Data: Data Structures

Version 5.92

January 25, 2014

(require data) package: base

This manual documents data structure libraries available in the data collection.

1 Imperative Queues

(require data/queue) package: base

This module provides a simple mutable queue representation, providing first-in/first-out se-
mantics.

Operations on queues mutate it in a thread-unsafe way.

(make-queue) — queue?

Produces an empty queue.
(enqueue! g v) — void?
q : queue?
v : any/c

Adds an element to the back of a queue.

This takes constant time, independent of the number of elements in q.
(enqueue-front! q v) — void?
q : queue?
v : any/c
Adds an element to the front of a queue.
This takes constant time, independent of the number of elements in q.
(dequeue! gq) — any/c
q : non-empty-queue?
Removes an element from the front of a non-empty queue, and returns that element.
This takes constant time, independent of the number of elements in q.
Examples:

(define g (make-queue))

> (enqueue! g 1)

\'4

(dequeue! q)

> (enqueue! q 2)

> (enqueue! q 3)
(dequeue! q)

(dequeue! q)

VvV WV NV

(enqueue! g 2)
> (enqueue! g 1)
> (enqueue-front! q 3)
> (enqueue-front! q 4)

> (queue->list q)
’(4321)

(queue-filter! q pred?) — void?
g : queue?
pred? : (-> any/c any/c)

Applies pred? to each element of the queue, removing any where pred? returns #f.
This takes time proportional to the number of elements in g (assuming that pred? takes
constant time, independent of the number of elements in q). It does not allocate and it calls
pred? exactly once for each element of q.
Examples:

(define g (make-queue))

> (enqueue! g 1)

> (enqueue! q 2)

> (enqueue! g 3)

> (enqueue! q 4)

> (queue-filter! g even?)

> (queue->list q)
(2 4

(queue->list queue) — (listof any/c)
queue : queue?

Returns an immutable list containing the elements of the queue in the order the elements
were added.

This takes time proportional to the number of elements in q.
Examples:

(define q (make-queue))

> (enqueue! q 8)

> (enqueue! q 9)

> (enqueue! q 0)

> (queue->list q)
(8 9 0)
(queue-length queue) — exact-nonnegative-integer?
queue : queue?
Returns the number of elements in the queue.
This takes constant time, independent of the number of elements in g.
Examples:

(define queue (make-queue))

> (queue-length q)
3
> (enqueue! q 5)

\4

(enqueue! q 12)
> (queue-length q)
5

> (dequeue! q)

8

> (queue-length q)
4

(queue-empty? q) — boolean?
q : queue?

Recognizes whether a queue is empty or not.

This takes constant time, independent of the number of elements in q.

Examples:

(define g (make-queue))
> (queue-empty? q)
#t

> (enqueue! g 1)

> (queue-empty? q)

#f

> (dequeue! q)

1

> (queue-empty? q)

#t

(queue? v) — boolean?
v : any/c

This predicate recognizes queues.

This takes constant time, independent of the size of the argument v.

Examples:

> (queue? (make-queue))

#t

> (queue? ’not-a-queue)

#f

(non-empty-queue? v) — boolean?
v : any/c

This predicate recognizes non-empty queues.
This takes constant time, independent of the size of the argument v.

Examples:

> (non-empty-queue? (let ([q (make-queue)])
(enqueue! q 1)

Q)
#t
> (non-empty-queue? (make-queue))
#f
> (non-empty-queue? ’not-a-queue)
#f

(in-queue queue) — sequence?
queue : queue?

Returns a sequence whose elements are the elements of queue.

queue/c : flat-contract?
nonempty-queue/c : flat-contract?

These are provided for backwards compatibility. They are identical to queue? and non-
empty-queue?, respectively.

2 Growable Vectors

(require data/gvector) package: data-1ib

A growable vector (gvector) is a mutable sequence whose length can change over time. A
gvector also acts as a dictionary (dict? from racket/dict), where the keys are zero-based
indexes and the values are the elements of the gvector. A gvector can be extended by adding
an element to the end, and it can be shrunk by removing any element, although removal can
take time linear in the number of elements in the gvector.

Two gvectors are equal? if they contain the same number of elements and if the contain
equal elements at each index.

Operations on gvectors are not thread-safe.
(make-gvector [#:capacity capacity]) — gvector?
capacity : exact-positive-integer? = 10
Creates a new empty gvector with an initial capacity of capacity.

(gvector elem ...) — gvector?
elem : any/c

Creates a new gvector containing each elem in order.

(gvector? x) — boolean?
x @ any/c

Returns #t if x is a gvector, #f otherwise.

(gvector-ref gv index [default]) — any/c
gv . gvector?
index : exact-nonnegative-integer?
default : any/c = (error)

Returns the element at index index, if index is less than (gvector-count gv). Other-
wise, default is invoked if it is a procedure, returned otherwise.

(gvector-add! gv value ...) — void?
gv : gvector?
value : any/c

Adds each value to the end of the gvector gv.

(gvector-set! gv index value) — void?
gv . gvector?
. (and/c exact-nonnegative-integer?
index :
(</c (+ 1 (gvector-count gv))))

value : any/c

Sets the value at index index to be value. If index is (gvector-count gv)—that
is, one more than the greatest used index—the effect is the same as (gvector-add! gv
value).

(gvector-remove! gv index) — void?
gv . gvector?
. (and/c exact-nonnegative-integer?
index :
(</c (gvector-count gv)))

Removes the item at index, shifting items at higher indexes down. Takes time proportional
to (- (gvector-count gv) index).

(gvector-remove-last! gv) — any/c
gv : gvector?

