
The Racket Reference
Version 7.4

Matthew Flatt
and PLT

August 4, 2019

This manual defines the core Racket language and describes its most prominent libraries.
The companion manual The Racket Guide provides a friendlier (though less precise and less
complete) overview of the language. The source of this

manual is available
on GitHub.#lang racket/base package: base

#lang racket

Unless otherwise noted, the bindings defined in this manual are exported by the
racket/base and racket languages. The racket/base

library is much
smaller than the
racket library and
will typically load
faster.
The racket library
combines
racket/base,
racket/bool,
racket/bytes,
racket/class,
racket/cmdline,
racket/contract,
racket/dict,
racket/file,
racket/format,
racket/function,
racket/future,
racket/include,
racket/list,
racket/local,
racket/match,
racket/math,
racket/path,
racket/place,
racket/port,
racket/pretty,
racket/promise,
racket/sequence,
racket/set,
racket/shared,
racket/stream,
racket/string,
racket/system,
racket/tcp,
racket/udp,
racket/unit, and
racket/vector.

1

https://github.com/racket/racket/tree/master/pkgs/racket-doc/scribblings/reference
https://pkgs.racket-lang.org/package/base

Contents

1 Language Model 12
1.1 Evaluation Model . 12

1.1.1 Sub-expression Evaluation and Continuations 12
1.1.2 Tail Position . 12
1.1.3 Multiple Return Values . 13
1.1.4 Top-Level Variables . 14
1.1.5 Objects and Imperative Update 15
1.1.6 Object Identity and Comparisons 17
1.1.7 Garbage Collection . 17
1.1.8 Procedure Applications and Local Variables 18
1.1.9 Variables and Locations . 20
1.1.10 Modules and Module-Level Variables 20
1.1.11 Continuation Frames and Marks 26
1.1.12 Prompts, Delimited Continuations, and Barriers 27
1.1.13 Threads . 27
1.1.14 Parameters . 28
1.1.15 Exceptions . 28
1.1.16 Custodians . 29

1.2 Syntax Model . 30
1.2.1 Identifiers, Binding, and Scopes 30
1.2.2 Syntax Objects . 32
1.2.3 Expansion (Parsing) . 33
1.2.4 Compilation . 46
1.2.5 Namespaces . 46
1.2.6 Inferred Value Names . 48
1.2.7 Cross-Phase Persistent Module Declarations 49

1.3 The Reader . 50
1.3.1 Delimiters and Dispatch . 51
1.3.2 Reading Symbols . 53
1.3.3 Reading Numbers . 53
1.3.4 Reading Extflonums . 55
1.3.5 Reading Booleans . 56
1.3.6 Reading Pairs and Lists . 56
1.3.7 Reading Strings . 57
1.3.8 Reading Quotes . 59
1.3.9 Reading Comments . 59
1.3.10 Reading Vectors . 60
1.3.11 Reading Structures . 61
1.3.12 Reading Hash Tables . 61
1.3.13 Reading Boxes . 62
1.3.14 Reading Characters . 62
1.3.15 Reading Keywords . 63
1.3.16 Reading Regular Expressions . 63

2

1.3.17 Reading Graph Structure . 63
1.3.18 Reading via an Extension . 64
1.3.19 Reading with C-style Infix-Dot Notation 65

1.4 The Printer . 66
1.4.1 Printing Symbols . 67
1.4.2 Printing Numbers . 68
1.4.3 Printing Extflonums . 68
1.4.4 Printing Booleans . 69
1.4.5 Printing Pairs and Lists . 69
1.4.6 Printing Strings . 70
1.4.7 Printing Vectors . 71
1.4.8 Printing Structures . 71
1.4.9 Printing Hash Tables . 72
1.4.10 Printing Boxes . 73
1.4.11 Printing Characters . 73
1.4.12 Printing Keywords . 73
1.4.13 Printing Regular Expressions . 74
1.4.14 Printing Paths . 74
1.4.15 Printing Unreadable Values . 74
1.4.16 Printing Compiled Code . 74

2 Notation for Documentation 77
2.1 Notation for Module Documentation . 77
2.2 Notation for Syntactic Form Documentation 77
2.3 Notation for Function Documentation . 79
2.4 Notation for Structure Type Documentation 81
2.5 Notation for Parameter Documentation 81
2.6 Notation for Other Documentation . 82

