
Package Management in Racket
Version 5.92

Jay McCarthy <jay@racket-lang.org>

January 25, 2014

The Racket package manager lets you install new libraries and collections, and the Racket
package catalog helps other Racket programmers find libraries that you make available.

1

mailto:jay@racket-lang.org

Contents

1 Getting Started with Packages 4
1.1 What is a Package? . 4
1.2 Inspecting Your Installation . 4
1.3 Finding Packages . 6
1.4 Installing Packages . 6
1.5 Updating Packages . 7
1.6 Removing Packages . 7
1.7 Creating Packages . 8
1.8 Sharing Packages . 9

1.8.1 GitHub Deployment . 10
1.8.2 Manual Deployment . 10
1.8.3 Helping Others Discover Your Package 10
1.8.4 Naming and Designing Packages 11
1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6 12

2 Package Concepts 13
2.1 Single-collection and Multi-collection Packages 13
2.2 Package Sources . 14
2.3 Package Catalogs . 16
2.4 Explicit vs.Auto-Installation . 16
2.5 Package Conflicts . 16
2.6 Package Updates . 16
2.7 Package Scopes . 17

3 Using raco pkg 18
3.1 raco pkg install . 18
3.2 raco pkg update . 20
3.3 raco pkg remove . 22
3.4 raco pkg show . 22
3.5 raco pkg migrate . 23
3.6 raco pkg create . 24
3.7 raco pkg config . 24
3.8 raco pkg catalog-show . 25
3.9 raco pkg catalog-copy . 26

4 Package Metadata 27

5 Source, Binary, and Built Packages 29

6 Package APIs 32
6.1 Functions for raco pkg . 32
6.2 Package Management Functions . 33
6.3 Package Paths and Database . 43
6.4 Package Source Parsing . 45

2

6.5 Package Catalog Database . 45

7 Package Catalog Protocol 50
7.1 Remote and Directory Catalogs . 50
7.2 SQLite Catalogs . 51

8 PLaneT Compatibility 53

9 FAQ 54
9.1 Are package installations versioned with respect to the Racket version? . . . 54
9.2 Where and how are packages installed? 54
9.3 How are user-specific and installation-wide package scopes related for con-

flict checking? . 54
9.4 Do I need to change a package’s version when I update a package with error

fixes, etc.? . 55
9.5 How can I specify which version of a package I depend on if its interface has

changed and I need an old version? . 55
9.6 How can I fix my installation to a specific set of package implementations or

checksums? . 55
9.7 Why is the package manager so different than PLaneT? 56

10 Future Plans 57
10.1 Short Term . 57
10.2 Long Term . 58

3

1 Getting Started with Packages

There are two ways to manage Racket package installations:

• The package manager graphical interface.

Most users access the package manager graphical interface through DrRacket, which
provides a Package Manager... item in the File menu.

You can also install the gui-pkg-manager package, with provides a Racket Pack-

age Manager application (which can be launched as racket-package-manager in
a command-line environment).

• The raco pkg command-line tool.

The raco executable launches various Racket command-line tools, and the raco pkg

command groups various package-management sub-commands. The different raco
pkg sub-commands are documented in §3 “Using raco pkg”.

We’ll use the raco pkg command to describe package-management operations here, but the
graphical interface allows the same operations.

1.1 What is a Package?

A package is not something that you refer to directly in your Racket programs. Instead, a
package is a set of libraries that fit into the collection hierarchy, and you refer to libraries
through their collection-based paths. Libraries that are close in the hierarchy may be pro-
vided by different packages, while a single package may provide libraries that are far from
each other in the hierarchy (but that are conceptually related, somehow).

Racket documentation tells you which package provides a given library. For example, the
documentation for the pict/face library says that it is provided by the pict-lib package. If you’re reading

this in a web
browser, click
pict/face to go
straight to its
documentation.

Over time, packages may be refactored so that a library moves to a different package, but the
original package should continue to provide the library, too, by declaring a dependency on
the new package. More generally, a package is intended to have an interface that only grows
in terms of libraries, bindings, and functionality, which provides a basic level of backward
compatibility. Incompatible changes should be implemented in a new package.

1.2 Inspecting Your Installation

To see the packages that you have installed already, use the raco pkg show subcommand:

raco pkg show

4

Unless you have an especially minimal Racket installation, you will have packages installed
already, probably listed in the “Installation-wide” section. In fact, if you have a typical
Racket installation, then raco pkg show will initially show a main-distribution pack-
age and a racket-lib package:

Installation-wide:

Package Checksum Source

main-distribution 01..........ef (catalog main-distribution)

racket-lib fe..........01 (catalog racket-lib)

User-specific for installation:

[none]

The “Checksum” column reports the specific implementation of each package that is in-
stalled. A package can have a version in a more traditional sense, but the checksum is the
“version” as far as the package system is concerned. When you request an update, then a
package installation is updated if the current implementation of the package has a differ-
ent checksum than the installed package, whether or not the package author adjusted the
package’s version.

The “Source” column indicates how each package was installed. A catalog source indi-
cates that the package was installed by consulting a package catalog. The name after cata-
log indicates the name of the package as requested from the catalog, which is normally (but
not necessarily) the name of the package as it exists in your installation. We discuss other
possibilities for “Source” in §1.4 “Installing Packages”.

Neither the main-distribution package nor the racket-lib package actually provides
any libraries on its own, but each declares dependencies on other packages. The racket-

lib package depends on native-library packages, if any, for your platform. The main-

distribution package depends on lots of packages that have been selected for inclusion
in the main Racket distribution. If you provide the --all flag to raco pkg show, then
you can see the packages that were automatically installed as a result of installing main-

distribution and racket-lib (or whatever packages you have explicitly selected for
your installation).

raco pkg show --all

An asterisk appears beside the name of every package that was “auto-installed” to satisfy
a dependency. All auto-installed packages are as available for your use in the same way
as explicitly installed packages, but normally your code should refer only to packages that
you have explicitly installed. The difference between an auto-installed and an explicitly
installed package is how various commands, such as raco pkg show, treat the package. If
you specifically request installation of a package that is auto-installed, then the package is
promoted and thereafter treated as a explicitly installed package.

5

1.3 Finding Packages

The PLT package catalog at

http://pkgs.racket-lang.org

provides a centralized listing of available Racket packages. The PLT package catalog nor-
mally will be the first place you check when looking for a package.

There are other ways to distribute and reference packages. For example, a package can
be installed directly from a ".zip" file—available locally or served from on a web site—or
from a Github repository. Such direct references make sense when a package is not yet ready
for wide distribution or when it will never be of interest to a wide audience. So, you may find
non-catalog references in mailing-list posts, recommended by your friends, or advertised in
e-mail spam.

There may be other package catalog services besides PLT’s. Note that even if you discover
a package name from PLT’s package catalog, your installation may be configured to consult
a different package catalog to locate the package’s implementation (to obtain a pre-built ver-
sion of the package, for example), but you should expect the installation-configured package
catalog to deliver the package that is described on the PLT package catalog.

1.4 Installing Packages

If you find a package by name from a package catalog, then use the package’s name with
raco pkg install:

raco pkg install 〈pkg-name〉

If the package depends on other packages that you do not have installed already, then raco

pkg install will alert you and ask whether it should install them, too. Use --auto to skip
the question and make dependencies installed automatically. Either way, packages installed
to satisfy dependencies are marked as auto-installed, which makes them easier to uninstall,
and it also makes them hidden by default for raco pkg show (since packages that are in-
stalled for dependencies are an implementation detail that you usually do not care about).

The argument that you provide to raco pkg install does not have to be a package name
that is recognized by a package catalog. In general, each argument to raco pkg install

is a package source. A package source can refer to a ".zip" file, a ".tar" file, a Github
repository, a directory-structured web site, or a few other possibilities. In each of those cases,
a package name is inferred from the package source. After the package is installed, you use
the package name with other raco pkg commands to refer to the installed package.

In fact, a package catalog does not actually serve package implementations. It simply maps

6

http://pkgs.racket-lang.org

each package name to a package source. When the package manager consults a package cat-
alog, it gets back a package source for the actual package implementation, so each package
installed from a package catalog is actually installed from a ".zip" file, Github repository,
etc. Registering with a package catalog is just a way of making your package easier to find
and update.

1.5 Updating Packages

If your package installations become out of date, you can update packages with raco pkg

update:

raco pkg update 〈pkg-name〉

Either specify individual packages to update, or use --all to update all installed packages
for which a new checksum is available.

The way that the package manager finds updates depends on the way that a package was
installed. If it was installed by using a package name that was resolved by a package catalog,
then the package catalog is consulted again to get the current checksum for the package, and
the package is updated if the checksum doesn’t match the current installation. If the package
was installed directly from a Github reference, then Github is consulted to get the current
commit of a particular branch, and the package is updated if the commit identifier doesn’t
match the checksum of the current installation.

In some cases, updating a package may require an update to one of the package’s dependen-
cies. That should happen only when the package requires a new binding, feature, or bug fix
from the dependent package, since packages are meant to evolve in an otherwise backward-
compatible way. Package versions provide a way for package authors to declare (and for the
package manager to check) those dependencies. The end result is that raco pkg update

might report a version-mismatch error that forces you to request more package updates than
you originally requested.

Normally, you provide package names to raco pkg update. More generally, you can
provide a package source to raco pkg update. In that case, a package with the same
name must be installed already, and the installed package is replaced with the specified one.
Replacing a package with a new package source is a generalization of fetching a replacement
package that has a new checksum at a previously specified source.

1.6 Removing Packages

As you might expect, raco pkg remove removes a package:

raco pkg remove 〈pkg-name〉

7

If the installation of a package triggered auto-installs of other packages, then removing the
package does not automatically remove the auto-installed packages. Supply the --auto flag
for raco pkg remove, either by itself or when uninstalling packages, to also remove any
auto-installed packages that are left without dependents.

The raco pkg remove command will not remove a package if other installed packages
depend on it, unless you force the removal. If you want to demote a package from explicitly
installed to auto-installed (for clean-up later, perhaps when other packages are removed),
then supply the --demote flag to raco pkg remove.

1.7 Creating Packages

A package normally starts life as a directory containing module files and grows up to become
a Github repository that is registered with a package catalog.

So, to create a package, first make a directory and select its name, 〈pkg-name〉:

mkdir 〈pkg-name〉

Although a package can provide libraries in any number of collections, it’s common for a
package to provide only libraries in a collection that matches the package name. If that’s the
case for your package, then files implementing modules in the 〈pkg-name〉 collection will
go directly in the 〈pkg-name〉 directory that you have created.

If your package implements multiple collections, then you’ll need to add a basic
"info.rkt" file in the 〈pkg-name〉 directory:

cd 〈pkg-name〉

echo "#lang info" > info.rkt

echo "(define collection 'multi)" >> info.rkt

The collection definition tells the package manager that the package implements libraries
in multiple collections, and each collection is represented by a sub-directory whose name
matches the collection name. Libraries for each collection go in the collection’s directory.

