaranteed to be the same kind of dictionary as the
original value; for instance, a wrapped hash table is not guaranteed to satisfy hash?.

Examples:

> (define/contract table

(dict/c symbol? string?)

(make-immutable-hash (list (cons 'A "A") (cons 'B 2) (cons 3 "C"))))

> (dict-ref table 'A)

"A"

> (dict-ref table 'B)

table: self-contract violation, expected <string?>, given: 2
contract from (definition table), blaming (definition

table)
contract: (dict/c symbol? string?)

at: eval:4.0
> (dict-ref table 3)

table: contract violation, expected <symbol?>, given: 3
contract from top-level, blaming (definition table)
contract: (dict/c symbol? string?)

at: eval:4.0

Warning: Bear in mind that key and value contracts are re-wrapped on every dictionary
operation, and dictionaries wrapped in dict/c multiple times will perform the checks as
many times for each operation. Especially for immutable dictionaries (which may be passed
through a constructor that involves dict/c on each update), contract-wrapped dictionaries
may be much less efficient than the original dictionaries.

20

5 Contracts for macro subexpressions

This library provides a procedure wrap-expr/c for applying contracts to macro subexpres-
sions.

(require unstable/wrapc)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(wrap-expr/c contract-expr

expr

[#:positive pos-blame

#:negative neg-blame

#:name expr-name

#:macro macro-name

#:context context]) → syntax?

contract-expr : syntax?

expr : syntax?

pos-blame : (or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'use-site

neg-blame : (or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'from-macro

expr-name : (or/c identifier? symbol? string? #f) = #f

macro-name : (or/c identifier? symbol? string? #f) = #f

context : (or/c syntax? #f) = (current-syntax-context)

Returns a syntax object representing an expression that applies the contract represented by
contract-expr to the value produced by expr .

The other arguments have the same meaning as for expr/c.

Examples:

> (define-syntax (myparameterize1 stx)

(syntax-case stx ()

[(_ ((p v)) body)

(with-syntax ([cp (wrap-expr/c

#'parameter? #'p

#:name "the parameter argument"

#:context stx)])

#'(parameterize ((cp v)) body))]))

> (myparameterize1 ((current-input-port

(open-input-string "(1 2 3)")))

21

(read))

'(1 2 3)

> (myparameterize1 (('whoops 'something))

'whatever)

the parameter argument of myparameterize1: self-contract
violation, expected <parameter?>, given: ’whoops

contract from top-level, blaming top-level
contract: parameter?

at: eval:4.0
> (module mod racket

(require (for-syntax unstable/wrapc))

(define-syntax (app stx)

(syntax-case stx ()

[(app f arg)

(with-syntax ([cf (wrap-expr/c

#'(-> number? number?)

#'f

#:name "the function argument"

#:context stx)])

#'(cf arg))]))

(provide app))

> (require 'mod)

> (app add1 5)

6

> (app add1 'apple)

the function argument of app: contract violation, expected
<number?>, given: ’apple

contract from top-level, blaming (quote mod)
contract: (-> number? number?)

at: eval:8.0
> (app (lambda (x) 'pear) 5)

the function argument of app: self-contract violation,
expected <number?>, given: ’pear

contract from top-level, blaming top-level
contract: (-> number? number?)

at: eval:9.0

22

6 Contracts for struct type properties

(require unstable/prop-contract)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(struct-type-property/c value-contract) → contract?

value-contract : contract?

Produces a contract for struct type properties. When the contract is applied to a struct type
property, it produces a wrapped struct type property that applies value-contract to the
value associated with the property when used to create a new struct type (via struct, make-
struct-type, etc).

The struct type property’s accessor function is not affected; it must be protected separately.

Examples:

> (module propmod racket

(require racket/contract

unstable/prop-contract)

(define-values (prop prop? prop-ref)

(make-struct-type-property 'prop))

(define (prop-app x v)

(((prop-ref x) x) v))

(provide/contract

[prop? (-> any/c boolean?)]

[prop (struct-type-property/c

(-> prop? (-> number? boolean?)))]

[prop-app (-> prop? number? boolean?)])

(provide prop-ref))

> (module structmod racket

(require 'propmod)

(struct s (f) #:property prop (lambda (s) (s-f s)))

(provide (struct-out s)))

> (require 'propmod 'structmod)

> (define s1 (s even?))

> (prop-app s1 5)

#f

> (prop-app s1 'apple)

prop-app: contract violation, expected <number?>, given:
’apple

contract from propmod, blaming top-level
contract: (-> prop? number? boolean?)

23

at: eval:2.0
> (define s2 (s "not a fun"))

> (prop-app s2 5)

prop: contract violation, expected a procedure that accepts
1 mandatory argument without any keywords, given: "not a
fun"

contract from propmod, blaming structmod
contract:

(struct-type-property/c
(-> prop? (-> number? boolean?)))

at: eval:2.0
> (define s3 (s list))

> (prop-app s3 5)

prop: contract violation, expected <boolean?>, given: ’(5)
contract from propmod, blaming structmod
contract:

(struct-type-property/c
(-> prop? (-> number? boolean?)))

at: eval:2.0
> ((prop-ref s3) 'apple)

prop: self-contract violation, expected <prop?>, given:
’apple

contract from propmod, blaming propmod
contract:

(struct-type-property/c
(-> prop? (-> number? boolean?)))

at: eval:2.0

The first contract error above is a simple function contract violation on prop-app. The
second and third contract errors above blame the structmod module, because it accepted
the struct type property contract. To avoid blame, structmod should have placed a contract
on s. The final contract error, involving s3, blames propmod because the struct type property
contract obliges propmod to make sure the property’s value is not misused, but propmod
allows direct access to the property value via prop-ref. To avoid blame, propmod should
remove the export of prop-ref or protect it with a contract.

24

7 Debugging

(require unstable/debug)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

This module provides macros and functions for printing out debugging information.

(debug options ... expr)

options = #:name name-expr

| #:source srcloc-expr

Writes debugging information about the evaluation of expr to the current error port. The
name and source location of the expression may be overridden by keyword options; their de-
faults are the syntactic form of the expression and its syntactic source location, respectively.

Examples:

> (debug 0)

>> eval:2.0: 0
result: 0

<< eval:2.0: 0
0

> (debug #:name "one, two, three" (values 1 2 3))

>> eval:3.0: "one, two, three"
results: (values 1 2 3)

<< eval:3.0: "one, two, three"
1

2

3

> (debug #:source (make-srcloc 'here 1 2 3 4)

(error 'function "something went wrong"))

>> here:1.2: (error ’function "something went wrong")
raised exception: function: something went wrong

<< here:1.2: (error ’function "something went wrong")
function: something went wrong

(dprintf fmt arg ...) → void?

fmt : string?

arg : any/c

Constructs a message in the same manner as format and writes it to (current-error-

port), with indentation reflecting the number of nested debug forms.

25

Examples:

> (dprintf "level: ∼a" 0)

level: 0
> (debug (dprintf "level: ∼a" 1))

>> eval:6.0: (dprintf "level: ∼a" 1)
level: 1
result: #<void>

<< eval:6.0: (dprintf "level: ∼a" 1)
> (debug (debug (dprintf "level: ∼a" 2)))

>> eval:7.0: (debug (dprintf "level: ∼a" 2))
>> eval:7.0: (dprintf "level: ∼a" 2)

level: 2
result: #<void>

<< eval:7.0: (dprintf "level: ∼a" 2)
result: #<void>

<< eval:7.0: (debug (dprintf "level: ∼a" 2))

(debugf function-expr argument ...)

argument = argument-expr

| argument-keyword argument-expr

Logs debugging information for (#%app function-expr argument ...), including the
evaluation and results of the function and each argument.

Example:

> (debugf + 1 2 3)

>> eval:8.0: debugf
>> eval:8.0: +

result: #<procedure:+>
<< eval:8.0: +
>> eval:8.0: 1

result: 1
<< eval:8.0: 1
>> eval:8.0: 2

result: 2
<< eval:8.0: 2
>> eval:8.0: 3

result: 3
<< eval:8.0: 3
result: 6

<< eval:8.0: debugf
6

26

(begin/debug expr ...)

(define/debug id expr)

(define/debug (head args) body ...+)

(define/private/debug id expr)

(define/private/debug (head args) body ...+)

(define/public/debug id expr)

(define/public/debug (head args) body ...+)

(define/override/debug id expr)

(define/override/debug (head args) body ...+)

(define/augment/debug id expr)

(define/augment/debug (head args) body ...+)

(let/debug ([lhs-id rhs-expr] ...) body ...+)

(let/debug loop-id ([lhs-id rhs-expr] ...) body ...+)

(let*/debug ([lhs-id rhs-expr] ...) body ...+)

(letrec/debug ([lhs-id rhs-expr] ...) body ...+)

(let-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(let*-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(letrec-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(with-syntax/debug ([pattern stx-expr] ...) body ...+)

(with-syntax*/debug ([pattern stx-expr] ...) body ...+)

(parameterize/debug ([param-expr value-expr] ...) body ...+)

These macros add logging based on debug to the evaluation of expressions in begin, de-
fine, define/private, define/public, define/override, define/augment, let,
let*, letrec, let-values, let*-values, letrec-values, with-syntax, with-

syntax*, and parameterize.

