1 Type Reference
syntax
syntax
syntax
1.1 Base Types
1.1.1 Numeric Types
These types represent the hierarchy of numbers of Racket. The diagram below shows the relationships between the types in the hierarchy.
The regions with a solid border are layers of the numeric hierarchy corresponding to sets of numbers such as integers or rationals. Layers contained within another are subtypes of the layer containing them. For example, Exact-Rational is a subtype of Exact-Number.
The Real layer is also divided into positive and negative types (shown with a dotted line). The Integer layer is subdivided into several fixed-width integers types, detailed later in this section.
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
The above types can be subdivided into more precise types if you want to enforce tighter constraints. Typed Racket provides types for the positive, negative, non-negative and non-positive subsets of the above types (where applicable).
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
These types are useful when enforcing that values have a specific sign. However, programs using them may require additional dynamic checks when the type-checker cannot guarantee that the sign constraints will be respected.
In addition to being divided by sign, integers are further subdivided into range-bounded types. The relationships between most of the range-bounded types are shown in this diagram:
Like the previous diagram, types nested inside of another in the diagram are subtypes of its containing types.
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
These types are useful to enforce bounds on numeric values, but given the limited amount of closure properties these types offer, dynamic checks may be needed to check the desired bounds at runtime.
> 7 - : Integer [more precisely: Positive-Byte]
7
> 8.3 - : Flonum [more precisely: Positive-Flonum]
8.3
> (/ 8 3) - : Exact-Rational [more precisely: Positive-Exact-Rational]
8/3
> 0 - : Integer [more precisely: Zero]
0
> -12 - : Integer [more precisely: Negative-Fixnum]
-12
> 3+4i - : Exact-Number
3+4i
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
1.1.2 Other Base Types
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
syntax
> #t - : Boolean [more precisely: True]
#t
> #f - : False
#f
> "hello" - : String
"hello"
> (current-input-port) - : Input-Port
#<input-port:string>
> (current-output-port) - : Output-Port
#<output-port:string>
> (string->path "/") - : Path
#<path:/>
> #rx"a*b*" - : Regexp
#rx"a*b*"
> #px"a*b*" - : PRegexp
#px"a*b*"
> '#"bytes" - : Bytes
#"bytes"
> (current-namespace) - : Namespace
#<namespace:0>
> #\b - : Char
#\b
> (thread (lambda () (add1 7))) - : Thread
#<thread>
syntax
1.2 Singleton Types
Some kinds of data are given singleton types by default. In particular, booleans, symbols, and keywords have types which consist only of the particular boolean, symbol, or keyword. These types are subtypes of Boolean, Symbol and Keyword, respectively.
> #t - : Boolean [more precisely: True]
#t
> '#:foo - : '#:foo
'#:foo
> 'bar - : Symbol [more precisely: 'bar]
'bar
1.3 Containers
The following base types are parametric in their type arguments.
syntax
(Pairof s t)
> (cons 1 2) - : (Pairof One Positive-Byte)
'(1 . 2)
> (cons 1 "one") - : (Pairof One String)
'(1 . "one")
syntax
(Listof t)
syntax
(List t ...)
syntax
(List t ... trest ... bound)
syntax
(List* t t1 ... s)
> (list 'a 'b 'c) - : (Listof (U 'a 'b 'c)) [more precisely: (List 'a 'b 'c)]
'(a b c)
> (plambda: (a ...) ([sym : Symbol] boxes : (Boxof a) ... a) (ann (cons sym boxes) (List Symbol (Boxof a) ... a)))
- : (All (a ...)
(-> Symbol (Boxof a) ... a (Pairof Symbol (List (Boxof a) ... a))))
#<procedure>
> (map symbol->string (list 'a 'b 'c)) - : (Listof String) [more precisely: (Pairof String (Listof String))]
'("a" "b" "c")
syntax
(MListof t)
syntax
(MPairof t u)
syntax
syntax
(Boxof t)
> (box "hello world") - : (Boxof String)
'#&"hello world"
syntax
syntax
(Vectorof t)
syntax
(Vector t ...)