Removes the element at the end and returns it. Takes constant time.

(gvector-count gv) — exact-nonnegative-integer?
gv . gvector?

Returns the number of items in gv.

(gvector->vector gv) — vector?
gv . gvector?

Returns a vector of length (gvector-count gv) containing the elements of gv in order.

(gvector->list gv) — list?
gv : gvector?

Returns a list of length (gvector-count gv) containing the elements of gv in order.

(in-gvector gv) — sequence?
gv . gvector?

Returns a sequence whose elements are the elements of gv. Mutation of gv while the se-
quence is running changes the elements produced by the sequence. To obtain a sequence
from a snapshot of gv, use (in-vector (gvector->vector gv)) instead.

(for/gvector (for-clause ...) body ...+)
(forx/gvector (for-clause ...) body ...+)
Analogous to for/list and for*/1list, but constructs a gvector instead of a list.

Unlike for/1ist, the body may return zero or multiple values; all returned values are added
to the gvector, in order, on each iteration.

3 Orders and Ordered Dictionaries

(require data/order) package: data-1ib
This library defines orders and the ordered dictionary generic interface.

ordering/c : flat-contract?

Contract for orderings, represented by the symbols ’=, ’<, and ’>.

gen:ordered-dict : any/c

A generic interface for defining new ordered dictionary types. Methods can be attached to the
gen:ordered-dict interface using the #:methods keyword in a structure type definition.
Two “extrema” methods and four “search” methods should be implemented. The extrema
methods must satisfy e/c and the search methods must satisfy s/c:

e/c = (->1 ([d ordered-dict?])
[_ (d) (or/c #f (dict-iter-contract d4))])
s/c = (->1 ([d ordered-dict?]

[k (d) (dict-key-contract d)])
[_ (d) (or/c #f (dict-iter-contract d))])

The methods are implementations of the following generic functions:

¢ dict-iterate-least

¢ dict-iterate-greatest

e dict-iterate-least/>7

e dict-iterate-least/>=7

e dict-iterate-greatest/<?

e dict-iterate-greatest/<=7

A struct type that implements gen: ordered-dict must also implement gen:dict.
: _ (struct-type-property/c
prop:ordered-dict : (vectorof e/c e/c s/c s/c s/c s/c))

A deprecated structure type property used to defined custom ordered dictionaries. Use
gen:ordered-dict instead. Accepts a vector of 6 procedures with the same arguments
as the methods of gen:ordered-dict.

10

(ordered-dict? x) — boolean?
x @ any/c

Returns #t if x is an instance of a struct implementing the ordered dictionary interface (via
gen:ordered-dict).

(dict-iterate-least dict) — (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?

(dict-iterate-greatest dict)

— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?

Returns the position of the least (greatest) key in the ordered dictionary dict. If dict is
empty, #f is returned.

(dict-iterate-least/>7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-least/>=7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-greatest/<? dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-greatest/<=7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c

Returns the position of the least key greater than key, the least key greater than or equal to
key, the greatest key less than key, and the greatest key less than or equal to key, respec-
tively. If no key satisfies the criterion, #£ is returned.

(order name domain-contract comparator)
— (and/c order? procedure?)
name : symbol?
domain-contract : contract?
comparator : (-> any/c any/c ordering/c)
(order name domain-contract =7 <7 [>7]) — (and/c order? procedure?)
name : symbol?
domain-contract : contract?

11

=? : (-> any/c any/c boolean?)
<7 : (-> any/c any/c boolean?)
>7 : (-> any/c any/c boolean?) = (lambda (x y) (<7 y x))

Produces a named order object encapsulating a domain contract and a comparator function.
If a single procedure is given, it is used directly as the comparator. If two or three procedures
are given, they are used to construct the comparator.

The domain-contract is not applied to the comparison function; rather, clients of the order
are advised to incorporate the domain contracts into their own contracts. For example, when
a splay-tree (see data/splay-tree) is constructed with an order, it applies the domain-
contract to its keys. Thus the contract is checked once per dictionary procedure call, rather
than on every comparison.

An order object is applicable as a procedure; it behaves as its comparator.
Examples:

> (define string-order (order ’string-order string? string=7 string<?))

> (string-order "abc" "acdc")
<
> (string-order "x" 12)
string="?: contract violation
expected: string?
given: 12
argument position: 2nd
other arguments...:

e
(order? x) — boolean?

x : any/c

Returns #t if x is an order object, #f otherwise.

(order-comparator ord) — (-> any/c any/c ordering/c)
ord : order?
Extracts the comparator function from an order object.
(order-domain-contract ord) — contract?

ord . order?

Extracts the domain contract from an order object.

12

(order-=7 ord) — (-> any/c any/c boolean?)
ord : order?

(order-<? ord) — (-> any/c any/c boolean?)
ord : order?

Returns a procedure representing the order’s equality relation or less-than relation, respec-
tively.

real-order : order?

The order of the real numbers. The domain of real-order excludes +nan. 0 but includes
+inf.0 and -inf.0. The standard numeric comparisons (=, <) are used; exact 1 is equal to
inexact 1.0.

Examples:

> (real-order 1.0 1)

)=

> (real-order 5 7)

<

> (real-order 9.0 3.4)
1>

> (real-order 1 +inf.0)
<

> (real-order 5 -inf.0)
>

datum-order : order?