3 Syntactic Forms 83
3.1 Modules: module, module*, ... 83
3.2 Importing and Exporting: require and provide 88

3.2.1 Additional require Forms . 108
3.2.2 Additional provide Forms . 112

3.3 Literals: quote and #%datum . 112
3.4 Expression Wrapper: #%expression . 113
3.5 Variable References and #%top . 115
3.6 Locations: #%variable-reference . 116
3.7 Procedure Applications and #%app . 116
3.8 Procedure Expressions: lambda and case-lambda 118
3.9 Local Binding: let, let*, letrec, ... 122
3.10 Local Definitions: local . 126
3.11 Constructing Graphs: shared . 126
3.12 Conditionals: if, cond, and, and or . 129
3.13 Dispatch: case . 132

3

3.14 Definitions: define, define-syntax, 133
3.14.1 require Macros . 137
3.14.2 provide Macros . 138

3.15 Sequencing: begin, begin0, and begin-for-syntax 138
3.16 Guarded Evaluation: when and unless 140
3.17 Assignment: set! and set!-values . 141
3.18 Iterations and Comprehensions: for, for/list, 142

3.18.1 Iteration and Comprehension Forms 142
3.18.2 Deriving New Iteration Forms . 153
3.18.3 Do Loops . 158

3.19 Continuation Marks: with-continuation-mark 158
3.20 Quasiquoting: quasiquote, unquote, and unquote-splicing 159
3.21 Syntax Quoting: quote-syntax . 161
3.22 Interaction Wrapper: #%top-interaction 162
3.23 Blocks: block . 162
3.24 Internal-Definition Limiting: #%stratified-body 162
3.25 Performance Hints: begin-encourage-inline 163
3.26 Importing Modules Lazily: lazy-require 164

4 Datatypes 167
4.1 Booleans and Equality . 167

4.1.1 Boolean Aliases . 173
4.2 Numbers . 175

4.2.1 Number Types . 176
4.2.2 Generic Numerics . 183
4.2.3 Flonums . 215
4.2.4 Fixnums . 221
4.2.5 Extflonums . 225

4.3 Strings . 230
4.3.1 String Constructors, Selectors, and Mutators 231
4.3.2 String Comparisons . 235
4.3.3 String Conversions . 239
4.3.4 Locale-Specific String Operations 241
4.3.5 Additional String Functions . 242
4.3.6 Converting Values to Strings . 246

4.4 Byte Strings . 259
4.4.1 Byte String Constructors, Selectors, and Mutators 260
4.4.2 Byte String Comparisons . 265
4.4.3 Bytes to/from Characters, Decoding and Encoding 266
4.4.4 Bytes to Bytes Encoding Conversion 271
4.4.5 Additional Byte String Functions 275

4.5 Characters . 276
4.5.1 Characters and Scalar Values . 276
4.5.2 Character Comparisons . 277
4.5.3 Classifications . 281
4.5.4 Character Conversions . 282

4

4.6 Symbols . 284
4.7 Regular Expressions . 287

4.7.1 Regexp Syntax . 288
4.7.2 Additional Syntactic Constraints 293
4.7.3 Regexp Constructors . 294
4.7.4 Regexp Matching . 298
4.7.5 Regexp Splitting . 309
4.7.6 Regexp Substitution . 310

4.8 Keywords . 313
4.9 Pairs and Lists . 314

4.9.1 Pair Constructors and Selectors 314
4.9.2 List Operations . 317
4.9.3 List Iteration . 319
4.9.4 List Filtering . 322
4.9.5 List Searching . 326
4.9.6 Pair Accessor Shorthands . 329
4.9.7 Additional List Functions and Synonyms 336
4.9.8 Immutable Cyclic Data . 355

4.10 Mutable Pairs and Lists . 356
4.10.1 Mutable Pair Constructors and Selectors 357

4.11 Vectors . 358
4.11.1 Additional Vector Functions . 361

4.12 Boxes . 368
4.13 Hash Tables . 370

4.13.1 Additional Hash Table Functions 381
4.14 Sequences and Streams . 383

4.14.1 Sequences . 383
4.14.2 Streams . 404
4.14.3 Generators . 410

4.15 Dictionaries . 415
4.15.1 Dictionary Predicates and Contracts 415
4.15.2 Generic Dictionary Interface . 418
4.15.3 Dictionary Sequences . 431
4.15.4 Contracted Dictionaries . 432
4.15.5 Custom Hash Tables . 433