You can start with a single-collection package and later change it to a multi-collection pack-
age by restructuring the package directory, so you don’t have to worry much about the choice
when you get started.

Whether creating a single-collection package or a multi-collection package, the next step is
to link your development directory as a locally installed package. Use raco pkg install

in the 〈pkg-name〉 directory:

raco pkg install

8

If you use raco pkg show at this point, you’ll see a line for 〈pkg-name〉. The “Source”
column will show that it’s a linked package, and the “Checksum” column will say #f, which
means that there is no checksum. Sub-commands like raco pkg update will not work
on a linked package, because “updates” to the package happen whenever you modify the
package’s implementation.

Finally, inside the 〈pkg-name〉 directory, add directories and/or files to implement the collec-
tions and/or modules that your package provides. For example, the developer of a tic-tac-
toe multi-collection package that provides games/tic-tac-toe/main and data/matrix

libraries might create directories and files like this:

mkdir -p games/tic-tac-toe

touch games/tic-tac-toe/info.rkt

touch games/tic-tac-toe/main.rkt

mkdir -p data

touch data/matrix.rkt

An "info.rkt" file is not necessary for a single-collection package with no dependencies,
but you may wish to create one, anyway, to hold dependency declarations. Every package
at least depends on base, which provides the collections and libraries of a minimal Racket
installation. To make your package work best for other users, you will ultimately need to
declare all dependencies. (Fortunately, raco setup can check dependencies and help you
figure out what dependencies to declare.)

Even for a single-collection package, you may want to create "info.rkt" and include the
definition

(define collection "〈pkg-name〉")

This definition may seem redundant, since 〈pkg-name〉 is available as the name of the en-
closing directory, but declaring the collection name explicitly prevents the meaning of your
package’s implementation from depending on the way that the implementation is referenced.

Finally, in the case of a multi-collection package, note that the "info.rkt" file in 〈pkg-
name〉 is for the package, not for a collection. Definitions such as scribblings or raco-
commands work only in a collection’s "info.rkt". For a single-collection package, the
"info.rkt" file serves double-duty for the package and collection.

1.8 Sharing Packages

After your package is ready to deploy, choose either §1.8.1 “GitHub Deployment” or §1.8.2
“Manual Deployment”, and then go on to §1.8.3 “Helping Others Discover Your Package”.

9

1.8.1 GitHub Deployment

First, create a free account on GitHub, then create a repository for your package. After that,
your package source is:

git://github.com/〈user〉/〈package〉

If you want the package to be 〈branch〉 instead of master, then add "#〈branch〉" to the end
of the package source.

Whenever you

git push

your changes will automatically be discovered by those who use raco pkg update after
installing from your github-based package source.

1.8.2 Manual Deployment

Alternatively, you can deploy your package by publishing it on a URL you control. If you
do this, it is preferable to create an archive from your package directory first:

raco pkg create 〈package〉

Then, upload the archive and its checksum to your site:

scp 〈package〉.zip 〈package〉.zip.CHECKSUM your-host:public_html/

Your package source is then something like

http://your-host/∼〈user〉/〈package〉.zip

Whenever you want to provide a new release of a package, recreate and reupload the package
archive (and checksum). Your changes will automatically be discovered by those who used
your package source when they use raco pkg update. By default, raco

pkg create

generates a ".zip"
archive. For more
options, refer to the
raco pkg create

documentation. If
you want to
generate an archive
through some other
means, simply
archive what you
made in the first
part of this section.
For more formal
details, refer to the
package definition.

1.8.3 Helping Others Discover Your Package

By using either §1.8.1 “GitHub Deployment” or §1.8.2 “Manual Deployment”, anyone will
be able to install your package by referring to your package source. However, they will not
be able to refer to it by a simple name until it is listed on a package catalog.

10

https://github.com/signup/free
https://help.github.com/articles/create-a-repo

If you’d like to use the PLT package catalog, browse to http://pkgs.racket-lang.org/ and
upload a new package. You will need to create an account and log in first.

You only need to go to this site once to list your package. The server will periodically check
the package source you designate for updates.

If you use this server, and if you use GitHub for deployment, then you will never need to
open a web browser to update your package for end users. You just need to push to your
GitHub repository, then within 24 hours, the PLT package catalog will notice, and raco pkg

update will work on your user’s machines.

1.8.4 Naming and Designing Packages

We suggest the following conventions for naming and designing packages:

• Packages should not include the name of the author or organization that produces
them, but be named based on the content of the package. For example, data-

priority-queue is preferred to johns-amazing-queues.

• Packages that provide an interface to a foreign library or service should be named the
same as the service. For example, cairo is preferred to Racket-cairo or a similar
name.

• Packages should not generally contain version-like elements in their names, ini-
tially. Instead, version-like elements should be added when backwards incompatible
changes are necessary. For example, data-priority-queue is preferred to data-

priority-queue1. Exceptions include packages that present interfaces to external,
versioned things, such as sqlite3 or libgtk2.

• A version declaration for a package is used only by other package implementors to
effectively declare dependencies on provided features. Such declarations allow raco

pkg install and raco pkg update to help check dependencies. Declaring and
changing a version is optional, and the package catalog ignores version declarations;
in particular, a package is a candidate for updating when its checksum changes, in-
dependent of whether the package’s version changes or even in which direction the
version changes.

• Packages should not combine large sets of utilities libraries with other functionality.
For example, a package that contain many extensions to the "racket" collection,
like "racket/more-lists.rkt" and "racket/more-bools.rkt" should not also
contain complete applications, as other packages interested in the "racket/more-

bools.rkt" library will not wish to depend on in such application.

• Packages should normally include both documentation and implementation. To make
the implementation of a package available separately from its documentation (for use

11

http://pkgs.racket-lang.org/

in environments where local documentation is not useful), define a package 〈pkg-
name〉-lib to hold just the implementation, 〈pkg-name〉-doc to hold the documenta-
tion, and 〈pkg-name〉 that depends on both and that “re-exports” both with an implies
declaration (see §4 “Package Metadata”). If you want to keep tests separate, put them
a 〈pkg-name〉-test package that is not a dependency of 〈pkg-name〉. Similarly, use
〈pkg-name〉-exe for executables.

• Packages should generally provide one collection with a name similar to the name of
the package. For example, libgtk1 should provide a collection named "libgtk".
Exceptions include extensions to existing collection, such as new data-structures for
the "data" collection, DrRacket tools, new games for PLT Games, etc.

1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6

A beta version of the package system was added to Racket starting in version 5.3.5. By the
time version 6.0 was released, some features were added.

By using only certain older features, it is possible to make a package that can be used with
Racket versions 5.3.5, 5.3.6, 6.0, and newer.

In your info.rkt, you should:

• Use #lang setup/infotab (not #lang info).

• Use (define collection 'multi). Even if your package has a single collection,
put it in a subdirectory and make a multi-collection package.

• If you depend on a specific version of another package, state this using the (other-

package-name required-version) form (not the form with #:version).

Finally, when listing your package on http://pkgs.racket-lang-org,
you should supply a GitHub source using the URL format
github://github.com/〈user〉/〈repo〉/〈rev〉[/〈path〉] (not the git: format).

12

http://pkgs.racket-lang-org

2 Package Concepts

A package is a set of modules in some number of collections. Modules installed using the
Racket package manager are required like any other modules. For example, if the package
tic-tac-toe contains the module "matrix.rkt" in a "data" collection, then after tic-
tac-toe is installed,

(require data/matrix)

imports the module. The package name is not mentioned with require, because packages
are a way of managing library collections, not a way of referencing them. It is common,
however, for a package to implement a collection whose name is the same as the package
name—in which case a require might appear to be referencing a package, but it is actually
referencing a collection provided by the package.

Each package has associated package metadata:

• a package name — a string made of the characters a through z, A through Z, 0 through
9, _, and -.

• a checksum — a string that identifies different releases of a package. A package can be
updated when its checksum changes, whether or not its version changes. The check-
sum normally can be computed as the SHA1 (see openssl/sha1) of the package’s
content.

• a version — a string of the form 〈maj〉.〈min〉, 〈maj〉.〈min〉.〈sub〉, or
〈maj〉.〈min〉.〈sub〉.〈rel〉, where 〈maj〉, 〈min〉, 〈sub〉, and 〈rel〉 are all canonical deci-
mal representations of natural numbers, 〈min〉 has no more than two digits, and 〈sub〉
and 〈rel〉 has no more than three digits. A version is intended to reflect available fea-
tures of a package, and should not be confused with different releases of a package as
indicated by the checksum.

• a list of dependencies — a list of packages to be installed simultaneously, optionally
with a lower bound on each package’s version.

A package is typically represented by a directory with the same name as the package.
The checksum is typically left implicit. The package directory can contain a file named
"info.rkt" to declare other metadata (see §4 “Package Metadata”).

2.1 Single-collection and Multi-collection Packages

A package can be a single-collection package or a multi-collection package:

13

• A single-collection package’s directory doubles as a collection directory. By default,
the package name also doubles as the collection name, but if the package has an
"info.rkt" file that defines collection to a string, then the string is used as the
name of the package’s collection.

• A multi-collection package’s directory contains subdirectories, each of which is a col-
lection that is provided by the package (where the directory name is used as the col-
lection name). A multi-collection package must have an "info.rkt" file that defines
collection as 'multi.

2.2 Package Sources

A package source identifies a package representation. Each package source type has a dif-
ferent way of storing the checksum and providing the package content (usually with single-
collection package and multi-collection package variants).

The package source types are:

• a local file path naming an archive – The name of the package is the basename
of the archive file. The checksum for archive "f.〈ext〉" is given by the file
"f.〈ext〉.CHECKSUM". The valid archive formats are (currently) ".zip", ".tar",
".tgz", ".tar.gz", and ".plt", each of which represents package content analo-
gous to a directory, but the ".plt" format does not accommodate a single-collection
package representation.

For example, "∼/tic-tac-toe.zip"’s checksum would be inside "∼/tic-tac-
toe.zip.CHECKSUM".

A package source is inferred to refer to a file only when it has a suffix matching a
valid archive format and when it starts with file:// or does not start with alphabetic
characters followed by ://. The inferred package name is the filename without its
suffix.

• a local directory – The name of the package is the name of the directory. The checksum
is not present.

For example, "∼/tic-tac-toe/" is directory package source.

A package source is inferred to refer to a directory only when it does not have a file-
archive suffix, does not match the grammar of a package name, and either starts with
starts with file:// or does not start with alphabetic characters followed by ://. The
inferred package name is the directory name.

• a remote URL naming an archive – This type follows the same rules as a local file
path, but the archive and checksum files are accessed via HTTP(S).

For example, "http://game.com/tic-tac-toe.zip" is a remote URL
package source whose checksum is found at "http://game.com/tic-tac-

toe.zip.CHECKSUM".

14

A package source is inferred to be a URL only when it starts with http:// or
https://, and it is inferred to be a file URL when the URL ends with a path ele-
ment that could be inferred as a file archive. The inferred package name is from the
URL’s file name in the same way as for a file package source.