> (vector 1 2 3) - : (Vector Integer Integer Integer)
'#(1 2 3)
> #(a b c) - : (Vector Symbol Symbol Symbol)
'#(a b c)
syntax
> (flvector 1.0 2.0 3.0) - : FlVector
(flvector 1.0 2.0 3.0)
syntax
> (extflvector 1.0t0 2.0t0 3.0t0) - : ExtFlVector
#<extflvector>
syntax
> (fxvector 1 2 3) - : FxVector
(fxvector 1 2 3)
syntax
syntax
(Immutable-HashTable k v)
> #hash((a . 1) (b . 2))
- : (U (Immutable-HashTable Symbol Integer)
(Mutable-HashTable Symbol Integer)
(Weak-HashTable Symbol Integer)) [more precisely: (Immutable-HashTable Symbol Integer)]
'#hash((a . 1) (b . 2))
syntax
(Mutable-HashTable k v)
> (make-hash '((a . 1) (b . 2)))
- : (U (Immutable-HashTable Symbol Integer)
(Mutable-HashTable Symbol Integer)
(Weak-HashTable Symbol Integer)) [more precisely: (Mutable-HashTable Symbol Integer)]
'#hash((b . 2) (a . 1))
syntax
(Weak-HashTable k v)
> (make-weak-hash '((a . 1) (b . 2)))
- : (U (Immutable-HashTable Symbol Integer)
(Mutable-HashTable Symbol Integer)
(Weak-HashTable Symbol Integer)) [more precisely: (Weak-HashTable Symbol Integer)]
'#hash((b . 2) (a . 1))
syntax
(HashTable k v)
> (make-hash '((a . 1) (b . 2)))
- : (U (Immutable-HashTable Symbol Integer)
(Mutable-HashTable Symbol Integer)
(Weak-HashTable Symbol Integer)) [more precisely: (Mutable-HashTable Symbol Integer)]
'#hash((b . 2) (a . 1))
syntax
syntax
syntax
syntax
(Setof t)
> (set 0 1 2 3) - : (Setof Byte)
(set 1 3 2 0)
> (seteq 0 1 2 3) - : (Setof Byte)
(seteq 0 1 2 3)
syntax
(Channelof t)
> (ann (make-channel) (Channelof Symbol)) - : (Channelof Symbol)
#<channel>
syntax
syntax
(Async-Channelof t)
> (require typed/racket/async-channel) > (ann (make-async-channel) (Async-Channelof Symbol)) - : (Async-Channelof Symbol)
#<async-channel>
Added in version 1.1 of package typed-racket-lib.
syntax
Added in version 1.1 of package typed-racket-lib.
syntax
(Parameterof t)
(Parameterof s t)
> current-input-port - : (Parameterof Input-Port)
#<procedure:current-input-port>
> current-directory - : (Parameterof Path-String Path)
#<procedure:current-directory>
syntax
(Promise t)
> (delay 3) - : (Promise Positive-Byte)
#<promise:eval:51:0>
syntax
(Futureof t)
syntax
(Sequenceof t)
syntax
(Custodian-Boxof t)
syntax
(Thread-Cellof t)
syntax
syntax
(Weak-Boxof t)
> (make-weak-box 5) - : (Weak-Boxof Integer)
#<weak-box>
> (weak-box-value (make-weak-box 5)) - : (U False Integer)
5
syntax
syntax
(Ephemeronof t)
syntax
(Evtof t)
> always-evt - : (Rec x (Evtof x))
#<always-evt>
> (system-idle-evt) - : (Evtof Void)
#<evt>
> (ann (thread (λ () (displayln "hello world"))) (Evtof Thread)) - : (Evtof Thread)
#<thread>
1.4 Syntax Objects
The following types represent syntax objects and their content.
syntax
(Syntaxof t)
syntax
syntax
syntax
syntax
(Sexpof t)
syntax
syntax
1.5 Control
The following types represent prompt tags and keys for continuation marks for use with delimited continuation functions and continuation mark functions.
syntax
(Prompt-Tagof s t)
The domain of t determines the type of the values that can be aborted, using abort-current-continuation, to a prompt with this prompt tag.
> (make-continuation-prompt-tag 'prompt-tag)
hello world
- : (Prompt-Tagof Any Any)
#<continuation-prompt-tag:prompt-tag>
syntax
syntax
> (make-continuation-mark-key 'mark-key) - : (Continuation-Mark-Keyof Any)
#<continuation-mark-key>
syntax
1.6 Other Type Constructors
syntax
(-> dom ... rng opt-proposition)
(-> dom ... rest * rng) (-> dom ... rest ooo bound rng) (dom ... -> rng opt-proposition) (dom ... rest * -> rng) (dom ... rest ooo bound -> rng)
ooo = ... dom = type | mandatory-kw | opt-kw mandatory-kw = keyword type opt-kw = [keyword type] opt-proposition =
| : type |
: pos-proposition neg-proposition object pos-proposition =
| #:+ proposition ... neg-proposition =
| #:- proposition ... object =
| #:object index proposition = Top | Bot | type | (! type) | (type @ path-elem ... index) | (! type @ path-elem ... index) | (and proposition ...) | (or proposition ...) | (implies proposition ...) path-elem = car | cdr index = positive-integer | (positive-integer positive-integer) | identifier
The second form specifies a uniform rest argument of type rest, and the third form specifies a non-uniform rest argument of type rest with bound bound. The bound refers to the type variable that is in scope within the rest argument type.
> (λ ([x : Number] y : String *) (length y)) - : (-> Number String * Index)
#<procedure>
> ormap
- : (All (a c b ...)
(-> (-> a b ... b c) (Listof a) (Listof b) ... b (U False c)))
#<procedure:ormap>
In the third form, the ... introduced by ooo is literal, and bound must be an identifier denoting a type variable.
The doms can include both mandatory and optional keyword arguments. Mandatory keyword arguments are a pair of keyword and type, while optional arguments are surrounded by a pair of parentheses.