4.16 Sets . 438
4.16.1 Hash Sets . 438
4.16.2 Set Predicates and Contracts . 441
4.16.3 Generic Set Interface . 443
4.16.4 Custom Hash Sets . 454

4.17 Procedures . 458
4.17.1 Keywords and Arity . 460
4.17.2 Reflecting on Primitives . 471
4.17.3 Additional Higher-Order Functions 471

4.18 Void . 479
4.19 Undefined . 479

5

5 Structures 480
5.1 Defining Structure Types: struct . 481
5.2 Creating Structure Types . 488
5.3 Structure Type Properties . 492
5.4 Generic Interfaces . 494
5.5 Copying and Updating Structures . 500
5.6 Structure Utilities . 501

5.6.1 Additional Structure Utilities . 504
5.7 Structure Type Transformer Binding . 506

6 Classes and Objects 511
6.1 Creating Interfaces . 512
6.2 Creating Classes . 513

6.2.1 Initialization Variables . 528
6.2.2 Fields . 530
6.2.3 Methods . 530

6.3 Creating Objects . 536
6.4 Field and Method Access . 538

6.4.1 Methods . 538
6.4.2 Fields . 541
6.4.3 Generics . 542

6.5 Mixins . 543
6.6 Traits . 543
6.7 Object and Class Contracts . 547
6.8 Object Equality and Hashing . 557
6.9 Object Serialization . 559
6.10 Object Printing . 560
6.11 Object, Class, and Interface Utilities . 561
6.12 Surrogates . 569

7 Units 572
7.1 Creating Units . 572
7.2 Invoking Units . 576
7.3 Linking Units and Creating Compound Units 577
7.4 Inferred Linking . 578
7.5 Generating A Unit from Context . 581
7.6 Structural Matching . 582
7.7 Extending the Syntax of Signatures . 583
7.8 Unit Utilities . 583
7.9 Unit Contracts . 584
7.10 Single-Unit Modules . 585
7.11 Single-Signature Modules . 585
7.12 Transformer Helpers . 586

8 Contracts 588
8.1 Data-structure Contracts . 589

6

8.2 Function Contracts . 614
8.3 Parametric Contracts . 626
8.4 Lazy Data-structure Contracts . 629
8.5 Structure Type Property Contracts . 630
8.6 Attaching Contracts to Values . 633

8.6.1 Nested Contract Boundaries . 636
8.6.2 Low-level Contract Boundaries 640

8.7 Building New Contract Combinators . 643
8.7.1 Blame Objects . 652
8.7.2 Contracts as structs . 657
8.7.3 Obligation Information in Check Syntax 663
8.7.4 Utilities for Building New Combinators 665

8.8 Contract Utilities . 666
8.9 racket/contract/base . 673
8.10 Collapsible Contracts . 673
8.11 Legacy Contracts . 677
8.12 Random generation . 678

9 Pattern Matching 682
9.1 Additional Matching Forms . 690
9.2 Extending match . 694
9.3 Library Extensions . 697

10 Control Flow 699
10.1 Multiple Values . 699
10.2 Exceptions . 700

10.2.1 Error Message Conventions . 700
10.2.2 Raising Exceptions . 701
10.2.3 Handling Exceptions . 710
10.2.4 Configuring Default Handling . 712
10.2.5 Built-in Exception Types . 714
10.2.6 Additional Exception Functions 722

10.3 Delayed Evaluation . 723
10.3.1 Additional Promise Kinds . 724

10.4 Continuations . 725
10.4.1 Additional Control Operators . 732

10.5 Continuation Marks . 737
10.6 Breaks . 741
10.7 Exiting . 744

11 Concurrency and Parallelism 745
11.1 Threads . 745

11.1.1 Creating Threads . 745
11.1.2 Suspending, Resuming, and Killing Threads 746
11.1.3 Synchronizing Thread State . 748
11.1.4 Thread Mailboxes . 749