27

8 Definitions

(require unstable/define)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

Provides macros for creating and manipulating definitions.

8.1 Deferred Evaluation in Modules

(at-end expr)

When used at the top level of a module, evaluates expr at the end of the module. This can
be useful for calling functions before their definitions.

Examples:

> (module Failure scheme

(f 5)

(define (f x) x))

> (require 'Failure)

reference to an identifier before its definition: f in
module: ’Failure
> (module Success scheme

(require unstable/define)

(at-end (f 5))

(define (f x) x))

> (require 'Success)

8.2 Conditional Binding

(define-if-unbound x e)

(define-if-unbound (f . args) body ...)

(define-values-if-unbound [x ...] e)

(define-syntax-if-unbound x e)

(define-syntax-if-unbound (f . args) body ...)

(define-syntaxes-if-unbound [x ...] e)

Define each x (or f) if no such binding exists, or do nothing if the name(s) is(are) already
bound. The define-values-if-unbound and define-syntaxes-if-unbound forms
raise a syntax error if some of the given names are bound and some are not.

28

These are useful for writing programs that are portable across versions of Racket with dif-
ferent bindings, to provide an implementation of a binding for versions that do not have it
but use the built-in one in versions that do.

Examples:

> (define-if-unbound x 1)

> x

1

(define y 2)

> (define-if-unbound y 3)

> y

3

8.3 Renaming Definitions

(define-renaming new old)

(define-renamings [new old] ...)

Establishes a rename transformer for each new identifier, redirecting it to the corresponding
old identifier.

Examples:

> (define-renaming use #%app)

> (define-renamings [def define] [lam lambda])

> (def plus (lam (x y) (use + x y)))

> (use plus 1 2)

3

8.4 Forward Declarations

(declare-names x ...)

Provides forward declarations of identifiers to be defined later. It is useful for macros which
expand to mutually recursive definitions, including forward references, that may be used at
the Racket top level.

8.5 Definition Shorthands

(define-with-parameter name parameter)

29

Defines the form name as a shorthand for setting the parameter parameter . Specifically,
(name value body ...) is equivalent to (parameterize ([parameter value])

body ...).

Examples:

> (define-with-parameter with-input current-input-port)

> (with-input (open-input-string "Tom Dick Harry") (read))

'Tom

(define-single-definition define-one-name define-many-name)

Defines a marco define-one-name as a single identifier definition form with function
shorthand like define and define-syntax, based on an existing macro define-many-

name which works like define-values or define-syntaxes.

Examples:

> (define-single-definition define-like define-values)

> (define-like x 0)

> x

0

> (define-like (f a b c) (printf "∼s, ∼s\n" a b) c)

> (f 1 2 3)

1, 2

3

8.6 Macro Definitions

(define-syntax-block (macro-decl ...) body ...)

macro-decl = macro-id

| [macro-id expander-id]

Defines a syntax transformer for each macro-id based on the local definition of each
expander-id (defaulting to macro-id/proc) in body Especially useful for mu-
tually recursive expander functions and phase 1 macro definitions. Subsumes the behavior
of define-syntax-set.

Examples:

> (define-syntax-block

([implies expand-implies]

nand)

30

(define-syntax-rule (==> pattern template)

(syntax-rules () [pattern template]))

(define expand-implies (==> (_ a b) (or (not a) b)))

(define nand/proc (==> (_ a ...) (not (and a ...)))))

> (implies #t (printf "True!\n"))

True!

> (implies #f (printf "False!\n"))

#t

> (nand #t #t (printf "All True!\n"))

All True!

#f

> (nand #t #f (printf "Some False!\n"))

#t

> (define-syntax-block (undefined-macro)

(define irrelevant "Whoops!"))

reference to undefined identifier: undefined-macro/proc

8.7 Effectful Transformation

(in-phase1 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 1 if it occurs in a head expansion position.

(in-phase1/pass2 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 2 (after head expansion).

31

9 Dictionaries

(require unstable/dict)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

This module provides tools for manipulating dictionary values.

(dict-empty? d) → boolean?

d : dict?

Reports whether d is empty (has no keys).

Examples:

> (dict-empty? '())

#t

> (dict-empty? '([1 . one] [2 . two]))

#f

(dict-union d0

d ...

[#:combine combine

#:combine/key combine/key])
→ (and/c dict? dict-can-functional-set?)

d0 : (and/c dict? dict-can-functional-set?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by functional update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (dict-union '([1 . one]) '([2 . two]) '([3 . three]))

'((1 . one) (2 . two) (3 . three))

> (dict-union '([1 one uno] [2 two dos])

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'((1 one uno ein une) (2 two dos zwei deux))

32

(dict-union! d0

d ...

[#:combine combine

#:combine/key combine/key]) → void?

d0 : (and/c dict? dict-mutable?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union! ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by mutable update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define d (make-hash))

> d

'#hash()

> (dict-union! d '([1 one uno] [2 two dos]))

> d

'#hash((1 . (one uno)) (2 . (two dos)))

> (dict-union! d

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> d

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

33

10 Exceptions

(require unstable/exn)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(network-error s fmt v ...) → void

s : symbol?

fmt : string?

v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) → string?

exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string. The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(try expr ...+)

Executes the first expression expr in the sequence, producing its result value(s) if it returns
any. If it raises an exception instead, try continues with the next expr . Exceptions raised
by intermediate expressions are reported to the current logger at the 'debug level before
continuing. Exceptions raised by the final expression are not caught by try.

Examples:

> (try (+ 1 2) (+ 3 4))

3

> (try (+ 'one 'two) (+ 3 4))

7

> (try (+ 'one 'two) (+ 'three 'four))

+: expects type <number> as 1st argument, given: ’three;
other arguments were: ’four

34

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

11 Filesystem

(require unstable/file)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(make-directory*/ignore-exists-exn pth) → void

pth : path-string?

Like make-directory*, except it ignores errors when the path already exists. Useful to
deal with race conditions on processes that create directories.

35

12 Find

(require unstable/find)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(find pred

x

[#:stop-on-found? stop-on-found?

#:stop stop

#:get-children get-children]) → list?

pred : (-> any/c any/c)

x : any/c

stop-on-found? : any/c = #f

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

Returns a list of all values satisfying pred contained in x (possibly including x itself).

If stop-on-found? is true, the children of values satisfying pred are not examined. If
stop is a procedure, then the children of values for which stop returns true are not exam-
ined (but the values themselves are; stop is applied after pred). Only the current branch of
the search is stopped, not the whole search.

The search recurs through pairs, vectors, boxes, and the accessible fields of structures. If
get-children is a procedure, it can override the default notion of a value’s children by
returning a list (if it returns false, the default notion of children is used).

No cycle detection is done, so find on a cyclic graph may diverge. To do cycle checking
yourself, use stop and a mutable table.

Examples:

> (find symbol? '((all work) and (no play)))

'(all work and no play)

> (find list? '#((all work) and (no play)) #:stop-on-found? #t)

'((all work) (no play))

> (find negative? 100

#:stop-on-found? #t

#:get-children (lambda (n) (list (- n 12))))

'(-8)

> (find symbol? (shared ([x (cons 'a x)]) x)

#:stop (let ([table (make-hasheq)])

(lambda (x)

(begin0 (hash-ref table x #f)

36

(hash-set! table x #t)))))

'(a)

(find-first pred

x

[#:stop stop

#:get-children get-children

#:default default]) → any/c

pred : (-> any/c any/c)

x : any/c

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

default : any/c = (lambda () (error))

Like find, but only returns the first match. If no matches are found, default is applied as
a thunk if it is a procedure or returned otherwise.

Examples:

> (find-first symbol? '((all work) and (no play)))

'all

> (find-first list? '#((all work) and (no play)))

'(all work)

> (find-first negative? 100

#:get-children (lambda (n) (list (- n 12))))

-8

> (find-first symbol? (shared ([x (cons 'a x)]) x))

'a

37

13 Finding Mutated Variables

(require unstable/mutated-vars)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(find-mutated-vars stx [dict]) → dict?

stx : syntax?

dict : dict? = (make-immutable-free-id-table)

Traverses stx , which should be module-level-form in the sense of the grammar for fully-
expanded forms, and records all of the variables that are mutated. Each mutated variable is
added to dict , mapped to #t. If dict is mutable, as determined by dict-mutable?, then
the table is updated destructively. Otherwise, the table is updated functionally.

Examples:

> (define t (find-mutated-vars #'(begin (set! var 'foo) 'bar)))

> (dict-ref t #'var #f)

#t

> (dict-ref t #'other-var #f)

#f

> (define tbl (make-free-id-table))

> (find-mutated-vars #'(begin (set! var 'foo) 'bar) tbl)

#<mutable-free-id-table>

> (dict-ref tbl #'var #f)

#t

}

38

14 Functions

(require unstable/function)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

This module provides tools for higher-order programming and creating functions.

14.1 Simple Functions

14.2 Higher Order Predicates

((negate f) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Negates the results of f ; equivalent to (not (f x ...)).

This function is reprovided from scheme/function.

