1 raco make: Compiling Source to Bytecode
The raco make command accept filenames for Racket modules to be compiled to bytecode format. Modules are re-compiled only if the source Racket file is newer than the bytecode file and has a different SHA-1 hash, or if any imported module is recompiled or has a different SHA-1 hash for its compiled form plus dependencies.
The raco make command accepts a few flags:
-j ‹n› —
Compiles argument modules in parallel, using up to ‹n› parallel tasks. --disable-inline —
Disables function inlining while compiling (but does not re-compile files that are already up-to-date). This flag is often useful to simplify generated code before decompiling, and it corresponds to setting compile-context-preservation-enabled to #t. --disable-constant —
Disables inference of definitions within a module as constant (but does not re-compile files that are already up-to-date). The value associated with a non-constant definition is never inlined or constant-propagated, either within its own module or an importing module. This flag corresponds to setting compile-enforce-module-constants to #f. --no-deps —
Compiles a non-module file (i.e., one that is run via load instead of require). See Compiling to Raw Bytecode for more information. -p ‹file› or --prefix ‹file› —
For use with --no-deps; see Compiling to Raw Bytecode. -no-prim —
For use with --no-deps; see Compiling to Raw Bytecode. -v —
Verbose mode, which shows which files are compiled. --vv —
Very verbose mode, which implies -v and also shows every dependency that is checked.
1.1 Bytecode Files
A file "‹name›.‹ext›" is compiled to bytecode that is saved as "compiled/‹name›_‹ext›.zo" relative to the file. As a result, the bytecode file is normally used automatically when "‹name›.‹ext›" is required as a module, since the underlying load/use-compiled operation detects such a bytecode file.
For example, in a directory that contains the following files:
"a.rkt":
#lang racket (require "b.rkt" "c.rkt") (+ b c) "b.rkt":
#lang racket (provide b) (define b 1) "c.rkt":
#lang racket (provide c) (define c 1)
then
raco make a.rkt
triggers the creation of "compiled/a_rkt.zo", "compiled/b_rkt.zo", and "compiled/c_rkt.zo". A subsequent
racket a.rkt
loads bytecode from the generated ".zo" files, paying attention to the ".rkt" sources only to confirm that each ".zo" file has a later timestamp.
In contrast,
raco make b.rkt c.rkt
would create only "compiled/b_rkt.zo" and "compiled/c_rkt.zo", since neither "b.rkt" nor "c.rkt" imports "a.rkt".
1.2 Dependency Files
In addition to a bytecode file, raco make creates a file "compiled/‹name›_‹ext›.dep" that records dependencies of the compiled module on other module files and the source file’s SHA-1 hash. Using this dependency information, a re-compilation request via raco make can consult both the source file’s timestamp/hash and the timestamps/hashes for the bytecode of imported modules. Furthermore, imported modules are themselves compiled as necessary, including updating the bytecode and dependency files for the imported modules, transitively.
Continuing the raco make a.rkt example from the previous section, the raco make command creates "compiled/a_rkt.dep", "compiled/b_rkt.dep", and "compiled/c_rkt.dep" at the same time as the ".zo" files. The "compiled/a_rkt.dep" file records the dependency of "a.rkt" on "b.rkt", "c.rkt" and the racket library. If the "b.rkt" file is modified (so that its timestamp and SHA-1 hash changes), then running
raco make a.rkt
again rebuilds "compiled/a_rkt.zo" and "compiled/b_rkt.zo".
For module files that are within library collections, raco setup uses the same ".zo" and ".dep" conventions and files as raco make, so the two tools can be used together.
1.3 API for Making Bytecode
(require compiler/cm) | package: base |
procedure
(make-compilation-manager-load/use-compiled-handler [ delete-zos-when-rkt-file-does-not-exist? #:security-guard security-guard]) → (path? (or/c symbol? false/c) . -> . any) delete-zos-when-rkt-file-does-not-exist? : any/c = #f security-guard : (or/c security-guard? #f) = #f
the file is expected to contain a module (i.e., the second argument to the handler is a symbol);
the value of each of (current-eval), (current-load), and (namespace-module-registry (current-namespace)) is the same as when make-compilation-manager-load/use-compiled-handler was called;
the value of use-compiled-file-paths contains the first path that was present when make-compilation-manager-load/use-compiled-handler was called;
the value of current-load/use-compiled is the result of this procedure; and
one of the following holds:
the source file is newer than the ".zo" file in the first sub-directory listed in use-compiled-file-paths (at the time that make-compilation-manager-load/use-compiled-handler was called), and either no ".dep" file exists or it records a source-file SHA-1 hash that differs from the current version and source-file SHA-1 hash;
no ".dep" file exists next to the ".zo" file;
the version recorded in the ".dep" file does not match the result of (version);
one of the files listed in the ".dep" file has a ".zo" timestamp newer than the target ".zo", and the combined hashes of the dependencies recorded in the ".dep" file does not match the combined hash recorded in the ".dep" file.