An ad hoc order that encompasses many built-in Racket data types as well as prefab structs
and fully-transparent structs. The datum-order comparator orders values of the same data
type according to the data type’s natural order: string="7, string<? for strings, for exam-
ple (but see the warning about numbers below). Different data types are ordered arbitrarily
but contiguously; for example, all strings sort before all vectors, or vice versa. Prefab and
fully-transparent structs are ordered according to their most specific struct type, and prefab
structs are ordered first by their prefab struct keys. The ordering of struct types is indepen-
dent of the struct type hierarchy; a struct type may sort before one of its subtypes but after
another.

Programs should not rely on the ordering of different data types, since it may change in
future versions of Racket to improve comparison performance. The ordering of non-prefab
struct types may change between one execution of a program and the next.

The order is guaranteed, however, to lexicographically sort proper lists, vectors, prefab
structs, and fully-transparent structs. Improper lists sort lexicographically considered as

13

pairs, but the ordering of an improper list and its proper prefix, such as >(a b . ¢) and
’(a b), is not specified.

The datum-order comparator does not perform cycle-detection; comparisons involving
cyclic data may diverge.

Warning: datum-order is not compatible with the standard numeric order; all exact num-
bers are ordered separately from all inexact numbers. Thus 1 is considered distinct from
1.0, for example.

The following data types are currently supported: numbers, strings, bytes, keywords, sym-
bols, booleans, characters, null, pairs, vectors, boxes, prefab structs, and fully-transparent
structs.

The following example comparisons are specified to return the results shown:

> (datum-order 1 2)

<

> (datum-order 8.0 5.0)

>

> (datum-order ’apple ’candy)

<

> (datum-order ’(a #:b c) ’(a #:c d c))
<

> (datum-order ’(5 . 4) (3 2 1))

>

> (datum-order ’(a b . c) ’(a b . z))
<

> (datum-order "apricot" "apple")

>

> (datum-order ’#(1 2 3) *#(1 2))

>

> (datum-order ’#(1 2 3) ’#(1 3))

<

> (datum-order (box ’car) (box ’candy))
>

> (datum-order ’#s(point a 1) ’#s(point b 0))
<

> (datum-order ’#s(A 1 2) ’#s(Z 3 4 5))
<

> (struct fish (name) #:transparent)

> (datum-order (fish ’alewife) (fish ’sockeye))
<

The following example comparisons are unspecified but consistent within all executions of

14

a single version of Racket:

(datum-order 1 2.0)
(datum-order 3+5i 3+2i)
(datum-order ’apple "zucchini')
(datum-order ’(a b) ’(a b . c))
(datum-order 0 ’zero)

The following example comparison is unspecified but consistent within a single execution
of a program:

(struct fowl (name) #:transparent)
(datum-order (fish ’alewife) (fowl ’dodo))

15

4 Splay Trees

(require data/splay-tree) package: data-1ib

Splay trees are an efficient data structure for mutable dictionaries with totally ordered keys.
They were described in the paper “Self-Adjusting Binary Search Trees” by Daniel Sleator
and Robert Tarjan in Journal of the ACM 32(3) pp652-686.

A splay-tree is a ordered dictionary (dict? and ordered-dict?).

Operations on splay-trees are not thread-safe. If a key in a splay-tree is mutated, the splay-
tree’s internal invariants may be violated, causing its behavior to become unpredictable.

(make-splay-tree [ord
#:key-contract key-contract
#:value-contract value-contract]) — splay-tree?
ord : order? = datum-order
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty splay-tree. The splay tree uses ord to order keys; in addition, the
domain contract of ord is combined with key-contract to check keys.

Examples:

> (define splay-tree
(make-splay-tree (order ’string-order string? string=7? string<?)))

> (splay-tree-set! splay-tree "dot" 10)
> (splay-tree-set! splay-tree '"cherry" 500)

> (dict-map splay-tree list)

> (("cherry" 500) ("dot" 10))

> (splay-tree-ref splay-tree '"dot'")

10

> (splay-tree-remove! splay-tree "cherry")

> (splay-tree-count splay-tree)
1
> (splay-tree-set! splay-tree ’pear 3)
splay-tree-set!: contract violation

expected: string?

given: 'pear

in: the key argument of

(->i

16

((s splay-tree?) (key (s) ...) (v (s) ...))
(_rvoid?))
contract from:
<pkgs>/data-lib/data/splay-tree.rkt
blaming: top-level
at: <pkgs>/data-lib/data/splay-tree.rkt:1115.2

(make-adjustable-splay-tree [#:key-contract key-contract
#:value-contract value-contract])
— splay-tree?
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty splay-tree that permits only exact integers as keys (in addition to
any constraints imposed by key-contract). The resulting splay tree answers true to
adjustable-splay-tree? and supports efficient key adjustment.

Examples:
> (define splay-tree (make-adjustable-splay-tree))
> (splay-tree-set! splay-tree 3 ’apple)
> (splay-tree-set! splay-tree 6 ’cherry)

> (dict-map splay-tree list)

>((3 apple) (6 cherry))

> (splay-tree-ref splay-tree 3)
’apple

> (splay-tree-remove! splay-tree 6)

> (splay-tree-count splay-tree)
1

(splay-tree? x) — boolean?
x : any/c

Returns #t if x is a splay-tree, #f otherwise.
(adjustable-splay-tree? x) — boolean?

x : any/c

Returns #t if x is a splay-tree that supports key adjustment; see splay-tree-contract!
and splay-tree-expand!.