7

11.2 Synchronization . 750
11.2.1 Events . 750
11.2.2 Channels . 758
11.2.3 Semaphores . 759
11.2.4 Buffered Asynchronous Channels 761

11.3 Thread-Local Storage . 765
11.3.1 Thread Cells . 765
11.3.2 Parameters . 767

11.4 Futures . 770
11.4.1 Creating and Touching Futures 771
11.4.2 Future Semaphores . 773
11.4.3 Future Performance Logging . 773

11.5 Places . 776
11.5.1 Using Places . 777
11.5.2 Places Logging . 783

11.6 Engines . 783

12 Macros 786
12.1 Pattern-Based Syntax Matching . 786
12.2 Syntax Object Content . 798
12.3 Syntax Object Bindings . 808
12.4 Syntax Transformers . 812

12.4.1 require Transformers . 835
12.4.2 provide Transformers . 838
12.4.3 Keyword-Argument Conversion Introspection 841

12.5 Syntax Parameters . 842
12.5.1 Syntax Parameter Inspection . 844

12.6 Local Binding with Splicing Body . 845
12.7 Syntax Object Properties . 847
12.8 Syntax Taints . 850
12.9 Expanding Top-Level Forms . 853

12.9.1 Information on Expanded Modules 854
12.10 File Inclusion . 856
12.11 Syntax Utilities . 857

12.11.1 Creating formatted identifiers . 857
12.11.2 Pattern variables . 859
12.11.3 Error reporting . 859
12.11.4 Recording disappeared uses . 860
12.11.5 Miscellaneous utilities . 861

13 Input and Output 863
13.1 Ports . 863

13.1.1 Encodings and Locales . 864
13.1.2 Managing Ports . 865
13.1.3 Port Buffers and Positions . 867
13.1.4 Counting Positions, Lines, and Columns 869

8

13.1.5 File Ports . 871
13.1.6 String Ports . 879
13.1.7 Pipes . 882
13.1.8 Structures as Ports . 883
13.1.9 Custom Ports . 883
13.1.10 More Port Constructors, Procedures, and Events 903

13.2 Byte and String Input . 921
13.3 Byte and String Output . 932
13.4 Reading . 936
13.5 Writing . 943
13.6 Pretty Printing . 950

13.6.1 Basic Pretty-Print Options . 952
13.6.2 Per-Symbol Special Printing . 953
13.6.3 Line-Output Hook . 955
13.6.4 Value Output Hook . 956
13.6.5 Additional Custom-Output Support 957

13.7 Reader Extension . 959
13.7.1 Readtables . 959
13.7.2 Reader-Extension Procedures . 965
13.7.3 Special Comments . 965

13.8 Printer Extension . 966
13.9 Serialization . 968
13.10 Fast-Load Serialization . 979
13.11 Cryptographic Hashing . 980

14 Reflection and Security 982
14.1 Namespaces . 982
14.2 Evaluation and Compilation . 991
14.3 The racket/load Language . 1003
14.4 Module Names and Loading . 1004

14.4.1 Resolving Module Names . 1004
14.4.2 Compiled Modules and References 1008
14.4.3 Dynamic Module Access . 1013

14.5 Impersonators and Chaperones . 1017
14.5.1 Impersonator Constructors . 1021
14.5.2 Chaperone Constructors . 1032
14.5.3 Impersonator Properties . 1040

14.6 Security Guards . 1041
14.7 Custodians . 1043
14.8 Thread Groups . 1046
14.9 Structure Inspectors . 1047
14.10 Code Inspectors . 1050
14.11 Plumbers . 1051
14.12 Sandboxed Evaluation . 1053

14.12.1 Security Considerations . 1058
14.12.2 Customizing Evaluators . 1058

9

14.12.3 Interacting with Evaluators . 1068
14.12.4 Miscellaneous . 1072

14.13 The racket/repl Library . 1073
14.14 Linklets and the Core Compiler . 1073

15 Operating System 1085
15.1 Paths . 1085

15.1.1 Manipulating Paths . 1085
15.1.2 More Path Utilities . 1096
15.1.3 Unix and Mac OS Paths . 1100
15.1.4 Windows Paths . 1101

15.2 Filesystem . 1105
15.2.1 Locating Paths . 1105
15.2.2 Files . 1109
15.2.3 Directories . 1114
15.2.4 Detecting Filesystem Changes . 1115
15.2.5 Declaring Paths Needed at Run Time 1117
15.2.6 More File and Directory Utilities 1120