If SHA-1 hashes override a timestamp-based decision to recompile the file, then the target ".zo" file’s timestamp is updated to the current time.
After the handler procedure compiles a ".zo" file, it creates a corresponding ".dep" file that lists the current version and the identification of every file that is directly required by the module in the compiled file. Additional dependencies can be installed during compilation via compiler/cm-accomplice. The ".dep" file also records the SHA-1 hash of the module’s source, and it records a combined SHA-1 hash of all of the dependencies that includes their recursive dependencies.
The handler caches timestamps when it checks ".dep" files, and the cache is maintained across calls to the same handler. The cache is not consulted to compare the immediate source file to its ".zo" file, which means that the caching behavior is consistent with the caching of the default module name resolver (see current-module-name-resolver).
If use-compiled-file-paths contains an empty list when make-compilation-manager-load/use-compiled-handler is called, then exn:fail:contract exception is raised.
If the delete-zos-when-rkt-file-does-not-exist? argument is a true value, then the returned handler will delete ".zo" files when there is no corresponding original source file.
If the security-guard argument is supplied, it is used when creating ".zo" files, ".dep" files, and "compiled/" directories, and when it adjusts the timestamps for existing files. If it is #f, then the security guard in the current-security-guard when the files are created is used (not the security guard at the point make-compilation-manager-load/use-compiled-handler is called).
The continuation the compilation of a module is marked with a managed-compiled-context-key and the module’s source path.
Do not install the result of
make-compilation-manager-load/use-compiled-handler when the
current namespace contains already-loaded versions of modules that may
need to be recompiled—
The handler logs messages to the topic 'compiler/cm at the level 'info. These messages are instances of a compile-event prefab structure:
(struct compile-event (timestamp path type) #:prefab)
The timestamp field is the time at which the event occured in milliseconds since the epoch. The path field is the path of a file being compiled for which the event is about. The type field is a symbol which describes the action the event corresponds to. The currently logged values are 'locking, 'start-compile, 'finish-compile, and 'already-done.
Changed in version 6.1.1.8 of package base: Added identification of the compilation context via managed-compiled-context-key.
procedure
(managed-compile-zo file [ read-src-syntax #:security-guard security-guard]) → void? file : path-string?
read-src-syntax : (any/c input-port? . -> . syntax?) = read-syntax security-guard : (or/c security-guard? #f) = #f
If file is compiled from source, then read-src-syntax is used in the same way as read-syntax to read the source module. The normal read-syntax is used for any required files, however.
If security-guard is not #f, then the provided security guard is used when creating the "compiled/" directories, ".dep" and ".zo" files, and when it adjusts the timestamps of existing files. If it is #f, then the security guard in the current-security-guard when the files are created is used (not the security guard at the point managed-compile-zo is called).
While compiling file, the error-display-handler parameter is set to (make-compilation-context-error-display-handler (error-display-handler)), so that errors from uncaught exceptions will report the compilation context.
Changed in version 6.1.1.8 of package base: Added error-display-handler configuration.
Added in version 6.1.1.8 of package base.
procedure
(make-compilation-context-error-display-handler orig-handlers)
→ (string? any/c . -> . void?) orig-handlers : (string? any/c . -> . void?)
Added in version 6.1.1.8 of package base.
parameter
(trust-existing-zos trust?) → void? trust? : any/c
procedure
(make-caching-managed-compile-zo [ read-src-syntax #:security-guard security-guard]) → (path-string? . -> . void?)
read-src-syntax : (any/c input-port? . -> . syntax?) = read-syntax security-guard : (or/c security-guard? #f) = #f
parameter
(manager-compile-notify-handler) → (path? . -> . any)
(manager-compile-notify-handler notify) → void? notify : (path? . -> . any)
parameter
(manager-trace-handler) → (string? . -> . any)
(manager-trace-handler notify) → void? notify : (string? . -> . any)
The default value of the parameter logs the argument, along with current-inexact-milliseconds to, a logger named 'compiler/cm at the 'debug level.
parameter
→ (-> path? (or/c (cons/c number? promise?) #f)) (manager-skip-file-handler proc) → void? proc : (-> path? (or/c (cons/c number? promise?) #f))
parameter
→ (or/c #f (-> path? (and/c path? relative-path?))) (current-path->mode path->mode) → void? path->mode : (or/c #f (-> path? (and/c path? relative-path?)))
