7.9 Solving Systems of Equations
procedure
(matrix-solve M B [fail]) → (U F (Matrix Number))
M : (Matrix Number) B : (Matrix Number) fail : (-> F) = (λ () (error ...))
It is typical for B (and thus X) to be a column matrix, but not required. If B is not a column matrix, matrix-solve solves for all the columns in B simultaneously.
> (define M (matrix [[7 5] [3 -2]]))
> (define B0 (col-matrix [3 22]))
> (define B1 (col-matrix [19 4]))
> (matrix-solve M B0) - : (Array Real)
(array #[#[4] #[-5]])
> (matrix* M (col-matrix [4 -5]))
- : #(struct:Array
(Indexes Index (Boxof Boolean) (-> Void) (-> Indexes Integer)))
(array #[#[3] #[22]])
> (matrix-solve M B1) - : (Array Real)
(array #[#[2] #[1]])
> (matrix-cols (matrix-solve M (matrix-augment (list B0 B1)))) - : (Listof (Array Real))
(list (array #[#[4] #[-5]]) (array #[#[2] #[1]]))
matrix-solve does not solve overconstrained or underconstrained systems, meaning that M must be invertible. If M is not invertible, the result of applying the failure thunk fail is returned.
matrix-solve is implemented using matrix-gauss-elim to preserve exactness in its output, with partial pivoting for greater numerical stability when M is not exact.
See vandermonde-matrix for an example that uses matrix-solve to compute Legendre polynomials.
procedure
(matrix-inverse M [fail]) → (U F (Matrix Number))
M : (Matrix Number) fail : (-> F) = (λ () (error ...))
> (matrix-inverse (identity-matrix 3)) - : (Array Real)
(array #[#[1 0 0] #[0 1 0] #[0 0 1]])
> (matrix-inverse (matrix [[7 5] [3 -2]])) - : (Array Real)
(array #[#[2/29 5/29] #[3/29 -7/29]])
> (matrix-inverse (matrix [[1 2] [10 20]])) matrix-inverse: contract violation
expected: matrix-invertible?
given: (array #[#[1 2] #[10 20]])
> (matrix-inverse (matrix [[1 2] [10 20]]) (λ () #f)) - : (U False (Array Real))
#f
procedure
(matrix-invertible? M) → Boolean
M : (Matrix Number)
procedure
(matrix-determinant M) → Number
M : (Matrix Number)
> (matrix-determinant (diagonal-matrix '(1 2 3 4))) - : Real
24
> (* 1 2 3 4) - : Integer [more precisely: Positive-Integer]
24
> (matrix-determinant (matrix [[1 2] [10 20]])) - : Real
0
> (matrix-determinant (col-matrix [1 2])) square-matrix-size: contract violation
expected: square-matrix?
given: (array #[#[1] #[2]])