
The Typed Racket Reference
Version 6.0

Sam Tobin-Hochstadt <samth@racket-lang.org>,
Vincent St-Amour <stamourv@racket-lang.org>,
Eric Dobson <endobson@racket-lang.org>,
and Asumu Takikawa <asumu@racket-lang.org>

February 18, 2014

#lang typed/racket/base package: typed-racket-lib
#lang typed/racket

1

mailto:samth@racket-lang.org
mailto:stamourv@racket-lang.org
mailto:endobson@racket-lang.org
mailto:asumu@racket-lang.org

1 Type Reference

Any

Any Racket value. All other types are subtypes of Any.

Nothing

The empty type. No values inhabit this type, and any expression of this type will not evaluate
to a value.

1.1 Base Types

1.1.1 Numeric Types

These types represent the hierarchy of numbers of Racket.

Number
Complex

Number and Complex are synonyms. This is the most general numeric type, including all
Racket numbers, both exact and inexact, including complex numbers.

Integer

Includes Racket’s exact integers and corresponds to the exact-integer? predicate. This is
the most general type that is still valid for indexing and other operations that require integral
values.

Float

Flonum

Includes Racket’s double-precision (default) floating-point numbers and corresponds to the
flonum? predicate. This type excludes single-precision floating-point numbers.

Single-Flonum

Includes Racket’s single-precision floating-point numbers and corresponds to the single-

flonum? predicate. This type excludes double-precision floating-point numbers.

Inexact-Real

2

Includes all of Racket’s floating-point numbers, both single- and double-precision.

Exact-Rational

Includes Racket’s exact rationals, which include fractions and exact integers.

Real

Includes all of Racket’s real numbers, which include both exact rationals and all floating-
point numbers. This is the most general type for which comparisons (e.g. <) are defined.

Exact-Number
Float-Complex

Single-Flonum-Complex

Inexact-Complex

These types correspond to Racket’s complex numbers.

The above types can be subdivided into more precise types if you want to enforce tighter
constraints. Typed Racket provides types for the positive, negative, non-negative and non-
positive subsets of the above types (where applicable).

Positive-Integer

Exact-Positive-Integer

Nonnegative-Integer

Exact-Nonnegative-Integer

Natural
Negative-Integer

Nonpositive-Integer

Zero

Positive-Float

Positive-Flonum
Nonnegative-Float

Nonnegative-Flonum

Negative-Float

Negative-Flonum

Nonpositive-Float

Nonpositive-Flonum

Float-Negative-Zero

Flonum-Negative-Zero

Float-Positive-Zero

Flonum-Positive-Zero

Float-Zero

Flonum-Zero

Float-Nan

3

Flonum-Nan
Positive-Single-Flonum

Nonnegative-Single-Flonum

Negative-Single-Flonum

Nonpositive-Single-Flonum

Single-Flonum-Negative-Zero

Single-Flonum-Positive-Zero

Single-Flonum-Zero

Single-Flonum-Nan

Positive-Inexact-Real
Nonnegative-Inexact-Real

Negative-Inexact-Real

Nonpositive-Inexact-Real

Inexact-Real-Negative-Zero

Inexact-Real-Positive-Zero

Inexact-Real-Zero

Inexact-Real-Nan

Positive-Exact-Rational
Nonnegative-Exact-Rational

Negative-Exact-Rational

Nonpositive-Exact-Rational

Positive-Real
Nonnegative-Real

Negative-Real

Nonpositive-Real

Real-Zero

Natural and Exact-Nonnegative-Integer are synonyms. So are the integer and exact-
integer types, and the float and flonum types. Zero includes only the integer 0. Real-Zero
includes exact 0 and all the floating-point zeroes.

These types are useful when enforcing that values have a specific sign. However, programs
using them may require additional dynamic checks when the type-checker cannot guarantee
that the sign constraints will be respected.

In addition to being divided by sign, integers are further subdivided into range-bounded
types.

One
Byte

Positive-Byte

Index

Positive-Index

Fixnum

Positive-Fixnum

4

Nonnegative-Fixnum

Negative-Fixnum

Nonpositive-Fixnum

One includes only the integer 1. Byte includes numbers from 0 to 255. Index is bounded
by 0 and by the length of the longest possible Racket vector. Fixnum includes all numbers
represented by Racket as machine integers. For the latter two families, the sets of values in-
cluded in the types are architecture-dependent, but typechecking is architecture-independent.

These types are useful to enforce bounds on numeric values, but given the limited amount
of closure properties these types offer, dynamic checks may be needed to check the desired
bounds at runtime.

Examples:

> 7

- : Integer [more precisely: Positive-Byte]

7

> 8.3

- : Flonum [more precisely: Positive-Flonum]

8.3

> (/ 8 3)

- : Exact-Rational [more precisely: Positive-Exact-Rational]

8/3

> 0

- : Integer [more precisely: Zero]

0

> -12

- : Integer [more precisely: Negative-Fixnum]

-12

> 3+4i

- : Exact-Number

3+4i

1.1.2 Other Base Types

Boolean

True

False
String

Keyword

Symbol

Char

Void

5

Input-Port

Output-Port

Port

Path
Path-For-Some-System

Regexp

PRegexp

Byte-Regexp

Byte-PRegexp

Bytes

Namespace

Namespace-Anchor

Variable-Reference

Null

EOF

Continuation-Mark-Set

Undefined

Module-Path

Module-Path-Index

Resolved-Module-Path
Compiled-Module-Expression

Compiled-Expression

Internal-Definition-Context
Pretty-Print-Style-Table

Special-Comment

Struct-Type-Property

Impersonator-Property

Read-Table
Bytes-Converter

Parameterization

Custodian
Inspector

Security-Guard

UDP-Socket

TCP-Listener
Logger

Log-Receiver

Log-Level

Thread
Thread-Group

Subprocess

Place

Place-Channel
Semaphore

Will-Executor

6

Pseudo-Random-Generator

These types represent primitive Racket data.