17

(splay-tree-ref s key [default]) — any
s : splay-tree?
key : any/c
default : any/c = (lambda () (error))
(splay-tree-set! s key value) — void?
s : splay-tree?
key : any/c
value : any/c
(splay-tree-remove! s key) — void?
s : splay-tree?
key : any/c
(splay-tree-count s) — exact-nonnegative-integer?
s : splay-tree?
(splay-tree-iterate-first s) — (or/c #f splay-tree-iter?)
s : splay-tree?
(splay-tree-iterate-next s iter) — (or/c #f splay-tree-iter?)
s : splay-tree?
iter : splay-tree-iter?
(splay-tree-iterate-key s iter) — any/c
s : splay-tree?
iter : splay-tree-iter?
(splay-tree-iterate-value s iter) — any/c
s : splay-tree?
iter : splay-tree-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-
iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-
value, respectively.

(splay-tree-remove-range! s from to) — void?
s : splay-tree?
from : any/c
to : any/c

Removes all keys in [from, to); that is, all keys greater than or equal to from and less than
to.

This operation takes O(N) time, or O(log N) time if (adjustable-splay-tree? s).
(splay-tree-contract! s from to) — void?
s : adjustable-splay-tree?
from : exact-integer?
to : exact-integer?

Like splay-tree-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

18

This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

(splay-tree-expand! s from to) — void?
s : adjustable-splay-tree?
from : exact-integer?
to : exact-integer?

Increases the value of all keys greater than or equal to from by (- to from).
This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

(splay-tree-iterate-least s) — (or/c #f splay-tree-iter?)
s : splay-tree
(splay-tree-iterate-greatest s) — (or/c #f splay-tree-iter?)
s : splay-tree
(splay-tree-iterate-least/>7 s key) — (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-least/>=7 s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-greatest/<? s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-greatest/<=7 s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c

Implementations of dict-iterate-least, dict-iterate-greatest, dict-iterate-
least/>7, dict-iterate-least/>=7, dict-iterate-greatest/<?, and dict-

iterate-greatest/<=7, respectively.

(splay-tree-iter? x) — boolean?
x : any/c

Returns #t if x represents a position in a splay-tree, #f otherwise.

(splay-tree->list s) — (listof pair?)
s : splay-tree?

Returns an association list with the keys and values of s, in order.

19

5 Skip Lists

(require data/skip-list) package: data-1ib

Skip lists are a simple, efficient data structure for mutable dictionaries with totally ordered
keys. They were described in the paper “Skip Lists: A Probabilistic Alternative to Balanced
Trees” by William Pugh in Communications of the ACM, June 1990, 33(6) pp668-676.

A skip-list is an ordered dictionary (dict? and ordered-dict?). It also supports exten-
sions of the dictionary interface for iterator-based search and mutation.

Operations on skip-lists are not thread-safe. If a key in a skip-list is mutated, the skip-list’s
internal invariants may be violated, causings its behavior to become unpredictable.

(make-skip-list [ord
#:key-contract key-contract
#:value-contract value-contract]) — skip-1list?
ord : order? = datum-order
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty skip-list. The skip-list uses ord to order keys; in addition, the domain
contract of ord is combined with key-contract to check keys.

Examples:
> (define skip-list (make-skip-list real-order))
> (skip-list-set! skip-list 3 ’apple)
> (skip-list-set! skip-list 6 ’cherry)

> (dict-map skip-list list)

>((3 apple) (6 cherry))

> (skip-list-ref skip-list 3)
’apple

> (skip-list-remove! skip-list 6)

> (skip-list-count skip-list)
1

(make-adjustable-skip-list [#:key-contract key-contract
#:value-contract value-contract])
— adjustable-skip-1list?
key-contract : contract? = any/c
value-contract : contract? = any/c

20

Makes a new empty skip-list that permits only exact integers as keys (in addition to any con-
straints imposed by key-contract). The resulting skip-list answers true to adjustable-
skip-1list? and supports key adjustment.

(skip-list? v) — boolean?
v : any/c

Returns #t if v is a skip-list, #f otherwise.

(adjustable-skip-1list? v) — boolean?
v : any/c

Returns #t if v is a skip-list that supports key adjustment; see skip-list-contract! and
skip-list-expand!

(skip-list-ref skip-list key [default]) — any/c
skip-list : skip-list?
key : any/c
default : any/c = (lambda () (error))

(skip-list-set! skip-list key value) — void?
skip-list : skip-1list?
key : any/c
value : any/c

(skip-list-remove! skip-list key) — void?
skip-list : skip-1list?
key : any/c

(skip-list-count skip-list) — exact-nonnegative-integer?
skip-list : skip-list?

(skip-list-iterate-first skip-list) — (or/c skip-list-iter? #f)
skip-list : skip-1list?

(skip-list-iterate-next skip-list iter)

— (or/c skip-list-iter? #f)
skip-list : skip-list?
iter : skip-list-iter?

(skip-list-iterate-key skip-list iter) — any/c
skip-list : skip-1list?
iter : skip-list-iter?

(skip-list-iterate-value skip-list iter) — any/c
skip-list : skip-list?
iter : skip-list-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-
iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-
value, respectively.

21

(skip-list-remove-range! skip-list from to) — void?
skip-list : skip-1list?
from : any/c
to : any/c

Removes all keys in [from, to); that is, all keys greater than or equal to from and less than
to.

(skip-list-contract! skip-list from to) — void?
skip-list : adjustable-skip-list?
from : exact-integer?
to : exact-integer?

Like skip-1list-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

This operation takes time proportional to the number of elements with keys greater than or
equal to to.

(skip-list-expand! skip-list from to) — void?
skip-list : adjustable-skip-list?
from : exact-integer?
to : exact-integer?

Increases the value of all keys greater than or equal to from by (- to from).

This operation takes time proportional to the number of elements with keys greater than or
equal to from.

