On this page:
4.1 Pre-defined Variables
empty
true
false
4.2 Template Variables
..
...
....
.....
......
4.3 Syntax for Intermediate with Lambda
lambda
λ
local
letrec
let*
let
time
4.4 Common Syntaxes
define
quote
quasiquote
unquote
unquote-splicing
define-struct
cond
else
if
and
or
check-expect
check-random
check-satisfied
check-within
check-error
check-member-of
check-range
require
4.5 Pre-defined Functions
4.6 Numbers:   Integers, Rationals, Reals, Complex, Exacts, Inexacts
-
<
<=
=
>
>=
abs
acos
add1
angle
asin
atan
ceiling
complex?
conjugate
cos
cosh
current-seconds
denominator
e
even?
exact->inexact
exact?
exp
expt
floor
gcd
imag-part
inexact->exact
inexact?
integer->char
integer-sqrt
integer?
lcm
log
magnitude
make-polar
make-rectangular
max
min
modulo
negative?
number->string
number?
numerator
odd?
pi
positive?
quotient
random
rational?
real-part
real?
remainder
round
sgn
sin
sinh
sqr
sqrt
sub1
tan
zero?
4.7 Booleans
boolean=?
boolean?
false?
not
4.8 Symbols
symbol->string
symbol=?
symbol?
4.9 Lists
append
assoc
assq
caaar
caadr
caar
cadar
cadddr
caddr
cadr
car
cdaar
cdadr
cdar
cddar
cdddr
cddr
cdr
cons
cons?
eighth
empty?
fifth
first
fourth
length
list
list*
list-ref
list?
make-list
member
member?
memq
memq?
memv
null
null?
range
remove
remove-all
rest
reverse
second
seventh
sixth
third
4.10 Posns
make-posn
posn-x
posn-y
posn?
4.11 Characters
char->integer
char-alphabetic?
char-ci<=?
char-ci<?
char-ci=?
char-ci>=?
char-ci>?
char-downcase
char-lower-case?
char-numeric?
char-upcase
char-upper-case?
char-whitespace?
char<=?
char<?
char=?
char>=?
char>?
char?
4.12 Strings
explode
format
implode
int->string
list->string
make-string
replicate
string
string->int
string->list
string->number
string->symbol
string-alphabetic?
string-append
string-ci<=?
string-ci<?
string-ci=?
string-ci>=?
string-ci>?
string-contains?
string-copy
string-ith
string-length
string-lower-case?
string-numeric?
string-ref
string-upper-case?
string-whitespace?
string<=?
string<?
string=?
string>=?
string>?
string?
substring
4.13 Images
image=?
image?
4.14 Misc
=~
eof
eof-object?
eq?
equal?
equal~?
eqv?
error
exit
identity
struct?
4.15 Numbers (relaxed conditions)
*
+
/
4.16 Posn
posn
4.17 Higher-Order Functions
andmap
apply
argmax
argmin
build-list
build-string
compose
filter
foldl
foldr
for-each
map
memf
ormap
procedure?
quicksort
sort

4 Intermediate Student with Lambda

  program = def-or-expr ...
     
  def-or-expr = definition
  | expr
  | test-case
  | library-require
     
  definition = (define (name variable variable ...) expr)
  | (define name expr)
  | (define-struct name (name ...))
     
  expr = (lambda (variable variable ...) expr)
  | (λ (variable variable ...) expr)
  | (local [definition ...] expr)
  | (letrec ([name expr] ...) expr)
  | (let ([name expr] ...) expr)
  | (let* ([name expr] ...) expr)
  | (expr expr expr ...)
  | (cond [expr expr] ... [expr expr])
  | (cond [expr expr] ... [else expr])
  | (if expr expr expr)
  | (and expr expr expr ...)
  | (or expr expr expr ...)
  | (time expr)
  | name
  | prim-op
  | quoted
  | quasiquoted
  | ()
  | number
  | boolean
  | string
  | character
     
  quoted = name
  | number
  | string
  | character
  | (quoted ...)
  | quoted
  | quoted
  | ,quoted
  | ,@quoted
     
  quasiquoted = name
  | number
  | string
  | character
  | (quasiquoted ...)
  | quasiquoted
  | quasiquoted
  | ,expr
  | ,@expr
     
  test-case = (check-expect expr expr)
  | (check-random expr expr)
  | (check-satisfied expr name)
  | (check-within expr expr expr)
  | (check-member-of expr expr ...)
  | (check-range expr expr expr)
  | (check-error expr expr)
  | (check-error expr)
     
  library-require = (require string)
  | (require (lib string string ...))
  | (require (planet string package))
     
  package = (string string number number)

A name or a variable is a sequence of characters not including a space or one of the following:
   " , ' ` ( ) [ ] { } | ; #
A number is a number such as 123, 3/2, or 5.5.
A boolean is one of: #true or #false. Alternative spellings for the #true constant are #t, true, and #T. Similarly, #f, false, or #F are also recognized as #false.
A symbol is a quote character followed by a name. A symbol is a value, just like 42, '(), or #false.
A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may be split into characters and manipulated by a variety of functions. For example, "abcdef", "This is a string", and "This is a string with \" inside" are all strings.
A character begins with #\ and has the name of the character. For example, #\a, #\b, and #\space are characters.
In function calls, the function appearing immediately after the open parenthesis can be any functions defined with define or define-struct, or any one of the pre-defined functions.

4.1 Pre-defined Variables

value

empty : empty?

The empty list.

value

true : boolean?

The #true value.

value

false : boolean?

The #false value.

4.2 Template Variables

syntax

..

A placeholder for indicating that a definition is a template.

syntax

...

A placeholder for indicating that a definition is a template.

syntax

....

A placeholder for indicating that a definition is a template.

syntax

.....

A placeholder for indicating that a definition is a template.

syntax

......

A placeholder for indicating that a definition is a template.

4.3 Syntax for Intermediate with Lambda

syntax

(lambda (variable variable ...) expression)

Creates a function that takes as many arguments as given variables, and whose body is expression.

syntax

(λ (variable variable ...) expression)

The Greek letter λ is a synonym for lambda.

syntax

(expression expression expression ...)

Calls the function that results from evaluating the first expression. The value of the call is the value of function’s body when every instance of name’s variables are replaced by the values of the corresponding expressions.

The function being called must come from either a definition appearing before the function call, or from a lambda expression. The number of argument expressions must be the same as the number of arguments expected by the function.

syntax

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a define or a define-struct.