Examples:

(define f (negate exact-integer?))

reference to undefined identifier: negate
> (f 1)

reference to undefined identifier: f
> (f 'one)

reference to undefined identifier: f

((conjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:

(define f (conjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#f

39

> (f 1/2)

#f

> (f 0.5)

#f

((disjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#t

> (f 1/2)

#t

> (f 0.5)

#f

14.3 Currying and (Partial) Application

(call f x ...) → B

f : (-> A ... B)

x : A

Passes x ... to f . Keyword arguments are allowed. Equivalent to (f x ...). Useful for
application in higher-order contexts.

Examples:

> (map call

(list + - * /)

(list 1 2 3 4)

(list 5 6 7 8))

'(6 -4 21 1/2)

(define count 0)

(define (inc)

(set! count (+ count 1)))

(define (reset)

(set! count 0))

40

(define (show)

(printf "∼a\n" count))

> (for-each call (list inc inc show reset show))

2

0

(papply f x ...) → (B ... -> C)

f : (A ... B ... -> C)

x : A

(papplyr f x ...) → (A ... -> C)

f : (A ... B ... -> C)

x : B

The papply and papplyr functions partially apply f to x ..., which may include keyword
arguments. They obey the following equations:

((papply f x ...) y ...) = (f x ... y ...)

((papplyr f x ...) y ...) = (f y ... x ...)

Examples:

(define reciprocal (papply / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

(define halve (papplyr / 2))

> (halve 3)

3/2

> (halve 4)

2

(curryn n f x ...) → (A1 ... -> ooo -> An ... -> B)

n : exact-nonnegative-integer?

f : (A0 ... A1 ... ooo An ... -> B)

x : A0

(currynr n f x ...) → (An ... -> ooo -> A1 ... -> B)

n : exact-nonnegative-integer?

f : (A1 ... ooo An ... An+1 ... -> B)

x : An+1

Note: The ooo above denotes a loosely associating ellipsis.

The curryn and currynr functions construct a curried version of f , specialized at x ...,
that produces a result after n further applications. Arguments at any stage of application may
include keyword arguments, so long as no keyword is duplicated. These curried functions
obey the following equations:

41

(curryn 0 f x ...) = (f x ...)

((curryn (+ n 1) f x ...) y ...) = (curryn n f x ... y ...)

(currynr 0 f x ...) = (f x ...)

((currynr (+ n 1) f x ...) y ...) = (currynr n f y ... x ...)

The call, papply, and papplyr utilities are related to curryn and currynr in the follow-
ing manner:

(call f x ...) = (curryn 0 f x ...) = (currynr 0 f x ...)

(papply f x ...) = (curryn 1 f x ...)

(papplyr f x ...) = (currynr 1 f x ...)

Examples:

(define reciprocal (curryn 1 / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

(define subtract-from (curryn 2 -))

(define from-10 (subtract-from 10))

> (from-10 5)

5

> (from-10 10)

0

(define from-0 (subtract-from 0))

> (from-0 5)

-5

> (from-0 10)

-10

(define halve (currynr 1 / 2))

> (halve 3)

3/2

> (halve 4)

2

(define subtract (currynr 2 -))

(define minus-10 (subtract 10))

> (minus-10 5)

-5

> (minus-10 10)

0

(define minus-0 (subtract 0))

> (minus-0 5)

5

> (minus-0 10)

10

42

14.4 Eta Expansion

(eta f)

Produces a function equivalent to f , except that f is evaluated every time it is called.

This is useful for function expressions that may be run, but not called, before f is defined.
The eta expression will produce a function without evaluating f .

Examples:

(define f (eta g))

> f

#<procedure:eta>

(define g (lambda (x) (+ x 1)))

> (f 1)

2

(eta* f x ...)

Produces a function equivalent to f , with argument list x In simple cases, this is equiv-
alent to (lambda (x ...) (f x ...)). Optional (positional or keyword) arguments are
not allowed.

This macro behaves similarly to eta, but produces a function with statically known arity
which may improve efficiency and error reporting.

Examples:

(define f (eta* g x))

> f

#<procedure:f>

> (procedure-arity f)

1

(define g (lambda (x) (+ x 1)))

> (f 1)

2

14.5 Parameter Arguments

(lambda/parameter (param-arg ...) body ...)

43

param-arg = param-arg-spec

| keyword param-spec

param-arg-spec = id

| [id default-expr]

| [id #:param param-expr]

Constructs a function much like lambda, except that some optional arguments correspond
to the value of a parameter. For each clause of the form [id #:param param-expr],
param-expr must evaluate to a value param satisfying parameter?. The default value of
the argument id is (param); param is bound to id via parameterize during the function
call.

Examples:

(define p (open-output-string))

(define hello-world

(lambda/parameter ([port #:param current-output-port])

(display "Hello, World!")

(newline port)))

> (hello-world p)

> (get-output-string p)

"Hello, World!\n"

44

15 Generics

(require unstable/generics)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

kw-formals* = (arg* ...)

| (arg* ...+ . rest-id)

| rest-id

arg* = id

| [id]

| keyword id

| keyword [id]

name : identifier?

prop:name : identifier?

name? : identifier?

method : identifier?

Defines name as a transformer binding for the static information about a new generic group.

Defines prop:name as a structure type property. Structure types implementing this generic
group should have this property where the value is a vector with one element per method
where each value is either #f or a procedure with the same arity as specified by kw-

formals* . (kw-formals* is similar to the kw-formals used by lambda, except no ex-
pression is given for optional arguments.) The arity of each method is checked by the guard
on the structure type property.

Defines name? as a predicate identifying instances of structure types that implement this
generic group.

Defines each method as a generic procedure that calls the corresponding method on val-
ues where name? is true. Each method must have a required by-position argument that is
free-identifier=? to name . This argument is used in the generic definition to locate the
specialization.

45

(generics name

[method . kw-formals*]

...)

name : identifier?

method : identifier?

Expands to

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

where prop:name and name? are created with the lexical context of name .

(define-methods name definition ...)

name : identifier?

name must be a transformer binding for the static information about a new generic group.

Expands to a value usable as the property value for the structure type property of the name

generic group.

If the definitions define the methods of name , then they are used in the property value.

If any method of name is not defined, then #f is used to signify that the structure type does
not implement the particular method.

Allows define/generic to appear in definition

(define/generic local-name method-name)

local-name : identifier?

method-name : identifier?

When used inside define-methods, binds local-name to the generic for method-name .
This is useful for method specializations to use the generic methods on other values.

Syntactically an error when used outside define-methods.

Examples:

> (define-generics (printable prop:printable printable?)

46

(gen-print printable [port])

(gen-port-print port printable)

(gen-print* printable [port] #:width width #:height [height]))

> (define-struct num (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print n [port (current-output-port)])

(fprintf port "Num: ∼a" (num-v n)))

(define (gen-port-print port n)

(super-print n port))

(define (gen-print* n [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Num (∼ax∼a): ∼a" w h (num-v n)))))

> (define-struct bool (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print b [port (current-output-port)])

(fprintf port "Bool: ∼a"
(if (bool-v b) "Yes" "No")))

(define (gen-port-print port b)

(super-print b port))

(define (gen-print* b [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Bool (∼ax∼a): ∼a" w h

(if (bool-v b) "Yes" "No")))))

> (define x (make-num 10))

> (gen-print x)

Num: 10

> (gen-port-print (current-output-port) x)

Num: 10

> (gen-print* x #:width 100 #:height 90)

Num (100x90): 10

> (define y (make-bool #t))

> (gen-print y)

Bool: Yes

> (gen-port-print (current-output-port) y)

Bool: Yes

> (gen-print* y #:width 100 #:height 90)

Bool (100x90): Yes

47

16 Hash Tables

(require unstable/hash)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

This module provides tools for manipulating hash tables.

(hash-union h0

h ...

[#:combine combine

#:combine/key combine/key])
→ (and/c hash? hash-can-functional-set?)

h0 : (and/c hash? hash-can-functional-set?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (hash-union (make-immutable-hash '([1 . one])) (make-immutable-

hash '([2 . two])) (make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))

> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

(hash-union! h0

h ...

[#:combine combine

#:combine/key combine/key]) → void?

h0 : (and/c hash? hash-mutable?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

48

Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define h (make-hash))

> h

'#hash()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h

'#hash((1 . (one uno)) (2 . (two dos)))

> (hash-union! h

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

49

17 Interface-Oriented Programming for Classes

(require unstable/class-iop)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-

ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:

> (define-interface stack<%> () (empty? push pop))

> stack<%>

#<|interface:stack<%>|>

> (define stack%

(class* object% (stack<%>)

(define items null)

(define/public (empty?) (null? items))

(define/public (push x) (set! items (cons x items)))

(define/public (pop) (begin (car items) (set! items (cdr items))))

(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr , which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-id is not a member of the dynamic
interface ifc-expr .

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:

> (define-interface/dynamic object<%> (class->interface object%) ())

> object<%>

#<interface:object%>

(send/i obj-exp static-ifc-id method-id arg-expr ...)

50

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-

id must be a member of the static interface static-ifc-id ; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id ; otherwise, a
run-time error is raised.