(skip-list-iterate-least/>7 skip-list key)
— (or/c skip-list-iter? #f)

skip-list : skip-1list?

key : any/c
(skip-list-iterate-least/>=7 skip-list key)
— (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c
(skip-list-iterate-greatest/<? skip-list
key)
— (or/c skip-list-iter? #f)
skip-list : skip-1list?
key : any/c
(skip-list-iterate-greatest/<=7 skip-list
key)

— (or/c skip-list-iter? #f)
skip-list : skip-1list?
key : any/c

22

(skip-list-iterate-least skip-list) — (or/c skip-list-iter? #f)
skip-list : skip-1list?

(skip-list-iterate-greatest skip-list)

— (or/c skip-list-iter? #f)
skip-list : skip-1list?

Implementations of dict-iterate-least, dict-iterate-greatest, dict-iterate-
least/>7,dict-iterate-least/>=7,dict-iterate-greatest/<7,dict-iterate-
greatest/<=7,dict-iterate-least, and dict-iterate-greatest, respectively.

(skip-list-iter? v) — boolean?
v : any/c
Returns #t if v represents a position in a skip-list, #f otherwise.
(skip-list->list skip-list) — (listof pair?)

skip-list : skip-1list?

Returns an association list with the keys and values of skip-1ist, in order.

23

6 Interval Maps

(require data/interval-map) package: data-1ib

An interval-map is a mutable data structure that maps half-open intervals of exact integers to
values. An interval-map is queried at a discrete point, and the result of the query is the value
mapped to the interval containing the point.

Internally, interval-maps use a splay-tree (data/splay-tree) of intervals for efficient query
and update, including efficient contraction and expansion of intervals.

Interval-maps implement the dictionary (racket/dict) interface to a limited extent. Only
dict-ref and the iteration-based methods (dict-iterate-first, dict-map, etc) are
supported. For the iteration-based methods, the mapping’s keys are considered the pairs of
the start and end positions of the mapping’s intervals.

Examples:
> (define r (make-interval-map))
> (interval-map-set! r 1 5 ’apple)
> (interval-map-set! r 6 10 ’pear)
> (interval-map-set! r 3 7 ’banana)
> (dict-map r list)
>(((1 . 3) apple) ((3 . 7) banana) ((7 . 10) pear))

Operations on interval-maps are not thread-safe.

(make-interval-map [#:key-contract key-contract
#:value-contract value-contract])
— interval-map?
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty interval-map.

(interval-map? v) — boolean?
v : any/c

Returns #t if v is an interval-map, #f otherwise.

(interval-map-ref interval-map
position
[default]) — any/c

24

interval-map : interval-map?
position : exact-integer?
default : any/c = (lambda () (error))

Return the value associated with position in interval-map. If no mapping is found,
default is applied if it is a procedure, or returned otherwise.

(interval-map-set! interval-map
start
end
value) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?
value : any/c

Updates interval-map, associating every position in [start, end) with value.

Existing interval mappings contained in [start, end) are destroyed, and partly overlap-
ping intervals are truncated. See interval-map-update*! for an updating procedure that
preserves distinctions within [start, end).

(interval-map-update*! interval-map
start
end
updater
[default]) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?
updater : (-> any/c any/c)
default : any/c = (lambda () (error))

Updates interval-map, associating every position in [start, end) with the result of ap-
plying updater to the position’s previously associated value, or to the default value pro-
duced by default if no mapping exists.

Unlike interval-map-set!, interval-map-update*! preserves existing distinctions
within [start, end).

(interval-map-remove! interval-map
start
end) — void?
interval-map : interval-map?
start : (or/c exact-integer? -inf.0)
end : (or/c exact-integer? +inf.0)

25

Removes the value associated with every position in [start, end).

(interval-map-contract! interval-map
start
end) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?

Contracts interval-map’s domain by removing all mappings on the interval [start, end)
and decreasing intervals initally after end by (- end start).

If start is not less than end, an exception is raised.

(interval-map-expand! interval-map
start
end) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?

Expands interval-map’s domain by introducing a gap [start, end) and increasing inter-
vals initially after start by (- end start).

If start is not less than end, an exception is raised.

(interval-map-cons*! interval-map
start
end
v
[default]) — void?
interval-map : interval-map?
start : any/c
end : any/c
v : any/c
default : any/c = null

Same as the following:

(interval-map-update*! interval-map start end
(lambda (o0ld) (cons v old))
default)

(interval-map-iterate-first interval-map)
— (or/c interval-map-iter? #f)

interval-map : interval-map?

26

(interval-map-iterate-next interval-map
iter)
— (or/c interval-map-iter? #f)
interval-map : interval-map?
iter : interval-map-iter?
(interval-map-iterate-key interval-map
iter) — pair?
interval-map : interval-map?
iter : interval-map-iter?
(interval-map-iterate-value interval-map
iter) — any
interval-map : interval-map?
iter : interval-map-iter?

Implementations of dict-iterate-first, dict-iterate-next, dict-iterate-key,
and dict-iterate-value, respectively.
(interval-map-iter? v) — boolean?

v : any/c

Returns #t if v represents a position in an interval-map, #f otherwise.

27

7 Binary Heaps

(require data/heap) package: data-1ib
Binary heaps are a simple implementation of priority queues.
Operations on binary heaps are not thread-safe.

(make-heap <=7) — heap?