• a remote URL naming a directory – The remote directory must contain a file named
"MANIFEST" that lists all the contingent files. These are downloaded into a local
directory and then the rules for local directory paths are followed. However, if the
remote directory contains a file named ".CHECKSUM", then it is used to determine the
checksum.

For example, "http://game.com/tic-tac-toe/" is a directory URL pack-
age source whose checksum is found at "http://game.com/tic-tac-

toe/.CHECKSUM".

A package source is inferred to be a URL the same for a directory or file, and it
is treated as a directory URL when it does not end with a path element that has an
archive file suffix. The inferred package name is the directory name.

• a remote URL naming a GitHub repository – The format for such URLs is:

git://github.com/〈user〉/〈repo〉[.git][/][?path=〈path〉][#〈rev〉]

where 〈path〉 can contain multiple /-separated elements to form a path within the
repository, and defaults to the empty path. The 〈rev〉 can be a branch, tag, or commit,
and it defaults to master.

For example, "git://github.com/game/tic-tac-toe#master" is a GitHub
package source.

For backward compatibility, an older format is also supported:

github://github.com/〈user〉/〈repo〉/〈rev〉[/〈path〉]

The zip-formatted archive for the repository (generated by GitHub for any commit)
is used as a remote URL archive path. The checksum is the hash identifying 〈rev〉 if
〈rev〉 is a branch or tag, otherwise 〈rev〉 itself serves as the checksum.

A package source is inferred to be a GitHub reference when it starts with git://

or github://; a package source that is otherwise specified as a GitHub reference is
automatically prefixed with "git://github.com/". The inferred package name is
the last element of 〈path〉 if it is non-empty, otherwise the inferred name is 〈repo〉.

• a package name – A package catalog is consulted to determine the source and check-
sum for the package.

For example, tic-tac-toe is a package name that can be used as a package source.

A package source is inferred to be a package name when it fits the grammar of package
names, which means that it has only the characters a through z, A through Z, 0 through
9, _, and -.

15

2.3 Package Catalogs

A package catalog is a server or database that converts package names to other package
sources. A package catalog is identified by a string representing a URL, where a http://

or https:// URL indicates a remote server, and a file:// URL indicates a local catalog
in the form of an SQLite database or a directory tree.

PLT supports two package catalog servers that are enabled by default: http://pkgs.

racket-lang.org for new packages and http://planet-compats.racket-lang.org

for automatically generated packages for old PLaneT packages. Anyone may host a package
catalog, and any file-serving HTTP host can act as a basic package catalog server. See §7
“Package Catalog Protocol” for information on how package information is extracted from
a catalog.

2.4 Explicit vs. Auto-Installation

When a package is installed, the original source of its installation is recorded, as well as
whether the instalation was an automatic installation. An automatic installation is one that
was installed because it was a dependency of a non-automatic installation package.

2.5 Package Conflicts

Two packages are in conflict if they contain the same module. For example, if the
package tic-tac-toe contains the module file "data/matrix.rkt" and the package
factory-optimize contains the module file "data/matrix.rkt", then tic-tac-toe

and factory-optimize are in conflict.

A package may also be in conflict with Racket itself, if it contains a module file that
is part of the base Racket implementation. For example, any package that contains
"racket/list.rkt" is in conflict with Racket.

For the purposes of conflicts, a module is a file that ends in ".rkt", ".ss", or ".scrbl".

2.6 Package Updates

Package A is a package update of Package B if (1) B is installed, (2) A and B have the same
name, and (3) A’s checksum is different than B’s. A single-collection package can be a
package update of a multi-collection package and vice versa.

Note that a package version is not taken into account when determining a package update,
although a change in a package’s version (in either direction) implies a change in the check-

16

http://pkgs.racket-lang.org
http://pkgs.racket-lang.org
http://planet-compats.racket-lang.org

sum because the checksum is computed from the package source and the meta-data that
specifies the version is part of the source.

2.7 Package Scopes

A package scope determines the effect of package installations, updates, etc., with respect
to different users and Racket installations. The default package scope can be configured,
but it is normally user, which makes actions specific to both the current user and the in-
stallation’s name/version (in the sense of get-installation-name). The installation
scope means that package operations affect all users of the Racket installation.

A directory path can be used as a package scope, in which case package operations affect the
set of packages installations in the directory. An installation can be configured to include the
directory in its search path for installed packages (see §18 “Installation Configuration and
Search Paths”).

Conflict checking disallows installation of the same or conflicting package in different
scopes, but if such a configuration is forced, collections are found first in packages with
user package scope. Search then proceeds in a configured order, where installation

package scope typically precedes other directory package scopes.

17

3 Using raco pkg

The raco pkg command provides package-management tools via sub-commands.

3.1 raco pkg install

raco pkg install 〈option〉 ... 〈pkg-source〉 ... — Installs the given package sources
(eliminating exact-duplicate 〈pkg-source〉s). If a given 〈pkg-source〉 is “auto-installed” (to
satisfy some other package’s dependency), then it is promoted to explicitly installed.

If no 〈pkg-source〉s are supplied, the current directory is installed as a link. See the --link
flag below for more details.

The install sub-command accepts the following 〈option〉s:

• --type 〈type〉 or -t 〈type〉— specifies an interpretation of the package source, where
〈type〉 is either file, dir, file-url, dir-url, github, or name.

• --name 〈pkg〉 or -n 〈pkg〉— specifies the name of the package, which makes sense
only when a single 〈pkg-source〉 is provided. The name is normally inferred for each
〈pkg-source〉.

• --checksum 〈checksum〉 — specifies a checksum for the package, which normally
makes sense only when a single 〈pkg-source〉 is provided. The use of 〈checksum〉
depends on 〈pkg-source〉: for a GitHub source, 〈checksum〉 selects a checksum; for
a package name, file path, or remote URL as a source, 〈checksum〉 specifies an ex-
pected checksum; for a directory path (including a remote directory URL without a
".CHECKSUM" file) as a source, 〈checksum〉 assigns a checksum.

• --deps 〈behavior〉— Selects the behavior for dependencies, where 〈behavior〉 is one
of

– fail — Cancels the installation if dependencies are uninstalled or version re-
quirements are unmet. This behavior is the default for a 〈pkg-source〉 that is not
a package name.

– force — Installs the package(s) despite missing dependencies or version re-
quirements. Forcing an installation may leave package content in an inconsistent
state.

– search-ask — Looks for dependencies (when uninstalled) or updates (when
version requirements are unmet) via the configured package catalogs, but asks if
you would like the packages installed or updated. This behavior is the default
for a 〈pkg-source〉 that is a package name.

– search-auto — Like search-ask, but does not ask for permission to install
or update.

18

• --auto — Shorthand for --deps search-auto.

• --update-deps — With search-ask or search-auto dependency behavior,
checks already-installed dependencies transitively for updates (even when not forced
by version requirements), asking or automatically updating a package when an up-
date is available. When a package is updated or installed, unless --skip-implies
is specified, any package that it implies (see §4 “Package Metadata”) is automatically
updated independent of the behavior requested via --update-deps and --deps.

• --skip-implies — Disables special treatment of dependencies that are listed in
implies (see §4 “Package Metadata”) for an installed or updated package.

• --link — Implies --type dir (and overrides any specified type), and links the
existing directory as an installed package, instead of copying the directory’s content
to install. Directory package sources are treated as links by default, unless --copy is
specified.

The package is identified as a single-collection package or a multi-collection package
at the time that it is installed, and that categorization does not change even if the
collection definition in "info.rkt" is changed (i.e., he package must be removed
and re-installed for the change to take effect).

• --static-link — Implies --link, and also indicates that subdirectories of the
given directory will not change for each given directory that implements a multi-
collection package.

• --pkgs — Disables default installation of the current directory when no 〈pkg-source〉s
are supplied.

• --copy — Disables default handling of directory package sources as links, and in-
stead treats them like other sources: package content is copied to install.

• --binary — Strips source elements of a package before installing, and implies
--copy.

• --source — Strips built elements of a package before installing, and implies --copy.

• --scope 〈scope〉— Selects the package scope for installation, where 〈scope〉 is one
of

– installation — Install packages for all users of a Racket installation, rather
than user-specific.

– user — Install packages for the current user and current installation’s
name/version.

The default package scope is normally user, but it can be configured with raco pkg

config --set default-scope 〈scope〉. The default installation name is normally
the Racket version, but it can be configured with raco pkg config --set name

〈name〉.

19

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Select 〈dir〉 as the package scope.

• --catalog 〈catalog〉— Use 〈catalog〉 instead of of the currently configured package
catalogs.

• --skip-installed — Ignore any 〈pkg-source〉 whose name corresponds to an
already-installed package, except for promoting auto-installed packages to explicitly
installed.

• --all-platforms — Considers package dependencies independent of the current
platform (instead of filtering dependencies to platforms other than the current one).

• --force — Ignores module conflicts, including conflicts due to installing a single
package in multiple scopes. Forcing an installation may leave package content in an
inconsistent state.

• --ignore-checksums — Ignores errors verifying package checksums (unsafe).

• --no-cache — Disables use of the download cache.

• --no-setup — Does not run raco setup after installation. This behavior is also the
case if the environment variable PLT_PKG_NOSETUP is set to any non-empty value.

• --jobs 〈n〉 or -j 〈n〉— Install and setup with 〈n〉 parallel jobs.

3.2 raco pkg update

raco pkg update 〈option〉 ... 〈pkg-source〉 ... — Checks the specified package names
for package updates or replaces existing package installations with the given sources. If an
update or replacement cannot be installed (e.g. it conflicts with another installed package),
then this command fails without installing any of the 〈pkg-source〉s (or their dependencies).

If a package scope is not specified, the scope is inferred from the given 〈pkg-source〉s.

The update sub-command accepts the following 〈option〉s:

• --all or -a — Update all packages, if no packages are given in the argument list.

• --lookup — Checks Causes a package name as a 〈pkg-source〉 to be used as a re-
placement, instead of the name of a installed package that may have updates. (If the
named package was installed through a package name, then there’s effectively no dif-
ference.)

• --type 〈type〉 or -t 〈type〉— Same as for raco pkg install.

20

• --name 〈pkg〉 or -n 〈pkg〉— Same as for raco pkg install.

• --checksum 〈checksum〉— Same as for raco pkg install.

• --deps 〈behavior〉— Same as for raco pkg install.

• --auto — Shorthand for --deps search-auto plus --update-deps.

• --update-deps — Same as for raco pkg install, but implied by --auto only
for raco pkg update.

• --skip-implies — Same as for raco pkg install.

• --link — Same as for raco pkg install.

• --static-link — Same as for raco pkg install.

• --binary — Same as for raco pkg install.

• --copy — Same as for raco pkg install.

• --source — Same as for raco pkg install.

• --scope 〈scope〉— Selects a package scope, the same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Selects 〈dir〉 as the package scope, the same as for raco pkg

install.