When evaluating local, each definition is evaluated in order, and finally the body expression is evaluated. Only the expressions within the local (including the right-hand-sides of the definitions and the expression) may refer to the names defined by the definitions. If a name defined in the local is the same as a top-level binding, the inner one “shadows” the outer one. That is, inside the local, any references to that name refer to the inner one.

syntax

(letrec ([name expr-for-let] ...) expression)

Like local, but with a simpler syntax. Each name defines a variable (or a function) with the value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines a function, otherwise it defines a variable.

syntax

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets occuring after that name.

syntax

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the expr-for-lets next to the names.

syntax

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time prints out the time taken by the evaluation (including real time, time taken by the CPU, and the time spent collecting free memory). The value of time is the same as that of expression.

4.4 Common Syntaxes

The following syntaxes behave the same in the Intermediate with Lambda level as they did in the Intermediate Student level.

syntax

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the function is called, the values of the arguments are inserted into the body in place of the variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

syntax

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s cannot be the same as that of another function or variable, and name itself must not appear in expression.

syntax

name

syntax

part

syntax

(quote name)

syntax

(quote part)

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.

Normally, this quotation is written with a ', like '(apple banana), but it can also be written with quote, like (quote (apple banana)).

syntax

name

syntax

part

syntax

(quasiquote name)

syntax

(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, `, like `(apple ,(+ 1 2)), but they can also be written with quasiquote, like (quasiquote (apple ,(+ 1 2))).

syntax

,expression

syntax

(unquote expression)

Under a single quasiquote, ,expression escapes from the quote to include an evaluated expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, ,expression is really the literal ,expression, decrementing the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

syntax

,@expression

syntax

(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated expression whose result is a list to splice into the abbreviated list.

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-splicing.

syntax

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the field-names. After the define-struct, the following new functions are available:

The name of the new functions introduced by define-struct must not be the same as that of other functions or variables, otherwise define-struct reports an error.

syntax

(cond [question-expression answer-expression] ...)

(cond [question-expression answer-expression]
      ...
      [else answer-expression])
Chooses a clause based on some condition. cond finds the first question-expression that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-expression of the else clause. If there is no else, cond reports an error. If the result of a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

syntax

(if test-expression then-expression else-expression)

When the value of the test-expression is #true, if evaluates the then-expression. When the test is #false, if evaluates the else-expression.

If the test-expression is neither #true nor #false, if reports an error.

syntax

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the and expression evaluates to #false (and the expressions to the right of that expression are not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an error.

syntax

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the right of that expression are not evaluated.) If all of the expressions are #false, the or expression evaluates to #false.

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

syntax

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)
 
(define (fahrenheit->celsius f)
  (* 5/9 (- f 32)))
A check-expect expression must be placed at the top-level of a student program. Also it may show up anywhere in the program, including ahead of the tested function definition. By placing check-expects there, a programmer conveys to a future reader the intention behind the program with working examples, thus making it often superfluous to read the function definition proper.

It is an error for expr or expected-expr to produce an inexact number or a function value. As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one tests whether they are both within a small interval; see check-within. As for functions (see Intermediate and up), it is provably impossible to compare functions.

syntax

(check-random expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-expression.

The form supplies the same random-number generator to both parts. If both parts request random numbers from the same interval in the same order, they receive the same random numbers.

Here is a simple example of where check-random is useful:
(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))
 
(define-struct player (name x y))
; A Player is (make-player String Nat Nat)
 
; String -> Player
 
(check-random (create-randomly-placed-player "David Van Horn")
              (make-player "David Van Horn" (random WIDTH) (random HEIGHT)))
 
(define (create-randomly-placed-player name)
  (make-player name (random WIDTH) (random HEIGHT)))
Note how random is called on the same numbers in the same order in both parts of check-random. If the two parts call random for different intervals, they are likely to fail:
; String -> Player
 
(check-random (create-randomly-placed-player "David Van Horn")
              (make-player "David Van Horn" (random WIDTH) (random HEIGHT)))
 
(define (create-randomly-placed-player name)
  (local ((define h (random HEIGHT))
          (define w (random WIDTH)))
    (make-player name w h)))

It is an error for expr or expected-expr to produce a function value or an inexact number; see note on check-expect for details.

syntax

(check-satisfied expression predicate)

Checks that the first expression satisfies the named predicate (function of one argument). Recall that “satisfies” means “the function produces a value other than false.”

Here are simple examples for check-satisfied:
> (check-satisfied 1 odd?)

The only test passed!

> (check-satisfied 1 even?)

Ran 1 check.

0 checks passed.

Actual value 1 does not satisfy "even?".

 At line 3 column 0

In general check-satisfied empowers program designers to use defined functions to formulate test suites:
; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort
 
(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)
 
(define (sorted? l)
  (cond
    [(empty? (rest l)) #true]
    [else (and (<= (first l) (second l)) (sorted? (rest l)))]))
 
; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers
 
(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)
 
(define (htdp-sort l)
  (cond
    [(empty? l) l]
    [else (insert (first l) (htdp-sort (rest l)))]))
 
; Number [List-of Number] -> [List-of Number]
; insert x into l at proper place
; assume l is arranged in ascending order
; the result is sorted in the same way
(define (insert x l)
  (cond
    [(empty? l) (list x)]
    [else (if (<= x (first l)) (cons x l) (cons (first l) (insert x (rest l))))]))

And yes, the results of htdp-sort satisfy the sorted? predicate:
> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

syntax

(check-within expression expected-expression delta)

Checks whether the value of the expression expression is structurally equal to the value produced by the expected-expression expression; every number in the first expression must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]
 
(define (roots-table xs)
  (map (lambda (a) (make-roots a (sqrt a))) xs))

Due to the presence of inexact numbers in nested data, check-within is the correct choice for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
                (list
                  (make-roots 1.0 1.0)
                  (make-roots 2  1.414)
                  (make-roots 3  1.713))
                0.1)

The only test passed!

In contrast, when delta is small, the test fails:

Example:

> (check-within (roots-table (list 2.0))
                (list
                  (make-roots 2  1.414))
                1e-05)

Ran 1 check.

0 checks passed.

Actual value '((make-roots 2.0 1.4142135623730951)) is not within 1e-05 of expected value '((make-roots 2 1.414)).

 At line 5 column 0

It is an error for expressions or expected-expression to produce a function value; see note on check-expect for details.

If delta is not a number, check-within reports an error.

syntax

(check-error expression expected-error-message)

(check-error expression)
Checks that the expression reports an error, where the error messages matches the value of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:
(define sample-table
  '(("matthias" 10)
    ("matthew"  20)
    ("robby"    -1)
    ("shriram"  18)))
 
; [List-of [list String Number]] String -> Number
; determine the number associated with s in table
 
(define (lookup table s)
  (cond
    [(empty? table) (error (string-append s " not found"))]
    [else (if (string=? (first (first table)) s)
              (second (first table))
              (lookup (rest table)))]))

Consider the following two examples in this context:

Example:

> (check-expect (lookup sample-table "matthew") 20)

The only test passed!