15.3 Networking . 1133
15.3.1 TCP . 1133
15.3.2 UDP . 1137

15.4 Processes . 1146
15.4.1 Simple Subprocesses . 1152

15.5 Logging . 1156
15.5.1 Creating Loggers . 1158
15.5.2 Logging Events . 1159
15.5.3 Receiving Logged Events . 1161
15.5.4 Additional Logging Functions . 1162

15.6 Time . 1164
15.6.1 Date Utilities . 1167

15.7 Environment Variables . 1169
15.8 Environment and Runtime Information 1171
15.9 Command-Line Parsing . 1176
15.10 Additional Operating System Functions 1182

16 Memory Management 1184
16.1 Weak Boxes . 1184
16.2 Ephemerons . 1184
16.3 Wills and Executors . 1186
16.4 Garbage Collection . 1187
16.5 Phantom Byte Strings . 1190

17 Unsafe Operations 1192
17.1 Unsafe Numeric Operations . 1192
17.2 Unsafe Character Operations . 1196
17.3 Unsafe Data Extraction . 1197

10

17.4 Unsafe Extflonum Operations . 1205
17.5 Unsafe Impersonators and Chaperones 1207
17.6 Unsafe Undefined . 1210

18 Running Racket 1213
18.1 Running Racket or GRacket . 1213

18.1.1 Initialization . 1213
18.1.2 Exit Status . 1214
18.1.3 Init Libraries . 1214
18.1.4 Command Line . 1215
18.1.5 Language Run-Time Configuration 1219

18.2 Libraries and Collections . 1220
18.2.1 Collection Search Configuration 1221
18.2.2 Collection Links . 1222
18.2.3 Collection Paths and Parameters 1223

18.3 Interactive Help . 1227
18.4 Interactive Module Loading . 1228

18.4.1 Entering Modules . 1228
18.4.2 Loading and Reloading Modules 1229

18.5 Debugging . 1230
18.5.1 Tracing . 1230

18.6 Kernel Forms and Functions . 1237

Bibliography 1239

Index 1241

Index 1241

11

1 Language Model

1.1 Evaluation Model

Racket evaluation can be viewed as the simplification of expressions to obtain values. For
example, just as an elementary-school student simplifies

1 + 1 = 2

Racket evaluation simplifies

(+ 1 1) Ñ 2

The arrow Ñ replaces the more traditional = to emphasize that evaluation proceeds in a
particular direction toward simpler expressions. In particular, a value, such as the number 2,
is an expression that evaluation simplifies no further.

1.1.1 Sub-expression Evaluation and Continuations

Some simplifications require more than one step. For example:

(- 4 (+ 1 1)) Ñ (- 4 2) Ñ 2

An expression that is not a value can always be partitioned into two parts: a redex (“reducible
expression”), which is the part that can change in a single-step simplification (highlighted),
and the continuation, which is the evaluation context surrounding the redex. In (- 4 (+ 1
1)), the redex is (+ 1 1), and the continuation is (- 4 []), where [] takes the place of the
redex as it is reduced. That is, the continuation says how to “continue” after the redex is
reduced to a value.

Before some expressions can be evaluated, some or all of their sub-expressions must be
evaluated. For example, in the application (- 4 (+ 1 1)), the application of - cannot
be reduced until the sub-expression (+ 1 1) is reduced. Thus, the specification of each
syntactic form specifies how (some of) its sub-expressions are evaluated and then how the
results are combined to reduce the form away.

The dynamic extent of an expression is the sequence of evaluation steps during which the
expression contains the redex.

1.1.2 Tail Position

An expression expr1 is in tail position with respect to an enclosing expression expr2 if,
whenever expr1 becomes a redex, its continuation is the same as was the enclosing expr2 ’s

12

continuation.

For example, the (+ 1 1) expression is not in tail position with respect to (- 4 (+ 1
1)). To illustrate, we use the notation C [expr] to mean the expression that is produced by
substituting expr in place of [] in some continuation C :

C [(- 4 (+ 1 1))] Ñ C [(- 4 2)]

In this case, the continuation for reducing (+ 1 1) is C [(- 4 [])], not just C . The require-
ment specified in the first paragraph above is not met.