• --catalog 〈catalog〉— Same as for raco pkg install.

• --all-platforms — Same as for raco pkg install.

• --force — Same as for raco pkg install.

• --ignore-checksums — Same as for raco pkg install.

• --no-cache — Same as for raco pkg install.

• --no-setup — Same as for raco pkg install.

• --jobs 〈n〉 or -j 〈n〉— Same as for raco pkg install.

21

3.3 raco pkg remove

raco pkg remove 〈option〉 ... 〈pkg〉 ... — Attempts to remove the given packages. By
default, if a package is the dependency of another package that is not listed, this command
fails without removing any of the 〈pkg〉s.

If a package scope is not specified, the scope is inferred from the given 〈pkg〉s.

The remove sub-command accepts the following 〈option〉s:

• --demote — “Remove” explicitly installed packages by demoting them to auto-
installed (leaving auto-installed packages as such). Combined with --auto, removes
packages for which there are no dependencies.

• --force — Ignore dependencies when removing packages.

• --auto — In addition to removing each 〈pkg〉, remove auto-installed packages (i.e.,
installed by the search-auto or search-ask dependency behavior, or demoted via
--demote) that are no longer required by any explicitly installed package.

• --scope 〈scope〉— Selects a package scope, the same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Selects 〈dir〉 as the package scope, the same as for raco pkg

install.

• --no-setup — Same as for raco pkg install.

• --jobs 〈n〉 or -j 〈n〉— Same as for raco pkg install.

3.4 raco pkg show

raco pkg show 〈option〉 ... — Print information about currently installed packages. By
default, packages are shown for all package scopes, but only for packages not marked as
auto-installed to fulfill dependencies.

The show sub-command accepts the following 〈option〉s:

• -a or --all — Includes auto-installed packages in the listing.

• -d or --dir — Adds a column in the output for the directory where the package is
installed.

• --scope 〈scope〉— Shows only packages in 〈scope〉, which is one of

22

– installation — Show only installation-wide packages.

– user — Show only user-specific packages for the current installation’s
name/version or the name/version specified with --version or -v.

The default is to show packages for all package scopes.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Shows only packages installed in 〈dir〉.

• --version 〈vers〉 or -v 〈vers〉— Show only user-specific packages for the installa-
tion name/version 〈vers〉.

3.5 raco pkg migrate

raco pkg migrate 〈option〉 ... 〈from-version〉 — Installs packages that were previously
installed in user package scope for 〈from-version〉, where 〈from-version〉 is an installation
name/version.

The migrate sub-command accepts the following 〈option〉s:

• --deps 〈behavior〉— Same as for raco pkg install, except that search-auto is
the default.

• --binary — Same as for raco pkg install.

• --source — Same as for raco pkg install.

• --scope 〈scope〉— Same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Select 〈dir〉 as the package scope.

• --catalog 〈catalog〉— Same as for raco pkg install.

• --all-platforms — Same as for raco pkg install.

• --force — Same as for raco pkg install.

• --ignore-checksums — Same as for raco pkg install.

• --no-cache — Same as for raco pkg install.

• --no-setup — Same as for raco pkg install.

• --jobs 〈n〉 or -j 〈n〉— Same as for raco pkg install.

23

3.6 raco pkg create

raco pkg create 〈option〉 ... 〈directory-or-package〉 — Bundles a package into an
archive. Bundling is not needed for a package that is provided directly from a GitHub repos-
itory or other non-archive formats. The create sub-command can create an archive from a
directory (the default) or from an installed package. It can also adjust the archive’s content
to include only sources, only compiled bytecode and rendered documentation, or both—but
packages are normally provided as source and converted to binary form by an automatic
service, instead of by a package author.

The create sub-command accepts the following 〈option〉s:

• --from-dir — Treat 〈directory-or-package〉 as a directory path; this is the default
mode.

• --from-install — Treat 〈directory-or-package〉 as the name of an installed pack-
age (instead of a directory).

• --format 〈format〉— Specifies the archive format. The allowed 〈format〉s are: zip
(the default), tgz, and plt. This option must be specified if --manifest is not
present.

• --manifest — Creates a manifest file for a directory, rather than an archive.

• --as-is — Bundle all content of the package directory as is, with no filtering of
sources, compiled files, or repository elements.

• --source — Bundle only sources in the package directory; see §5 “Source, Binary,
and Built Packages”.

• --binary — Bundle compiled bytecode and rendered documentation in the package
directory; see §5 “Source, Binary, and Built Packages”.

• --built — Bundle compiled sources, bytecode, and rendered documentation in the
package directory, filtering repository elements; see §5 “Source, Binary, and Built
Packages”.

• --dest 〈dest-dir〉— Writes generated bundles to 〈dest-dir〉.

3.7 raco pkg config

raco pkg config 〈option〉 ... [〈key〉] 〈val〉 ... — View and modify the configuration of the
package manager. If 〈key〉 is not provided, the values for all recognized keys are shown. The
〈val〉 arguments are allowed only when --set is used, in which case the 〈val〉s are used as
the new values for 〈key〉.

The config sub-command accepts with the following 〈option〉s:

24

• --set — Sets an option, rather than printing it.

• --scope 〈scope〉 — Selects a package scope, the same as for raco pkg install.
A configuration value set at installation scope serves as the default value at user
scope.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir 〈dir〉— Same as for raco pkg install.

The valid 〈key〉s are:

• name — A string for the installation’s name, which is used by user package scope
and defaults to the Racket version.

• catalogs — A list of URLs for package catalogs.

• default-scope — Either installation or user. The value of this key at user
scope (possibly defaulting from installation scope) is the default package scope
for raco pkg commands for which a scope is not inferred from a given set of package
names (even for raco pkg config, which is consistent but potentially confusing).

• download-cache-dir — A directory that holds copies of downloaded packages,
used to avoid re-downloading if the same URL and checksum combination is re-
quested again. The default cache directory is user-specific (but not specific to a Racket
version or installation name).

• download-cache-max-files — A limit on the number of files to be kept in the
download cache directory.

• download-cache-max-bytes — A limit on the total size of files that are kept in the
download cache directory.

3.8 raco pkg catalog-show

raco pkg catalog-show 〈option〉 ... 〈package-name〉 ... — Consults package catalogs
for a package (that is not necessarily installed) and displays the catalog’s information for the
package, such as its source URL and a checksum.

The catalog-show sub-command accepts the following 〈option〉s:

• --all — Show information for all available packages. When using this flag, supply
no 〈packaee-name〉s.

25

• --only-names — Show only package names. This option is mainly useful with
--all, but when a 〈packaee-name〉 is provided, catalogs are consulted to ensure that
he package is available.

• --modules — Show the modules that are implemented by a package.

• --catalog 〈catalog〉— Query 〈catalog〉 instead of the currently configured package
catalogs.

• --version 〈version〉 or -v 〈version〉 — Query catalogs for a result specific to
〈version〉, instead of the installation’s Racket version.

3.9 raco pkg catalog-copy

raco pkg catalog-copy 〈option〉 ... 〈src-catalog〉 ... 〈dest-catalog〉— Copies informa-
tion from package catalog names by 〈src-catalog〉s to a local database or directory 〈dest-
catalog〉, which can be used as a new package catalog.

The 〈src-catalog〉s can be remote or local, while 〈dest-catalog〉 must be local (i.e., a di-
rectory path or a SQLite database path, as inferred from the path). If a 〈src-catalog〉 or
〈dest-catalog〉 does not start with a URL scheme, it is treated as a filesystem path. Infor-
mation from multiple 〈src-catalog〉s is merged, with information from earlier 〈src-catalog〉s
taking precedence over later 〈src-catalog〉s.

The catalog-copy sub-command accepts the following 〈option〉s:

• --from-config — Adds the currently configured package catalogs to the end of the
〈src-catalog〉s list.

• --force — Replaces 〈dest-catalog〉 if it exists already.

• --merge — Adds to 〈dest-catalog〉 if it exists already. By default, information already
in 〈dest-catalog〉 takes precedence over new information.

• --override — Changes merging so that new information takes precedence over in-
formation already in 〈dest-catalog〉.

• --version 〈version〉 or -v 〈version〉 — Copy catalog results specific to 〈version〉
(for catalogs that make a distinction), instead of the installation’s Racket version.

26

4 Package Metadata

Package metadata, including dependencies on other packages, is reported by an "info.rkt"
module within the package. This module must be implemented in the info language.

For example, a basic "info.rkt" file might be

#lang info

(define version "1.0")

(define deps (list _package-source-string ...))

The following "info.rkt" fields are used by the package manager:

• collection — either 'multi to implement a multi-collection package or a string or
'use-pkg-name to implement a single-collection package. If collection is defined
as a string, then the string is used as the name of the collection implemented by the
package. If collection is defined as 'use-pkg-name, then the package name is
used as the package’s collection name.

Beware that omitting collection or defining it as 'use-pkg-name means that a
package’s content effectively changes with the package’s name. A package’s content
should normally be independent of the package’s name, and so defining collection

to a string is preferable for a single-collection package.

• version — a version string. The default version of a package is "0.0".

• deps — a list of dependencies, where each dependency has one of the following
forms:

– A string for a package source.

– A list of the form

(list package-source-string

keyword-and-spec ...)

where each keyword-and-spec has a distinct keyword in the form
keyword-and-spec = '#:version version-string

| '#:platform platform-spec

platform-spec = string

| symbol

| regexp

A version-string specifies a lower bound on an acceptable version of the
needed package.

27

A platform-spec indicates that the dependency applies only for platforms
with a matching result from (system-type) when platforms-spec is a sym-
bol or (path->string (system-library-subpath #f)) when platform-

spec is a regular expression. For example, platform-specific binaries can be
placed into their own packages, with one separate package and one dependency
for each supported platform.

– A list of the form

(list package-source-string version-string)

which is deprecated and equivalent to

(list package-source-string '#:version version-string)

Each elements of the deps list determines a dependency on the package whose name is
inferred from the package source (i.e., dependencies are on package names, not pack-
age sources), while the package source indicates where to get the package if needed
to satisfy the dependency.

Use the package name "racket" to specify a dependency on the version of the Racket
installation.

• build-deps — like deps, but for dependencies that can be dropped in a binary pack-
age, which does not include sources; see §5 “Source, Binary, and Built Packages”.
The build-deps and deps lists are appended, while raco pkg create strips away
build-deps when converting a package for --binary mode.

• implies — a list of strings and 'core. Each string refers to a package listed in the
deps and indicates that a dependency on the current package counts as a dependency
on the named package; for example, the gui package is defined to ensure access to all
of the libraries provided by gui-lib, so the "info.rkt" file of gui lists "gui-lib"
in implies. Packages listed in implies list are treated specially by updating: implied
packages are automatically updated whenever the implying package is updated. The
special value 'core is intended for use by an appropriate base package to declare it
as the representative of core Racket libraries.

