
Unstable Redex: May Change Without Warning
Version 6.1

August 1, 2014

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/redex) package: unstable-redex

This library provides functions to help typesetting for redex models. The following example
program provides an overview of the features:

> (define-language ZF

[e empty

(Set e)

(Union e_1 e_2)

(Powerset e)

ZZ

variable-not-otherwise-mentioned]

[formula (same? e_1 e_2)

(in? e_1 e_2)

true

false

(implies formula_1 formula_2)])

By default, Redex models are typeset as S-expressions with some basic styling that distin-
guishes literals from nonterminal names, handles subscripting, etc.

> (language->pict ZF)

1



e ::= empty
 | (Set e)
 | (Union e1 e2)
 | (Powerset e)
 | ZZ
 | variable-not-otherwise-mentioned

formula ::= (same? e1 e2)
 | (in? e1 e2)
 | true
 | false
 | (implies formula1 formula2)

> (term->pict ZF (in? x (Set 1 2 3 ...)))

(in? x (Set 1 2 3 ...))

This library provides helper functions for creating and using rewriters that transform the
S-expression model terms into other notations.

> (add-atomic-rewriters!

'empty "∅"
'formula "φ"
'ZZ (text "Z" '(bold . modern) (default-font-size))

'variable-not-otherwise-mentioned

(lambda () (text "x, y, z, ..." (literal-style) (default-

font-size)))

'true (lambda () (text "true" '(caps . modern) (default-font-

size)))

'false (lambda () (text "false" '(caps . modern) (default-font-

size))))

> (add-compound-rewriters!

'same? (binary-rw " = ")

'in? (binary-rw " ∈ ")

'Set (bracket-rw 'curly)

'Powerset (function-rw "P")

'Union (binary-rw "∪")
'implies (binary-rw " ⇒ " #:parenthesize-left '(implies)))

> (with-rewriters

(lambda ()

(language->pict ZF)))

2



e ::= ∅
 | {e}
 | e1∪e2

 | P(e)
 | Z
 | x, y, z, ...

φ ::= e1 = e2

 | e1 ∈ e2

 | TRUE
 | FALSE
 | φ1 ⇒ φ2

> (with-rewriters

(lambda ()

(render-term ZF (in? x (Set 1 2 3 ...)))))

x ∈ {1, 2, 3, ...}

(with-rewriters proc) → any

proc : (-> any)

Calls proc with the rewriters of current-atomic-rewriters, current-compound-

rewriters, and current-unquote-rewriters.

(current-atomic-rewriters)

→

(let ([atomic-rewriter/c

(or/c string? pict?

(-> (or/c string? pict?)))])

(plistof symbol? atomic-rewriter/c))

(current-atomic-rewriters rewriters) → void?

rewriters :

(let ([atomic-rewriter/c

(or/c string? pict?

(-> (or/c string? pict?)))])

(plistof symbol? atomic-rewriter/c))

Parameter of atomic rewriters (as in with-atomic-rewriter) used by with-rewriters.

(current-compound-rewriters)

→ (plistof symbol? compound-rewriter/c)

(current-compound-rewriters rewriters) → void?

rewriters : (plistof symbol? compound-rewriter/c)

Parameter of compound rewriters (as in with-compound-rewriter) used by with-

rewriters.

3



(current-unquote-rewriters)

→ (plistof (-> lw? any/c) (-> lw? lw?))

(current-unquote-rewriters rewriters) → void?

rewriters : (plistof (-> lw? any/c) (-> lw? lw?))

Parameter of unquote rewriters (as in with-unquote-rewriter) used by with-

rewriters.

(add-atomic-rewriters! rewriters) → void?

rewriters :

(let ([atomic-rewriter/c

(or/c string? pict?

(-> (or/c string? pict?)))])

(plistof symbol? atomic-rewriter/c))

(add-compound-rewriters! rewriters) → void?

rewriters : (plistof symbol? compound-rewriter/c)

(add-unquote-rewriters! rewriters) → void?

rewriters : (plistof (-> lw? any/c) (-> lw? lw?))

Add rewriters to the current-atomic-rewriters, current-compound-rewriters, or
current-unquote-rewriters, respectively.

(plistof key/c value/c) → contract?

key/c : contract?

value/c : contract?

Contract for even-length lists of alternating key/c and value/c values.

Equivalent to

(letrec ([ctc

(recursive-contract

(or/c '()

(cons/c key/c (cons/c value/c ctc))))])

ctc)

compound-rewriter/c : contract?

Contract for compound rewriters, which take a list of lw structs and returns a list of lws,
picts, or strings.

Equivalent to

4



(-> (listof lw?)

(listof (or/c lw? pict? string?)))

(binary-rw operator

[#:parenthesize-arg parenthesize-arg

#:parenthesize-left parenthesize-left

#:parenthesize-right parenthesize-right ])
→ compound-rewriter/c

operator : (or/c string? pict? (-> (or/c string? pict?)))

parenthesize-arg : (or/c #t #f (listof symbol?) (-> lw? any/c))

= #f

parenthesize-left : (or/c #t #f (listof symbol?) (-> lw? any/c))

= parenthesize-arg

parenthesize-right : (or/c #t #f (listof symbol?) (-> lw? any/c))

= parenthesize-arg

Typesets (sym term1 term2) using operator as a binary operator between term1 and
term2 .

