7.4 Contracts: A Thorough Example

This section develops several different flavors of contracts for one and the same example: Racket’s argmax function. According to its Racket documentation, the function consumes a procedure proc and a non-empty list of values, lst. It

returns the first element in the list lst that maximizes the result of proc.

The emphasis on first is ours.

Examples:
  > (argmax add1 (list 1 2 3))

  3

  > (argmax sqrt (list 0.4 0.9 0.16))

  0.9

  > (argmax second '((a 2) (b 3) (c 4) (d 1) (e 4)))

  '(c 4)

Here is the simplest possible contract for this function:

version 1

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax (-> (-> any/c real?) (and/c pair? list?) any/c)])
This contract captures two essential conditions of the informal description of argmax:
  • the given function must produce numbers that are comparable according to <. In particular, the contract (-> any/c number?) would not do, because number? also recognizes complex numbers in Racket.

  • the given list must contain at least one item.

When combined with the name, the contract explains the behavior of argmax at the same level as an ML function type in a module signature (except for the non-empty list aspect).

Contracts may communicate significantly more than a type signature, however. Take a look at this second contract for argmax:

version 2

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (define f@r (f r))
              (for/and ((v lov)) (>= f@r (f v))))))])
It is a dependent contract that names the two arguments and uses the names to impose a predicate on the result. This predicate computes (f r) – where r is the result of argmax – and then validates that this value is greater than or equal to all values of f on the items of lov.

Is it possible that argmax could cheat by returning a random value that accidentally maximizes f over all elements of lov? With a contract, it is possible to rule out this possibility:

version 2 rev. a

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (define f@r (f r))
              (and
                (memq r lov)
                (for/and ((v lov)) (>= f@r (f v)))))))])
The memq function ensures that r is intensionally equal That is, "pointer equality" for those who prefer to think at the hardware level. to one of the members of lov. Of course, a moment’s worth of reflection shows that it is impossible to make up such a value. Functions are opaque values in Racket and without applying a function, it is impossible to determine whether some random input value produces an output value or triggers some exception. So we ignore this possibility from here on.

Version 2 formulates the overall sentiment of argmax’s documentation, but it fails to bring across that the result is the first element of the given list that maximizes the given function f. Here is a version that communicates this second aspect of the informal documentation:

version 3

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (define f@r (f r))
              (and (for/and ((v lov)) (>= f@r (f v)))
                   (eq? (first (memf (lambda (v) (= (f v) f@r)) lov))
                        r)))))])
That is, the memf function determines the first element of lov whose value under f is equal to r’s value under f. If this element is intensionally equal to r, the result of argmax is correct.

This second refinement step introduces two problems. First, both conditions recompute the values of f for all elements of lov. Second, the contract is now quite difficult to read. Contracts should have a concise formulation that a client can comprehend with a simple scan. Let us eliminate the readability problem with two auxiliary functions that have reasonably meaningful names:

version 3 rev. a

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (define f@r (f r))
              (and (is-first-max? r f@r f lov)
                   (dominates-all f@r f lov)))))])
 
; where
 
; f@r is greater or equal to all (f v) for v in lov
(define (dominates-all f@r f lov)
  (for/and ((v lov)) (>= (f v) f@r)))
 
; r is eq? to the first element v of lov for which (pred? v)
(define (is-first-max? r f@r f lov)
  (eq? (first (memf (lambda (v) (= (f v) f@r)) lov)) r))
The names of the two predicates express their functionality and, in principle, render it unnecessary to read their definitions.

This step leaves us with the problem of the newly introduced inefficiency. To avoid the recomputation of (f v) for all v on lov, we change the contract so that it computes these values and reuses them as needed:

version 3 rev. b

#lang racket
 
(define (argmax f lov) ...)
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (define f@r (f r))
              (define flov (map f lov))
              (and (is-first-max? r f@r (map list lov flov))
                   (dominates-all f@r flov)))))])
 
; where
 
; f@r is greater or equal to all f@v in flov
(define (dominates-all f@r flov)
  (for/and ((f@v flov)) (>= f@r f@v)))
 
; r is (second x) for the first x in flov+lov s.t. (= (first x) f@r)
(define (is-first-max? r f@r lov+flov)
  (define fst (first lov+flov))
  (if (= (second fst) f@r)
      (eq? (first fst) r)
      (is-first-max? f@r r (rest lov+flov))))
Now the predicate on the result once again computes all values of f for elements of lov once.

The word "eager" comes from the literature on the linguistics of contracts.

Version 3 may still be too eager when it comes to calling f. While Racket’s argmax always calls f no matter how many items lov contains, let us imagine for illustrative purposes that our own implementation first checks whether the list is a singleton. If so, the first element would be the only element of lov and in that case there would be no need to compute (f r). The argmax of Racket implicitly argues that it not only promises the first value that maximizes f over lov but also that f produces/produced a value for the result. As a matter of fact, since f may diverge or raise an exception for some inputs, argmax should avoid calling f when possible.

The following contract demonstrates how a higher-order dependent contract needs to be adjusted so as to avoid being over-eager:

version 4

#lang racket
 
(define (argmax f lov)
  (if (empty? (rest lov))
      (first lov)
      ...))
 
(provide/contract
  [argmax
    (->i ([f (-> any/c real?)] [lov (and/c pair? list?)]) ()
         (r (f lov)
            (lambda (r)
              (cond
                [(empty? (rest lov)) (eq? (first lov) r)]
                [else
                 (define f@r (f r))
                 (define flov (map f lov))
                 (and (is-first-max? r f@r (map list lov flov))
                      (dominates-all f@r flov))]))))])
 
; where
 
; f@r is greater or equal to all f@v in flov
(define (dominates-all f@r lov) ...)
 
; r is (second x) for the first x in flov+lov s.t. (= (first x) f@r)
(define (is-first-max? r f@r lov+flov) ...)
Note that such considerations don’t apply to the world of first-order contracts. Only a higher-order (or lazy) language forces the programmer to express contracts with such precision.

The problem of diverging or exception-raising functions should alert the reader to the even more general problem of functions with side-effects. If the given function f has visible effects – say it logs its calls to a file – then the clients of argmax will be able to observe two sets of logs for each call to argmax. To be precise, if the list of values contains more than one element, the log will contain two calls of f per value on lov. If f is expensive to compute, doubling the calls imposes a high cost.

To avoid this cost and to signal problems with overly eager contracts, a contract system could record the i/o of contracted function arguments and use these hashtables in the dependency specification. This is a topic of on-going research in PLT. Stay tuned.