Examples:

> #t

- : Boolean [more precisely: True]

#t

> #f

- : False

#f

> "hello"

- : String

"hello"

> (current-input-port)

- : Input-Port

#<input-port:string>

> (current-output-port)

- : Output-Port

#<output-port:string>

> (string->path "/")

- : Path

#<path:/>

> #rx"a*b*"

- : Regexp

#rx"a*b*"

> #px"a*b*"

- : PRegexp

#px"a*b*"

> '#"bytes"

- : Bytes

#"bytes"

> (current-namespace)

- : Namespace

#<namespace:0>

> #\b

- : Char

#\b

> (thread (lambda () (add1 7)))

- : Thread

#<thread>

Path-String

The union of the Path and String types. Note that this does not match exactly what the
predicate path-string? recognizes. For example, strings that contain the character #\nul

7

have the type Path-String but path-string? returns #f for those strings. For a complete
specification of which strings path-string? accepts, see its documentation.

1.2 Singleton Types

Some kinds of data are given singleton types by default. In particular, booleans, symbols,
and keywords have types which consist only of the particular boolean, symbol, or keyword.
These types are subtypes of Boolean, Symbol and Keyword, respectively.

Examples:

> #t

- : Boolean [more precisely: True]

#t

> '#:foo

- : #:foo

'#:foo

> 'bar

- : Symbol [more precisely: 'bar]

'bar

1.3 Containers

The following base types are parameteric in their type arguments.

(Pairof s t)

is the pair containing s as the car and t as the cdr

Examples:

> (cons 1 2)

- : (Pairof One Positive-Byte)

'(1 . 2)

> (cons 1 "one")

- : (Pairof One String)

'(1 . "one")

(Listof t)

Homogenous lists of t

(List t ...)

8

is the type of the list with one element, in order, for each type provided to the List type
constructor.

(List t ... trest ... bound)

is the type of a list with one element for each of the ts, plus a sequence of elements corre-
sponding to trest , where bound must be an identifier denoting a type variable bound with
....

(List* t t1 ... s)

is equivalent to (Pairof t (List* t1 ... s)).

Examples:

> (list 'a 'b 'c)

- : (Listof (U 'a 'b 'c)) [more precisely: (List 'a 'b 'c)]

'(a b c)

> (plambda: (a ...) ([sym : Symbol] boxes : (Boxof a) ... a)

(ann (cons sym boxes) (List Symbol (Boxof a) ... a)))

- : (All (a ...) (Symbol (Boxof a) ... a -> (Pairof Symbol (List

(Boxof a) ... a))))

#<procedure>

> (map symbol->string (list 'a 'b 'c))

- : (Listof String) [more precisely: (Pairof String (Listof

String))]

'("a" "b" "c")

(MListof t)

Homogenous mutable lists of t .

(MPairof t u)

Mutable pairs of t and u .

MPairTop

is the type of a mutable pair with unknown element types and is the supertype of all mutable
pair types. This type typically appears in programs via the combination of occurrence typing
and mpair?.

Example:

9

> (lambda: ([x : Any]) (if (mpair? x) x (error "not an mpair!")))

- : (Any -> MPairTop)

#<procedure>

(Boxof t)

A box of t

Example:

> (box "hello world")

- : (Boxof String)

'#&"hello world"

BoxTop

is the type of a box with an unknown element type and is the supertype of all box types.
Only read-only box operations (e.g. unbox) are allowed on values of this type. This type
typically appears in programs via the combination of occurrence typing and box?.

Example:

> (lambda: ([x : Any]) (if (box? x) x (error "not a box!")))

- : (Any -> BoxTop)

#<procedure>

(Vectorof t)

Homogenous vectors of t

(Vector t ...)

is the type of the list with one element, in order, for each type provided to the Vector type
constructor.

FlVector

An flvector.

Examples:

> (vector 1 2 3)

- : (Vector Integer Integer Integer)

'#(1 2 3)

> #(a b c)

- : (Vector Symbol Symbol Symbol)

'#(a b c)

10

VectorTop

is the type of a vector with unknown length and element types and is the supertype of all
vector types. Only read-only vector operations (e.g. vector-ref) are allowed on values of
this type. This type typically appears in programs via the combination of occurrence typing
and vector?.

Example:

> (lambda: ([x : Any]) (if (vector? x) x (error "not a vector!")))

- : (Any -> VectorTop)

#<procedure>

(HashTable k v)

is the type of a hash table with key type k and value type v .

Example:

> #hash((a . 1) (b . 2))

- : (HashTable Symbol Integer)

'#hash((b . 2) (a . 1))

HashTableTop

is the type of a hash table with unknown key and value types and is the supertype of all hash
table types. Only read-only hash table operations (e.g. hash-ref) are allowed on values of
this type. This type typically appears in programs via the combination of occurrence typing
and hash?.

Example:

> (lambda: ([x : Any]) (if (hash? x) x (error "not a hash

table!")))

- : (Any -> HashTableTop)

#<procedure>

(Setof t)

is the type of a set of t .

Example:

> (set 0 1 2 3)

- : (Setof Byte)

(set 0 1 2 3)

11

(Channelof t)

A channel on which only ts can be sent.

Example:

> (ann (make-channel) (Channelof Symbol))

- : (Channelof Symbol)

#<channel>

ChannelTop

is the type of a channel with unknown message type and is the supertype of all channel
types. This type typically appears in programs via the combination of occurrence typing and
channel?.

Example:

> (lambda: ([x : Any]) (if (channel? x) x (error "not a

channel!")))

- : (Any -> ChannelTop)

#<procedure>

(Parameterof t)
(Parameterof s t)

A parameter of t . If two type arguments are supplied, the first is the type the parameter
accepts, and the second is the type returned.

Examples:

> current-input-port

- : (Parameterof Input-Port)

#<procedure:current-input-port>

> current-directory

- : (Parameterof Path-String Path)

#<procedure:current-directory>

(Promise t)

A promise of t .

Example:

> (delay 3)

- : (Promise Positive-Byte)

#<promise:eval:41:0>

12

(Futureof t)

A future which produce a value of type t when touched.

(Sequenceof t)

A sequence that produces values of type t on each iteration.