Example:

> (check-error (lookup sample-table "kathi") "kathi not found")

The only test passed!

syntax

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

; [List-of X] -> X
; pick a random element from the given list l
(define (pick-one l)
  (list-ref l (random (length l))))

Example:

> (check-member-of (pick-one '("a" "b" "c")) "a" "b" "c")

The only test passed!

It is an error for any of expressions to produce a function value; see note on check-expect for details.

syntax

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute inexact numbers:
; [Real -> Real] Real -> Real
; what is the slope of f at x?
(define (differentiate f x)
  (local ((define epsilon 0.001)
          (define left (- x epsilon))
          (define right (+ x epsilon))
          (define slope
            (/ (- (f right) (f left))
               2 epsilon)))
    slope))
 
(check-range (differentiate sin 0) 0.99 1.0)

It is an error for expression, low-expression, or high-expression to produce a function value or an inexact number; see note on check-expect for details.

syntax

(require string)

Makes the definitions of the module specified by string available in the current module (i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions on different platforms: a / is a directory separator, . always means the current directory, .. always means the parent directory, path elements can use only a through z (uppercase or lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or trailing /.

syntax

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same constraints as for a relative-path string (though without the quotes), with the additional constraint that it must not contain a ..

syntax

(require (lib string string ...))

Accesses a file in an installed library, making its definitions available in the current module (i.e., the current file). The first string names the library file, and the remaining strings name the collection (and sub-collection, and so on) where the file is installed. Each string is constrained in the same way as for the (require string) form.

syntax

(require (planet string (string string number number)))

syntax

(require (planet id))

syntax

(require (planet string))

Accesses a library that is distributed on the internet via the PLaneT server, making it definitions available in the current module (i.e., current file).

The full grammar for planet requires is given in Importing and Exporting: require and provide, but the best place to find examples of the syntax is on the the PLaneT server, in the description of a specific package.

4.5 Pre-defined Functions

The remaining subsections list those functions that are built into the programming language. All other functions are imported from a teachpack or must be defined in the program.

4.6 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

procedure

(- x y ...)  number

  x : number
  y : number
Subtracts the second (and following) number(s) from the first ; negates the number if there is only one argument.
> (- 5)

-5

> (- 5 3)

2

> (- 5 3 1)

1

procedure

(< x y z ...)  boolean?

  x : real
  y : real
  z : real
Compares (real) numbers for less-than.
> (< 42 2/5)

#f

procedure

(<= x y z ...)  boolean?

  x : real
  y : real
  z : real
Compares (real) numbers for less-than or equality.
> (<= 42 2/5)

#f

procedure

(= x y z ...)  boolean?

  x : number
  y : number
  z : number
Compares numbers for equality.
> (= 42 2/5)

#f

procedure

(> x y z ...)  boolean?

  x : real
  y : real
  z : real
Compares (real) numbers for greater-than.
> (> 42 2/5)

#t

procedure

(>= x y z ...)  boolean?

  x : real
  y : real
  z : real
Compares (real) numbers for greater-than or equality.
> (>= 42 42)

#t

procedure

(abs x)  real

  x : real
Determines the absolute value of a real number.
> (abs -12)

12

procedure

(acos x)  number

  x : number
Computes the arccosine (inverse of cos) of a number.
> (acos 0)

1.5707963267948966

procedure

(add1 x)  number

  x : number
Increments the given number.
> (add1 2)

3

procedure

(angle x)  real

  x : number
Extracts the angle from a complex number.
> (angle (make-polar 3 4))

-2.2831853071795867

procedure

(asin x)  number

  x : number
Computes the arcsine (inverse of sin) of a number.
> (asin 0)

0

procedure

(atan x)  number

  x : number
Computes the arctangent of the given number:
> (atan 0)

0

> (atan 0.5)

0.4636476090008061

Also comes in a two-argument version where (atan x y) computes (atan (/ x y)) but the signs of x and y determine the quadrant of the result and the result tends to be more accurate than that of the 1-argument version in borderline cases:
> (atan 3 4)

0.6435011087932844

> (atan -2 -1)

-2.0344439357957027

procedure

(ceiling x)  integer

  x : real
Determines the closest integer (exact or inexact) above a real number. See round.
> (ceiling 12.3)

13.0

procedure

(complex? x)  boolean?

  x : any/c
Determines whether some value is complex.
> (complex? 1-2i)

#t

procedure

(conjugate x)  number

  x : number
Flips the sign of the imaginary part of a complex number.
> (conjugate 3+4i)

3-4i

> (conjugate -2-5i)

-2+5i

> (conjugate (make-polar 3 4))

-1.960930862590836+2.2704074859237844i

procedure

(cos x)  number

  x : number
Computes the cosine of a number (radians).
> (cos pi)

-1.0

procedure

(cosh x)  number

  x : number
Computes the hyperbolic cosine of a number.
> (cosh 10)

11013.232920103324

procedure

(current-seconds)  integer

Determines the current time in seconds elapsed (since a platform-specific starting date).
> (current-seconds)

1447998138

procedure

(denominator x)  integer

  x : rational?
Computes the denominator of a rational.
> (denominator 2/3)

3

value

e : real

Euler’s number.
> e

2.718281828459045

procedure

(even? x)  boolean?

  x : integer
Determines if some integer (exact or inexact) is even or not.
> (even? 2)

#t

procedure

(exact->inexact x)  number

  x : number
Converts an exact number to an inexact one.
> (exact->inexact 12)

12.0

procedure

(exact? x)  boolean?

  x : number
Determines whether some number is exact.
> (exact? (sqrt 2))

#f

procedure

(exp x)  number

  x : number
Determines e raised to a number.
> (exp -2)

0.1353352832366127

procedure

(expt x y)  number

  x : number
  y : number
Computes the power of the first to the second number.
> (expt 16 1/2)

4

> (expt 3 -4)

1/81

procedure

(floor x)  integer

  x : real
Determines the closest integer (exact or inexact) below a real number. See round.
> (floor 12.3)

12.0

procedure

(gcd x y ...)  integer

  x : integer
  y : integer
Determines the greatest common divisor of two integers (exact or inexact).
> (gcd 6 12 8)

2

procedure

(imag-part x)  real

  x : number
Extracts the imaginary part from a complex number.
> (imag-part 3+4i)

4

procedure

(inexact->exact x)  number

  x : number
Approximates an inexact number by an exact one.
> (inexact->exact 12.0)

12

procedure

(inexact? x)  boolean?

  x : number
Determines whether some number is inexact.
> (inexact? 1-2i)

#f

procedure

(integer->char x)  char

  x : exact-integer?
Looks up the character that corresponds to the given exact integer in the ASCII table (if any).
> (integer->char 42)