• setup-collects — a list of path strings and/or lists of path strings, which are used
as collection names to set up via raco setup after the package is installed, or 'all to
indicate that all collections need to be setup. By default, only collections included in
the package are set up (plus collections for global documentation indexes and links).

28

5 Source, Binary, and Built Packages

A package, especially in a repository format, normally provides module implementations
and documentation in source form. Such source packages may work with multiple Racket
versions, and modules are compiled to bytecode and documentation is rendered when the
package is installed.

A binary package provides only compiled bytecode and rendered documentation, instead
of package and documentation sources. Since compiled bytecode is specific to a version of
Racket, a binary package is specific to a version of Racket. The benefit of a binary package
is that it can have fewer dependencies (e.g., on Scribble to implement the documentation
or on other packages whose documentation is referenced) and it can be installed faster. A
drawback of a binary package is that it is version-specific and the source code may be less
immediately accessible to other programmers.

A built package combines source and compiled elements. A built package can be installed
more quickly than source, as long as it is installed for a suitable Racket version, but the
source remains available as a back-up for other programmers to consult or to re-build for a
different Racket version.

A package is not specifically tagged as a source package, binary package, or built package.
The different kinds of packages are just conventions based on the content of the package.
All forms of packages can be mixed in an installation, and a package can be updated from
any form to any other form.

Programmers normally supply only source packages, while a package catalog service may
convert each source package to a binary package or built package. Alternatively, program-
mers can create binary packages or built packages by using the raco pkg create subcom-
mand with --binary or --built. As a convenience, the raco pkg create subcommand
can also create a source package from an installed package or repository checkout, dropping
repository elements (such as a ".git" directory) and compiled code. Note that raco pkg

create by default bundles a package directory as-is, with no filtering at all.

Creating a source package, binary package, or built package from a directory or package
installation prunes the following files and directories:

• directories/files named ".svn";

• directories/files whose names start with ".git";

• directories/files whose names end with "∼"; and

• directories/files whose names start and end with "#".

Any of the above can be suppressed, however, by a source-keep-files (for source pack-
age and built package bundling) or binary-keep-files (for binary package and built pack-

29

age bundling) definition in an "info.rkt" in the package or any subdirectory. A binary-

keep-files or binary-keep-files definition should bind the name to a list of paths
relative to the "info.rkt" file.

Creating a source package prunes the following additional files and directories:

• directories/files named "compiled";

• directories/files named "doc";

• directories/files named "synced.rktd", which can appear as a marker in rendered
documentation;

• directories/files named in an "info.rkt" file’s source-omit-files definition.

Any of the above removals can be suppressed through source-keep-files.

Creating a binary package prunes the following additional files and directories:

• directories/files with names ending in ".rkt" or ".ss" for which a corresponding
compiled bytecode file is present (in a "compiled" subdirectory);

• directories/files with names ending in ".scrbl", "_scrbl.zo", or ".dep";

• directories/files ending with ".css" or ".js" immediately within a directory named
"doc";

• directories/files named in an "info.rkt" file’s source-omit-files definition.

Any of the above removals can be suppressed through binary-keep-files.

Creating a binary package further adjusts the following files:

• for any file whose name ends in ".zo", submodules named test, doc, or srcdoc are
removed;

• for each ".html" file that refers to a "local-redirect.js" script, the path to the
script is removed; and

• each "info.rkt" is adjusted as follows: an assume-virtual-sources definition
is added, any copy-foreign-libs definition is changed to move-foreign-libs,
any copy-shared-files definition is changed to move-shared-files, any copy-

man-pages definition is changed to move-man-pages, and any build-deps defini-
tion is removed.

30

Creating a built package removes any file or directory that would be removed for a source
package and binary package, and it performs the ".html" file updating of a binary package.

Finally, creating built package or source package “unmoves” files that were installed
via move-foreign-libs, move-shared-files, or move-man-pages definitions in an
"info.rkt" file, retrieving them if they are not present at referenced location but are
present in a user-specific target directory (i.e., the directory reported by find-user-lib-

dir, find-user-share-dir, or find-user-man-dir, respectively).

(require pkg/strip) package: base

The pkg/strip module provides support for copying a package-style directory to a given
destination with the same file/directory omissions and updates as raco pkg create.

(generate-stripped-directory mode

src-dir

dest-dir) → void?

mode : (or/c 'source 'binary 'built)

src-dir : path-string?

dest-dir : path-string?

Copies src-dir to dest-dir with file/directory omissions and updates corresponding the
creation of a source package, binary package, or built package as indicated by mode .

(fixup-local-redirect-reference file

js-path) → void?

file : path-string?

js-path : string?

Assuming that file is an HTML file for documentation, adjusts the URL reference to
"local-redirect.js", if any, to use the prefix js-path .

31

6 Package APIs

The pkg provides a programmatic interface to the raco pkg commands, but additional li-
braries provide smaller building blocks and local-database support.

6.1 Functions for raco pkg

(require pkg) package: base

The pkg module provides a programmatic interface to the raco pkg sub-subcommands.

Each-long form option of the command-line interface is a keyword argument to the functions
described below. An argument corresponding to --type, --deps, --format, or --scope
accepts its argument as a symbol, while other flags that take arguments expect strings. An
argument corresponding to --scope is also allowed to be a path string, as would be provided
to --scope-dir. Options without argument correspond to keyword arguments that accept
booleans, where #t is equivalent to the presence of the option.

pkg-install-command : procedure?

Implements raco pkg install.

pkg-update-command : procedure?

Implements raco pkg update.

pkg-remove-command : procedure?

Implements raco pkg remove.

pkg-show-command : procedure?

Implements raco pkg show.

pkg-migrate-command : procedure?

Implements raco pkg migrate.

pkg-config-command : procedure?

32

Implements raco pkg config.

pkg-create-command : procedure?

Implements raco pkg create.

pkg-catalog-show-command : procedure?

Implements raco pkg catalog-show.

pkg-catalog-copy-command : procedure?

Implements raco pkg catalog-copy.

6.2 Package Management Functions

(require pkg/lib) package: base

The pkg/lib library provides building blocks on which the pkg library and raco pkg com-
mands are built. It re-exports the bindings of pkg/path.

(with-pkg-lock body ...+)

(with-pkg-lock/read-only body ...+)

Evaluates the bodys while holding a lock to prevent concurrent modification to the package
database for the current package scope. Use the with-pkg-lock/read-only form for
read-only access. The lock is reentrant but not upgradable from read-only.

Use these form to wrap uses of functions from pkg/lib that are documented to require the
lock. Other functions from pkg/lib take the lock as needed.

(current-pkg-scope) → (or/c 'installation 'user

(and/c path? complete-path?))

(current-pkg-scope scope) → void?

scope :
(or/c 'installation 'user

(and/c path? complete-path?))

(current-pkg-scope-version) → string?

(current-pkg-scope-version s) → void?

s : string?

Parameters that determine package scope for management operations and, in the case of
'user scope, the relevant installation name/version.

33

(current-pkg-error) → procedure?

(current-pkg-error err) → void?

err : procedure?

A parameter whose value is used to report errors that are normally intended for end uses.
The arguments to the procedure are the same as for error, except that an initial symbol
argument is omitted.

The default value uses error with 'pkg as the first argument. The raco pkg command sets
this parameter to use raise-user-error with the sub-command name as its first argument.

(current-pkg-catalogs) → (or/c #f (listof url?))

(current-pkg-catalogs catalogs) → void?

catalogs : (or/c #f (listof url?))

A parameter that determines the package catalogs that are consulted to resolve a package
name. If the parameter’s value is #f, then the result of pkg-config-catalogs is used.

(pkg-config-catalogs) → (listof string?)

Returns a list of URL strings for the user’s configured package catalogs.

(current-pkg-download-cache-dir)

→ (or/c #f (and/c path-string? complete-path?))

(current-pkg-download-cache-dir dir) → void?

dir : (or/c #f (and/c path-string? complete-path?))

(current-pkg-download-cache-max-files) → (or/c #f real?)

(current-pkg-download-cache-max-files max-files) → void?

max-files : (or/c #f real?)

(current-pkg-download-cache-max-bytes) → (or/c #f real?)

(current-pkg-download-cache-max-bytes max-bytes) → void?

max-bytes : (or/c #f real?)

Parameters that determine the download cache location and limits. If a parameter’s value is
#f, then the user’s configuration is used.

(pkg-directory name) → (or/c path-string? #f)

name : string?

Returns the directory that holds the installation of the installed (in any scope) package name ,
or #f if no such package is installed.

(default-pkg-scope) → (or/c 'installation 'user

(and/c path? complete-path?))

34

Returns the user’s configured default package scope.

(installed-pkg-names #:scope scope) → (listof string?)

scope :
(or/c #f 'installation 'user

(and/c path? complete-path?))

Returns a list of installed package names for the given package scope, where #f indicates
the user’s default package scope.

(installed-pkg-table #:scope scope)

→ (hash/c string? pkg-info?)

scope :
(or/c #f 'installation 'user

(and/c path? complete-path?))

Returns a hash table of installed packages for the given package scope, where #f indicates
the user’s default package scope.

(pkg-desc? v) → boolean?

v : any/c

(pkg-desc source type name checksum auto?) → pkg-desc?

source : string?

type :
(or/c #f 'file 'dir 'link 'static-link

'file-url 'dir-url 'github 'name)

name : (or/c string? #f)

checksum : (or/c string? #f)

auto? : boolean?

A pkg-desc value describes a package source plus details of its intended interpretation,
where the auto? field indicates that the package is should be treated as installed automati-
cally for a dependency.

(pkg-stage desc

[#:checksum checksum

#:in-place? in-place?

#:namespace namespace

#:strip strip]) →

string?

path?

(or/c #f string?)

boolean?

(listof module-path?)

desc : pkg-desc?

checksum : (or/c #f string?) = #f

in-place? : boolean? = #f

namespace : namespace? = (make-base-namespace)

strip : (or/c #f 'source 'binary) = #f

35

Locates the implementation of the package specified by desc and downloads and unpacks
it to a temporary directory (as needed).

If desc refers to an existing directory and in-place? is true, then the directory is used in
place.

The namespace argument is passed along to get-info/full when the package’s
"info.rkt" is loaded.

If strip is not #f, then files and directories are removed from the prepared directory the
same as when creating the corresponding kind of package. A directory that is staged in-place
cannot be stripped.

The result is the package name, the directory containing the unpacked package content, the
checksum (if any) for the unpacked package, whether the directory should be removed after
the package content is no longer needed, and a list of module paths provided by the package.

(pkg-config set?

keys/vals

[#:from-command-line? from-command-line?]) → void?

set? : boolean?

keys/vals : list?

from-command-line? : boolean? = #f

Implements pkg-config-command.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg config.

The package lock must be held (allowing writes if set? is true); see with-pkg-lock.

(pkg-create format

dir

[#:quiet? quiet?

#:from-command-line? from-command-line?]) → void?

format : (or/c 'zip 'tgz 'plt 'MANIFEST)

dir : path-string?

quiet? : boolean? = #f

from-command-line? : boolean? = #f

Implements pkg-create-command.