(Custodian-Boxof t)

A custodian box of t .

(Thread-Cellof t)

A thread cell of t .

Thread-CellTop

is the type of a thread cell with unknown element type and is the supertype of all thread cell
types. This type typically appears in programs via the combination of occurrence typing and
thread-cell?.

Example:

> (lambda: ([x : Any]) (if (thread-cell? x) x (error "not a thread

cell!")))

- : (Any -> Thread-CellTop)

#<procedure>
(Ephemeronof t)

An ephemeron whose value is of type t .

(Evtof t)

A synchronizable event whose synchronization result is of type t .

Examples:

> always-evt

- : (Rec x (Evtof x))

#<always-evt>

> (system-idle-evt)

- : (Evtof Void)

#<evt>

> (ann (thread (λ () (displayln "hello world"))) (Evtof Thread))

- : (Evtof Thread)

#<thread>

13

1.4 Syntax Objects

The following types represent syntax objects and their content.

(Syntaxof t)

A syntax object with content of type t . Applying syntax-e to a value of type (Syntaxof
t) produces a value of type t .

Identifier

A syntax object containing a symbol. Equivalent to (Syntaxof Symbol).

Syntax

A syntax object containing only symbols, keywords, strings, characters, booleans, numbers,
boxes containing Syntax, vectors of Syntax, or (possibly improper) lists of Syntax. Equiv-
alent to (Syntaxof Syntax-E).

Syntax-E

The content of syntax objects of type Syntax. Applying syntax-e to a value of type Syn-
tax produces a value of type Syntax-E.

(Sexpof t)

The recursive union of t with symbols, keywords, strings, characters, booleans, numbers,
boxes, vectors, and (possibly improper) lists.

Sexp

Applying syntax->datum to a value of type Syntax produces a value of type Sexp. Equiv-
alent to (Sexpof Nothing).

Datum

Applying datum->syntax to a value of type Datum produces a value of type Syntax.
Equivalent to (Sexpof Syntax).

1.5 Control

The following types represent prompt tags and keys for continuation marks for use with
delimited continuation functions and continuation mark functions.

14

(Prompt-Tagof s t)

A prompt tag to be used in a continuation prompt whose body produces the type s and whose
handler has the type t . The type t must be a function type.

The domain of t determines the type of the values that can be aborted, using abort-

current-continuation, to a prompt with this prompt tag.

Example:

> (make-continuation-prompt-tag 'prompt-tag)

- : (Prompt-Tagof Any Any)

#<continuation-prompt-tag:prompt-tag>

Prompt-TagTop

is the type of a prompt tag with unknown body and handler types and is the supertype of all
prompt tag types. This type typically appears in programs via the combination of occurrence
typing and continuation-prompt-tag?.

Example:

> (lambda: ([x : Any]) (if (continuation-prompt-

tag? x) x (error "not a prompt tag!")))

- : (Any -> Prompt-TagTop)

#<procedure>

(Continuation-Mark-Keyof t)

A continuation mark key that is used for continuation mark operations such as with-

continuation-mark and continuation-mark-set->list. The type t represents the
type of the data that is stored in the continuation mark with this key.

Example:

> (make-continuation-mark-key 'mark-key)

hello world

- : (Continuation-Mark-Keyof Any)

#<continuation-mark-key>

Continuation-Mark-KeyTop

is the type of a continuation mark key with unknown element type and is the supertype of all
continuation mark key types. This type typically appears in programs via the combination
of occurrence typing and continuation-mark-key?.

15

Example:

> (lambda: ([x : Any]) (if (continuation-mark-

key? x) x (error "not a mark key!")))

- : (Any -> Continuation-Mark-KeyTop)

#<procedure>

1.6 Other Type Constructors

(dom ... -> rng)

(dom ... rest * -> rng)

(dom ... rest ooo bound -> rng)

(dom -> rng : pred)

ooo = ...

dom = type

| keyword type

| [keyword type]

The type of functions from the (possibly-empty) sequence dom ... to the rng type. The
second form specifies a uniform rest argument of type rest , and the third form specifies
a non-uniform rest argument of type rest with bound bound . In the third form, the ...

introduced by ooo is literal, and bound must be an identifier denoting a type variable. In
the fourth form, there must be only one dom and pred is the type checked by the predicate.
dom can include both mandatory and optional keyword arguments.

Examples:

> (λ: ([x : Number]) x)

- : (Number -> Number)

#<procedure>

> (λ: ([x : Number] y : String *) (length y))

- : (Number String * -> Index)

#<procedure>

> ormap

- : (All (a c b ...) ((a b ... b -> c) (Listof a) (Listof b) ... b

-> (U False c)))

#<procedure:ormap>

> string?

- : (Any -> Boolean : String)

#<procedure:string?>

> (:print-type file->string)

(Path-String [#:mode (U 'binary 'text)] -> String)

16

> (: is-zero? : Number #:equality (Number Number -> Any) [#:zero Number] -> Any)

> (define (is-zero? n #:equality equality #:zero [zero 0])

(equality n zero))

> (is-zero? 2 #:equality =)

- : Any

#f

> (is-zero? 2 #:equality eq? #:zero 2.0)

- : Any

#f

Procedure

is the supertype of all function types. The Procedure type corresponds to values that sat-
isfy the procedure? predicate. Because this type encodes only the fact that the value is a
procedure, and not its argument types or even arity, the type-checker cannot allow values of
this type to be applied.

For the types of functions with known arity and argument types, see the -> type constructor.

Examples:

> (: my-list Procedure)

> (define my-list list)

> (my-list "zwiebelkuchen" "socca")

eval:61:0: Type Checker: Cannot apply expression of type
Procedure, since it is not a function type

in: "socca"
(U t ...)

is the union of the types t

Example:

> (λ: ([x : Real])(if (> 0 x) "yes" 'no))

- : (Real -> (U String 'no))

#<procedure>

(case-> fun-ty ...)

is a function that behaves like all of the fun-tys, considered in order from first to last. The
fun-tys must all be function types constructed with ->.