<=? : (-> any/c any/c any/c)

Makes a new empty heap using <=7 to order elements.
Examples:

> (define a-heap-of-strings (make-heap string<=7))

> a-heap-of-strings
#<heap>

; With structs:

> (struct node (name val))

> (define (node<=7 x y)
(<= (node-val x) (node-val y)))

> (define a-heap-of-nodes (make-heap node<=7))

> a-heap-of-nodes
#<heap>

(heap? x) — boolean?
x : any/c

Returns #t if x is a heap, #f otherwise.
Examples:

> (heap? (make-heap <=))

#t

> (heap? "I am not a heap")
#f

(heap-count h) — exact-nonnegative-integer?
h : heap?

Returns the number of elements in the heap.

28

Examples:
> (define a-heap (make-heap <=))

> (heap-add-all! a-heap (7 3 9 1 13 21 15 31))

> (heap-count a-heap)

8

(heap-add! h v ...) — void?
h : heap?
v : any/c

Adds each v to the heap.
Examples:
> (define a-heap (make-heap <=))

> (heap-add! a-heap 2009 1009)

(heap-add-all! h v) — void?
h : heap?
v : (or/c list? vector? heap?)

Adds each element contained in v to the heap, leaving v unchanged.
Examples:

> (define heap-1 (make-heap <=))

> (define heap-2 (make-heap <=))

> (define heap-12 (make-heap <=))

> (heap-add-all! heap-1 (3 14159 2 6))

> (heap-add-all! heap-2 #(2 7 1 8 2 8 1 8))

> (heap-add-all! heap-12 heap-1)

> (heap-add-all! heap-12 heap-2)

> (heap-count heap-12)
16

29

(heap-min h) — any/c
h : heap?

Returns the least element in the heap h, according to the heap’s ordering. If the heap is
empty, an exception is raised.

Examples:
> (define a-heap (make-heap string<=7))

"non

> (heap-add! a-heap '"sneezy" "sleepy" "dopey" "doc"
||happy" llbashfulll llgrumpy”)

> (heap-min a-heap)
"bashful"
; Taking the min of the empty heap is an error:
> (heap-min (make-heap <=))
heap-min: empty heap
(heap-remove-min! h) — void?
h : heap?

Removes the least element in the heap h. If the heap is empty, an exception is raised.

Examples:

> (define a-heap (make-heap string<=7))

> (heap-add! a-heap "fili" "fili" "oin" "gloin" "thorin"
"dwalin" "balin" "bifur" "bofur"
"bombur" "dori" " ori™)

nori

> (heap-min a-heap)
"balin"
> (heap-remove-min! a-heap)

> (heap-min a-heap)
"bifur"

(vector->heap <=7 items) — heap?
<=? : (-> any/c any/c any/c)
items : vector?

Builds a heap with the elements from items. The vector is not modified.

Examples:

30

> (struct item (val frequency))

> (define (item<=7 x y)
(<= (item-frequency x) (item-frequency y)))

> (define some-sample-items
(vector (item #\a 17) (item #\b 12) (item #\c 19)))

> (define a-heap (vector->heap item<=7 some-sample-items))

(heap->vector h) — vector?
h : heap?

Returns a vector containing the elements of heap h in the heap’s order. The heap is not
modified.
Examples:

> (define word-heap (make-heap string<=7))

> (heap-add! word-heap "pile" "mound" "agglomerate" "cumulation')

> (heap->vector word-heap)
*#("agglomerate" "cumulation" "mound" "pile")

(heap-copy h) — heap?
h : heap?

Makes a copy of heap h.
Examples:

> (define word-heap (make-heap string<=7))

> (heap-add! word-heap "pile" "mound" "agglomerate" "cumulation')

Vv

(define a-copy (heap-copy word-heap))

\4

(heap-remove-min! a-copy)

> (heap-count word-heap)

4

> (heap-count a-copy)

3

(in-heap/consume! heap) — sequence?
heap : heap?

31

Returns a sequence equivalent to heap, maintaining the heap’s ordering. The heap is con-
sumed in the process. Equivalent to repeated calling heap-min, then heap-remove-min!.

Examples:

> (define h (make-heap <=))
> (heap-add-all! h ’(50 40 10 20 30))

> (for ([x (in-heap/consume! h)])
(displayln x))

10

20

30

40

50

> (heap-count h)

0

(in-heap heap) — sequence?
heap : heap?

Returns a sequence equivalent to heap, maintaining the heap’s ordering. Equivalent to in-
heap/consume! except the heap is copied first.

Examples:

> (define h (make-heap <=))
> (heap-add-all! h ’(50 40 10 20 30))

> (for ([x (in-heap h)])
(displayln x))

10

20

30

40

50

> (heap-count h)

5

(heap-sort! v <=7) — void?
v : (and/c vector? (not/c immutable?))
<=7 : (-> any/c any/c any/c)

Sorts vector v using the comparison function <=7.

32

Examples:

> (define terms (vector "batch" "deal" "flock" "good
deal" "hatful" "lot"))

> (heap-sort! terms string<=7)

> terms
‘#("batch" "deal" "flock" "good deal" "hatful" "lot")

33

8 Integer Sets

(require data/integer-set) package: base

This library provides functions for working with finite sets of integers. This module is de-
signed for sets that are compactly represented as groups of intervals, even when their cardi-
nality is large. For example, the set of integers from -1000000 to 1000000 except for 0, can
be represented as {[-1000000, -1], [1, 1000000]}. This data structure would not be a good
choice for the set of all odd integers between 0 and 1000000, which would be {[1, 1], [3, 3],
... [999999, 999999]}.

In addition to the integer set abstract type, a well-formed set is a list of pairs of exact inte-
gers, where each pair represents a closed range of integers, and the entire set is the union
of the ranges. The ranges must be disjoint and increasing. Further, adjacent ranges must
have at least one integer between them. For example: > ((-1 . 2) (4 . 10)) is a well-
formed-set as is > ((1 . 1) (3 . 3)),but °((1 . 5) (6 . 7)), *((1 . 5) (-3 .
-1)),7((5 . 1)),and > ((1 . 5) (3 . 6)) are not.