Examples:

> (add-compound-rewriters!

'plus (binary-rw " + "))

> (with-rewriters

(lambda ()

(term->pict ZF (plus 1 2))))

1 + 2

Redex terms may become ambiguous when typeset. To avoid ambiguity, use
#:parenthesize-arg to direct when arguments should be parenthesized. If
parenthesize-arg is #t, then arguments are always parenthesized; if it is #f, never; if
it is a list of symbols, then an argument is parenthesized only if the argument is a term start-
ing with a symbol in the list; if it is a procedure, then the argument is parenthesized if the
procedure applied to the argument’s lw struct returns a true value.

> (add-compound-rewriters!

'times (binary-rw " × "))

> (with-rewriters

(lambda ()

(term->pict ZF (times (plus 1 2) 3))))

1 + 2 × 3
> (add-compound-rewriters!

'times (binary-rw " × " #:parenthesize-arg '(plus)))

5



> (with-rewriters

(lambda ()

(term->pict ZF (times (plus 1 2) 3))))

(1 + 2) × 3

The parenthesization rules for left and right arguments can be supplied separately
through #:parenthesize-left and #:parenthesize-right, for example to create left-
associated or right-associated operators:

> (add-compound-rewriters!

'arrow (binary-rw " → " #:parenthesize-left '(arrow)))

> (with-rewriters

(lambda ()

(term->pict ZF (arrow (arrow A B) (arrow C D)))))

(A → B) → C → D

(prefix-rw prefix

[#:parenthesize-arg parenthesize-arg ])
→ compound-rewriter/c

prefix : (or/c string? pict? (-> (or/c string? pict?)))

parenthesize-arg : (or/c #f #t (listof symbol?) (-> lw? any/c))

= #f

Typesets (sym term) by placing prefix before term .

Examples:

> (add-compound-rewriters!

'not (prefix-rw "¬ "))

> (with-rewriters

(lambda ()

(term->pict ZF (not (in? x empty)))))

¬ x ∈ ∅

(postfix-rw postfix

[#:parenthesize-arg parenthesize-arg ])
→ compound-rewriter/c

postfix : (or/c string? pict? (-> (or/c string? pict?)))

parenthesize-arg : (or/c #f #t (listof symbol?) (-> lw? any/c))

= #f

Typesets (sym term) by placing postfix after term .

6



Examples:

> (add-compound-rewriters!

'nonempty (postfix-rw " is nonempty"))

> (with-rewriters

(lambda ()

(term->pict ZF (nonempty (Set x)))))

{x} is nonempty

(function-rw function) → compound-rewriter/c

function : (or/c string? pict? (-> (or/c string? pict?)))

Typesets (sym term ...) by placing function before the parenthesized, comma-
separated list of terms.

Examples:

> (add-compound-rewriters!

'f (function-rw "f")

'max (function-rw (text "max" '(bold . modern) (default-font-

size))))

> (with-rewriters

(lambda ()

(term->pict ZF (max 1 2 (f 3)))))

max(1, 2, f(3))

(only-first-rw) → compound-rewriter/c

Typesets (sym term1 term2 ...) as term1 . Useful for hiding parameters that are nec-
essary for defining the semantics but can be glossed over in its explanation, such as state
parameters used for generating unique names.

Examples:

> (add-compound-rewriters!

'First (only-first-rw))

> (with-rewriters

(lambda ()

(term->pict ZF [First (in? x y) counter])))

x ∈ y

(splice-rw) → compound-rewriter/c

7



Typesets (sym term ...) by rendering the terms side-by-side.

(constant-rw constant) → compound-rewriter/c

constant : (or/c string? pict? (-> (or/c string? pict?)))

Typesets (sym term ...) as constant .

(bracket-rw brackets [#:comma? comma?]) → compound-rewriter/c

brackets :
(or/c 'round 'square 'curly 'angle

(list (or/c string? pict?)

(or/c string? pict?)))

comma? : any/c = #t

Typesets (sym term ...) by surrounding the comma-separated (or space-separated, if
comma? is false) sequence of terms with brackets. If brackets is a list, the first element
is the left bracket and the second is the right bracket; 'round is equivalent to '("(" ")");
'square is equivalent to '("[" "]"); 'curly is equivalent to '("{" "}"); and 'angle

is equivalent to '("〈" "〉").

Examples:

> (add-compound-rewriters!

'Tuple (bracket-rw 'angle))

> (with-rewriters

(lambda ()

(term->pict ZF (Tuple 1 2 3))))

〈1, 2, 3〉

(set-cons-rw) → compound-rewriter/c

Rewriter that typesets (sym elem-term set-term) as the union of the singleton set con-
taining elem-term with the set set-term .

Examples:

> (add-compound-rewriters!

'set-cons (set-cons-rw))

> (with-rewriters

(lambda ()

(term->pict ZF (set-cons x S))))

{x}∪S

8