17

Example:

> (: add-map : (case->

[(Listof Integer) -> (Listof Integer)]

[(Listof Integer) (Listof Integer) -> (Listof Integer)]))

For the definition of add-map look into case-lambda:.

(t t1 t2 ...)

is the instantiation of the parametric type t at types t1 t2 ...

(All (a ...) t)
(All (a ... a ooo) t)

is a parameterization of type t , with type variables v If t is a function type constructed
with ->, the outer pair of parentheses around the function type may be omitted.

Examples:

> (: list-length : (All (A) (Listof A) -> Natural))

> (define (list-length lst)

(if (null? lst)

0

(add1 (list-length (cdr lst)))))

> (list-length (list 1 2 3))

- : Integer [more precisely: Nonnegative-Integer]

3

(Values t ...)

is the type of a sequence of multiple values, with types t This can only appear as the
return type of a function.

Example:

> (values 1 2 3)

- : (Values Integer Integer Integer) [more precisely: (Values One

Positive-Byte Positive-Byte)]

1

2

3

18

v

where v is a number, boolean or string, is the singleton type containing only that value

(quote val)

where val is a Racket value, is the singleton type containing only that value

i

where i is an identifier can be a reference to a type name or a type variable

(Rec n t)

is a recursive type where n is bound to the recursive type in the body t

Examples:

> (define-type IntList (Rec List (Pair Integer (U List Null))))

> (define-type (List A) (Rec List (Pair A (U List Null))))

(Struct st)

is a type which is a supertype of all instances of the potentially-polymorphic structure type
st . Note that structure accessors for st will not accept (Struct st) as an argument.

→

An alias for ->.

case→

An alias for case->.

∀

An alias for All.

19

1.7 Other Types

(Option t)

Either t or #f

(Opaque t)

A type constructed using the #:opaque clause of require/typed.

20

2 Special Form Reference

Typed Racket provides a variety of special forms above and beyond those in Racket. They
are used for annotating variables with types, creating new types, and annotating expressions.

2.1 Binding Forms

loop , f , a , and v are names, t is a type. e is an expression and body is a block.

(let: ([v : t e] ...) . body)

(let: loop : t0 ([v : t e] ...) . body)

Local bindings, like let, each with associated types. In the second form, t0 is the type of
the result of loop (and thus the result of the entire expression as well as the final expression
in body). Type annotations are optional.

Examples:

> (: filter-even : (Listof Natural) (Listof Natural) -> (Listof Natural))

> (define (filter-even lst accum)

(if (null? lst)

accum

(let: ([first : Natural (car lst)]

[rest : (Listof Natural) (cdr lst)])

(if (even? first)

(filter-even rest (cons first accum))

(filter-even rest accum)))))

> (filter-even (list 1 2 3 4 5 6) null)

- : (Listof Nonnegative-Integer)

'(6 4 2)

Examples:

> (: filter-even-loop : (Listof Natural) -> (Listof Natural))

> (define (filter-even-loop lst)

(let: loop : (Listof Natural)

([accum : (Listof Natural) null]

[lst : (Listof Natural) lst])

(cond

[(null? lst) accum]

[(even? (car lst)) (loop (cons (car lst) accum) (cdr lst))]

[else (loop accum (cdr lst))])))

21

> (filter-even-loop (list 1 2 3 4))

- : (Listof Nonnegative-Integer)

'(4 2)

(plet: (a ...) ([v : t e] ...) . body)

A polymorphic version of let:, abstracted over the type variables a . The type variables a
are bound in both the types of the formal, and in any type expressions in the body . Does not
support the looping form of let.

(letrec: ([v : t e] ...) . body)

(let*: ([v : t e] ...) . body)

(let-values: ([([v : t] ...) e] ...) . body)

(letrec-values: ([([v : t] ...) e] ...) . body)

(let*-values: ([([v : t] ...) e] ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-

values. As with let:, type annotations are optional.

(let/cc: v : t . body)

(let/ec: v : t . body)

Type-annotated versions of let/cc and let/ec.

2.2 Anonymous Functions

(lambda: formals . body)

formals = ([v : t] ...)

| ([v : t] ... v : t *)

| ([v : t] ... v : t ooo bound)

A function of the formal arguments v , where each formal argument has the associated type.
If a rest argument is present, then it has type (Listof t).

(λ: formals . body)

An alias for the same form using lambda:.

22

(plambda: (a ...) formals . body)

(plambda: (a ... b ooo) formals . body)

A polymorphic function, abstracted over the type variables a . The type variables a are
bound in both the types of the formal, and in any type expressions in the body .

(case-lambda: [formals body] ...)

A function of multiple arities. Note that each formals must have a different arity.

Example:

> (define add-map

(case-lambda:

[([lst : (Listof Integer)])

(map add1 lst)]

[([lst1 : (Listof Integer)]

[lst2 : (Listof Integer)])

(map + lst1 lst2)]))

For the type declaration of add-map look at case-lambda.

(pcase-lambda: (a ...) [formals body] ...)

(pcase-lambda: (a ... b ooo) [formals body] ...)

A polymorphic function of multiple arities.

(opt-lambda: formals . body)

formals = ([v : t] ... [v : t default] ...)

| ([v : t] ... [v : t default] ... v : t *)

| ([v : t] ... [v : t default] ... v : t ooo bound)

A function with optional arguments.

(popt-lambda: (a ...) formals . body)

(popt-lambda: (a ... a ooo) formals . body)

A polymorphic function with optional arguments.

23

2.3 Loops

(for: type-ann-maybe (for:-clause ...)

expr ...+)

type-ann-maybe =
| : u

for:-clause = [id : t seq-expr]

| [id seq-expr]

| #:when guard

Like for, but each id having the associated type t . Since the return type is always Void,
annotating the return type of a for form is optional. Unlike for, multi-valued seq-exprs
are not supported. Type annotations in clauses are optional for all for: variants.