#\*

procedure

(integer-sqrt x)  complex

  x : integer
Computes the integer or imaginary-integer square root of an integer.
> (integer-sqrt 11)

3

> (integer-sqrt -11)

0+3i

procedure

(integer? x)  boolean?

  x : any/c
Determines whether some value is an integer (exact or inexact).
> (integer? (sqrt 2))

#f

procedure

(lcm x y ...)  integer

  x : integer
  y : integer
Determines the least common multiple of two integers (exact or inexact).
> (lcm 6 12 8)

24

procedure

(log x)  number

  x : number
Determines the base-e logarithm of a number.
> (log 12)

2.4849066497880004

procedure

(magnitude x)  real

  x : number
Determines the magnitude of a complex number.
> (magnitude (make-polar 3 4))

3.0

procedure

(make-polar x y)  number

  x : real
  y : real
Creates a complex from a magnitude and angle.
> (make-polar 3 4)

-1.960930862590836-2.2704074859237844i

procedure

(make-rectangular x y)  number

  x : real
  y : real
Creates a complex from a real and an imaginary part.
> (make-rectangular 3 4)

3+4i

procedure

(max x y ...)  real

  x : real
  y : real
Determines the largest number—aka, the maximum.
> (max 3 2 8 7 2 9 0)

9

procedure

(min x y ...)  real

  x : real
  y : real
Determines the smallest number—aka, the minimum.
> (min 3 2 8 7 2 9 0)

0

procedure

(modulo x y)  integer

  x : integer
  y : integer
Finds the remainder of the division of the first number by the second:
> (modulo 9 2)

1

> (modulo 3 -4)

-1

procedure

(negative? x)  boolean?

  x : number
Determines if some value is strictly smaller than zero.
> (negative? -2)

#t

procedure

(number->string x)  string

  x : number
Converts a number to a string.
> (number->string 42)

"42"

procedure

(number? n)  boolean?

  n : any/c
Determines whether some value is a number:
> (number? "hello world")

#f

> (number? 42)

#t

procedure

(numerator x)  integer

  x : rational?
Computes the numerator of a rational.
> (numerator 2/3)

2

procedure

(odd? x)  boolean?

  x : integer
Determines if some integer (exact or inexact) is odd or not.
> (odd? 2)

#f

value

pi : real

The ratio of a circle’s circumference to its diameter.
> pi

3.141592653589793

procedure

(positive? x)  boolean?

  x : number
Determines if some value is strictly larger than zero.
> (positive? -2)

#f

procedure

(quotient x y)  integer

  x : integer
  y : integer
Divides the second integer—also called divisor—into the first—known as dividend—to obtain the quotient.
> (quotient 9 2)

4

> (quotient 3 4)

0

procedure

(random x)  natural

  x : natural
Generates a random natural number less than some given exact natural.
> (random 42)

19

procedure

(rational? x)  boolean?

  x : any/c
Determines whether some value is a rational number.
> (rational? 1)

#t

> (rational? -2.349)

#t

> (rational? #i1.23456789)

#t

> (rational? (sqrt -1))

#f

> (rational? pi)

#t

> (rational? e)

#t

> (rational? 1-2i)

#f

As the interactions show, the teaching languages considers many more numbers as rationals than expected. In particular, pi is a rational number because it is only a finite approximation to the mathematical π. Think of rational? as a suggestion to think of these numbers as fractions.

procedure

(real-part x)  real

  x : number
Extracts the real part from a complex number.
> (real-part 3+4i)

3

procedure

(real? x)  boolean?

  x : any/c
Determines whether some value is a real number.
> (real? 1-2i)

#f

procedure

(remainder x y)  integer

  x : integer
  y : integer
Determines the remainder of dividing the first by the second integer (exact or inexact).
> (remainder 9 2)

1

> (remainder 3 4)

3

procedure

(round x)  integer

  x : real
Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.
> (round 12.3)

12.0

procedure

(sgn x)  (union 1 #i1.0 0 #i0.0 -1 #i-1.0)

  x : real
Determines the sign of a real number.
> (sgn -12)

-1

procedure

(sin x)  number

  x : number
Computes the sine of a number (radians).
> (sin pi)

1.2246467991473532e-16

procedure

(sinh x)  number

  x : number
Computes the hyperbolic sine of a number.
> (sinh 10)

11013.232874703393

procedure

(sqr x)  number

  x : number
Computes the square of a number.
> (sqr 8)

64

procedure

(sqrt x)  number

  x : number
Computes the square root of a number.
> (sqrt 9)

3

> (sqrt 2)

1.4142135623730951

procedure

(sub1 x)  number

  x : number
Decrements the given number.
> (sub1 2)

1

procedure

(tan x)  number

  x : number
Computes the tangent of a number (radians).
> (tan pi)

-1.2246467991473532e-16

procedure

(zero? x)  boolean?

  x : number
Determines if some value is zero or not.
> (zero? 2)

#f

4.7 Booleans

procedure

(boolean=? x y)  boolean?

  x : boolean?
  y : boolean?
Determines whether two booleans are equal.
> (boolean=? #true #false)

#f

procedure

(boolean? x)  boolean?

  x : any/c
Determines whether some value is a boolean.
> (boolean? 42)

#f

> (boolean? #false)

#t

procedure

(false? x)  boolean?

  x : any/c
Determines whether a value is false.
> (false? #false)

#t

procedure

(not x)  boolean?

  x : boolean?
Negates a boolean value.
> (not #false)

#t

4.8 Symbols

procedure

(symbol->string x)  string

  x : symbol
Converts a symbol to a string.
> (symbol->string 'c)

"c"

procedure

(symbol=? x y)  boolean?

  x : symbol
  y : symbol
Determines whether two symbols are equal.
> (symbol=? 'a 'b)

#f

procedure

(symbol? x)  boolean?

  x : any/c
Determines whether some value is a symbol.
> (symbol? 'a)

#t

4.9 Lists

procedure

(append l ...)  (listof any)

  l : (listof any)
Creates a single list from several, by concatenation of the items. In ISL and up: append also works when applied to one list or none.
> (append (cons 1 (cons 2 '())) (cons "a" (cons "b" '())))

(1 2 "a" "b")

> (append)

()

procedure

(assoc x l)  (union (listof any) #false)

  x : any
  l : (listof any)
Produces the first pair on l whose first is equal? to x; otherwise it produces #false.
> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))

("hello" 3)

procedure

(assq x l)  (union #false cons?)

  x : any/c
  l : list?
Determines whether some item is the first item of a pair in a list of pairs. (It compares the items with eq?.)
> a

((a 22) (b 8) (c 70))

> (assq 'b a)

(b 8)

procedure

(caaar x)  any/c

  x : list?
LISP-style selector: (car (car (car (car x)))).
> w

(((("bye") 3) #t) 42)