Unless quiet? is true, information about the output is reported to the current output port. If
from-command-line? is true, error messages may suggest specific command-line flags for
raco pkg create.

36

(pkg-install descs

[#:dep-behavior dep-behavior

#:update-deps? update-deps?

#:force? force?

#:ignore-checksums? ignore-checksums?

#:quiet? boolean?

#:from-command-line? from-command-line?

#:strip strip

#:link-dirs? link-dirs?])

→

(or/c 'skip

#f

(listof (or/c path-string?

(non-empty-listof path-string?))))

descs : (listof pkg-desc?)

dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)

= #f

update-deps? : boolean? = #f

force? : boolean? = #f

ignore-checksums? : boolean? = #f

boolean? : quiet? = #f

from-command-line? : boolean? = #f

strip : (or/c #f 'source 'binary) = #f

link-dirs? : boolean? = #f

Implements pkg-install-command. The result indicates which collections should be setup
via raco setup: 'skip means that no setup is needed, #f means all, and a list means only
the indicated collections.

The link-dirs? argument determines whether package sources inferred to be directory
paths should be treated as links or copied (like other package sources). Note that the default
is #f, unlike the default built into pkg-install-command.

Status information and debugging details are mostly reported to a logger named 'pkg, but
information that is especially relevant to a user (such as a download action) is reported to the
current output port, unless quiet? is true.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg install.

The package lock must be held; see with-pkg-lock.

37

(pkg-update names

[#:all? all?

#:dep-behavior dep-behavior

#:update-deps? update-deps?

#:force? force?

#:ignore-checksums? ignore-checksums?

#:quiet? boolean?

#:from-command-line? from-command-line?

#:strip strip

#:link-dirs? link-dirs?])

→

(or/c 'skip

#f

(listof (or/c path-string?

(non-empty-listof path-string?))))

names : (listof (or/c string? pkg-desc?))

all? : boolean? = #f

dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)

= #f

update-deps? : boolean? = #f

force? : boolean? = #f

ignore-checksums? : boolean? = #f

boolean? : quiet? = #f

from-command-line? : boolean? = #f

strip : (or/c #f 'source 'binary) = #f

link-dirs? : boolean? = #f

Implements pkg-update-command. The result is the same as for pkg-install.

A string in names refers to an installed package that should be checked for updates. A
pkg-desc in names indicates a package source that should replace the current installation.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg update.

The package lock must be held; see with-pkg-lock.

(pkg-remove names

[#:demote? demote?

#:auto? auto?

#:force? force?

#:quiet? boolean?

#:from-command-line? from-command-line?])

→

(or/c 'skip

#f

(listof (or/c path-string?

(non-empty-listof path-string?))))

names : (listof string?)

38

demote? : boolean? = #f

auto? : boolean? = #f

force? : boolean? = #f

boolean? : quiet? = #f

from-command-line? : boolean? = #f

Implements pkg-remove-command. The result is the same as for pkg-install, indicating
collects that should be setup via raco setup.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg remove.

The package lock must be held; see with-pkg-lock.

(pkg-show indent [#:directory show-dir?]) → void?

indent : string?

show-dir? : boolean? = #f

Implements pkg-show-command for a single package scope, printing to the current output
port. See also installed-pkg-names and installed-pkg-table.

The package lock must be held to allow reads; see with-pkg-lock/read-only.

(pkg-migrate from-version

[#:dep-behavior dep-behavior

#:force? force?

#:ignore-checksums? ignore-checksums?

#:quiet? boolean?

#:from-command-line? from-command-line?

#:strip strip])

→

(or/c 'skip

#f

(listof (or/c path-string?

(non-empty-listof path-string?))))

from-version : string?

dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)

= #f

force? : boolean? = #f

ignore-checksums? : boolean? = #f

boolean? : quiet? = #f

from-command-line? : boolean? = #f

strip : (or/c #f 'source 'binary) = #f

Implements pkg-migrate-command. The result is the same as for pkg-install.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg migrate.

39

The package lock must be held; see with-pkg-lock.

(pkg-catalog-show names

[#:all? all?

#:only-names? only-names?

#:modules? modules?]) → void?

names : (listof string?)

all? : boolean? = #f

only-names? : boolean? = #f

modules? : boolean? = #f

Implements pkg-catalog-show-command. If all? is true, then names should be empty.

The current-pkg-scope-version parameter determines the version included in the cat-
alog query.

(pkg-catalog-copy sources

dest

[#:from-config? from-config?

#:merge? merge?

#:force? force?

#:override? override?]) → void?

sources : (listof path-string?)

dest : path-string?

from-config? : boolean? = #f

merge? : boolean? = #f

force? : boolean? = #f

override? : boolean? = #f

Implements pkg-catalog-copy-command.

The current-pkg-scope-version parameter determines the version for extracting exist-
ing catalog information.

(pkg-catalog-update-local

[#:catalog-file catalog-file

#:quiet? quiet?

#:consult-packages? consult-packages?])
→ void?

catalog-file : path-string? = (current-pkg-catalog-file)

quiet? : boolean? = #f

consult-packages? : boolean? = #f

Consults the user’s configured package catalogs (like pkg-catalog-copy) and package
servers (if consult-packages? is true) to populate the database catalog-file with in-
formation about available packages and the modules that they implement.

40

(pkg-catalog-suggestions-for-module

module-path

[#:catalog-file catalog-file])
→ (listof string?)

module-path : module-path?

catalog-file : path-string? =

Consults catalog-file and returns a list of available packages that provide the module
specified by module-path .

The default catalog-file is (current-pkg-catalog-file) if that file exists, otherwise
a file in the racket installation is tried.

(get-all-pkg-names-from-catalogs) → (listof string?)

Consults package catalogs to obtain a list of available package names.

(get-all-pkg-details-from-catalogs)

→ (hash/c string? (hash/c symbol? any/c))

Consults package catalogs to obtain a hash table of available package names mapped to
details about the package. Details for a particular package are provided by a hash table that
maps symbols such as 'source, 'checksum, and 'author.

(get-pkg-details-from-catalogs name)

→ (or/c #f (hash/c symbol? any/c))

name : string?

Consults package catalogs to obtain information for a single package name, returning #f if
the package name has no resolution. Details for the package are provided in the same form
as from get-all-pkg-details-from-catalogs.

(pkg-single-collection dir

[#:name name

#:namespace namespace])
→ (or/c #f string?)

dir : path-string?

name : string? = (elem "... from "(racket dir)" ...")

namespace : namespace? = (make-base-namespapce)

Returns a string for a collection name if dir represents a single-collection package, or re-
turns #f if dir represents a multi-collection package.

For some single-collection packages, the package’s single collection is the package name; if
the package name is different from the directory name, supply name .

41

Determining a single-collection package’s collection name may require loading an
"info.rkt" file, in which case namespace is passed on to get-info/full.

(get-pkg-content desc

[#:extract-info extract-proc])

→
(or/c #f string?)

(listof module-path?)

any/c

desc : pkg-desc?

extract-proc :
((or/c #f

((symbol?) ((-> any)) . ->* . any))

. -> . any)

= (lambda (get-pkg-info) ...)

Gets information about the content of the package specified by desc . The information is de-
termined inspecting the package—resolving a package name, downloading, and unpacking
into a temporary directory as necessary.

The results are as follows:

• The checksum, if any, for the downloaded package.

• A list of module paths that are provided by the package. Each module path is normal-
ized in the sense of collapse-module-path.

• Information extracted from the package’s metadata. By default, this information is
the package’s dependencies, but in general it is the result of extract-proc , which
receives an information-getting function (or #f) as returned by get-info.

(extract-pkg-dependencies info

[#:build-deps? build-deps?

#:filter? filter?])
→ (listof (or/c string? (cons/c string? list?)))

info : (symbol? (-> any/c) . -> . any/c)

build-deps? : boolean? = #f

filter? : boolean? = #f

Returns packages dependencies reported by the info procedure (normally produced by
get-info).

If build-deps? is true, then the result includes both run-time dependencies and build-time
dependencies.

If filter? is true, then platform-specific dependencies are removed from the result list
when they do not apply to the current platform, and other information is stripped so that the
result list is always a list of strings.

42

(pkg-directory->module-paths dir

pkg-name

[#:namespace namespace])
→ (listof module-path?)

dir : path-string?

pkg-name : string

namespace : namespace? = (make-base-namespace)

Returns a list of module paths (normalized in the sense of collapse-module-path) that
are provided by the package represented by dir and named pkg-name .

6.3 Package Paths and Database

(require pkg/path) package: base

The pkg/path library provides utilities for working with package paths and installed-
package databases.

(struct pkg-info (orig-pkg checksum auto?)

#:prefab)

orig-pkg :

(or/c (list/c 'catalog string?)

(list/c 'url string?)

(list/c 'link string?)

(list/c 'static-link string?))

checksum : (or/c #f string?)

auto? : boolean?

A structure type that is used to report installed-package information.

(struct sc-pkg-info pkg-info ())

A structure subtype that represents a package that is installed as single-collection.

(struct pkg-info/alt pkg-info (dir-name))

dir-name : string?

(struct sc-pkg-info/alt sc-pkg-info (dir-name))

dir-name : string?

Structure subtypes that are used when the installation directory for a package does not match
the package name, but is instead dir-name. The directory name always includes a + (which
is disallowed in a package name).

43

(path->pkg path #:cache cache) → (or/c string? #f)

path : path-string?

cache : (or/c #f (and/c hash? (not/c immutable?)))

Returns the installed package containing path , if any.

If cache is not #f, then it is consulted and modified to cache installed-package information
across calls to path->pkg (with the assumption that the set of installed packages does not
change across calls that receive the same cache).

(path->pkg+subpath path #:cache cache)

→ (or/c string? #f) (or/c path? 'same #f)

path : path-string?

cache : (or/c #f (and/c hash? (not/c immutable?)))

Like path->pkg, but returns a second value that represents the remainder of path within
the package’s directory.

(path->pkg+subpath+collect path

#:cache cache)

→
(or/c string? #f)

(or/c path? 'same #f)

(or/c string? #f)

path : path-string?

cache : (or/c #f (and/c hash? (not/c immutable?)))

Like path->pkg+subpath, but returns a third value for a collection name if the package is
a single-collection package, #f otherwise.

(get-pkgs-dir scope [user-version]) → path?

scope :
(or/c 'installation 'user 'shared

(and/c path? complete-path?))

user-version : string? = (version)

Returns the path of the directory that holds installed packages in the given scope. The user-
version argument is used to generate the result for 'user scope.

(read-pkgs-db scope) → (hash/c string? pkg-info?)

scope :
(or/c 'installation 'user 'shared

(and/c path? complete-path?))

Returns a hash table representing the currently installed packages in the specified scope.

(read-pkg-file-hash path) → hash?

path : path?

44

Reads a hash table from path , logging any errors and returning an empty hash table if path
does not exist or if an error is encountered.