(for/list: type-ann-maybe (for:-clause ...) expr ...+)

(for/hash: type-ann-maybe (for:-clause ...) expr ...+)

(for/hasheq: type-ann-maybe (for:-clause ...) expr ...+)

(for/hasheqv: type-ann-maybe (for:-clause ...) expr ...+)

(for/vector: type-ann-maybe (for:-clause ...) expr ...+)

(for/flvector: type-ann-maybe (for:-clause ...) expr ...+)

(for/and: type-ann-maybe (for:-clause ...) expr ...+)

(for/or: type-ann-maybe (for:-clause ...) expr ...+)

(for/first: type-ann-maybe (for:-clause ...) expr ...+)

(for/last: type-ann-maybe (for:-clause ...) expr ...+)

(for/sum: type-ann-maybe (for:-clause ...) expr ...+)

(for/product: type-ann-maybe (for:-clause ...) expr ...+)

(for*/list: type-ann-maybe (for:-clause ...) expr ...+)

(for*/hash: type-ann-maybe (for:-clause ...) expr ...+)

(for*/hasheq: type-ann-maybe (for:-clause ...) expr ...+)

(for*/hasheqv: type-ann-maybe (for:-clause ...) expr ...+)

(for*/vector: type-ann-maybe (for:-clause ...) expr ...+)

(for*/flvector: type-ann-maybe (for:-clause ...) expr ...+)

(for*/and: type-ann-maybe (for:-clause ...) expr ...+)

(for*/or: type-ann-maybe (for:-clause ...) expr ...+)

(for*/first: type-ann-maybe (for:-clause ...) expr ...+)

(for*/last: type-ann-maybe (for:-clause ...) expr ...+)

(for*/sum: type-ann-maybe (for:-clause ...) expr ...+)

(for*/product: type-ann-maybe (for:-clause ...) expr ...+)

These behave like their non-annotated counterparts, with the exception that #:when clauses
can only appear as the last for:-clause . The return value of the entire form must be
of type u. For example, a for/list: form would be annotated with a Listof type. All
annotations are optional.

24

(for/lists: type-ann-maybe ([id : t] ...)

(for:-clause ...)

expr ...+)

(for/fold: type-ann-maybe ([id : t init-expr] ...)

(for:-clause ...)

expr ...+)

These behave like their non-annotated counterparts. Unlike the above, #:when clauses can
be used freely with these.

(for*: void-ann-maybe (for-clause ...)

expr ...+)

(for*/lists: type-ann-maybe ([id : t] ...)

(for:-clause ...)

expr ...+)

(for*/fold: type-ann-maybe ([id : t init-expr] ...)

(for:-clause ...)

expr ...+)

These behave like their non-annotated counterparts.

for

for*

These are identical to for and for*, but provide additional annotations to help the type-
checker.
(do: : u ([id : t init-expr step-expr-maybe] ...)

(stop?-expr finish-expr ...)

expr ...+)

step-expr-maybe =
| step-expr

Like do, but each id having the associated type t , and the final body expr having the type
u . Type annotations are optional.

2.4 Definitions

(define: v : t e)
(define: (a ...) v : t e)

(define: (a ... a ooo) v : t e)

(define: (f . formals) : t . body)

(define: (a ...) (f . formals) : t . body)

(define: (a ... a ooo) (f . formals) : t . body)

25

These forms define variables, with annotated types. The first form defines v with type t and
value e . The second form does the same, but allows the specification of type variables. The
third allows for polydotted variables. The fourth, fifth, and sixth forms define a function f

with appropriate types. In most cases, use of : is preferred to use of define:.

Examples:

> (define: foo : Integer 10)

> (define: (A) mt-seq : (Sequenceof A) empty-sequence)

> (define: (add [first : Integer]

[rest : Integer]) : Integer

(+ first rest))

> (define: (A) (poly-app [func : (A A -> A)]

[first : A]

[rest : A]) : A

(func first rest))

2.5 Structure Definitions

(struct: maybe-type-vars name-spec ([f : t] ...) options ...)

maybe-type-vars =
| (v ...)

name-spec = name

| name parent

options = #:transparent

| #:mutable

Defines a structure with the name name , where the fields f have types t , similar to the
behavior of struct. When parent is present, the structure is a substructure of parent .
When maybe-type-vars is present, the structure is polymorphic in the type variables v .
If parent is also a polymorphic struct, then there must be at least as many type variables
as in the parent type, and the parent type is instantiated with a prefix of the type variables
matching the amount it needs.

Options provided have the same meaning as for the struct form.

(define-struct: maybe-type-vars name-spec ([f : t] ...) options ...)

26

maybe-type-vars =
| (v ...)

name-spec = name

| (name parent)

options = #:transparent

| #:mutable

Legacy version of struct:, corresponding to define-struct.

(define-struct/exec: name-spec ([f : t] ...) [e : proc-t])

name-spec = name

| (name parent)

Like define-struct:, but defines a procedural structure. The procdure e is used as the
value for prop:procedure, and must have type proc-t .

2.6 Names for Types

(define-type name t maybe-omit-def)

(define-type (name v ...) t maybe-omit-def)

maybe-omit-def = #:omit-define-syntaxes

|

The first form defines name as type, with the same meaning as t . The second form is
equivalent to (define-type name (All (v ...) t)). Type names may refer to other
types defined in the same module, but cycles among them are prohibited.

Examples:

> (define-type IntStr (U Integer String))

> (define-type (ListofPairs A) (Listof (Pair A A)))

If #:omit-define-syntaxes is specified, no definition of name is created. In this case,
some other definition of name is necessary.

2.7 Generating Predicates Automatically

(make-predicate t)

27

Evaluates to a predicate for the type t , with the type (Any -> Boolean : t). t may
not contain function types, or types that may refer to mutable data such as (Vectorof

Integer).

(define-predicate name t)

Equivalent to (define name (make-predicate t)).

2.8 Type Annotation and Instantiation

(: v t)

This declares that v has type t . The definition of v must appear after this declaration. This
can be used anywhere a definition form may be used.

Examples:

> (: var1 Integer)

> (: var2 String)

(provide: [v t] ...)

This declares that the vs have the types t , and also provides all of the vs.

#{v : t}

This declares that the variable v has type t . This is legal only for binding occurrences of v .