An integer set implements the stream and sequence generic interfaces.

(make-integer-set wfs) — integer-set?
wfs : well-formed-set?

Creates an integer set from a well-formed set.

(integer-set-contents s) — well-formed-set?
s : integer-set?

Produces a well-formed set from an integer set.

(set-integer-set-contents! s wfs) — void?
s : integer-set?
wfs : well-formed-set?

Mutates an integer set.
(integer-set? v) — boolean?
v : any/c
Returns #t if v is an integer set, #f otherwise.
(well-formed-set? v) — boolean?
v : any/c

Returns #t if v is a well-formed set, #f otherwise.

34

(make-range) — integer-set?
(make-range elem) — integer-set?
elem : exact-integer?
(make-range start end) — integer-set?
start : exact-integer?
end : exact-integer?

Produces, respectively, an empty integer set, an integer set containing only elem, or an
integer set containing the integers from start to end inclusive, where (<= start end).

(intersect x y) — integer-set?
X : integer-set?
y . integer-set?

Returns the intersection of the given sets.

(subtract x y) — integer-set?
X : integer-set?
y : integer-set?

Returns the difference of the given sets (i.e., elements in x that are not in y).

(union x y) — integer-set?
X . integer-set?
y . integer-set?

Returns the union of the given sets.

(split x y) — integer-set? integer-set? integer-set?
X : integer-set?
y : integer-set?

Produces three values: the first is the intersection of x and y, the second is the difference x
remove y, and the third is the difference y remove x.

(complement s start end) — integer-set?
s ! integer-set?
start : exact-integer?
end : exact-integer?

Returns a set containing the elements between start to end inclusive that are not in s,
where (<= start-k end-k).

35

(symmetric-difference x y) — integer-set?
X : integer-set?
y . integer-set?

Returns an integer set containing every member of x and y that is not in both sets.

(member? k s) — boolean?
k : exact-integer?
s ! integer-set?

Returns #t if k is in s, #f otherwise.

(get-integer set) — (or/c exact-integer? #f)
set . integer-set?

Returns a member of set, or #f if set is empty.

(foldr proc base-v s) — any/c
proc : (exact-integer? any/c . -> . any/c)
base-v : any/c
s : integer-set?

Applies proc to each member of s in ascending order, where the first argument to proc
is the set member, and the second argument is the fold result starting with base-v. For
example, (foldr cons null s) returns a list of all the integers in s, sorted in increasing
order.

(partition s) — (listof integer-set?)
s : (listof integer-set?)

Returns the coarsest refinement of the sets in s such that the sets in the result list are pairwise
disjoint. For example, partitioning the sets that represent > ((1 . 2) (5 . 10)) and * ((2
2) (6 . 6) (12 . 12)) produces the a list containing the sets for > ((1 . 1) (5

5) (7 . 10))°((2 . 2) (6 . 6)),and > ((12 . 12)).

(count s) — exact-nonnegative-integer?
s ! integer-set?

Returns the number of integers in the given integer set.
(subset? x y) — boolean?

X : integer-set?
y : integer-set?

Returns true if every integer in x is also in y, otherwise #f.

36

9 Bit Vectors

(require data/bit-vector) package: base

A bit vector is a mutable sequence whose elements are booleans. A bit vector also acts as
a dictionary (dict? from racket/dict), where the keys are zero-based indexes and the
values are the elements of the bit-vector. A bit-vector has a fixed size.

Two bit-vectors are equal? if they contain the same number of elements and if they contain
equal elements at each index.

(make-bit-vector size [fill]) — bit-vector?
size : exact-integer?
fill : boolean? = #f
Creates a new bit-vector of size size. All elements are initialized to fi11.

Examples:

> (bit-vector-ref (make-bit-vector 3) 2)

#f

> (bit-vector-ref (make-bit-vector 3 #t) 2)
#t

(bit-vector elem ...) — bit-vector?

elem . boolean?

Creates a new bit-vector containing each elem in order.
Example:

> (bit-vector-ref (bit-vector #f #t #f) 1)
#t

(bit-vector? v) — boolean?
v : any/c

Returns #t if v is a bit-vector, #f otherwise.

(bit-vector-ref bv index [default]) — any/c
bv : bit-vector?
index : exact-nonnegative-integer?
default : any/c = (error)

Returns the element at index index, if index is less than (bit-vector-length bv).
Otherwise, default is invoked if it is a procedure, returned otherwise.

37

Examples:

> (bit-vector-ref (bit-vector #f #t) 1)

#t
> (bit-vector-ref (bit-vector #f #t) 5 ’not-there)

‘not-there

(bit-vector-set! bv index value) — void?
bv : bit-vector?
index - (and/c exact-nonnegative-integer?
' (</c (+ 1 (bit-vector-length vv))))

value : boolean?

Sets the value at index index to be value.

Examples:

> (define bv (bit-vector #f #t))

> (bit-vector-ref bv 0)
#£
> (bit-vector-set! bv 0 #t)

> (bit-vector-ref bv 0)

#t

(bit-vector-length bv) — exact-nonnegative-integer?
bv : bit-vector?

Returns the number of items in the bit-vector bv.

(bit-vector-popcount bv) — exact-nonnegative-integer?

bv : bit-vector?

Returns the number of set bits in the bit-vector bv.