> (caaar w)

("bye")

procedure

(caadr x)  any/c

  x : list?
LISP-style selector: (car (car (cdr x))).
> (caadr (cons 1 (cons (cons 'a '()) (cons (cons 'd '()) '()))))

a

procedure

(caar x)  any/c

  x : list?
LISP-style selector: (car (car x)).
> y

(((1 2 3) #f "world"))

> (caar y)

(1 2 3)

procedure

(cadar x)  any/c

  x : list?
LISP-style selector: (car (cdr (car x))).
> w

(((("bye") 3) #t) 42)

> (cadar w)

#t

procedure

(cadddr x)  any/c

  x : list?
LISP-style selector: (car (cdr (cdr (cdr x)))).
> v

(1 2 3 4 5 6 7 8 9 A)

> (cadddr v)

4

procedure

(caddr x)  any/c

  x : list?
LISP-style selector: (car (cdr (cdr x))).
> x

(2 "hello" #t)

> (caddr x)

#t

procedure

(cadr x)  any/c

  x : list?
LISP-style selector: (car (cdr x)).
> x

(2 "hello" #t)

> (cadr x)

"hello"

procedure

(car x)  any/c

  x : cons?
Selects the first item of a non-empty list.
> x

(2 "hello" #t)

> (car x)

2

procedure

(cdaar x)  any/c

  x : list?
LISP-style selector: (cdr (car (car x))).
> w

(((("bye") 3) #t) 42)

> (cdaar w)

(3)

procedure

(cdadr x)  any/c

  x : list?
LISP-style selector: (cdr (car (cdr x))).
> z

(2 "hello" #t "hello")

> (cdadr z)

cdadr: contract violation

  expected: (cons/c any/c (cons/c pair? any/c))

  given: (2 "hello" #t "hello")

procedure

(cdar x)  list?

  x : list?
LISP-style selector: (cdr (car x)).
> y

(((1 2 3) #f "world"))

> (cdar y)

(#f "world")

procedure

(cddar x)  any/c

  x : list?
LISP-style selector: (cdr (cdr (car x)))
> w

(((("bye") 3) #t) 42)

> (cddar w)

()

procedure

(cdddr x)  any/c

  x : list?
LISP-style selector: (cdr (cdr (cdr x))).
> v

(1 2 3 4 5 6 7 8 9 A)

> (cdddr v)

(4 5 6 7 8 9 A)

procedure

(cddr x)  list?

  x : list?
LISP-style selector: (cdr (cdr x)).
> x

(2 "hello" #t)

> (cddr x)

(#t)

procedure

(cdr x)  any/c

  x : cons?
Selects the rest of a non-empty list.
> x

(2 "hello" #t)

> (cdr x)

("hello" #t)

procedure

(cons x y)  list?

  x : any/x
  y : list?
Constructs a list.
> (cons 1 '())

(1)

procedure

(cons? x)  boolean?

  x : any/c
Determines whether some value is a constructed list.
> (cons? (cons 1 '()))

#t

> (cons? 42)

#f

procedure

(eighth x)  any/c

  x : list?
Selects the eighth item of a non-empty list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (eighth v)

8

procedure

(empty? x)  boolean?

  x : any/c
Determines whether some value is the empty list.
> (empty? '())

#t

> (empty? 42)

#f

procedure

(fifth x)  any/c

  x : list?
Selects the fifth item of a non-empty list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (fifth v)

5

procedure

(first x)  any/c

  x : cons?
Selects the first item of a non-empty list.
> x

(2 "hello" #t)

> (first x)

2

procedure

(fourth x)  any/c

  x : list?
Selects the fourth item of a non-empty list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (fourth v)

4

procedure

(length l)  natural-number?

  l : list?
Evaluates the number of items on a list.
> x

(2 "hello" #t)

> (length x)

3

procedure

(list x ...)  list?

  x : any/c
Constructs a list of its arguments.
> (list 1 2 3 4 5 6 7 8 9 0)

(1 2 3 4 5 6 7 8 9 0)

procedure

(list* x ... l)  list?

  x : any/c
  l : list?
Constructs a list by adding multiple items to a list.
> x

(2 "hello" #t)

> (list* 4 3 x)

(4 3 2 "hello" #t)

procedure

(list-ref x i)  any/c

  x : list?
  i : natural?
Extracts the indexed item from the list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (list-ref v 9)

A

procedure

(list? x)  boolean?

  x : any
Checks whether the given value is a list.
> (list? 42)

#f

> (list? (cons 1 (cons 2 '())))

#t

procedure

(make-list i x)  list?

  i : natural-number
  x : any/c
Constructs a list of i copies of x.
> (make-list 3 "hello")

("hello" "hello" "hello")

procedure

(member x l)  boolean?

  x : any/c
  l : list?
Determines whether some value is on the list (comparing values with equal?).
> x

(2 "hello" #t)

> (member "hello" x)

#t

procedure

(member? x l)  boolean?

  x : any/c
  l : list?
Determines whether some value is on the list (comparing values with equal?).
> x

(2 "hello" #t)

> (member? "hello" x)

#t

procedure

(memq x l)  boolean?

  x : any/c
  l : list?
Determines whether some value x is on some list l, using eq? to compare x with items on l.
> x

(2 "hello" #t)

> (memq (list (list 1 2 3)) x)

#f

procedure

(memq? x l)  boolean?

  x : any/c
  l : list?
Determines whether some value x is on some list l, using eq? to compare x with items on l.
> x

(2 "hello" #t)

> (memq? (list (list 1 2 3)) x)

#f

procedure

(memv x l)  (or/c #false list)

  x : any/c
  l : list?
Determines whether some value is on the list if so, it produces the suffix of the list that starts with x if not, it produces false. (It compares values with the eqv? predicate.)
> x

(2 "hello" #t)

> (memv (list (list 1 2 3)) x)

#f

value

null : list

Another name for the empty list
> null

()

procedure

(null? x)  boolean?

  x : any/c
Determines whether some value is the empty list.
> (null? '())

#t

> (null? 42)

#f

procedure

(range start end step)  list?

  start : number
  end : number
  step : number
Constructs a list of numbers by stepping from start to end.
> (range 0 10 2)

(0 2 4 6 8)

procedure

(remove x l)  list?

  x : any/c
  l : list?
Constructs a list like the given one, with the first occurrence of the given item removed (comparing values with equal?).
> x

(2 "hello" #t)

> (remove "hello" x)

(2 #t)

> z

(2 "hello" #t "hello")

> (remove "hello" z)

(2 #t "hello")

procedure

(remove-all x l)  list?

  x : any/c
  l : list?
Constructs a list like the given one, with all occurrences of the given item removed (comparing values with equal?).
> x

(2 "hello" #t)