(ann e t)

Ensure that e has type t , or some subtype. The entire expression has type t . This is legal
only in expression contexts.

#{e :: t}

A reader abbreviation for (ann e t).

(cast e t)

The entire expression has the type t , while e may have any type. The value of the entire
expression is the value returned by e , protected by a contract ensuring that it has type t .
This is legal only in expression contexts.

28

Examples:

> (cast 3 Integer)

- : Integer

3

> (cast 3 String)

3: broke its contract
promised: String
produced: 3
in: String
contract from: cast
blaming: cast
at: eval:18.0

> (cast (lambda: ([x : Any]) x) (String -> String))

- : (String -> String)

#<procedure:val>

(inst e t ...)
(inst e t ... t ooo bound)

Instantiate the type of e with types t ... or with the poly-dotted types t ... t ooo

bound . e must have a polymorphic type that can be applied to the supplied number of type
variables. This is legal only in expression contexts.

Examples:

> (foldl (inst cons Integer Integer) null (list 1 2 3 4))

- : (Listof Integer)

'(4 3 2 1)

> (: fold-list : (All (A) (Listof A) -> (Listof A)))

> (define (fold-list lst)

(foldl (inst cons A A) null lst))

> (fold-list (list "1" "2" "3" "4"))

- : (Listof String)

'("4" "3" "2" "1")

> (: my-values : (All (A B ...) (A B ... -> (values A B ... B))))

> (define (my-values arg . args)

(apply (inst values A B ... B) arg args))

#{e @ t ...}

A reader abbreviation for (inst e t ...).

29

#{e @ t ... t ooo bound}

A reader abbreviation for (inst e t ... t ooo bound).

2.9 Require

Here, m is a module spec, pred is an identifier naming a predicate, and maybe-renamed is
an optionally-renamed identifier.

(require/typed m rt-clause ...)

rt-clause = [maybe-renamed t]

| [#:struct name ([f : t] ...)

struct-option ...]

| [#:struct (name parent) ([f : t] ...)

struct-option ...]

| [#:opaque t pred]

maybe-renamed = id

| (orig-id new-id)

struct-option = #:constructor-name constructor-id

| #:extra-constructor-name constructor-id

This form requires identifiers from the module m, giving them the specified types.

The first case requires maybe-renamed , giving it type t .

The second and third cases require the struct with name name with fields f ..., where
each field has type t . The third case allows a parent structure type to be specified. The
parent type must already be a structure type known to Typed Racket, either built-in or via
require/typed. The structure predicate has the appropriate Typed Racket filter type so
that it may be used as a predicate in if expressions in Typed Racket.

Examples:

> (module UNTYPED racket/base

(define n 100)

(struct IntTree

(elem left right))

(provide n (struct-out IntTree)))

30

> (module TYPED typed/racket

(require/typed 'UNTYPED

[n Natural]

[#:struct IntTree

([elem : Integer]

[left : IntTree]

[right : IntTree])]))

The fourth case defines a new type t . pred, imported from module m, is a predicate for
this type. The type is defined as precisely those values to which pred produces #t. pred

must have type (Any -> Boolean). Opaque types must be required lexically before they
are used.

Examples:

> (require/typed racket/base

[#:opaque Evt evt?]

[alarm-evt (Real -> Evt)]

[sync (Evt -> Any)])

> evt?

- : (Any -> Boolean : Evt)

#<procedure:evt?>

> (sync (alarm-evt (+ 100 (current-inexact-milliseconds))))

- : Any

#<alarm-evt>

In all cases, the identifiers are protected with contracts which enforce the specified types. If
this contract fails, the module m is blamed.

Some types, notably the types of predicates such as number?, cannot be converted to con-
tracts and raise a static error when used in a require/typed form. Here is an example of
using case-> in require/typed.

(require/typed racket/base

[file-or-directory-modify-seconds

(case->

[String -> Exact-Nonnegative-Integer]

[String (Option Exact-Nonnegative-Integer)

->

(U Exact-Nonnegative-Integer Void)]

[String (Option Exact-Nonnegative-

Integer) (-> Any)

->

Any])])

31

file-or-directory-modify-seconds has some arguments which are optional, so we
need to use case->.

(require/typed/provide m rt-clause ...)

Similar to require/typed, but also provides the imported identifiers. Uses outside of a
module top-level raise an error.

Examples:

> (module evts typed/racket

(require/typed/provide racket/base

[#:opaque Evt evt?]

[alarm-evt (Real -> Evt)]

[sync (Evt -> Any)]))

> (require 'evts)

> (sync (alarm-evt (+ 100 (current-inexact-milliseconds))))

- : Any

#<alarm-evt>

2.10 Other Forms

with-handlers

lambda

λ
define

Identical to with-handlers, lambda, λ, and define, respectively, but provide additional
annotations to assist the typechecker. The define:, lambda:, and λ: forms are useful
replacements which support type annotation.

Note that unlike define, define does not bind functions with keyword arguments to static
information about those functions.

(default-continuation-prompt-tag)

→ (-> (Prompt-Tagof Any (Any -> Any)))

Identical to default-continuation-prompt-tag, but additionally protects the resulting
prompt tag with a contract that wraps higher-order values, such as functions, that are com-
municated with that prompt tag. If the wrapped value is used in untyped code, a contract
error will be raised.

Examples:

32

> (module typed typed/racket

(provide do-abort)

(: do-abort (-> Void))

(define (do-abort)

(abort-current-continuation

; typed, and thus contracted, prompt tag

(default-continuation-prompt-tag)

(λ: ([x : Integer]) (+ 1 x)))))

> (module untyped racket

(require 'typed)

(call-with-continuation-prompt

(λ () (do-abort))

(default-continuation-prompt-tag)

; the function cannot be passed an argument

(λ (f) (f 3))))

> (require 'untyped)

default-continuation-prompt-tag: broke its contract
Attempted to use a higher-order value passed as ‘Any‘ in

untyped code: #<procedure>
in: ...

the range of
(-> (prompt-tag/c Any #:call/cc Any))

contract from: untyped
blaming: untyped

(#%module-begin form ...)