6.4 Package Source Parsing

(require pkg/name) package: base

The pkg/name library provides functions for parsing and normalizing a package source,
especially for extracting a package name.

(package-source-format? v) → boolean?

v : any/c

Returns #t if v is 'name , 'file, 'dir, 'github, 'file-url, 'dir-url, 'link, or
'static-link, and returns #f otherwise.

The 'link and 'static-link formats are the same as 'dir in terms of parsing, but they
are treated differently for tasks such as package installation.

(package-source->name source [type]) → (or/c #f string?)

source : string?

type : (or/c package-source-format? #f) = #f

Extracts the package name from a package source, where the package source type is inferred
if type is #f. If a valid name cannot be inferred, the result is #f.

(package-source->name+type source [type])

→ (or/c #f string?)

(or/c package-source-format? #f)

source : string?

type : (or/c package-source-format? #f) = #f

Like package-source->name, but also returns the type of the source (which is useful when
the type is inferred). If the source is not well-formed, the second result can be #f.

6.5 Package Catalog Database

(require pkg/db) package: base

The pkg/db library provides tools for storing and retrieving package catalog information in
a local database.

The functions provided by pkg/db do not actually manage packages; they do not change
or consult the local database of installed modules in any package scope. The functions

45

provided by pkg/db simply reflect a local copy of the information that a package catalog
and individual package might provide (but with no guarantee of being in sync with an actual
package catalog or package).

The database is implemented as an SQLite database with its own locking, so no additional
locks are needed for database access, but beware of concurrent database changes that could
break your program logic.

(struct pkg (name catalog author source checksum desc)

#:extra-constructor-name make-pkg

#:transparent)

name : string?

catalog : string?

author : string?

source : string?

checksum : string?

desc : string?

Represents a package implementation in the database. The name (package name) and cat-

alog (package catalog, normally a URL) fields are always nonempty strings. Otherwise,
unknown fields are represented by empty strings.

(current-pkg-catalog-file) → path-string?

(current-pkg-catalog-file file) → void?

file : path-string?

A parameter that determines the file path used to hold the SQLite database. The default value
is in the user’s add-on directory and in a version-specific subdirectory.

(get-catalogs) → (listof string?)

(set-catalogs! catalogs) → void?

catalogs : (listof string?)

Returns or sets the list of strings for all package catalog represented in the database. (Within
the database, each package catalog gets its own identifying number.) The order of indices in
the list represents a search order.

The set-catalogs! function removes information for any other package catalogs from the
database.

(get-pkgs [#:name name #:catalog catalog]) → (listof pkg?)

name : (or/c #f string?) = #f

catalog : (or/c #f string?) = #f

Gets a list of package descriptions. If name or catalog is not #f (or if both are not #f),
then the result includes only matching packages.

46

The result list is ordered by precedence of the package catalog.

(set-pkgs! catalog

pkgs

#:clear-other-checksums? clear-other-checksums?)

→ void?

catalog : string?

pkgs : (listof (or/c string? pkg?))

clear-other-checksums? : #t

Sets the list of all packages that are recognized by the package catalog catalog .

Information about any other package for catalog is removed from the database. If a string
is provided for pkgs , it is treated as a package name; if additional information is already
recorded in the database for the package name, then the additional information is preserved.

If clear-other-checksums? is true, then for each element of pkgs that has a given check-
sum other than "", any information in the database specific to another checksum (such as a
list of module paths) is removed from the database.

(set-pkg! name

catalog

author

source

checksum

desc

#:clear-other-checksums? clear-other-checksums?)

→ void?

name : string?

catalog : string?

author : string?

source : string?

checksum : string?

desc : string?

clear-other-checksums? : (not (equal? checksum ""))

Sets the information for a specific package name as recognized by the package catalog cat-

alog .

If clear-other-checksums? is true, then information (such as a list of module paths) is
removed from the database when it is specific to a checksum other than checksum .

(get-pkg-tags name catalog) → (listof string?)

name : string?

catalog : string?

47

(set-pkg-tags! name catalog module-paths) → void?

name : string?

catalog : string?

module-paths : (listof string?)

Gets or sets a list of tags for the package name as recognized by the package catalog cata-

log .

(get-pkg-dependencies name catalog checksum) → (listof list?)

name : string?

catalog : string?

checksum : string?

(set-pkg-dependencies! name

catalog

checksum

dependencies) → void?

name : string?

catalog : string?

checksum : string?

dependencies : (listof any/c)

Gets or sets a list of dependencies for the package name as recognized by the package catalog
catalog and for a specific checksum.

The list of dependencies must have the shape described for a deps "info.rkt" field as
described in §4 “Package Metadata”. The result from get-pkg-dependencies is normal-
ized: each dependency is represented by a list, a version in a dependency is always preceded
by '#:version, and if both version and platform specification are included, '#:version
appears before '#:platform.

(get-pkg-modules name catalog checksum) → (listof module-path?)

name : string?

catalog : string?

checksum : string?

(set-pkg-modules! name

catalog

checksum

module-paths) → void?

name : string?

catalog : string?

checksum : string?

module-paths : (listof module-path?)

Gets or sets a list of module paths that are provided for the package name as recognized
by the package catalog catalog and for a specific checksum. The module paths should be
normalized in the sense of collapse-module-path.

48

(get-module-pkgs module-path) → (listof pkg?)

module-path : module-path?

Reports a list of packages that implement the given module-path , which should be normal-
ized in the sense of collapse-module-path.

(get-pkgs-without-modules [#:catalog catalog]) → (listof pkg?)

catalog : (or/c #f string?) = #f

Returns a list of packages (optionally constrained to catalog) for which the database has
no modules recorded.

Each resulting pkg has its name, catalog, and checksum field set, but other fields may be
"".

49

7 Package Catalog Protocol

A package catalog is specified by a URL in one of three forms:

• http:// or https:// — a remote URL

• file:// ending with .sqlite — a local SQLite database

• file:// without .sqlite — a local directory

7.1 Remote and Directory Catalogs

In the case of a remote URL or a local directory naming a package catalog, the URL/path is
extended as follows to obtain information about packages:

• pkg and 〈package〉 path elements, where 〈package〉 is a package name, plus a ver-

sion=〈version〉 query (where 〈version〉 is a Racket version number) in the case of a
remote URL.

This URL/path form is use to obtain information about 〈package〉. An HTTP request
for a remote URL should respond with a read-able hash table, as described below. A
path in a local directory formed by adding "pkg" and 〈package〉 should refer to a file
that similarly contains a read-able hash table.

The hash table should supply the following keys:

– 'source (required) — a package source string, typically a remote URL.

– 'checksum (requires) — a string for a checksum.

– 'name — a string that is the same as 〈package〉.
– 'author — a string for the author of the package, normally an e-mail address.

– 'description — a string describing the package.

– 'tags — a list of strings that describe the package’s categorization.

– 'dependencies — a list of dependencies for the package, in the same shape as
a deps "info.rkt" field as described in §4 “Package Metadata”.

– 'modules — a list of module paths for modules that are provided by the pack-
age; each module path should be normalized in the sense of collapse-module-
path.

– 'versions (optional) — a hash table mapping version strings and 'default to
hash tables, where each version-specific hash table provides mappings to over-
ride the ones in the main hash table, and 'default applies to any version not
otherwise mapped.
Clients of a remote catalog may request information for a specific version, but
they should also check for a 'versions entry in a catalog response, in case a

50

catalog with version-specific mappings is implemented as a directory or by a
file-serving HTTP server. A 'default mapping, meanwhile, allows the main
hash table to provide information that is suitable for clients at version 5.3.6 and
earlier (which do not check for 'versions).

• pkgs path element: Obtains a list of package names that are mapped by the package
catalog. An HTTP request for a remote URL should respond with a read-able list of
strings. A path in a local directory formed by adding "pkgs" should refer to a file that
similarly contains a read-able list of strings.

This URL/path form is used by raco pkg catalog-copy and tools that allow a user
to browse an catalog.

In the case of a local directory, if no "pkgs" file is available, a list is created by listing
all files in the "pkg" directory.

• pkgs-all path element: Obtains a hash table mapping package names to package
details. An HTTP request for a remote URL should respond with a read-able hash
table mapping strings to hash tables. A path in a local directory formed by adding
"pkgs-all" should refer to a file that similarly contains a read-able hash table.

This URL/path form is a shortcut for a pkgs URL/path form combined with a
pkgs/〈package〉 query for each package.

In the case of a local directory, if no "pkgs-all" file is available, a list is created
from files in the "pkg" directory.

Note that a local directory served as files through an HTTP server works as a remote URL,
as long as the "pkgs" and "pkgs-all" files are present.

The source for the PLT-hosted package catalog is in the (collection-file-path "pkg-

catalog" "meta") directory of the full Racket distribution.

7.2 SQLite Catalogs

A SQLite database package catalog is meant to be constructed and queries using the pkg/db
library, but the database can be constructed in any way as long as it contains the following
tables:

• A catalog table with the format

(id SMALLINT,

url TEXT,

pos SMALLINT)

Normally, the only row in this table is (0, "local", 0), but a database that records
the content of a set of other catalogs can also be used as an catalog, in which case each
row represents an catalog; the id field is a unique identifier for each catalog, the url

51

field is the catalog’s URL, and the pos column orders the catalog relative to others
(where a lower pos takes precedence).

• A pkg table with the format

(name TEXT,

catalog SMALLINT,

author TEXT,

source TEXT,

checksum TEXT,

desc TEXT)

The catalog field is normally 0; in the case that the database reflects multiple other
catalogs, the catalog field indicates the package entry’s source catalog.

The pkg and catalog fields together determine a unique row in the table.

• A tags table with the form

(pkg TEXT,

catalog TEXT,

tag TEXT)

where the pkg and catalog combination identifies a unique row in pkg.

• A modules table with the form

(name TEXT,

pkg TEXT,

catalog SMALLINT,

checksum TEXT)

where the pkg and catalog combination identifies a unique row in pkg, and name is
a printed module path.

This table is not currently used by any raco pkg command, but it can be used to
suggest package installations to provide a particular library.

• A dependencies table with the form

(onpkg TEXT,

onversion TEXT,

onplatform TEXT,

pkg TEXT,

catalog SMALLINT,

checksum TEXT)

where the pkg and catalog combination identifies a unique row in pkg, and onpkg,
onversion, and onplatform represent the dependency; onversion or onplatform
is an empty string if the dependency has no version or platform specification.

This table is not currently used by any raco pkg command.

52

8 PLaneT Compatibility

PLT maintains a package catalog to serve packages that were developed using the origi-
nal PLaneT package system. This compatibility catalog is at http://planet-compats.racket-
lang.org/, which is included by default in the package-server search path.

Copies of PLaneT packages are automatically created by the server according to the fol-
lowing system: for all packages that are in the 4.x PLaneT repository, the latest minor
version of 〈user〉/〈package〉.plt/〈major-version〉 will be available as planet-〈user〉-
〈package〉〈major-version〉. For example, jaymccarthy/opencl.plt/1 minor version 2,
will be available as planet-jaymccarthy-opencl1.

