
Option Contracts
Version 7.3

May 13, 2019

(require racket/contract/option)

package: option-contract-lib

This module introduces option contracts, a flavor of behavioral software contracts. With
option contracts developers control in a programmatic manner whether, when, and how often
contracts are checked. Using this flavor of contracts, Racketeers can mimic any compiler flag
system but also create run-time informed checking systems.

(option/c c

[#:with-contract with

#:tester tester

#:invariant invariant

#:immutable immutable

#:flat? flat?

#:struct struct-id ]) Ñ contract?

c : contract?

with : boolean? = #f

tester : (or/c (-> any boolean?) 'dont-care) = 'dont-care

invariant : (or/c (-> any boolean?) 'dont-care) = 'dont-care

immutable : (or/c #t #f 'dont-care) = 'dont-care

flat? : boolean? = #f

struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and pass the tester .

When an option/c contract is attached to a value, the value is checked against the tester ,
if tester is a predicate. After that, contract checking is disabled for the value, if with is
#f. If with is #t contract checking for the value remains enabled for c .

If waive-option is applied to a value guarded by an option/c contract, then waive-

option returns the value after removing the option/c guard. If exercise-option is

1

https://pkgs.racket-lang.org/package/option-contract-lib


applied to a value guarded by an option/c contract, then exercise-option returns the
value with contract checking enabled for c . If the invariant argument is a predicate, then
exercise-option returns the value with contract checking enabled for (invariant/c c

invariant #:immutable immutable #:flat? flat? #:struct struct-id).

The arguments flat? and immutable should be provided only if invariant is a predicate.
In any other case, the result is a contract error.

Examples:

> (module server0 racket

(require racket/contract/option)

(provide

(contract-out

[vec (option/c (vectorof number?))]))

(define vec (vector 1 2 3 4)))

> (require 'server0)

> (vector-set! vec 1 'foo)

> (vector-ref vec 1)

'foo

> (module server1 racket

(require racket/contract/option)

(provide

(contract-out

[vec (option/c (vectorof number?) #:with-contract #t)]))

(define vec (vector 1 2 3 4)))

> (require 'server1)

> (vector-set! vec 1 'foo)

vec: contract violation
expected: number?
given: 'foo
in: an element of

the option of
(option/c

(vectorof number?)
#:with-contract
#t)

contract from: server1
blaming: top-level

(assuming the contract is correct)
at: eval:6.0

> (module server2 racket

(require racket/contract/option)

(provide

(contract-out

[vec (option/c (vectorof number?) #:tester sorted?)]))

2



(define vec (vector 1 42 3 4))

(define (sorted? vec)

(for/and ([el vec]

[cel (vector-drop vec 1)])

(<= el cel))))

> (require 'server2)

vec: contract violation;

in: option contract tester #ăprocedure:sorted?ą of
(option/c

(vectorof number?)
#:tester
#ăprocedure:sorted?ą)

contract from: server2
blaming: server2

(assuming the contract is correct)
at: eval:9.0

(exercise-option x) Ñ any/c

x : any/c

Returns x with contract checking enabled if an option/c guards x . In any other case it
returns x . The result of exercise-option loses the guard related to option/c, if it has
one to begin with, and thus its contract checking status cannot change further.

Examples:

> (module server3 racket

(require racket/contract/option)

(provide (contract-out [foo (option/c (-> number? symbol?))]))

(define foo (λ (x) x)))

> (require 'server3 racket/contract/option)

(define e-foo (exercise-option foo))

> (foo 42)

42

> (e-foo 'wrong)

foo: contract violation
expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server3
blaming: top-level

(assuming the contract is correct)
at: eval:11.0

3



> ((exercise-option e-foo) 'wrong)

foo: contract violation
expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server3
blaming: top-level

(assuming the contract is correct)
at: eval:11.0

transfer/c : contract?

A contract that accepts any value. If the value is guarded with an option/c contract, trans-
fer/c modifies the blame information for the option/c contract by adding the providing
module and its client to the positive and negative blame parties respectively. If the value is
not a value guarded with an option/c contract, then transfer/c is equivalent to any/c.

Examples:

> (module server4 racket

(require racket/contract/option)

(provide (contract-out [foo (option/c (-> number? symbol?))]))