> (:print-type file->string) (-> Path-String [#:mode (U 'binary 'text)] String)
> (: is-zero? : (-> Number #:equality (-> Number Number Any) [#:zero Number] Any))
> (define (is-zero? n #:equality equality #:zero [zero 0]) (equality n zero)) > (is-zero? 2 #:equality =) - : Any
#f
> (is-zero? 2 #:equality eq? #:zero 2.0) - : Any
#f
When opt-proposition is provided, it specifies the proposition for the function type (for an introduction to propositions in Typed Racket, see Propositions and Predicates). For almost all use cases, only the simplest form of propositions, with a single type after a :, are necessary:
> string? - : (-> Any Boolean : String)
#<procedure:string?>
The proposition specifies that when (string? x) evaluates to a true value for a conditional branch, the variable x in that branch can be assumed to have type String. Likewise, if the expression evaluates to #f in a branch, the variable does not have type String.
In some cases, asymmetric type information is useful in the propositions. For example, the filter function’s first argument is specified with only a positive proposition:
> filter
- : (All (a b)
(case->
(-> (-> a Any : #:+ b) (Listof a) (Listof b))
(-> (-> a Any) (Listof a) (Listof a))))
#<procedure:filter>
The use of #:+ indicates that when the function applied to a variable evaluates to a true value, the given type can be assumed for the variable. However, the type-checker gains no information in branches in which the result is #f.
Conversely, #:- specifies that a function provides information for the false branch of a conditional.
The other proposition cases are rarely needed, but the grammar documents them for completeness. They correspond to logical operations on the propositions.
The type of functions can also be specified with an infix -> which comes immediately before the rng type. The fourth through sixth forms match the first three cases, but with the infix style of arrow.
syntax
(->* (mandatory-dom ...) optional-doms rest rng)
mandatory-dom = type | keyword type optional-doms =
| (optional-dom ...) optional-dom = type | keyword type rest =
| #:rest type
> (: append-bar (->* (String) (Positive-Integer) String))
> (define (append-bar str [how-many 1]) (apply string-append str (make-list how-many "bar")))
If provided, the rest expression specifies the type of elements in the rest argument list.
> (: +all (->* (Integer) #:rest Integer (Listof Integer)))
> (define (+all inc . rst) (map (λ ([x : Integer]) (+ x inc)) rst)) > (+all 20 1 2 3) - : (Listof Integer)
'(21 22 23)
Both the mandatory and optional argument lists may contain keywords paired with types.
The syntax for this type constructor matches the syntax of the ->* contract combinator, but with types instead of contracts.
syntax
For the types of functions with known arity and argument types, see the -> type constructor.
> (: my-list Procedure) > (define my-list list) > (my-list "zwiebelkuchen" "socca") eval:85:0: Type Checker: cannot apply a function with
unknown arity;
function `my-list' has type Procedure which cannot be
applied
in: "socca"
syntax
(U t ...)
syntax
(∩ t ...)
syntax
(case-> fun-ty ...)
syntax
(t t1 t2 ...)
syntax
(Values t ...)
> (values 1 2 3) - : (values Integer Integer Integer) [more precisely: (Values One Positive-Byte Positive-Byte)]
1
2
3
syntax
v
syntax
(quote val)
syntax
i
syntax
(Rec n t)
syntax
(Struct st)
syntax
(Struct-Type st)
> struct:arity-at-least - : (StructType arity-at-least)
#<struct-type:arity-at-least>
> (struct-type-info struct:arity-at-least)
- : (values
Symbol
Integer
Integer
(-> arity-at-least Nonnegative-Integer Any)
(-> arity-at-least Nonnegative-Integer Nothing Void)
(Listof Nonnegative-Integer)
(U False Struct-TypeTop)
Boolean)
[more precisely: (values
Symbol
Nonnegative-Integer
Nonnegative-Integer
(-> arity-at-least Nonnegative-Integer Any)
(-> arity-at-least Nonnegative-Integer Nothing Void)
(Listof Nonnegative-Integer)
(U False Struct-TypeTop)
Boolean)]
'arity-at-least
1
0
#<procedure:arity-at-least-ref>
#<procedure:arity-at-least-set!>
'(0)
#f
#f
syntax
> (struct-info (arity-at-least 0)) - : (values (U False Struct-TypeTop) Boolean)
#<struct-type:arity-at-least>
#f
syntax
(Prefab key type ...)
In the case of prefab structure types with supertypes, the field types of the supertypes come before the field types of the child structure type. The order of types matches the order of arguments to a prefab struct constructor.
> #s(salad "potato" "mayo") - : (Prefab salad String String)
'#s(salad "potato" "mayo")
> (: q-salad (Prefab (salad food 1) String String Symbol))
> (define q-salad #s((salad food 1) "quinoa" "EVOO" salad))
syntax
syntax
syntax
syntax
syntax
1.7 Other Types
syntax
(Option t)
syntax
(Opaque t)