Examples:

> (define s (new stack%))

> (send/i s stack<%> push 1)

> (send/i s stack<%> popp)

eval:9:0: send/i: method not in static interface in: popp
> (send/i (new object%) stack<%> push 2)

send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)

Checked variant of send*.

Example:

> (send*/i s stack<%>

(push 2)

(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-arg-expr)

Checked variant of send/apply.

Example:

> (send/apply/i s stack<%> push (list 5))

(define/i id static-ifc-id expr)

Checks that expr evaluates to an instance of static-ifc-id before binding it to id . If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
defined via define/i.

(init/i (id static-ifc-id maybe-default-expr) ...)

51

(init-field/i (id static-ifc-id maybe-default-expr) ...)

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()

| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

(define-interface-expander id transformer-expr)

Defines id as a macro that can be used within define-interface forms.

Examples:

> (define-interface-expander stack-methods

(lambda (stx) #'[empty? push pop]))

> (define-interface stack<%> ()

((stack-methods)))

> (interface->method-names stack<%>)

'(empty? pop push)

52

18 Lists

(require unstable/list)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(list-prefix? l r) → boolean?

l : list?

r : list?

True if l is a prefix of r .

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))

#t

(take-common-prefix l r #:same? same?) → list?

l : list?

r : list?

same? : equal?

Returns the longest common prefix of l and r .

Example:

> (take-common-prefix '(a b c d) '(a b x y z))

'(a b)

(drop-common-prefix l r #:same same?) → list? list?

l : list?

r : list?

same? : equal?

Returns the tails of l and r with the common prefix removed.

Example:

> (drop-common-prefix '(a b c d) '(a b x y z))

'(c d)

'(x y z)

(split-common-prefix l r #:same? same?) → list? list? list?

l : list?

53

r : list?

same? : equal?

Returns the longest common prefix together with the tails of l and r with the common prefix
removed.

Example:

> (split-common-prefix '(a b c d) '(a b x y z))

'(a b)

'(c d)

'(x y z) The subsequent
bindings were
added by Sam
Tobin-Hochstadt.(filter-multiple l f ...) → list? ...

l : list?

f : procedure?

Produces (values (filter f l) ...).

Example:

> (filter-multiple (list 1 2 3 4 5) even? odd?)

'(2 4)

'(1 3 5)

(extend l1 l2 v) → list?

l1 : list?

l2 : list?

v : any/c

Extends l2 to be as long as l1 by adding (- (length l1) (length l2)) copies of v
to the end of l2 .

Example:

> (extend '(1 2 3) '(a) 'b)

'(a b b) The subsequent
bindings were
added by Ryan
Culpepper.(check-duplicate lst

[#:key extract-key

#:same? same?]) → (or/c any/c #f)

lst : list?

extract-key : (-> any/c any/c) = (lambda (x) x)

same? : (or/c (any/c any/c . -> . any/c)

dict?)

= equal?

54

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

Examples:

> (check-duplicate '(1 2 3 4))

#f

> (check-duplicate '(1 2 3 2 1))

2

> (check-duplicate '((a 1) (b 2) (a 3)) #:key car)

'(a 3)

> (define id-t (make-free-id-table))

> (check-duplicate (syntax->list #'(a b c d a b))

#:same? id-t)

#<syntax:13:0 a>

> (dict-map id-t list)

'((#<syntax:13:0 c> #t) (#<syntax:13:0 d> #t) (#<syntax:13:0 a> #t)

(#<syntax:13:0 b> #t)) The subsequent
bindings were
added by Carl
Eastlund.(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:

> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

'(1 2 3)

'(0 1 2)

(map2 f lst ...) → (listof B) (listof C)

f : (-> A ... (values B C))

lst : (listof A)

55

Produces a pair of lists of the respective values of f applied to the elements in lst ...

sequentially.

Example:

> (map2 (lambda (x) (values (+ x 1) (- x 1))) (list 1 2 3))

'(2 3 4)

'(0 1 2) The subsequent
bindings were
added by David Van
Horn.(remf pred lst) → list?

pred : procedure?

lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))

'(1 3 4 -5)

56

19 Logging

(require unstable/logging)

This module provides tools for logging.

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(with-logging-to-port port

proc

[#:level level]) → any

port : output-port?

proc : (-> any)

level : (or/c 'fatal 'error 'warning 'info 'debug) = 'info

Runs proc , outputting any logging of level level or higher to port . Returns whatever
proc returns.

Example:

> (let ([my-log (open-output-string)])

(with-logging-to-port my-log

(lambda ()

(log-warning "Warning World!")

(+ 2 2))

#:level 'warning)

(get-output-string my-log))

"Warning World!\n"

(with-intercepted-logging interceptor

proc

[#:level level]) → any

interceptor : (-> (vector/c

(or/c 'fatal 'error 'warning 'info 'debug)

string?

any/c)

any)

proc : (-> any)

level : (or/c 'fatal 'error 'warning 'info 'debug) = 'info

Runs proc , calling interceptor on any log message of level level or higher. intercep-
tor receives the entire log vectors (see §14.5.3 “Receiving Logged Events”) as arguments.
Returns whatever proc returns.

57

Example:

> (let ([warning-counter 0])

(with-intercepted-logging

(lambda (l)

(when (eq? (vector-ref l 0)

'warning)

(set! warning-counter (add1 warning-counter))))

(lambda ()

(log-warning "Warning!")

(log-warning "Warning again!")

(+ 2 2))

#:level 'warning)

warning-counter)

2

58

20 Mark Parameters

(require unstable/markparam)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag]) → any/c

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the first value of mp up to tag .

(mark-parameter-all mp [tag]) → list?

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of mp up to tag .

(mark-parameters-all mps none-v [tag]) → (listof vector?)

mps : (listof mark-parameter?)

none-v : [any/c #f]

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of the mps up to tag . The length of each vector in the result list is
the same as the length of mps , and a value in a particular vector position is the value for
the corresponding mark parameter in mps . Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.

59

(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

60

21 Match

(require unstable/match)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(== val comparator)

(== val)

A match expander which checks if the matched value is the same as val when compared by
comparator . If comparator is not provided, it defaults to equal?.

Examples:

> (match (list 1 2 3)

[(== (list 1 2 3)) 'yes]

[_ 'no])

'yes

> (match (list 1 2 3)

[(== (list 1 2 3) eq?) 'yes]

[_ 'no])

'no

> (match (list 1 2 3)

[(list 1 2 (== 3 =)) 'yes]

[_ 'no])

'yes The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(match? val-expr pat ...)

Returns #t if the result of val-expr matches any of pat , and returns #f otherwise.

Examples:

> (match? (list 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (vector 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (+ 1 2 3)

(list a b c)

(vector x y z))

61

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

#f

(as ([lhs-id rhs-expr] ...) pat ...)

As a match expander, binds each lhs-id as a pattern variable with the result value of rhs-
expr , and continues matching each subsequent pat .

Example:

> (match (list 1 2 3)

[(as ([a 0]) (list b c d)) (list a b c d)])

'(0 1 2 3)

62

22 Net

(require unstable/net)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

22.1 URLs

(require unstable/net/url)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(url-replace-path proc u) → url?

proc : ((listof path/param?) . -> . (listof path/param?))

u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) → string?

url-path : (listof path/param?)

Formats url-path as a string with "/" as a delimiter and no params.

63

23 Path

(require unstable/path)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(explode-path* p) → (listof path-element?)

p : path-string?

Like normalize-path, but does not resolve symlinks.

(path-without-base base p) → (listof path-element?)

base : path-string?

p : path-string?

Returns, as a list, the portion of p after base , assuming base is a prefix of p .

(directory-part p) → path?

p : path-string?

Returns the directory part of p , returning (current-directory) if it is relative.

(build-path-unless-absolute base p) → path?

base : path-string?

p : path-string?

Prepends base to p , unless p is absolute.

(strip-prefix-ups p) → (listof path-element?)

p : (listof path-element?)

Removes all the prefix ".."s from p .

64

24 Ports

(require unstable/port)

This module provides tools for port I/O.

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(read-all [reader port]) → list?

reader : (-> any/c) = read

port : input-port? = (current-input-port)

This function produces a list of all the values produced by calling (reader) while
current-input-port is set to port , up until it produces eof.

Examples:

> (read-all read (open-input-string "1 2 3"))

'(1 2 3)

> (parameterize ([current-input-port (open-input-string "a b c")])

(read-all))

'(a b c)

(read-all-syntax [reader port]) → (syntax/c list?)

reader : (-> (or/c syntax? eof-object?)) = read

port : input-port? = (current-input-port)

This function produces a syntax object containing a list of all the syntax objects produced
by calling (reader) while current-input-port is set to port , up until it produces eof.
The source location of the result spans the entire portion of the port that was read.

Examples:

(define port1 (open-input-string "1 2 3"))

> (port-count-lines! port1)

> (read-all-syntax read-syntax port1)

#<syntax:1:0 (1 2 3)>

(define port2 (open-input-string "a b c"))

> (port-count-lines! port2)

> (parameterize ([current-input-port port2])

(read-all-syntax))

#<syntax:1:0 (a b c)>

(port->srcloc port [source span]) → srcloc?