Legal only in a module begin context. The #%module-begin form of typed/racket

checks all the forms in the module, using the Typed Racket type checking rules. All provide
forms are rewritten to insert contracts where appropriate. Otherwise, the #%module-begin
form of typed/racket behaves like #%module-begin from racket.

(#%top-interaction . form)

Performs type checking of forms entered at the read-eval-print loop. The #%top-

interaction form also prints the type of form after type checking.

33

3 Libraries Provided With Typed Racket

The typed/racket language corresponds to the racket language—that is, any identifier
provided by racket, such as modulo is available by default in typed/racket.

#lang typed/racket

(modulo 12 2)

The typed/racket/base language corresponds to the racket/base language.

Some libraries have counterparts in the typed collection, which provide the same exports as
the untyped versions. Such libraries include srfi/14, net/url, and many others.

#lang typed/racket

(require typed/srfi/14)

(char-set= (string->char-set "hello")

(string->char-set "olleh"))

Other libraries can be used with Typed Racket via require/typed.

#lang typed/racket

(require/typed version/check

[check-version (-> (U Symbol (Listof Any)))])

(check-version)

The following libraries are included with Typed Racket in the typed collection:

(require typed/file) package: typed-racket-more

(require typed/net/base64) package: typed-racket-more

(require typed/net/cgi) package: typed-racket-more

(require typed/net/cookie) package: typed-racket-more

(require typed/net/dns) package: typed-racket-more

(require typed/net/ftp) package: typed-racket-more

(require typed/net/gifwrite) package: typed-racket-more

(require typed/net/head) package: typed-racket-more

(require typed/net/imap) package: typed-racket-more

(require typed/net/mime) package: typed-racket-more

34

(require typed/net/nntp) package: typed-racket-more

(require typed/net/pop3) package: typed-racket-more

(require typed/net/qp) package: typed-racket-more

(require typed/net/sendmail) package: typed-racket-more

(require typed/net/sendurl) package: typed-racket-more

(require typed/net/smtp) package: typed-racket-more

(require typed/net/uri-codec)

package: typed-racket-more

(require typed/net/url) package: typed-racket-more

(require typed/rackunit) package: typed-racket-more

(require typed/srfi/14) package: typed-racket-more

Other libraries included in the main distribution that are either written in Typed Racket or
have adapter modules that are typed:

(require math) package: math-lib

(require plot/typed) package: plot-gui-lib

3.1 Porting Untyped Modules to Typed Racket

To adapt a Racket library not included with Typed Racket, the following steps are required:

• Determine the data manipulated by the library, and how it will be represented in Typed
Racket.

• Specify that data in Typed Racket, using require/typed and #:opaque and/or
#:struct.

• Use the data types to import the various functions and constants of the library.

• Provide all the relevant identifiers from the new adapter module.

For example, the following module adapts the untyped racket/bool library:

#lang typed/racket

(require/typed racket/bool

[true Boolean]

35

[false Boolean]

[symbol=? (Symbol Symbol -> Boolean)]

[boolean=? (Boolean Boolean -> Boolean)]

[false? (Any -> Boolean)])

(provide true false symbol=? boolean=? false?)

More substantial examples are available in the typed collection.

36

4 Utilities

Typed Racket provides some additional utility functions to facilitate typed programming.

(assert v) → A
v : (U #f A)

(assert v p?) → B

v : A

p? : (A -> Any : B)

Verifies that the argument satisfies the constraint. If no predicate is provided, simply checks
that the value is not #f.

See also the cast form.

Examples:

> (define: x : (U #f String) (number->string 7))

> x

- : (U False String)

"7"

> (assert x)

"7"

> (define: y : (U String Symbol) "hello")

> y

- : (U Symbol String)

"hello"

> (assert y string?)

"hello"

> (assert y boolean?)

Assertion #<procedure:boolean?> failed on "hello"

(with-asserts ([id maybe-pred] ...) body ...+)

maybe-pred =
| predicate

Guard the body with assertions. If any of the assertions fail, the program errors. These
assertions behave like assert.

(defined? v) → boolean?
v : any/c

A predicate for determining if v is not #<undefined>.

37

(index? v) → boolean?
v : any/c

A predicate for the Index type.

(typecheck-fail orig-stx maybe-msg maybe-id)

maybe-msg =
| msg-string

maybe-id =
| #:covered-id id

Explicitly produce a type error, with the source location or orig-stx . If msg-string is
present, it must be a literal string, it is used as the error message, otherwise the error message
"Incomplete case coverage" is used. If id is present and has type T, then the message
"missing coverage of T" is added to the error message.

Examples:

> (define-syntax (cond* stx)

(syntax-case stx ()

[(_ x clause ...)

#`(cond clause ... [else (typecheck-fail #,stx "incomplete

coverage"

#:covered-

id x)])]))

> (define: (f [x : (U String Integer)]) : Boolean

(cond* x

[(string? x) #t]

[(exact-nonnegative-integer? x) #f]))

Type Checker: Expected Boolean, but got (Syntaxof (List
’typecheck-fail-internal (List ’cond* ’x (List (List
’string? ’x) True) (List (List ’exact-nonnegative-integer?
’x) False)) String ’x))

in: #%top-interaction

38

5 Exploring Types

In addition to printing a summary of the types of REPL results, Typed Racket provides
interactive utilities to explore and query types. The following bindings are only available at
the Typed Racket REPL.

(:type maybe-verbose t)

maybe-verbose =
| #:verbose

Prints the type t . If t is a type alias (e.g., Number), then it will be expanded to its rep-
resentation when printing. Any further type aliases in the type named by t will remain
unexpanded.

If #:verbose is provided, all type aliases are expanded in the printed type.