(define foo (λ (x) x)))

> (module middleman racket

(require racket/contract/option 'server4)

(provide (contract-out [foo transfer/c])))

> (require 'middleman racket/contract/option)

(define e-foo (exercise-option foo))

> (e-foo 1)

foo: broke its own contract
promised: symbol?
produced: 1
in: the range of

the option of
(option/c (-ą number? symbol?))

contract from: server4
blaming multiple parties:
middleman
server4

(assuming the contract is correct)
at: eval:17.0

> (module server5 racket

(require racket/contract/option)

(provide (contract-out [boo transfer/c]))

4



(define (boo x) x))

> (require 'server5)

> (boo 42)

42

(waive-option x) Ñ any/c

x : any/c

If an option/c guards x , then waive-option returns x without the option/c guard. In
any other case it returns x . The result of waive-option loses the guard related to op-

tion/c, if it had one to begin with, and thus its contract checking status cannot change
further.

Examples:

> (module server6 racket

(require racket/contract/option)

(provide (contract-out [bar (option/c (-> number? symbol?))]))

(define bar (λ (x) x)))

> (require 'server6 racket/contract/option)

(define e-bar (waive-option bar))

> (e-bar 'wrong)

'wrong

> ((waive-option e-bar) 'wrong)

'wrong

(tweak-option x) Ñ any/c

x : any/c

If an option/c guards x and contract checking for x is enabled, then tweak-option re-
turns x with contract checking for x disabled. If an option/c guards x and contract check-
ing for x is disabled, then tweak-option returns x with contract checking for x enabled.
In any other case it returns x . The result of tweak-option retains the guard related to op-

tion/c if it has one to begin with and thus its contract checking status can change further
using tweak-option, exercise-option or waive-option.

Examples:

> (module server7 racket

(require racket/contract/option)

(provide (contract-out [bar (option/c (-> number? symbol?))]))

(define bar (λ (x) x)))

> (require 'server7 racket/contract/option)

(define t-bar (tweak-option bar))

5



> (t-bar 'wrong)

bar: contract violation
expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server7
blaming: top-level

(assuming the contract is correct)
at: eval:30.0

> ((tweak-option t-bar) 'wrong)

'wrong

> ((waive-option t-bar) 'wrong)

'wrong

> ((exercise-option t-bar) 'wrong)

bar: contract violation
expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server7
blaming: top-level

(assuming the contract is correct)
at: eval:30.0

(has-option? v) Ñ boolean?

v : any/c

Returns #t if v has an option contract.

(has-option-with-contract? v) Ñ boolean?

v : any/c

Returns #t if v has an option contract with contract checking enabled.

(invariant/c c

invariant

[#:immutable immutable

#:flat? flat?

#:struct struct-id ]) Ñ contract?

c : contract?

invariant : (-> any boolean?)

immutable : (or/c #t #f 'dont-care) = 'dont-care

6



flat? : boolean? = #f

struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and satisfy the invariant argument.

If the flat? argument is #t, then the resulting contract is a flat contract, and the c arguments
must also be flat contracts. Such flat contracts will be unsound if applied to a mutable data
structure, as they will not check future operations on the vector.

If the immutable argument is #t and the c arguments are flat contracts, the result will be a
flat contract. If the c arguments are chaperone contracts, then the result will be a chaperone
contract.

Examples:

> (module server8 racket

(require racket/contract/option)

(provide

change

(contract-out

[vec (invariant/c

any/c

sorted?)]))

(define vec (vector 1 2 3 4 5))

(define (change) (vector-set! vec 2 42))

(define (sorted? vec)

(for/and ([el vec]

[cel (vector-drop vec 1)])

(<= el cel))))

> (require 'server8)

> (vector-set! vec 2 42)

vec: contract violation
expected vector that satisfies #ăprocedure:sorted?ą given:

'#(1 2 42 4 5)
in: (invariant/c any/c #ăprocedure:sorted?ą)
contract from: server8
blaming: top-level

(assuming the contract is correct)
at: eval:37.0

> (change)

> (vector-ref vec 2)

vec: broke its own contract
expected vector that satisfies #ăprocedure:sorted?ą given:

'#(1 2 42 4 5)
in: (invariant/c any/c #ăprocedure:sorted?ą)

7



contract from: server8
blaming: server8

(assuming the contract is correct)
at: eval:37.0

8