= #f
Note that this parameter is not used by current-load/use-compiled. So if the parameter causes ".zo" files to be placed in different directories, then the correct ".zo" file must still be communicated via use-compiled-file-paths, and one way to do that is to override current-load/use-compiled to delete ".zo" files that would cause the wrong one to be chosen right before they are loaded.
Added in version 6.4.0.14 of package base.
procedure
(file-stamp-in-paths p paths)
→ (or/c (cons/c number? promise?) #f) p : path? paths : (listof path?)
This function is intended for use with manager-skip-file-handler.
procedure
(get-file-sha1 p) → (or/c string? #f)
p : path?
procedure
(get-compiled-file-sha1 p) → (or/c string? #f)
p : path?
procedure
(with-compile-output p proc) → any
p : path-string? proc : ([port input-port?] [tmp-path path?] . -> . any)
parameter
→
(or/c #f (->i ([command (or/c 'lock 'unlock)] [file bytes?]) [res (command) (if (eq? command 'lock) boolean? void?)])) (parallel-lock-client proc) → void?
proc :
(or/c #f (->i ([command (or/c 'lock 'unlock)] [file bytes?]) [res (command) (if (eq? command 'lock) boolean? void?)]))
When proc is #f (the default), no checking for parallel compilation is done (and thus multiple threads or places running compilations via make-compilation-manager-load/use-compiled-handler will potentially corrupt each other’s ".zo" files).
When proc is a function, its first argument is a command, indicating if it wants to lock or unlock the path specified in the second argument.
When the proc 'lock command returns #t, the current builder has obtained the lock for zo-path. Once compilation of zo-path is complete, the builder process must release the lock by calling proc 'unlock with the exact same zo-path.
When the proc 'lock command returns #f, another parallel builder obtained the lock first and has already compiled the zo. The parallel builder should continue without compiling zo-path. (In this case, make-compilation-manager-load/use-compiled-handler’s result will not call proc with 'unlock.)
> (let* ([lc (parallel-lock-client)] [zo-name #"collects/racket/compiled/draw_rkt.zo"] [locked? (and lc (lc 'lock zo-name))] [ok-to-compile? (or (not lc) locked?)]) (dynamic-wind (lambda () (void)) (lambda () (when ok-to-compile? (printf "Do compile here ...\n"))) (lambda () (when locked? (lc 'unlock zo-name))))) Do compile here ...
procedure
(compile-lock->parallel-lock-client pc [ cust]) → (-> (or/c 'lock 'unlock) bytes? boolean?) pc : place-channel? cust : (or/c #f custodian?) = #f
This communication protocol implementation is not kill safe. To make it kill safe, it needs a sufficiently powerful custodian, i.e., one that is not subject to termination (unless all of the participants in the compilation are also terminated). It uses this custodian to create a thread that monitors the threads that are doing the compilation. If one of them is terminated, the presence of the custodian lets another one continue. (The custodian is also used to create a thread that manages a thread safe table.)
procedure
(make-compile-lock) → place-channel?
procedure
(install-module-hashes! bstr [start end]) → void?
bstr : btyes? start : exact-nonnegatve-integer? = 0 end : exact-nonnegatve-integer? = (bytes-length bstr)
Added in version 6.3 of package base.
1.4 API for Parallel Builds
(require setup/parallel-build) | package: base |
Both parallel-compile-files and parallel-compile log messages to the topic 'setup/parallel-build at the level 'info. These messages are instances of a parallel-compile-event prefab structure:
(struct parallel-compile-event (worker event) #:prefab)
The worker field is the index of the worker that the created the event. The event field is a compile-event as document in make-compilation-manager-load/use-compiled-handler.
procedure
(parallel-compile-files list-of-files [ #:worker-count worker-count #:handler handler]) → (or/c void? #f) list-of-files : (listof path-string?) worker-count : exact-positive-integer? = (processor-count)
handler :
(->i ([worker-id exact-integer?] [handler-type symbol?] [path path-string?] [msg string?] [out string?] [err string?]) void?) = void
(parallel-compile-files source-files #:worker-count 4 #:handler (lambda (type work msg out err) (match type ['done (when (verbose) (printf " Made ~a\n" work))] ['output (printf " Output from: ~a\n~a~a" work out err)] [else (printf " Error compiling ~a\n~a\n~a~a" work msg out err)])))
procedure
(parallel-compile worker-count setup-fprintf append-error collects-tree) → (void) worker-count : non-negative-integer?
setup-fprintf :
(->i ([stage string?] [format string?]) () #:rest (listof any/c) void)
append-error :
(->i ([cc cc?] [prefix string?] [exn (or/c exn? (cons/c string? string?) #f)] [out string?] [err srtring?] [message string?]) void?) collects-tree : (listof any/c)
When the exn argument to append-error is a part of strings, the first string is a long form of the error message, and the second string is a short form (omitting evaluation context information, for example).