Example:

> (bit-vector-popcount (bit-vector #f #t #t))
2
(bit-vector-copy bv [start end]) — bit-vector?
bv : bit-vector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh bit-vector with the same elements as bv from start (inclusive) to end

(exclusive).

38

(in-bit-vector bv) — sequence?
bv : bit-vector?

Returns a sequence whose elements are the elements of the bit-vector bv. Mutation of bv
while the sequence is running changes the elements produced by the sequence. To obtain
a sequence from a snapshot of bv, use (in-bit-vector (bit-vector-copy bv)) in-
stead.

Examples:

> (define bv (bit-vector #f #t #f))

> (for/list ([x (in-bit-vector bv)]) x)

P (#f #t #£)
(for/bit-vector maybe-length (for-clause ...)
body-or-break ... body)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr . exact-nonnegative-integer?

Iterates like for/vector, but results are accumulated into a bit-vector instead of a vector.

If the optional #:1length clause is specified, the result of length-expr determines the
length of the result bit-vector. In that case, the iteration can be performed more efficiently,
and it terminates when the bit-vector is full or the requested number of iterations have been
performed, whichever comes first. If Iength-expr specifies a length longer than the num-
ber of iterations, then the remaining slots of the vector are initialized to the value of £i11-
expr, which defaults to #f (i.e., the default argument of make-bit-vector).

Examples:

> (bit-vector->list
(for/bit-vector ([i >(1 2 3)]) (o0dd? 1)))
P (#t #E #t)
> (bit-vector->list
(for/bit-vector #:length 2 ([i ’(1 2 3)]) (o0dd? 1)))
Y (#t #f)
> (bit-vector->list
(for/bit-vector #:length 4 ([i ’(1 2 3)]) (odd? i)))
Y (#t #f #t #f)
> (bit-vector->list
(for/bit-vector #:length 4 #:£fill #t ([1 *(1 2 3)]1) (odd? 1)))

39

Y (#t #f #t #t)

The for/bit-vector form may allocate a bit-vector and mutate it after each iteration of
body, which means that capturing a continuation during body and applying it multiple times
may mutate a shared bit-vector.

(for*/bit-vector maybe-length (for-clause ...)
body-or-break ... body)

Like for/bit-vector but with the implicit nesting of forx.

(bit-vector->1list bv) — (listof boolean?)
bv : bit-vector?
(list->bit-vector bits) — bit-vector?
bits : (listof boolean?)
(bit-vector->string bv) — (and/c string? #rx"~[01]*$")
bv : bit-vector?
(string->bit-vector s) — bit-vector?
s : (and/c string? #rx"~[01]*3$")

Converts between bit-vectors and their representations as lists and strings.
Examples:

> (bit-vector->list (string->bit-vector "100111"))

Y(#t #f #E #t #t #E)

> (bit-vector->string (list->bit-vector ’(#t #f #t #t)))
||1011||

40

10 Union-Find: Sets with only Canonical Elements

(require data/union-find) package: data-1ib

The union-find algorithm and data structure provides an API for representing sets that con-
tain a single, canonical element. The sets support an (imperative) union operation (the library
picks one of the canonical elements of the original sets to be the canonical element of the
union), as well as getting and setting the canonical element.

These operations are not thread-safe.
(uf-new c¢) — uf-set?

c : any/c

Makes a new set with the canonical element c.
This is a constant time operation.
Examples:

> (uf-new ’whale)
#<uf-set: ’whale>
> (uf-new ’dwarf-lantern)
#<uf-set: ’dwarf-lantern>

(uf-set? x) — boolean?
x @ any/c
Returns #t if x was created with uf -new, and #f otherwise.
This is a constant time operation.
Examples:
> (uf-set? (uf-new ’spiny-dogfish))
#t

> (uf-set? "I am not a uf-set")
#f

(uf-find a) — any/c
a : uf-set?

Returns the canonical element of a.
This is an amortized (essentially) constant time operation.

Example:

41

> (uf-find (uf-new ’tasselled-wobbegong))
’tasselled-wobbegong

(uf-union! a b) — void?
a : uf-set?
b : uf-set?

Imperatively unifies a and b, making them both have the same canonical element. Either of
a or b’s canonical elements may become the canonical element for the union.

This is an amortized (essentially) constant time operation.

Examples:

> (define a (uf-new ’sand-devil))
> (define b (uf-new ’pigeye))
> (uf-union! a b)

> (uf-find a)
’sand-devil
> (uf-find b)
’sand-devil

(uf-same-set? a b) — boolean?
a : uf-set?
b : uf-set?

Returns #t if the sets a and b have been unioned.
This is an amortized (essentially) constant time operation.
Examples:

> (define a (uf-new ’finetooth))

> (define b (uf-new ’speartooth))

> (uf-same-set? a b)
#f
> (uf-union! a b)

> (uf-same-set? a b)

#t

(uf-set-canonical! a c) — void?
a : uf-set?
c : any/c

42

Changes a to have a new canonical element.
This is an amortized (essentially) constant time operation.
Examples:

> (define a (uf-new ’sand-devil))

> (uf-set-canonical! a ’lemon)

> (uf-find a)

’lemon

> (define b (uf-new ’pigeye))
> (uf-union! a b)

> (uf-set-canonical! b ’sicklefin-lemon)

> (uf-find a)
’sicklefin-lemon

43

	1 Imperative Queues
	2 Growable Vectors
	3 Orders and Ordered Dictionaries
	4 Splay Trees
	5 Skip Lists
	6 Interval Maps
	7 Binary Heaps
	8 Integer Sets
	9 Bit Vectors
	10 Union-Find: Sets with only Canonical Elements