The contents of these copies is a single collection with the name "〈user〉/〈package〉〈major-
version〉" with all the files from the original PLaneT package in it.

Each file has been transliterated to use direct Racket-style requires rather than PLaneT-style
requires. For example, if any file contains (planet jaymccarthy/opencl/module), then
it is transliterated to jaymccarthy/opencl1/module. This transliteration is purely syntac-
tic and is trivial to confuse, but works for most packages, in practice. Any transliterations
that occurred are automatically added as dependencies for the compatibility package.

We do not intend to improve this compatibility system much more over time, because it is
simply a stop-gap as developers port their PLaneT packages to the new system. Additionally,
the existence of the compatibility server is not meant to imply that we will be removing
PLaneT from existence in the near future.

53

http://planet-compats.racket-lang.org/
http://planet-compats.racket-lang.org/

9 FAQ

This section answers anticipated frequently asked questions about the package manager.

9.1 Are package installations versioned with respect to the Racket ver-
sion?

Most Racket installations are configured to that installing a package installs it for a specific
user and a specific version of Racket. That is, the package scope is user- and version-specific.
More precisely, it is user-specific and installation-name-specific, where an installation name
is typically a Racket version.

You can change the default package scope (for a particular Racket installation) with raco

pkg config -i --set default-scope installation, in which case package opera-
tions apply for all users of a Racket installation. You can also use the -i or --installation
flag with a specific raco pkg command, instead of changing the default scope for all uses
of raco pkg. Note that an installation-wide package is not exactly version-specific, because
the version of an installation can change if it corresponds to a source-code checkout that is
periodically updated and rebuilt.

If you change the default package scope, you can use the -u or --user flag with a specific
raco pkg command to perform the command with user-specific package scope.

9.2 Where and how are packages installed?

User-specific and Racket-version-specific packages are in (find-user-pkgs-dir), and
installation-wide packages are in (find-pkgs-dir). They are linked as collections (for
single-collection packages) or collection roots (for multi-collection packages) with raco

link.

9.3 How are user-specific and installation-wide package scopes related
for conflict checking?

User-specific packages are checked against installation-wide packages for package-name
conflicts and provided-module conflicts. Installation-wide packages are checked against
user-specific packages only for provided-module conflicts.

Beware that a conflict-free, installation-wide change by one user can create conflicts for a
different user.

54

9.4 Do I need to change a package’s version when I update a package
with error fixes, etc.?

If you have new code for a package, then it should have a new checksum. When package up-
dates are searched for, the checksum of the installed package is compared with the checksum
of the source, if they are different, then the source is re-installed. This allows code changes
to be distributed. You do not need to declare an update a version number, except to allow
other package implementors to indicate a dependency on particular features (where a bug fix
might be considered a feature, but it is not usually necessary to consider it that way).

9.5 How can I specify which version of a package I depend on if its
interface has changed and I need an old version?

In such a situation, the author of the package has released a backwards incompatible edition
of a package. The package manager provides no help to deal with this situation (other
than, of course, not installing the “update”). Therefore, package authors should not make
backwards incompatible changes to packages. Instead, they should release a new package
with a new name. For example, package libgtk might become libgtk2. These packages
should be designed to not conflict with each other, as well.

9.6 How can I fix my installation to a specific set of package implemen-
tations or checksums?

Packages are updated only when you run a tool such as raco pkg update, so packages
are never updated implicitly. Furthermore, you can snapshot a set of package archives and
install from those archives, instead of relying on package name resolution through a package
catalog.

If you want to control the resolution of package names (including specific checksums) but
not necessary keep a copy of all package code (assuming that old checksums remain avail-
able, such as through Github), you can create a snapshot of the package name to package
source mapping by using raco pkg catalog-copy. For example,

raco pkg catalog-copy --from-config /home/joe/snapshot.sqlite

creates a snapshot "/home/joe/snapshot.sqlite" of the current package name resolu-
tion, and then

raco pkg config --set catalogs file:///home/joe/snapshot.sqlite

directs all package-name resolution to the snapshot. You can configure resolution for specific
package names by editing the snapshot.

55

9.7 Why is the package manager so different than PLaneT?

There are two fundamental differences between PLaneT and this package manager.

The first is that PLaneT uses “internal linking” whereas the current package manager uses
“external linking.” For example, an individual module requires a PLaneT package directly
in a require statement:

(require (planet game/tic-tac-toe/data/matrix))

whereas using the package manager, the module would simply require the module of interest:

(require data/matrix)

and would rely on the external system having the tic-tac-toe package installed.

This change is good because it makes the origin of modules more flexible—so that code can
migrate in and out of the core, packages can easily be split up, combined, or taken over by
other authors, etc.

This change is bad because it makes the meaning of your program dependent on the state of
the system.

The second major difference is that PLaneT is committed to guaranteeing that packages that
never conflict with one another, so that any number of major and minor versions of the same
package can be installed and used simultaneously. The package manager does not share this
commitment, so package authors and users must be mindful of potential conflicts and plan
around them.

This change is good because it is simpler and lowers the burden of maintenance (provided
most packages don’t conflict.)

The change is bad because users must plan around potential conflicts.

In general, the goal of the package manager is to be a lower-level system, more like the
package systems used by operating systems. The goals of PLaneT are not bad, but we
believe they are needed infrequently and a system like PLaneT could be more easily built
atop the package manager than the reverse.

In particular, our plans to mitigate the downsides of these changes are documented in §10.1
“Short Term”.

56

10 Future Plans

10.1 Short Term

This section lists some short term plans for the package manager. These are important, but
didn’t block its release. The package manager will be considered out of beta when these are
completed.

• The official catalog server will divide packages into three categories: ring-0, ring-1,
and ring-2. The definitions for these categories are:

– ring-2 — No restrictions.

– ring-1 — Must not conflict any package in ring-1 or ring-0.

– ring-0 — Must not conflict any package in ring-1 or ring-0. Must have documen-
tation and tests. The author must be responsive about fixing regressions against
changes in Racket, etc.

These categories will be curated by PLT.

Our goal is for all packages to be in ring-1, with ring-2 as a temporary place while
the curators work with the authors of conflicting packages to determine how modules
should be renamed for unity.

However, before curation is complete, each package will be automatically placed in
ring-2 or ring-1 depending on its conflicts, with preference being given to older pack-
ages. (For example, if a new package B conflicts with an old package A, then A will
be in ring-1, but B will be in ring-2.) During curation, however, it is not necessarily
the case that older packages have preference. (For example, tic-tac-toe should
probably not provide "data/matrix.rkt", but that could be spun off into another
package used by both tic-tac-toe and factory-optimize.)

In contrast, the ring-0 category will be a special category that authors may apply for.
Admission requires a code audit and implies a "stamp of approval" from PLT. In the
future, packages in this category will have more benefits, such as automatic regression
testing on DrDr, testing during releases, provided binaries, and advertisement during
installation.

The PLaneT compatibility packages will also be included in the ring-1 category, auto-
matically.

• In order to mitigate the costs of external linking vis a vis the inability to under-
stand code in isolation, we will create exception printers that search for providers
of modules on the configured package catalogs. For example, if a module requires
"data/matrix.rkt", and it is not available, then the catalog will be consulted to
discover what packages provide it. Only packages in ring-1 or ring-0 will be returned.
(This category restriction ensures that the package to install is unique.)

57

Users can configure their systems to then automatically install the package provided is
has the appropriate category (i.e., some users may wish to automatically install ring-0
packages but not ring-1 packages, while others may not want to install any.)

This feature will be generalized across all package catalogs, so users could maintain
their own category definitions with different policies.

10.2 Long Term

This section lists some long term plans for the package manager. Many of these require a lot
of cross-Racket integration.

• The official catalog server is bare bones. It could conceivably do a lot more: keep track
of more statistics, enable "social" interactions about packages, link to documentation,
problem reports, licenses, etc. Some of this is easy and obvious, but the community’s
needs are unclear.

• It would be nice to encrypt information from the official package catalog with a public
key shipped with Racket, and allow other catalogs to implement a similar security
scheme.

• Packages in the ring-0 category should be tested on DrDr. This would require a way
to communicate information about how they should be run to DrDr. This is currently
done via the "meta/props" script for things in the core. We should generalize this
script to a "meta/props.d" directory so that packages can install DrDr metadata to
it.

• We hope that this package system will encourage more incremental improvements to
pieces of Racket. In particular, it would be wonderful to have a very thorough "data"

collection of different data-structures. However, our existing setup for Scribble would
force each new data structue to have a different top-level documentation manual, rather
than extending the documentation of the existing "data" collection. Similar issues
will exist for the "net" and "file" collections. We should design a way to have such
"documentation plugins" in Scribble and support similar "plugin" systems elsewhere
in the code-base.

• The user interface could be improved, including integration with DrRacket and a GUI.
For example, it would be good if DrRacket would poll for package updates periodi-
cally and if when it was first started it would display available, popular packages.

58

	1 Getting Started with Packages
	1.1 What is a Package?
	1.2 Inspecting Your Installation
	1.3 Finding Packages
	1.4 Installing Packages
	1.5 Updating Packages
	1.6 Removing Packages
	1.7 Creating Packages
	1.8 Sharing Packages
	1.8.1 GitHub Deployment
	1.8.2 Manual Deployment
	1.8.3 Helping Others Discover Your Package
	1.8.4 Naming and Designing Packages
	1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6

	2 Package Concepts
	2.1 Single-collection and Multi-collection Packages
	2.2 Package Sources
	2.3 Package Catalogs
	2.4 Explicit vs. Auto-Installation
	2.5 Package Conflicts
	2.6 Package Updates
	2.7 Package Scopes

	3 Using raco pkg
	3.1 raco pkg install
	3.2 raco pkg update
	3.3 raco pkg remove
	3.4 raco pkg show
	3.5 raco pkg migrate
	3.6 raco pkg create
	3.7 raco pkg config
	3.8 raco pkg catalog-show
	3.9 raco pkg catalog-copy

	4 Package Metadata
	5 Source, Binary, and Built Packages
	6 Package APIs
	6.1 Functions for raco pkg
	6.2 Package Management Functions
	6.3 Package Paths and Database
	6.4 Package Source Parsing
	6.5 Package Catalog Database

	7 Package Catalog Protocol
	7.1 Remote and Directory Catalogs
	7.2 SQLite Catalogs

	8 PLaneT Compatibility
	9 FAQ
	9.1 Are package installations versioned with respect to the Racket version?
	9.2 Where and how are packages installed?
	9.3 How are user-specific and installation-wide package scopes related for conflict checking?
	9.4 Do I need to change a package's version when I update a package with error fixes, etc.?
	9.5 How can I specify which version of a package I depend on if its interface has changed and I need an old version?
	9.6 How can I fix my installation to a specific set of package implementations or checksums?
	9.7 Why is the package manager so different than PLaneT?

	10 Future Plans
	10.1 Short Term
	10.2 Long Term