Changed in version 6.1.1.8 of package base: Changed append-error to allow a pair of error strings.
1.5 Compilation Manager Hook for Syntax Transformers
(require compiler/cm-accomplice) | package: base |
procedure
(register-external-file file [ #:indirect? indirect?]) → void? file : (and path? complete-path?) indirect? : any/c = #f
A compilation manager implemented by compiler/cm looks for such messages to register an external dependency. In response, the compilation manager records (in a ".dep" file) the path as contributing to the implementation of the module currently being compiled. Afterward, if the registered file is modified, the compilation manager will know to recompile the module. An indirect dependency has no effect on recompilation, but it can signal to other tools, such as a package-dependency checker, that the dependency is indirect (and should not imply a direct package dependency).
The include macro, for example, calls this procedure with the path of an included file as it expands an include form.
procedure
(register-external-module file [ #:indirect? indirect?]) → void? file : (and path? complete-path?) indirect? : any/c = #f
A compilation manager implemented by compiler/cm recognizes the message to register a dependency on a module (which implies a dependency on all of that module’s dependencies, etc.).
1.6 API for Simple Bytecode Creation
(require compiler/compile-file) | package: base |
procedure
(compile-file src [dest filter]) → path?
src : path-string?
dest : path-string? =
(let-values ([(base name dir?) (split-path src)]) (build-path base "compiled" (path-add-suffix name #".zo"))) filter : (any/c . -> . any/c) = values
If the filter procedure is provided, it is applied to each source expression, and the result is compiled.
The compile-file procedure is designed for compiling modules files, in that each expression in src is compiled independently. If src does not contain a single module expression, then earlier expressions can affect the compilation of later expressions when src is loaded directly. An appropriate filter can make compilation behave like evaluation, but the problem is also solved (as much as possible) by the compile-zos procedure.
See also managed-compile-zo.
1.7 API for Bytecode Paths
(require compiler/compilation-path) | package: base |
Added in version 6.0.1.10 of package base.
procedure
(get-compilation-dir+name path [ #:modes modes #:roots roots]) →
path? path? path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?)) = (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same)) = (current-compiled-file-roots)
The directory is determined by checking roots in order, and for each element of roots checking modes in order. The first such directory that contains a file whose name matches path with ".zo" added (in the sense of path-add-suffix) is reported as the return directory path. If no such file is found, the result corresponds to the first elements of modes and roots.
procedure
(get-compilation-dir path [ #:modes modes #:roots roots]) → path? path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?)) = (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same)) = (current-compiled-file-roots)
procedure
(get-compilation-bytecode-file path [ #:modes modes #:roots roots]) → path? path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?)) = (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same)) = (current-compiled-file-roots)
1.8 Compiling to Raw Bytecode
The --no-deps mode for raco make is an improverished form of the compilation, because it does not track import dependencies. It does, however, support compilation of non-module source in an namespace that initially imports scheme.
Outside of a module, top-level define-syntaxes, module, #%require, define-values-for-syntax, and begin expressions are handled specially by raco make --no-deps: the compile-time portion of the expression is evaluated, because it might affect later expressions.
For example, when compiling the file containing
(require racket/class) (define f (class object% (super-new)))
the class form from the racket/class library must be bound in the compilation namespace at compile time. Thus, the require expression is both compiled (to appear in the output code) and evaluated (for further computation).
Many definition forms expand to define-syntaxes. For example, define-signature expands to define-syntaxes. In --no-deps mode, raco make --no-deps detects define-syntaxes and other expressions after expansion, so top-level define-signature expressions affect the compilation of later expressions, as a programmer would expect.
In contrast, a load or eval expression in a source
file is compiled—
By default, the namespace for compilation is initialized by a require of scheme. If the --no-prim flag is specified, the namespace is instead initialized with namespace-require/copy, which allows mutation and redefinition of all initial bindings (other than syntactic forms, in the case of mutation).
In general, a better solution is to put all code to compile into a module and use raco make in its default mode.