Examples:

> (:type Number)

(U Inexact-Complex Exact-Number Real Float-Imaginary Single-

Flonum-Imaginary)

[can expand further: Inexact-Complex Exact-Number Real]

> (:type Real)

(U Nonpositive-Real Nonnegative-Real)

[can expand further: Nonpositive-Real Nonnegative-Real]

> (:type #:verbose Number)

(U 0 1 Byte-Larger-Than-One Positive-Index-Not-Byte Positive-

Fixnum-Not-Index Negative-Fixnum Positive-Integer-Not-Fixnum

Negative-Integer-Not-Fixnum Positive-Rational-Not-Integer

Negative-Rational-Not-Integer Float-Nan Float-Positive-Zero Float-

Negative-Zero Positive-Float-No-NaN Negative-Float-No-NaN Single-

Flonum-Nan Single-Flonum-Positive-Zero Single-Flonum-Negative-Zero

Positive-Single-Flonum-No-Nan Negative-Single-Flonum-No-Nan Exact-

Imaginary Exact-Complex Float-Imaginary Single-Flonum-Imaginary

Float-Complex Single-Flonum-Complex)

(:print-type e)

Prints the type of e . This prints the whole type, which can sometimes be quite large.

(:query-type/args f t ...)

39

Given a function f and argument types t , shows the result type of f .

(:query-type/result f t)

Given a function f and a desired return type t , shows the arguments types f should be given
to return a value of type t .

40

6 Typed Racket Syntax Without Type Checking

#lang typed/racket/no-check package: typed-racket-lib
#lang typed/racket/base/no-check

On occasions where the Typed Racket syntax is useful, but actual typechecking is
not desired, the typed/racket/no-check and typed/racket/base/no-check lan-
guages are useful. They provide the same bindings and syntax as typed/racket and
typed/racket/base, but do no type checking.

Examples:

#lang typed/racket/no-check

(: x Number)

(define x "not-a-number")

41

7 Typed Regions

The with-type form allows for localized Typed Racket regions in otherwise untyped code.

(with-type result-spec fv-clause body ...+)

(with-type export-spec fv-clause body ...+)

fv-clause =
| #:freevars ([id fv-type] ...)

result-spec = #:result type

export-spec = ([export-id export-type] ...)

The first form, an expression, checks that body ...+ has the type type . If the last expres-
sion in body ...+ returns multiple values, type must be a type of the form (values t

...). Uses of the result values are appropriately checked by contracts generated from type .

The second form, which can be used as a definition, checks that each of the export-ids
has the specified type. These types are also enforced in the surrounding code with contracts.

The ids are assumed to have the types ascribed to them; these types are converted to con-
tracts and checked dynamically.

Examples:

> (with-type #:result Number 3)

3

> ((with-type #:result (Number -> Number)

(lambda: ([x : Number]) (add1 x)))

#f)

contract violation:
expected: Number
given: #f
in: the 1st argument of

(-> Number Number)
contract from: (region typed-region)
blaming: top-level

> (let ([x "hello"])

(with-type #:result String

#:freevars ([x String])

(string-append x ", world")))

"hello, world"

> (let ([x 'hello])

(with-type #:result String

#:freevars ([x String])

42

(string-append x ", world")))

x: broke its contract
promised: String
produced: ’hello
in: String
contract from: top-level
blaming: top-level
at: eval:5.0

> (with-type ([fun (Number -> Number)]

[val Number])

(define (fun x) x)

(define val 17))

> (fun val)

17

43

8 Optimization in Typed Racket

1

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster. It should in no way make your programs slower or unsafe.

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

1See §7 “Optimization in Typed Racket” in the guide for tips to get the most out of the optimizer.

44

9 Legacy Forms

The following forms are provided by Typed Racket for backwards compatibility.

define-type-alias

Equivalent to define-type.

define-typed-struct

Equivalent to define-struct:

require/opaque-type

Similar to using the opaque keyword with require/typed.

require-typed-struct

Similar to using the struct keyword with require/typed.

require-typed-struct/provide

Similar to require-typed-struct, but also provides the imported identifiers.

pdefine:

Defines a polymorphic function.

(pred t)

Equivalent to (Any -> Boolean : t).

Un

An alias for U.

mu

45

An alias for Rec.

Tuple

An alias for List.

Parameter

An alias for Parameterof.

Pair

An alias for Pairof.

values

An alias for Values.

46

10 Compatibility Languages

#lang typed/scheme package: typed-racket-lib
#lang typed/scheme/base

#lang typed-scheme

Typed versions of the

#lang scheme

and

#lang scheme/base

languages. The

#lang typed-scheme

language is equivalent to the

#lang typed/scheme/base

language.

(require/typed m rt-clause ...)

rt-clause = [r t]

| [struct name ([f : t] ...)

struct-option ...]

| [struct (name parent) ([f : t] ...)

struct-option ...]

| [opaque t pred]

struct-option = #:constructor-name constructor-id

| #:extra-constructor-name constructor-id

Similar to require/typed, but as if #:extra-constructor-name make-name was sup-
plied.

require-typed-struct

Similar to using the struct keyword with require/typed.

47

11 Experimental Features

These features are currently experimental and subject to change.

(Class args ...)

A type constructor for typing classes created using racket/class.

(Instance c)

A type constructor for typing objects created using racket/class.

(declare-refinement id)

Declares id to be usable in refinement types.

(Refinement id)

Includes values that have been tested with the predicate id , which must have been specified
with declare-refinement.

(define-typed-struct/exec forms ...)

Defines an executable structure.

48

	1 Type Reference
	1.1 Base Types
	1.1.1 Numeric Types
	1.1.2 Other Base Types

	1.2 Singleton Types
	1.3 Containers
	1.4 Syntax Objects
	1.5 Control
	1.6 Other Type Constructors
	1.7 Other Types

	2 Special Form Reference
	2.1 Binding Forms
	2.2 Anonymous Functions
	2.3 Loops
	2.4 Definitions
	2.5 Structure Definitions
	2.6 Names for Types
	2.7 Generating Predicates Automatically
	2.8 Type Annotation and Instantiation
	2.9 Require
	2.10 Other Forms

	3 Libraries Provided With Typed Racket
	3.1 Porting Untyped Modules to Typed Racket

	4 Utilities
	5 Exploring Types
	6 Typed Racket Syntax Without Type Checking
	7 Typed Regions
	8 Optimization in Typed Racket
	9 Legacy Forms
	10 Compatibility Languages
	11 Experimental Features