65

port : port?

source : any/c = (object-name port)

span : exact-nonnegative-integer? = 0

Produces a srcloc structure representing the current position of a port, using the provided
source and span values to fill in missing fields. This function relies on port-next-

location, so line counting must be enabled for port to get meaningful results.

Examples:

(define port (open-input-string "1 2 3"))

> (port-count-lines! port)

> (read port)

1

> (port->srcloc port)

(srcloc 'string 1 1 2 0)

> (port->srcloc port "1 2 3" 1)

(srcloc "1 2 3" 1 1 2 1)

66

25 Pretty-Printing

(require unstable/pretty)

This module provides tools for pretty-printing.

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(pretty-format/write x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with write

instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/write (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (\"a\" \"b\")))\n"

(pretty-format/display x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with dis-

play instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/display (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (a b)))\n"

(pretty-format/print x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves the same as pretty-format, but is named more explicitly to de-
scribe how it formats values. It is included for symmetry with pretty-format/write and
pretty-format/display.

67

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/print (list (both (list 'a 'b) (list "a" "b"))))

"(list (both '(a b) '(\"a\" \"b\")))\n"

68

26 Requiring Modules

(require unstable/require)

This module provides tools for importing from modules.

(require/provide module-path ...)

Re-exports all bindings provided by each module-path . Equivalent to:

(require module-path ...)

(provide (all-from-out module-path ...))

(quote-require require-spec ...)

Produces the names exported by the require-specs as a list of symbols.

Example:

> (quote-require racket/bool racket/function)

'(false true symbol=? false? boolean=? thunk* thunk negate identity

curryr curry const)

69

27 Sequences

(require unstable/sequence)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(in-syntax stx) → sequence?

stx : syntax?

Produces a sequence equivalent to (syntax->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))])

x)

'(#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) → sequence?

seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)

(sequence-lift cdr seq)).

(in-sequence-forever seq val) → sequence?

seq : sequence?

val : any/c

Produces a sequence whose values are the elements of seq , followed by val repeated.

(sequence-lift f seq) → sequence?

f : procedure?

seq : sequence?

Produces the sequence of f applied to each element of seq .

Example:

> (for/list ([x (sequence-lift add1 (in-range 10))])

x)

'(1 2 3 4 5 6 7 8 9 10)

70

28 Strings

(require unstable/string)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(lowercase-symbol! sb) → symbol?

sb : (or/c string? bytes?)

Returns sb as a lowercase symbol.

(read/string s) → serializable?

s : string?

reads a value from s and returns it.

(write/string v) → string?

v : serializable?

writes v to a string and returns it.

71

29 Structs

(require unstable/struct)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(make struct-id expr ...)

Creates an instance of struct-id , which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id . If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:

> (define-struct triple (a b c))

> (make triple 3 4 5)

#<triple>

> (make triple 2 4)

eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2) in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque]) → (or/c list? #f)

v : any/c

on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:

> (define-struct open (u v) #:transparent)

> (struct->list (make-open 'a 'b))

'(a b)

> (struct->list #s(pre 1 2 3))

'(1 2 3)

> (define-struct (secret open) (x y))

> (struct->list (make-secret 0 1 17 22))

struct->list: expected argument of type <non-opaque
struct>; given (secret 0 1 ...)

72

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)

#f

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)

'(0 1)

> (struct->list 'not-a-struct #:on-opaque 'return-false)

#f

> (struct->list 'not-a-struct #:on-opaque 'skip)

'()

73

30 Syntax

(require unstable/syntax)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(explode-module-path-index mpi)

→ (listof (or/c module-path? resolved-module-path? #f))

mpi : module-path-index?

Unfolds mpi using module-path-index-split, returning a list of the relative module
paths together with the terminal resolved module path or #f for the “self” module.

Examples:

> (explode-module-path-index (car (identifier-binding #'lambda)))

'("kw.rkt" racket/private/pre-base #f)

> (explode-module-path-index (caddr (identifier-binding #'lambda)))

'(racket/base #f)

> (explode-module-path-index (car (identifier-binding #'define-

values)))

'('#%kernel #f)

(phase-of-enclosing-module)

Returns the phase level of the module in which the form occurs (and for the instantiation of
the module in which the form is executed). For example, if a module is required directly by
the “main” module (or the top level), its phase level is 0. If a module is required for-syntax
by the “main” module (or the top level), its phase level is 1.

Examples:

> (module helper racket

(require unstable/syntax)

(displayln (phase-of-enclosing-module)))

> (require 'helper)

0

> (require (for-meta 1 'helper))

1 The subsequent
bindings were
added by Vincent
St-Amour
<stamourv@racket-
lang.org>.

74

mailto:stamourv@racket-lang.org
mailto:stamourv@racket-lang.org

(format-unique-id lctx

fmt

v ...

[#:source src

#:props props

#:cert cert]) → identifier?

lctx : (or/c syntax? #f)

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

Like format-id, but returned identifiers are guaranteed to be unique.

(syntax-within? a b) → boolean?

a : syntax?

b : syntax?

Returns true is syntax a is within syntax b in the source. Bounds are inclusive. The subsequent
bindings were
added by Sam
Tobin-Hochstadt
<samth@racket-
lang.org>.

(syntax-map f stxl ...) → (listof A)

f : (-> syntax? A)

stxl : syntax?

Performs (map f (syntax->list stxl) ...).

Example:

> (syntax-map syntax-e #'(a b c))

'(a b c) The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(syntax-list template ...)

This form constructs a list of syntax objects based on the given templates. It is equivalent to
(syntax->list #'(template ...)).

Example:

> (with-syntax ([(x ...) #'(1 2 3)]) (syntax-list x ...))

'(#<syntax:9:0 1> #<syntax:9:0 2> #<syntax:9:0 3>)

75

mailto:samth@racket-lang.org
mailto:samth@racket-lang.org
mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

30.1 Syntax Object Source Locations

(syntax-source-directory stx) → (or/c path? #f)

stx : syntax?

(syntax-source-file-name stx) → (or/c path? #f)

stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-
ciated, or #f if stx is not associated with a path.

Examples:

(define loc

(list (build-path "/tmp" "dir" "somewhere.rkt")

#f #f #f #f))

(define stx1 (datum->syntax #f 'somewhere loc))

> (syntax-source-directory stx1)

#<path:/tmp/dir/>

> (syntax-source-file-name stx1)

#<path:somewhere.rkt>

(define stx2 (datum->syntax #f 'nowhere #f))

> (syntax-source-directory stx2)

#f

> (syntax-source-directory stx2)

#f

76

31 Temporal Contracts: Explicit Contract Monitors

(require unstable/temp-c)

The contract system implies the presence of a "monitoring system" that ensures that con-
tracts are not violated. The racket/contract system compiles this monitoring system
into checks on values that cross a contracted boundary. This module provides a facility to
pass contract boundary crossing information to an explicit monitor for approval. This moni-
tor may, for example, use state to enforce temporal constraints, such as a resource is locked
before it is accessed.

31.1 Warning! Experimental!

This library is truly experimental and the interface is likely to drastically change as we get
more experience making use of temporal contracts. In particular, the library comes with
no advice about designing temporal contracts, which are much more subtle than standard
contracts. This subtlety is compounded because, while temporal contract violations have
accurate blame information, we cannot yet connect violations to sub-pieces of the temporal
formula.

For example, applying f to "three" when it is contracted to only accept numbers will error
by blaming the caller and providing the explanation "expected a <number?>, received:
"three"". In contrast, applying g to "even" and then to "odd" when g is contracted to
accept strings on every odd invocation, but numbers on every even invocation, will error
by blaming the second (odd) call, but will not provide any explanation except "the monitor
disallowed the call with arguments: "odd"". Translating non-acceptance of an event trace by
an automata into a palatable user explanation is an open problem.

31.2 Monitors

(require unstable/temp-c/monitor)

(struct monitor (label)

#:transparent)

label : symbol?

(struct monitor:proj monitor (label proj-label v)

#:transparent)

label : symbol?

proj-label : symbol?

v : any/c

77

(struct monitor:call monitor (label

proj-label

f

app-label

kws

kw-args

args)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

(struct monitor:return monitor (label

proj-label

f

app-label

kws

kw-args

args

rets)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

rets : list?

(monitor/c monitor-allows? label c) → contract?

monitor-allows? : (-> monitor? boolean?)

label : symbol?

c : contract?

monitor/c creates a new contract around c that uses monitor-allows? to approve con-
tract boundary crossings. (c approves positive crossings first.)

Whenever a value v is projected by the result of monitor/c, monitor-allows? must
approve a (monitor:proj label proj-label v) structure, where proj-label is a
unique symbol for this projection.

If monitor-allows? approves and the value is not a function, then the value is returned.

78

If the value is a function, then a projection is returned, whenever it is called, monitor-
allows? must approve a (monitor:call label proj-label v app-label kws kw-

args args) structure, where app-label is a unique symbol for this application and kws,
kw-args, args are the arguments passed to the function.

Whenever it returns, monitor-allows? must approve a (monitor:return label

proj-label v app-label kws kw-args args rets) structure, where ret are the re-
turn values of the application.