> (remove-all "hello" x)

(2 #t)

> z

(2 "hello" #t "hello")

> (remove-all "hello" z)

(2 #t)

procedure

(rest x)  any/c

  x : cons?
Selects the rest of a non-empty list.
> x

(2 "hello" #t)

> (rest x)

("hello" #t)

procedure

(reverse l)  list

  l : list?
Creates a reversed version of a list.
> x

(2 "hello" #t)

> (reverse x)

(#t "hello" 2)

procedure

(second x)  any/c

  x : list?
Selects the second item of a non-empty list.
> x

(2 "hello" #t)

> (second x)

"hello"

procedure

(seventh x)  any/c

  x : list?
Selects the seventh item of a non-empty list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (seventh v)

7

procedure

(sixth x)  any/c

  x : list?
Selects the sixth item of a non-empty list.
> v

(1 2 3 4 5 6 7 8 9 A)

> (sixth v)

6

procedure

(third x)  any/c

  x : list?
Selects the third item of a non-empty list.
> x

(2 "hello" #t)

> (third x)

#t

4.10 Posns

procedure

(make-posn x y)  posn

  x : any/c
  y : any/c
Constructs a posn from two arbitrary values.
> (make-posn 3 3)

#(struct:posn 3 3)

> (make-posn "hello" #true)

#(struct:posn "hello" #t)

procedure

(posn-x p)  any

  p : posn
Extracts the x component of a posn.
> p

#(struct:posn 2 -3)

> (posn-x p)

2

procedure

(posn-y p)  any

  p : posn
Extracts the y component of a posn.
> p

#(struct:posn 2 -3)

> (posn-y p)

-3

procedure

(posn? x)  boolean?

  x : any/c
Determines if its input is a posn.
> q

#(struct:posn "bye" 2)

> (posn? q)

#t

> (posn? 42)

#f

4.11 Characters

procedure

(char->integer c)  integer

  c : char
Looks up the number that corresponds to the given character in the ASCII table (if any).
> (char->integer #\a)

97

> (char->integer #\z)

122

procedure

(char-alphabetic? c)  boolean?

  c : char
Determines whether a character represents an alphabetic character.
> (char-alphabetic? #\Q)

#t

procedure

(char-ci<=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are ordered in an increasing and case-insensitive manner.
> (char-ci<=? #\b #\B)

#t

> (char<=? #\b #\B)

#f

procedure

(char-ci<? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are ordered in a strictly increasing and case-insensitive manner.
> (char-ci<? #\B #\c)

#t

> (char<? #\b #\B)

#f

procedure

(char-ci=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether two characters are equal in a case-insensitive manner.
> (char-ci=? #\b #\B)

#t

procedure

(char-ci>=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are sorted in a decreasing and case-insensitive manner.
> (char-ci>=? #\b #\C)

#f

> (char>=? #\b #\C)

#t

procedure

(char-ci>? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are sorted in a strictly decreasing and case-insensitive manner.
> (char-ci>? #\b #\B)

#f

> (char>? #\b #\B)

#t

procedure

(char-downcase c)  char

  c : char
Produces the equivalent lower-case character.
> (char-downcase #\T)

#\t

procedure

(char-lower-case? c)  boolean?

  c : char
Determines whether a character is a lower-case character.
> (char-lower-case? #\T)

#f

procedure

(char-numeric? c)  boolean?

  c : char
Determines whether a character represents a digit.
> (char-numeric? #\9)

#t

procedure

(char-upcase c)  char

  c : char
Produces the equivalent upper-case character.
> (char-upcase #\t)

#\T

procedure

(char-upper-case? c)  boolean?

  c : char
Determines whether a character is an upper-case character.
> (char-upper-case? #\T)

#t

procedure

(char-whitespace? c)  boolean?

  c : char
Determines whether a character represents space.
> (char-whitespace? #\tab)

#t

procedure

(char<=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are ordered in a strictly increasing manner.
> (char<=? #\a #\a #\b)

#t

procedure

(char<? x d e ...)  boolean?

  x : char
  d : char
  e : char
Determines whether the characters are ordered in a strictly increasing manner.
> (char<? #\a #\b #\c)

#t

procedure

(char=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are equal.
> (char=? #\b #\a)

#f

procedure

(char>=? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are sorted in a decreasing manner.
> (char>=? #\b #\b #\a)

#t

procedure

(char>? c d e ...)  boolean?

  c : char
  d : char
  e : char
Determines whether the characters are sorted in a strictly decreasing manner.
> (char>? #\A #\z #\a)

#f

procedure

(char? x)  boolean?

  x : any/c
Determines whether a value is a character.
> (char? "a")

#f

> (char? #\a)

#t

4.12 Strings

procedure

(explode s)  (listof string)

  s : string
Translates a string into a list of 1-letter strings.
> (explode "cat")

("c" "a" "t")

procedure

(format f x ...)  string

  f : string
  x : any/c
Formats a string, possibly embedding values.
> (format "Dear Dr. ~a:" "Flatt")

"Dear Dr. Flatt:"

> (format "Dear Dr. ~s:" "Flatt")

"Dear Dr. \"Flatt\":"

> (format "the value of ~s is ~a" '(+ 1 1) (+ 1 1))

"the value of (+ 1 1) is 2"

procedure

(implode l)  string

  l : list?
Concatenates the list of 1-letter strings into one string.
> (implode (cons "c" (cons "a" (cons "t" '()))))

"cat"

procedure

(int->string i)  string

  i : integer
Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.
> (int->string 65)

"A"

procedure

(list->string l)  string

  l : list?
Converts a s list of characters into a string.
> (list->string (cons #\c (cons #\a (cons #\t '()))))

"cat"

procedure

(make-string i c)  string

  i : natural-number
  c : char
Produces a string of length i from c.
> (make-string 3 #\d)

"ddd"

procedure

(replicate i s)  string

  i : natural-number
  s : string
Replicates s i times.
> (replicate 3 "h")

"hhh"

procedure

(string c ...)  string?

  c : char
Builds a string of the given characters.
> (string #\d #\o #\g)

"dog"

procedure

(string->int s)  integer

  s : string
Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].
> (string->int "a")

97

procedure

(string->list s)  (listof char)

  s : string
Converts a string into a list of characters.
> (string->list "hello")

(#\h #\e #\l #\l #\o)

procedure

(string->number s)  (union number #false)

  s : string
Converts a string into a number, produce false if impossible.
> (string->number "-2.03")

-2.03

> (string->number "1-2i")

1-2i

procedure

(string->symbol s)  symbol

  s : string
Converts a string into a symbol.
> (string->symbol "hello")

hello

procedure

(string-alphabetic? s)  boolean?

  s : string
Determines whether all ’letters’ in the string are alphabetic.
> (string-alphabetic? "123")

