Readline: Terminal Interaction

Version 6.12

January 26, 2018

The "readline" collection (not to be confused with Racket’s read-1ine function) pro-
vides glue for using the Editline library or GNU’s Readline library with the Racket read-
eval-print-loop.

Due to licensing
issues, the Readline
collection is by
default backed by
the Editline library.
To switch to GNU’s
Readline library,
either install the
"readline-gpl"
package, or set the
PLT_READLINE_LIB
environment
variable to the
library, which
configures the
readline
collection to use
Readline.



1 Normal Use of Readline

(require readline) package: readline-1ib
(require readline/rep-start)

The readline library installs a Readline-based input port (whose name is 'readline-
input) and hooks the prompt-and-read part of Racket’s read-eval-print-loop to inter-
act with it.

You can start Racket with
racket -il readline

or evaluate

(require readline)

in the Racket read-eval-print-loop to load Readline manually. You can also put (require
readline) in your "~/ .racketrc", so that Racket automatically loads Readline support in
interactive mode.

If you want to enable Readline support only sometimes—such as only when you use an
xterm, and not when you use an Emacs shell—then you can use dynamic-require, as in
the following example:

(when (regexp-match? #rx"xterm"
(getenv "TERM"))
(dynamic-require 'readline #f))

The readline library automatically checks whether the current input port is a terminal, as
determined by terminal-port?, and also checks that its name, as determined by object-
name, is 'stdin, and it installs Readline only to replace the stdin terminal port. The
readline/rep-start module installs Readline without a terminal check.

By default, Readline’s completion is set to use the visible bindings in the current namespace.
This is far from ideal, but it’s better than Readline’s default filename completion which
is rarely useful. In addition, the Readline history is stored across invocations in Racket’s
preferences file, assuming that Racket exits normally.

The readline library adjusts read-eval-print-loop by setting the prompt read handler
as determined by current-prompt-read. The call to the read interaction handler (as de-
termined by current-read-interaction) is parameterized to set readline-prompt, so
that a prompt will be printed when reading starts. To compensate for the prompt printed
via readline-prompt, when the interaction input port’s name (as produced by function
in the current-get-interaction-input-port parameter) is 'readline-input, the
prompt read handler skips printing a prompt; otherwise, it displays a prompt as determined
by current-prompt.


https://pkgs.racket-lang.org/package/readline-lib

(install-readline!) — void?

Adds (require readline/rep) to the result of (find-system-path 'init-file),
whichis "~/ .racketrc" on Unix. Consequently, Readline will be loaded whenever Racket
is started in interactive mode. The declaration is added only if it is not already present, as
determined by reading and checking all top-level expressions in the file.

For more fine-grained control, such as conditionally loading Readline based on an environ-
ment variable, edit "~/ .racketrc" manually.

pre-readline-input-port : (or/c input-port? false/c)

If required through readline/rep-start, pre-readline-input-port will always be
the input port replaced by the readline input port.

If required through readline, pre-readline-input-port will be an input port only
when the current-input-port is actually replaced. Otherwise, it is #£.

Using pre-readline-input-port is useful for sending the original stdin to subprocesses.
Subprocesses generally require an input port backed by a file descriptor, and many inter-
active programs behave differently when they have a terminal file descriptor. Otherwise,
pre-readline-input-port should not be used, as reading from it will interfere with the
readline port.

Added in version 1.1 of package readline-1ib.



2 Interacting with the Readline-Enabled Input Port

(require readline/pread) package: readline-1ib

The readline/pread library provides customization, and support for prompt-reading after
readline installs the new input port.

The reading facility that the new input port provides can be customized with the following
parameters.

(current-prompt) — bytes?
(current-prompt bstr) — void?
bstr : bytes?

A parameter that determines the prompt that is used, as a byte string. Defaults to #"> ".

(max-history) — exact-nonnegative-integer?
(max-history n) — void?
n : exact-nonnegative-integer?

A parameter that determines the number of history entries to save, defaults to 100.

(keep-duplicates) — (one-of/c #f 'unconsecutive #t)
(keep-duplicates keep?) — void?
keep? : (one-of/c #f 'unconsecutive #t)

A parameter. If #£ (the default), then when a line is equal to a previous one, the previous one
is removed. If it set to 'unconsecutive then this happens only for an line that duplicates
the previous one, and if it is #£ then all duplicates are kept.

(keep-blanks) — boolean?
(keep-blanks keep?) — void?
keep? : any/c

A parameter. If #f (the default), blank input lines are not kept in history.