The unique projection label allows explicitly monitored contracts to be useful when used in
a first-class way at different boundaries.

The unique application label allows explicitly monitored contracts to pair calls and returns
when functions return multiple times or never through the use of continuations.

Here is a short example that uses an explicit monitor to ensure that malloc and free are
used correctly.

(define allocated (make-weak-hasheq))

(define memmon

(match-lambda

[(monitor:return 'malloc _ _ _ _ _ _ (list addr))

(hash-set! allocated addr #t)

#t]

[(monitor:call 'free _ _ _ _ _ (list addr))

(hash-has-key? allocated addr)]

[(monitor:return 'free _ _ _ _ _ (list addr) _)

(hash-remove! allocated addr)

#t]

[_

#t]))

(provide/contract

[malloc (monitor/c memmon 'malloc (-> number?))]

[free (monitor/c memmon 'free (-> number? void))])

31.3 Domain Specific Language

(require unstable/temp-c/dsl)

Constructing explicit monitors using only monitor/c can be a bit onerous. This module
provides some helpful tools for making the definition easier. It provides everything from
unstable/temp-c/monitor, as well as all bindings from unstable/automata/re and
unstable/automata/re-ext. The latter provide a DSL for writing "dependent" regular
expression machines over arbitrary racket/match patterns.

79

First, a few match patterns are available to avoid specify all the details of monitored events
(since most of the time the detailed options are unnecessary.)

(call n a ...)

A match expander for call events to the labeled function n with arguments a .

(ret n a ...)

A match expander for return events to the labeled function n with return values a .

(with-monitor contract-expr re-pat)

Defines a monitored contract where the structural portion of the contract is the contract-

expr (which may included embedded label expressions) and where the temporal portion
of the contract is the regular expression given by re-pat . (Note: re-pat is not a Racket ex-
pression that evaluates to a regular expression. It is a literal regular expession.) An optional
#:concurrent may be added between the contract and the regular expression to ensure that
the machine is safe against race-conditions.

(label id contract-expr)

Labels a portion of a structural contract inside of with-monitor with the label id .

Here is a short example for malloc and free :

(with-monitor

(cons/c (label 'malloc (-> addr?))

(label 'free (-> addr? void?)))

(complement

(seq (star _)

(dseq (call 'free addr)

(seq

(star (not (ret 'malloc (== addr))))

(call 'free (== addr)))))))

80

32 GUI libraries

32.1 DrRacket Language Levels

(require unstable/gui/language-level)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

language-level@ : unit?

This unit imports drracket:tool^ and exports language-level^.

language-level^ : signature

(make-language-level name

path

mixin ...

[#:number number

#:hierarchy hierarchy

#:summary summary

#:url url

#:reader reader])
→ (is-a?/c drracket:language:language<%>)

name : string?

path : module-path?

mixin : (-> class? class?)

number : integer? = ...

hierarchy : (listof (cons/c string? integer?)) = ...

summary : string? = name

url : (or/c string? #f) = #f

reader : (->* [] [any/c input-port?] (or/c syntax? eof-object?))

= read-syntax

Constructs a language level as an instance of
drracket:language:language<%> with the given name based on the lan-
guage defined by the module at path . Applies (drracket:language:get-
default-mixin) and the given mixins to simple-language-level% to
construct the class, and uses the optional keyword arguments to fill in the
language’s description and reader.

81

simple-language-level% : (and/c (implementation?/c drracket:language:language<%>)

(implementation?/c drracket:language:module-based-language<%>)

(implementation?/c drracket:language:simple-module-based-language<%>))

Equal to (drracket:language:module-based-language->language-

mixin (drracket:language:simple-module-based-language-

>module-based-language-mixin drracket:language:simple-

module-based-language%)).

(language-level-render-mixin to-sexp

show-void?)

→ (make-mixin-contract drracket:language:language<%>)

to-sexp : (-> any/c any/c)

show-void? : boolean?

Produces a mixin that overrides render-value/format to apply to-sexp to
each value before printing it, and to skip void? values (pre-transformation) if
show-void? is #f.

(language-level-capability-mixin dict)

→ (make-mixin-contract drracket:language:language<%>)

dict : dict?

Produces a mixin that augments capability-value to look up each key in
dict , producing the corresponding value if the key is found and deferring to
inner otherwise.

language-level-no-executable-mixin : (make-mixin-contract drracket:language:language<%>)

Overrides create-executable to print an error message in a dialog box.

language-level-eval-as-module-mixin : (make-mixin-contract drracket:language:language<%>

drracket:language:module-based-language<%>)

Overrides front-end/complete-program to wrap terms from the definition
in a module based on the language level’s definition module. This duplicates
the behavior of the HtDP teaching languages, for instance.

language-level-macro-stepper-mixin : (make-mixin-contract drracket:language:language<%>)

This mixin enables the macro stepper for its language level.

language-level-check-expect-mixin : (make-mixin-contract drracket:language:language<%>)

This mixin overrides on-execute to set up the check-expect test engine to a
language level similarly to the HtDP teaching languages.

82

(language-level-metadata-mixin reader-module

meta-lines

meta->settings

settings->meta)

→ (make-mixin-contract drracket:language:language<%>)

reader-module : module-path?

meta-lines : exact-nonnegative-integer?

meta->settings : (-> string? any/c any/c)

settings->meta : (-> symbol? any/c string?)

This mixin constructs a language level that stores metadata in saved files allow-
ing Drracket to automatically switch back to this language level upon open-
ing them. It overrides get-reader-module, get-metadata, metadata-

>settings, and get-metadata-lines.

The resulting language level uses the reader from reader-module , and is rec-
ognized in files that start with a reader directive for that module path within
the first meta-lines lines. Metadata about the language’s settings is mar-
shalled between a string and a usable value (based on a default value) by meta-

>settings , and between a usable value for a current module (with a symbolic
name) by settings->meta .

32.2 Notify-boxes

(require unstable/gui/notify)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

notify-box% : class?

superclass: object%

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:

> (define nb (new notify-box% (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'potato)

New value: potato

83

(new notify-box% [value value]) → (is-a?/c notify-box%)

value : any/c

Creates a notify-box initially containing value .

(send a-notify-box get) → any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) → void?

v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) → void?

listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

(send a-notify-box remove-listener listener) → void?

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) → void?

Removes all previously registered callbacks.

(notify-box/pref proc

[#:readonly? readonly?]) → (is-a?/c notify-box%)

proc : (case-> (-> any/c) (-> any/c void?))

readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:

> (define animal (make-parameter 'ant))

> (define nb (notify-box/pref animal))

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'bee)

84

New value: bee

> (animal 'cow)

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

(define-notify name value-expr)

value-expr : (is-a?/c notify-box%)

Class-body form. Declares name as a field and get-name , set-name , and listen-name

as methods that delegate to the get, set, and listen methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

> (define config%

(class object%

(define-notify food (new notify-box% (value 'apple)))

(define-notify animal (new notify-box% (value 'ant)))

(super-new)))

> (define c (new config%))

> (send c listen-food

(lambda (v) (when (eq? v 'honey) (send c set-

animal 'bear))))

> (let ([food (get-field food c)])

(send food set 'honey))

> (send c get-animal)

'bear

(menu-option/notify-box parent

label

notify-box)

→ (is-a?/c checkable-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a checkable-menu-item% tied to notify-box . The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of

85

notify-box and invokes its listeners.

(check-box/notify-box parent

label

notify-box) → (is-a?/c check-box%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a check-box% tied to notify-box . The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

(choice/notify-box parent

label

choices

notify-box) → (is-a?/c choice%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

choices : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Creates a choice% tied to notify-box . The choice control has the value (send notify-

box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices , either initially or upon an update, an error is
raised.

(menu-group/notify-box parent

labels

notify-box)

→ (listof (is-a?/c checkable-menu-item%))

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

labels : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Returns a list of checkable-menu-item% controls tied to notify-box . A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box ’s listeners.

86

32.3 Preferences

(require unstable/gui/prefs)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(pref:get/set pref) → (case-> (-> any/c) (-> any/c void?))

pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref .

32.4 Slideshow Presentations

(require unstable/gui/slideshow)

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

32.4.1 Text Formatting

(with-size size expr)

Sets current-font-size to size while running expr .

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

(big text)

(small text)

Scale current-font-size by 3/2 or 2/3, respectively, while running text .

(with-font font expr)

Sets current-main-font to font while running expr .

87

(with-style style expr)

Adds style to current-main-font (via cons) while running expr .

(bold text)

(italic text)

(subscript text)

(superscript text)

(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

32.4.2 Pict Colors

(color c p) → pict?

c : color/c

p : pict?

Applies color c to picture p . Equivalent to (colorize p c).

(red pict) → pict?

pict : pict?

(orange pict) → pict?

pict : pict?

(yellow pict) → pict?

pict : pict?

(green pict) → pict?

pict : pict?

(blue pict) → pict?

pict : pict?

(purple pict) → pict?

pict : pict?

(black pict) → pict?

pict : pict?

(brown pict) → pict?

pict : pict?

(gray pict) → pict?

pict : pict?

(white pict) → pict?

pict : pict?