#f

> (string-alphabetic? "cat")

#t

procedure

(string-append s ...)  string

  s : string
Concatenates the characters of several strings.
> (string-append "hello" " " "world" " " "good bye")

"hello world good bye"

procedure

(string-ci<=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically increasing and case-insensitive manner.
> (string-ci<=? "hello" "WORLD" "zoo")

#t

procedure

(string-ci<? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically strictly increasing and case-insensitive manner.
> (string-ci<? "hello" "WORLD" "zoo")

#t

procedure

(string-ci=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether all strings are equal, character for character, regardless of case.
> (string-ci=?  "hello" "HellO")

#t

procedure

(string-ci>=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically decreasing and case-insensitive manner.
> (string-ci>?  "zoo" "WORLD" "hello")

#t

procedure

(string-ci>? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically strictly decreasing and case-insensitive manner.
> (string-ci>?  "zoo" "WORLD" "hello")

#t

procedure

(string-contains? s t)  boolean?

  s : string
  t : string
Determines whether the first string appears literally in the second one.
> (string-contains? "at" "cat")

#t

procedure

(string-copy s)  string

  s : string
Copies a string.
> (string-copy "hello")

"hello"

procedure

(string-ith s i)  1string?

  s : string
  i : natural-number
Extracts the ith 1-letter substring from s.
> (string-ith "hello world" 1)

"e"

procedure

(string-length s)  nat

  s : string
Determines the length of a string.
> (string-length "hello world")

11

procedure

(string-lower-case? s)  boolean?

  s : string
Determines whether all ’letters’ in the string are lower case.
> (string-lower-case? "CAT")

#f

procedure

(string-numeric? s)  boolean?

  s : string
Determines whether all ’letters’ in the string are numeric.
> (string-numeric? "123")

#t

> (string-numeric? "1-2i")

#f

procedure

(string-ref s i)  char

  s : string
  i : natural-number
Extracts the ith character from s.
> (string-ref "cat" 2)

#\t

procedure

(string-upper-case? s)  boolean?

  s : string
Determines whether all ’letters’ in the string are upper case.
> (string-upper-case? "CAT")

#t

procedure

(string-whitespace? s)  boolean?

  s : string
Determines whether all ’letters’ in the string are white space.
> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))

#t

procedure

(string<=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically increasing manner.
> (string<=? "hello" "hello" "world" "zoo")

#t

procedure

(string<? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically strictly increasing manner.
> (string<? "hello" "world" "zoo")

#t

procedure

(string=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether all strings are equal, character for character.
> (string=? "hello" "world")

#f

> (string=? "bye" "bye")

#t

procedure

(string>=? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically decreasing manner.
> (string>=?  "zoo" "zoo" "world" "hello")

#t

procedure

(string>? s t x ...)  boolean?

  s : string
  t : string
  x : string
Determines whether the strings are ordered in a lexicographically strictly decreasing manner.
> (string>?  "zoo" "world" "hello")

#t

procedure

(string? x)  boolean?

  x : any/c
Determines whether a value is a string.
> (string? "hello world")

#t

> (string? 42)

#f

procedure

(substring s i j)  string

  s : string
  i : natural-number
  j : natural-number
Extracts the substring starting at i up to j (or the end if j is not provided).
> (substring "hello world" 1 5)

"ello"

> (substring "hello world" 4)

"o world"

4.13 Images

procedure

(image=? i j)  boolean?

  i : image
  j : image
Determines whether two images are equal.
> c1

image

> (image=? (circle 5 "solid" "green") c1)

#f

> (image=? (circle 10 "solid" "green") c1)

#t

procedure

(image? x)  boolean?

  x : any/c
Determines whether a value is an image.
> c1

image

> (image? c1)

#t

4.14 Misc

procedure

(=~ x y z)  boolean?

  x : number
  y : number
  z : non-negative-real
Checks whether x and y are within z of either other.
> (=~ 1.01 1.0 0.1)

#t

> (=~ 1.01 1.5 0.1)

#f

value

eof : eof-object?

A value that represents the end of a file:
> eof

#<eof>

procedure

(eof-object? x)  boolean?

  x : any/c
Determines whether some value is the end-of-file value.
> (eof-object? eof)

#t

> (eof-object? 42)

#f

procedure

(eq? x y)  boolean?

  x : any/c
  y : any/c
Determines whether two values are equivalent from the computer’s perspective (intensional).
> (eq? (cons 1 '()) (cons 1 '()))

#f

> one

(1)

> (eq? one one)

#t

procedure

(equal? x y)  boolean?

  x : any/c
  y : any/c
Determines whether two values are structurally equal where basic values are compared with the eqv? predicate.
> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))

#t

procedure

(equal~? x y z)  boolean?

  x : any/c
  y : any/c
  z : non-negative-real
Compares x and y like equal? but uses =~ in the case of numbers.
> (equal~? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)

#t

procedure

(eqv? x y)  boolean?

  x : any/c
  y : any/c
Determines whether two values are equivalent from the perspective of all functions that can be applied to it (extensional).
> (eqv? (cons 1 '()) (cons 1 '()))

#f

> one

(1)

> (eqv? one one)

#t

procedure

(error x ...)  void?

  x : any/c
Signals an error, combining the given values into an error message. If any of the values’ printed representations is too long, it is truncated and “...” is put into the string. If the first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error message.
> zero

0

> (if (= zero 0) (error "can't divide by 0") (/ 1 zero))

can't divide by 0

procedure

(exit)  void

Evaluating (exit) terminates the running program.

procedure

(identity x)  any

  x : any/c
Returns x.
> (identity 42)

42

> (identity c1)

image

> (identity "hello")

"hello"

procedure

(struct? x)  boolean?

  x : any/c
Determines whether some value is a structure.
> (struct? (make-posn 1 2))

#t

> (struct? 43)

#f

4.15 Numbers (relaxed conditions)

procedure

(* x ...)  number

  x : number
Multiplies all given numbers. In ISL and up: * works when applied to only one number or none.
> (* 5 3)

15

> (* 5 3 2)

30

> (* 2)

2

> (*)

1

procedure

(+ x ...)  number

  x : number
Adds all given numbers. In ISL and up: + works when applied to only one number or none.
> (+ 2/3 1/16)

35/48

> (+ 3 2 5 8)

18

> (+ 1)

1

> (+)

0

procedure

(/ x y ...)  number

  x : number
  y : number
Divides the first by all remaining numbers. In ISL and up: / computes the inverse when applied to only one number.
> (/ 12 2)

6

> (/ 12 2 3)

2

> (/ 3)

1/3

4.16 Posn

procedure

(posn)  signature

Signature for posns.