(readline-prompt) — (or/c false/c bytes? (one-of/c 'space))
(readline-prompt status) — void?
status : (or/c false/c bytes? (one-of/c 'space))

The new input port that you get when you require readline is a custom port that uses
Readline for all inputs. The problem is when you want to display a prompt and then read
some input, Readline will get confused if it is not used when the cursor is at the beginning
of the line (which is why it has a prompt argument.) To use this prompt:


https://pkgs.racket-lang.org/package/readline-lib

(parameterize ([readline-prompt some-byte-string])
...code-that-reads...)

This expression makes the first call to Readline use the prompt, and subsequent calls will use
an all-spaces prompt of the same length (for example, when you’re reading an S-expression).
The normal value of readline-prompt is #f for an empty prompt (and spaces after the
prompt is used, which is why you should use parameterize to restore it to #f).

A proper solution would be to install a custom output port, too, which keeps track of text that
is displayed without a trailing newline. As a cheaper solution, if line-counting is enabled for
the terminal’s output-port, then a newline is printed before reading if the column is not 0.
(The readline library enables line-counting for the output port.)

Warning: The Readline library uses the output port directly. You should not use it when
current-input-port has been modified, or when it was not a terminal port when Racket
was started (eg, when reading input from a pipe). Expect some problems if you ignore this
warning (not too bad, mostly problems with detecting an EOF).



3 Direct Bindings for Readline Hackers

(require readline/readline) package: readline-1ib

(readline prompt) — string?
prompt : string?

Prints the given prompt string and reads a line.

(readline-bytes prompt) — bytes?
prompt : bytes?

Like readline, but using raw byte-strings for the prompt and returning a byte string.

(add-history str) — void?
str : string?

Adds the given string to the Readline history, which is accessible to the user via the up-arrow
key.

(add-history-bytes str) — void?
str : bytes?

Adds the given byte string to the Readline history, which is accessible to the user via the
up-arrow key.

(history-length) — exact-nonnegative-integer?

Returns the length of the history list.

(history-get idx) — string?
idx : integer?

Returns the history string at the idx position. idx can be negative, which will make it count
from the last (i.e, -1 returns the last item, -2 returns the second-to-last, etc.)

(history-delete idx) — string?
idx : integer?

Deletes the history string at the idx position. The position is specified in the same way as
the argument for history-get.

(set-completion-function! proc [type]) — void?
proc : ((or/c string? bytes?)
-> . (listof (or/c string? bytes?)))
type : (one-of/c _string _bytes) = _string


https://pkgs.racket-lang.org/package/readline-lib

Sets Readline’s r1_completion_entry_function to proc. The type argument, whose
possible values are from ffi/unsafe, determines the type of value supplied to the proc.

(set-completion-append-character! c) — void?
¢ : char?

Sets Readline’s r1_completion_append_character to c. The value is reset by the read-
line library, so it must be set inside a completion function each time it is called. The default
is #\space. Set it to #\nul to have no character appended to the completion result.

The r1_completion_append_character is used by the readline library whenever a com-
pletion function returns a single option, and it is therefore chosen. The choice will be filled
in on the command line, and then the r1_completion_append_character is appended.

As an example, you could set the completion append character to a slash when completing
the name of a directory, a space when you know the user will want to write another argument,
or #\nul to avoid appending when a user might want to write something directly after the
completion, such as punctuation or an extension of a word.

If you want to make a completion function to more easily write the names of your favorite
characters (and share your excitement about them), a use of set-completion-append-
character! may look like this:

(define (christmas-character-complete name-str)
(set-completion-append-character! #\!)
(filter (A (x) (string-prefix? x name-str))
'("Rudolf" "Hermie" "Bumble" "Yukon" "Clarise" "Santa")))

Added in version 1.1 of package readline-1ib.

(readline-newline) — void?

Sets the cursor to the start of a new line.

(readline-redisplay) — void?

Forces a redisplay of the Readline prompt and current user input.

The readline-redisplay function can be used together with readline-newline to pre-
vent a background thread from cluttering up the user input by interleaving its output. For
example, an unsafe wrapper function for the thread’s output might look like the following:

(define (with-thread-safe-output output-thunk)
(dynamic-wind
(lambda ()
(start-atomic)



(readline-newline))
output-thunk
(lambda ()
(readline-redisplay)
(end-atomic))))



	1 Normal Use of Readline
	2 Interacting with the Readline-Enabled Input Port 
	3 Direct Bindings for Readline Hackers