88

(cyan pict) → pict?

pict : pict?

(magenta pict) → pict?

pict : pict?

These functions apply appropriate colors to picture p.

(light color) → color/c

color : color/c

(dark color) → color/c

color : color/c

These functions produce ligher or darker versions of a color.

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

32.4.3 Pict Manipulation

(fill pict width height) → pict?

pict : pict?

width : (or/c real? #f)

height : (or/c real? #f)

Extends pict ’s bounding box to a minimum width and/or height , placing the original
picture in the middle of the space.

Conditional Manipulations

These pict transformers all take boolean arguments that determine whether to transform
the pict or leave it unchanged. These transformations can be useful for staged slides, as
the resulting pict always has the same size and shape, and its contents always appear at
the same position, but changing the boolean argument between slides can control when the
transformation occurs.

(show pict [show?]) → pict?

pict : pict?

show? : truth/c = #t

89

(hide pict [hide?]) → pict?

pict : pict?

hide? : truth/c = #t

These functions conditionally show or hide an image, essentially choosing between pict

and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

(strike pict [strike?]) → pict?

pict : pict?

strike? : truth/c = #t

Displays a strikethrough image by putting a line through the middle of pict if strike? is
true; produces pict unchanged otherwise.

(shade pict [shade? #:ratio ratio]) → pict?

pict : pict?

shade? : truth/c = #t

ratio : (real-in 0 1) = 1/2

Shades pict to show with ratio of its normal opacity; if ratio is 1 or shade? is #f,
shows pict unchanged.

Conditional Combinations

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accommodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to pict-combine.

(pict-cond maybe-combine [test-expr pict-expr] ...)

90

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to pict-combine.

(pict-match test-expr maybe-combine [pattern pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each pattern , similarly to match. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

pict-combine

This syntax parameter determines the default pict combining form used by the above macros.
It defaults to lbl-superimpose.

(with-pict-combine combine-id body ...)

Sets pict-combine to refer to combine-id within each of the body terms, which are
spliced into the containing context.

32.4.4 Staged Slides

(staged [name ...] body ...)

Executes the body terms once for each stage name . The terms may include expressions and
mutually recursive definitions. Within the body, each name is bound to a number from 1 to

91

the number of stages in order. Furthermore, during execution stage is bound to the number
of the current stage and stage-name is bound to a symbol representing the name of the
current stage. By comparing stage to the numeric value of each name , or stage-name to
quoted symbols of the form 'name, the user may compute based on the progression of the
stages.

stage

stage-name

These keywords are bound during the execution of staged and should not be used otherwise.

(slide/staged [name ...] arg ...)

Creates a staged slide. Equivalent to (staged [name ...] (slide arg ...)).

Within a staged slide, the boolean arguments to hide, show, strike, and shade can be
used to determine in which stages to perform a transformation. The macros pict-if, pict-
cond, pict-case, and pict-match may also be used to create images which change natu-
rally between stages.

32.4.5 Tables

(tabular row

...

[#:gap gap

#:hgap hgap

#:vgap vgap

#:align align

#:halign halign

#:valign valign]) → pict?

row : (listof (or/c string? pict?))

gap : natural-number/c = gap-size

hgap : natural-number/c = gap

vgap : natural-number/c = gap

align : (->* [] [] #:rest (listof pict?) pict?)

= lbl-superimpose

halign : (->* [] [] #:rest (listof pict?) pict?) = align

valign : (->* [] [] #:rest (listof pict?) pict?) = align

Constructs a table containing the given rows, all of which must be of the same length.
Applies t to each string in a row to construct a pict. The hgap , vgap , halign , and valign

are used to determine the horizontal and vertical gaps and alignments as in table (except
that every row and column is uniform).

92

32.4.6 Multiple Columns

(two-columns one two)

Constructs a two-column pict using one and two as the two columns. Sets current-para-
width appropriately in each column.

(mini-slide pict ...) → pict?

pict : pict?

Appends each pict vertically with space between them, similarly to the slide function.

(columns pict ...) → pict?

pict : pict?

Combines each pict horizontally, aligned at the top, with space in between.

(column width body ...)

Sets current-para-width to width during execution of the body expressions.

(column-size n [r]) → real?

n : exact-positive-integer?

r : real? = (/ n)

Computes the width of one column out of n that takes up a ratio of r of the available space
(according to current-para-width). The subsequent

bindings were
added by Vincent
St-Amour.(ellipse/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

93

(circle/border diameter

#:color color

#:border-color border-color

#:border-width border-width) → pict?

diameter : real?

color : color/c

border-color : color/c

border-width : real?

(rectangle/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

(rounded-rectangle/border w

h

#:color color

#:border-color border-color

#:border-width border-width) → pict?

w : real?

h : real?

color : color/c

border-color : color/c

border-width : real?

These functions create shapes with border of the given color and width. The subsequent
bindings were
added by Scott
Owens.(blank-line) → pict?

Adds a blank line of the current font size’s height.

94

(pin-label-line label

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:x-adjust x-adjust

#:y-adjust y-adjust) → pict?

label : pict?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

x-adjust : real?

y-adjust : real?

95

(pin-arrow-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust)

→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

hide-arrowhead? : any/c

x-adjust : real?

y-adjust : real?

96

(pin-arrows-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust)

→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f)

end-angle : (or/c real? #f)

start-pull : real?

end-pull : real?

line-width : (or/c real? #f)

color : (or/c #f string? (is-a?/c color%))

under? : any/c

hide-arrowhead? : any/c

x-adjust : real?

y-adjust : real?

These functions behave like pin-line, pin-arrow-line and pin-arrows-line with the
addition of a label attached to the line.

32.5 Progressive Picts and Slides

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

97

32.5.1 Progressive Picts

(require unstable/gui/ppict)

A progressive pict or “ppict” is a kind of pict that has an associated “pict placer,” which
generally represents a position and alignment. New picts can be placed on the progressive
pict by calling ppict-add, and the placer can be updated by calling ppict-go. The ppict-
do form provides a compact notation for sequences of those two operations.

(ppict-do base-expr ppict-do-fragment ...)

(ppict-do* base-expr ppic-do-fragment ...)

ppict-do-fragment = #:go placer-expr

| #:set pict-expr

| #:next

| #:alt (ppict-do-fragment ...)

| elem-expr

base-expr : pict?

placer-expr : placer?

pict-expr : pict?

elem-expr : (or/c pict? real? #f)

Builds a pict (and optionally a list of intermediate picts) progressively. The ppict-do form
returns only the final pict; any uses of #:next are ignored. The ppict-do* form returns
two values: the final pict and a list of all partial picts emitted due to #:next (the final pict is
not included).

A #:go fragment changes the current placer. A #:set fragment replaces the current pict
state altogether with a new computed pict. A #:next fragment saves a pict including only
the contents emitted so far (but whose alignment takes into account picts yet to come). A
#:alt fragment saves the current pict state, executes the sub-sequence that follows, saves
the result (as if the sub-sequence ended with #:next), then restores the saved pict state
before continuing.

The elem-exprs are interpreted by the current placer. A numeric elem-expr usually rep-
resents a spacing change, but some placers do not support them. A spacing change only
affects added picts up until the next placer is installed; when a new placer is installed, the
spacing is reset, usually to 0.

The ppict-do-state form tracks the current state of the pict. It is updated before a #:go
or #:set fragment or before a sequence of elem-exprs. It is not updated in the middle of
a chain of elem-exprs, however.

98

Examples:

> (define base

(ppict-do (colorize (rectangle 200 200) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (hline 200 1) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (vline 1 200) "gray")))

> base

The use of ppict-do in the defnition of base above is equivalent to

(let* ([pp (colorize (rectangle 200 200) "gray")]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (hline 200 1) "gray"))]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (vline 1 200) "gray"))])

pp)

Examples:

> (define circles-down-1

(ppict-do base

#:go (grid 2 2 2 1 'ct)

10

(circle 20)

(circle 20)

30

(circle 20)))

> circles-down-1

99

> (define circles-down-2

(ppict-do circles-down-1

(colorize (circle 20) "red")

40

(colorize (circle 20) "red")))

> (inset circles-down-2 20) ; draws outside its bounding box

> (inset (clip circles-down-2) 20)

100

> (ppict-do base

#:go (coord 0 0 'lt)

(tag-pict (circle 20) 'circA)

#:go (coord 1 1 'rb)

(tag-pict (circle 20) 'circB)

#:set (let ([p ppict-do-state])

(pin-arrow-line 10 p

(find-tag p 'circA) rb-find

(find-tag p 'circB) lt-find)))

> (let-values ([(final intermediates)

(ppict-do* base

#:go (coord 1/4 1/2 'cb)

(text "shapes:")

#:go (coord 1/2 1/2 'lb)

#:alt [(circle 20)]

#:alt [(rectangle 20 20)]

101

(text "and more!"))])

(append intermediates (list final)))

'(

shapes: shapes:

shapes: and more!

)

More examples of ppict-do are scattered throughout this section.

ppict-do-state

Tracks the current state of a ppict-do or ppict-do* form.

(ppict? x) → boolean?

x : any/c

Returns #t if x is a progressive pict, #f otherwise.