4.17 Higher-Order Functions

procedure

(andmap p? [l])  boolean

  p? : (X ... -> boolean)
  l : (listof X) = ...
Determines whether p? holds for all items of l ...:
(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))
(andmap p (list x-1 ... x-n) (list y-1 ... y-n)) = (and (p x-1 y-1) ... (p x-n y-n))
> (andmap odd? '(1 3 5 7 9))

#t

> threshold

3

> (andmap (lambda (x) (< x threshold)) '(0 1 2))

#t

> (andmap even? '())

#t

> (andmap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))

#f

procedure

(apply f x-1 ... l)  Y

  f : (X-1 ... X-N -> Y)
  x-1 : X-1
  l : (list X-i+1 ... X-N)
Applies a function using items from a list as the arguments:
(apply f (list x-1 ... x-n)) = (f x-1 ... x-n)
> a-list

(0 1 2 3 4 5 6 7 8 9)

> (apply max a-list)

9

procedure

(argmax f l)  X

  f : (X -> real)
  l : (listof X)
Finds the (first) element of the list that maximizes the output of the function.
> (argmax second '((sam 98) (carl 78) (vincent 93) (asumu 99)))

(asumu 99)

procedure

(argmin f l)  X

  f : (X -> real)
  l : (listof X)
Finds the (first) element of the list that minimizes the output of the function.
> (argmin second '((sam 98) (carl 78) (vincent 93) (asumu 99)))

(carl 78)

procedure

(build-list n f)  (listof X)

  n : nat
  f : (nat -> X)
Constructs a list by applying f to the numbers between 0 and (- n 1):
(build-list n f) = (list (f 0) ... (f (- n 1)))
> (build-list 22 add1)

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)

> i

3

> (build-list 3 (lambda (j) (+ j i)))

(3 4 5)

> (build-list 5
    (lambda (i)
      (build-list 5
        (lambda (j)
          (if (= i j) 1 0)))))

((1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1))

procedure

(build-string n f)  string

  n : nat
  f : (nat -> char)
Constructs a string by applying f to the numbers between 0 and (- n 1):
(build-string n f) = (string (f 0) ... (f (- n 1)))
> (build-string 10 integer->char)

"\u0000\u0001\u0002\u0003\u0004\u0005\u0006\a\b\t"

> (build-string 26 (lambda (x) (integer->char (+ 65 x))))

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

procedure

(compose f g)  (X -> Z)

  f : (Y -> Z)
  g : (X -> Y)
Composes a sequence of procedures into a single procedure:
(compose f g) = (lambda (x) (f (g x)))
> ((compose add1 second) '(add 3))

4

> (map (compose add1 second) '((add 3) (sub 2) (mul 4)))

(4 3 5)

procedure

(filter p? l)  (listof X)

  p? : (X -> boolean)
  l : (listof X)
Constructs a list from all those items on a list for which the predicate holds.
> (filter odd? '(0 1 2 3 4 5 6 7 8 9))

(1 3 5 7 9)

> threshold

3

> (filter (lambda (x) (>= x threshold)) '(0 1 2 3 4 5 6 7 8 9))

(3 4 5 6 7 8 9)

procedure

(foldl f base l)  Y

  f : (X Y -> Y)
  base : Y
  l : (listof X)
(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
(foldl f base (list x-1 ... x-n) (list x-1 ... x-n))
 = (f x-n y-n ... (f x-1 y-1 base))
> (foldl + 0 '(0 1 2 3 4 5 6 7 8 9))

45

> a-list

(0 1 2 3 4 5 6 7 8 9)

> (foldl (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) '() a-list)

(18 16 14 12 10 8)

> (foldl (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

procedure

(foldr f base l ...)  Y

  f : (X ... Y -> Y)
  base : Y
  l : (listof X)
(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))
(foldr f base (list x-1 ... x-n) (list y-1 ... y-n))
 = (f x-1 y-1 ... (f x-n y-n base))
> (foldr + 0 '(0 1 2 3 4 5 6 7 8 9))

45

> a-list

(0 1 2 3 4 5 6 7 8 9)

> (foldr (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) '() a-list)

(8 10 12 14 16 18)

> (foldr (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

procedure

(for-each f l ...)  void?

  f : (any ... -> any)
  l : (listof any)
Applies a function to each item on one or more lists for effect only:
(for-each f (list x-1 ... x-n)) = (begin (f x-1) ... (f x-n))
> (for-each (lambda (x) (begin (display x) (newline))) '(1 2 3))

1

2

3

procedure

(map f l ...)  (listof Z)

  f : (X ... -> Z)
  l : (listof X)
Constructs a new list by applying a function to each item on one or more existing lists:
(map f (list x-1 ... x-n)) = (list (f x-1) ... (f x-n))
(map f (list x-1 ... x-n) (list y-1 ... y-n)) = (list (f x-1 y-1) ... (f x-n y-n))
> (map add1 '(3 -4.01 2/5))

(4 -3.01 7/5)

> (map (lambda (x) (list 'my-list (+ x 1))) '(3 -4.01 2/5))

((my-list 4) (my-list -3.01) (my-list 7/5))

> (map (lambda (x y) (+ x (* x y))) '(3 -4 2/5) '(1 2 3))

(6 -12 8/5)

procedure

(memf p? l)  (union #false (listof X))

  p? : (X -> any)
  l : (listof X)
Produces #false if p? produces false for all items on l. If p? produces #true for any of the items on l, memf returns the sub-list starting from that item.
> (memf odd? '(2 4 6 3 8 0))

(3 8 0)

procedure

(ormap p? l)  boolean

  p? : (X -> boolean)
  l : (listof X)
Determines whether p? holds for at least one items of l:
(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
(ormap p (list x-1 ... x-n) (list y-1 ... y-n)) = (or (p x-1 y-1) ... (p x-n y-n))
> (ormap odd? '(1 3 5 7 9))

#t

> threshold

3

> (ormap (lambda (x) (< x threshold)) '(6 7 8 1 5))

#t

> (ormap even? '())

#f

> (ormap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))

#t

procedure

(procedure? x)  boolean?

  x : any
Produces true if the value is a procedure.
> (procedure? cons)

#t

> (procedure? add1)

#t

> (procedure? (lambda (x) (> x 22)))

#t

procedure

(quicksort l comp)  (listof X)

  l : (listof X)
  comp : (X X -> boolean)
Sorts the items on l, in an order according to comp (using the quicksort algorithm).
> (quicksort '(6 7 2 1 3 4 0 5 9 8) <)

(0 1 2 3 4 5 6 7 8 9)

procedure

(sort l comp)  (listof X)

  l : (listof X)
  comp : (X X -> boolean)
Sorts the items on l, in an order according to comp.
> (sort '(6 7 2 1 3 4 0 5 9 8) <)

(0 1 2 3 4 5 6 7 8 9)