(ppict-go p pl) → ppict?

p : pict?

pl : placer?

102

Creates a progressive pict with the given base pict p and the placer pl .

(ppict-add pp elem ...) → pict?

pp : ppict?

elem : (or/c pict? real? #f)

Creates a new pict by adding each elem pict on top of pp according to pp ’s placer. The
result pict may or may not be a progressive pict, depending on the placer used.

An elem that is a real number changes the spacing for subsequent additions. A elem that
is #f is discarded; it is permitted as a convenience for conditionally including sub-picts.
Note that #f is not equivalent to (blank 0), since the latter will cause spacing to be added
around it.

(placer? x) → boolean?

x : any/c

Returns #t if x is a placer, #f otherwise.

(refpoint-placer? x) → boolean?

x : any/c

Returns #t if x is a placer based on a reference point, #f otherwise.

(coord rel-x

rel-y

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer]) → refpoint-placer?

rel-x : real?

rel-y : real?

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to rel-x and rel-y , which are interpeted as
fractions of the width and height of the base progressive pict. That is, 0, 0 is the top left
corner of the base’s bounding box, and 1, 1 is the bottom right. Then abs-x and abs-y

offsets are added to get the final reference point.

Additions are aligned according to align , a symbol whose name consists of a horizontal
alignment character followed by a vertical alignment character. For example, if align is

103

'lt, the pict is placed so that its left-top corner is at the reference point; if align is 'rc, the
pict is placed so that the center of its bounding box’s right edge coincides with the reference
point.

By default, if there are multiple picts to be placed, they are vertically appended, aligned
according to the horizontal component of align . For example, if align is 'cc, the default
composer is vc-append; for 'lt, the default composer is vl-append. The spacing is
initially 0.

Examples:

> (ppict-do base

#:go (coord 1/2 1/2 'rb)

(colorize (circle 20) "red")

#:go (coord 1/2 1/2 'lt)

(colorize (circle 20) "darkgreen"))

> (ppict-do base

#:go (coord 1 0 'rt #:abs-x -5 #:abs-y 10)

50 ; change spacing

(text "abc")

(text "12345")

0 ; and again

(text "ok done"))

104

abc

12345
ok done

> (ppict-do base

#:go (coord 0 0 'lt #:compose ht-append)

(circle 10)

(circle 20)

(circle 30))

(grid cols

rows

col

row

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer]) → refpoint-placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

col : exact-integer?

row : exact-integer?

105

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a position in a virtual grid. The row and col

indexes are numbered starting at 1.

Uses of grid can be translated into uses of coord, but the translation depends on the align-
ment. For example, (grid 2 2 1 1 'lt) is equivalent to (coord 0 0 'lt), but (grid
2 2 1 1 'rt) is equivalent to (coord 1/2 0 'rt).

Examples:

> (define none-for-me-thanks

(ppict-do base

#:go (grid 2 2 1 1 'lt)

(text "You do not like")

(colorize (text "green eggs and ham?") "darkgreen")))

> none-for-me-thanks
You do not like
green eggs and ham?

> (ppict-do none-for-me-thanks

#:go (grid 2 2 2 1 'rb)

(colorize (text "I do not like them,") "red")

(text "Sam-I-am."))

106

You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

(cascade [step-x step-y]) → placer?

step-x : (or/c real? 'auto) = 'auto

step-y : (or/c real? 'auto) = 'auto

Returns a placer that places picts by evenly spreading them diagonally across the base pict
in “cascade” style. This placer does not support changing the spacing by including a real
number within the pict sequence.

When a list picts is to be placed, their bounding boxes are normalized to the maximum width
and height of all picts in the list; each pict is centered in its new bounding box. The picts are
then cascaded so there is step-x space between each of the picts’ left edges; there is also
step-x space between the base pict’s left edge and the first pict’s left edge. Similarly for
step-y and the vertical spacing.

If step-x or step-y is 'auto, the spacing between the centers of the picts to be placed is
determined automatically so that the inter-pict spacing is the same as the spacing between
the last pict and the base.

Examples:

> (ppict-do base

#:go (cascade)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

107

> (ppict-do base

#:go (cascade 40 20)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

(tile cols rows) → placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

Returns a placer that places picts by tiling them in a grid cols columns wide and rows rows
high.

Example:

> (ppict-do base

#:go (tile 2 2)

(circle 50)

(rectangle 50 50)

(jack-o-lantern 50)

108

(standard-fish 50 30 #:color "red"))

(at-find-pict find-path

[finder
align

#:abs-x abs-x

#:abs-y abs-y

#:compose composer]) → refpoint-placer?

find-path : (or/c tag-path? pict-path?)

finder : procedure? = cc-find

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a reference point based on an existing pict
within the base.

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (at-find-pict 'red-fish rc-find 'lc #:abs-x 10)

(text "red fish"))

109

red fish

(merge-refpoints x-placer y-placer) → refpoint-placer?

x-placer : refpoint-placer?

y-placer : refpoint-placer?

Returns a placer like x-placer except that the y-coordinate of its reference point is com-
puted by y-placer .

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (merge-refpoints (coord 1 0 'rc)

(at-find-pict 'red-fish))

(text "red fish"))

red fish

110

Tagging picts

(tag-pict p tag) → pict?

p : pict?

tag : symbol?

Returns a pict like p that carries a symbolic tag. The tag can be used with find-tag to
locate the pict.

(find-tag p find) → (or/c pict-path? #f)

p : pict?

find : tag-path?

Locates a sub-pict of p . Returns a pict-path that can be used with functions like lt-find,
etc.

(tag-path? x) → boolean?

x : any/c

Returns #t if x is a symbol or a non-empty list of symbols, #f otherwise.

32.5.2 Progressive Slides

(require unstable/gui/pslide)

(pslide ppict-do-fragment ...)

Produce slide(s) using progressive picts. See ppict-do for an explanation of ppict-do-
fragments.

Note that like slide but unlike ppict-do*, the number of slides produced is one greater
than the number of #:next uses; that is, a slide is created for the final pict.

Remember to include gap-size after updating the current placer if you want slide-like
spacing.

Example:

> (pslide #:go (coord 0 0 'lt)

(t "You do not like")

(colorize (t "green eggs and ham?") "darkgreen")

#:next

#:go (coord 1 1 'rb)

111

(colorize (t "I do not like them,") "red")

(t "Sam-I-am."))

slides

You do not like
green eggs and ham?

You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

Note that the text is not flush against the sides of the slide, because pslide uses a base pict
the size of the client area, excluding the margins.

(pslide-base-pict) → (-> pict)

(pslide-base-pict make-base-pict) → void?

make-base-pict : (-> pict)

Controls the initial pict used by pslide. The default value is

(lambda () (blank client-w client-h))

(pslide-default-placer) → placer?

(pslide-default-placer placer) → void?

placer : placer?

Controls the initial placer used by pslide. The default value is

(coord 1/2 1/2 'cc)

112

	1 Guidelines for developing blueIdentifierColorunstable libraries
	2 Automata: Compiling State Machines
	2.1 Machines
	2.2 Deterministic Finite Automata
	2.3 Non-Deterministic Finite Automata
	2.4 Non-Deterministic Finite Automata (with epsilon transitions)
	2.5 Regular Expressions
	2.5.1 Extensions
	2.5.2 Examples

	3 Bytes
	4 Contracts
	4.1 Flat Contracts
	4.2 Syntax Object Contracts
	4.3 Higher-Order Contracts

	5 Contracts for macro subexpressions
	6 Contracts for struct type properties
	7 Debugging
	8 Definitions
	8.1 Deferred Evaluation in Modules
	8.2 Conditional Binding
	8.3 Renaming Definitions
	8.4 Forward Declarations
	8.5 Definition Shorthands
	8.6 Macro Definitions
	8.7 Effectful Transformation

	9 Dictionaries
	10 Exceptions
	11 Filesystem
	12 Find
	13 Finding Mutated Variables
	14 Functions
	14.1 Simple Functions
	14.2 Higher Order Predicates
	14.3 Currying and (Partial) Application
	14.4 Eta Expansion
	14.5 Parameter Arguments

	15 Generics
	16 Hash Tables
	17 Interface-Oriented Programming for Classes
	18 Lists
	19 Logging
	20 Mark Parameters
	21 Match
	22 Net
	22.1 URLs

	23 Path
	24 Ports
	25 Pretty-Printing
	26 Requiring Modules
	27 Sequences
	28 Strings
	29 Structs
	30 Syntax
	30.1 Syntax Object Source Locations

	31 Temporal Contracts: Explicit Contract Monitors
	31.1 Warning! Experimental!
	31.2 Monitors
	31.3 Domain Specific Language

	32 GUI libraries
	32.1 DrRacket Language Levels
	32.2 Notify-boxes
	32.3 Preferences
	32.4 Slideshow Presentations
	32.4.1 Text Formatting
	32.4.2 Pict Colors
	32.4.3 Pict Manipulation
	32.4.4 Staged Slides
	32.4.5 Tables
	32.4.6 Multiple Columns

	32.5 Progressive Picts and Slides
	32.5.1 Progressive Picts
	32.5.2 Progressive Slides