In contrast, (+ 1 1) is in tail position with respect to (if (zero? 0) (+ 1 1) 3) be-
cause, for any continuation C ,

C [(if (zero? 0) (+ 1 1) 3)] Ñ C [(if #t (+ 1 1) 3)] Ñ C [(+ 1 1)]

The requirement specified in the first paragraph is met. The steps in this reduction sequence
are driven by the definition of if, and they do not depend on the continuation C . The “then”
branch of an if form is always in tail position with respect to the if form. Due to a similar
reduction rule for if and #f, the “else” branch of an if form is also in tail position.

Tail-position specifications provide a guarantee about the asymptotic space consumption of
a computation. In general, the specification of tail positions accompanies the description of
each syntactic form, such as if.

1.1.3 Multiple Return Values

A Racket expression can evaluate to multiple values, to provide symmetry with the fact that
a procedure can accept multiple arguments.

Most continuations expect a certain number of result values, although some continuations
can accept an arbitrary number. Indeed, most continuations, such as (+ [] 1), expect a
single value. The continuation (let-values ([(x y) []]) expr) expects two result
values; the first result replaces x in the body expr , and the second replaces y in expr . The
continuation (begin [] (+ 1 2)) accepts any number of result values, because it ignores
the result(s).

In general, the specification of a syntactic form indicates the number of values that it pro-
duces and the number that it expects from each of its sub-expressions. In addition, some
procedures (notably values) produce multiple values, and some procedures (notably call-
with-values) create continuations internally that accept a certain number of values.

13

1.1.4 Top-Level Variables

Given

x = 10

then an algebra student simplifies x + 1 as follows:

x + 1 = 10 + 1 = 11

Racket works much the same way, in that a set of top-level variables (see also §1.1.9 “Vari-
ables and Locations”) are available for substitutions on demand during evaluation. For ex-
ample, given

(define x 10)

then

(+ x 1) Ñ (+ 10 1) Ñ 11

In Racket, the way definitions are created is just as important as the way they are used.
Racket evaluation thus keeps track of both definitions and the current expression, and it
extends the set of definitions in response to evaluating forms such as define.

Each evaluation step, then, transforms the current set of definitions and program into a new
set of definitions and program. Before a define can be moved into the set of definitions, its
expression (i.e., its right-hand side) must be reduced to a value. (The left-hand side is not an
expression position, and so it is not evaluated.)

defined:
evaluate: (begin (define x (+ 9 1)) (+ x 1))

Ñ defined:
evaluate: (begin (define x 10) (+ x 1))

Ñ defined: (define x 10)
evaluate: (begin (void) (+ x 1))

Ñ defined: (define x 10)
evaluate: (+ x 1)

Ñ defined: (define x 10)
evaluate: (+ 10 1)

Ñ defined: (define x 10)
evaluate: 11

Using set!, a program can change the value associated with an existing top-level variable:

defined: (define x 10)
evaluate: (begin (set! x 8) x)

14

Ñ defined: (define x 8)
evaluate: (begin (void) x)

Ñ defined: (define x 8)
evaluate: x

Ñ defined: (define x 8)
evaluate: 8

1.1.5 Objects and Imperative Update

In addition to set! for imperative update of top-level variables, various procedures enable
the modification of elements within a compound data structure. For example, vector-set!
modifies the content of a vector.

To explain such modifications to data, we must distinguish between values, which are the
results of expressions, and objects, which hold the data referenced by a value.

A few kinds of objects can serve directly as values, including booleans, (void), and small
exact integers. More generally, however, a value is a reference to an object stored somewhere
else. For example, a value can refer to a particular vector that currently holds the value 10 in
its first slot. If an object is modified via one value, then the modification is visible through
all the values that reference the object.

In the evaluation model, a set of objects must be carried along with each step in evaluation,
just like the definition set. Operations that create objects, such as vector, add to the set of
objects:

objects:
defined:
evaluate: (begin (define x (vector 10 20))

(define y x)
(vector-set! x 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 10 20))
defined:
evaluate: (begin (define x <o1>)

(define y x)
(vector-set! x 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 10 20))
defined: (define x <o1>)
evaluate: (begin (void)

(define y x)

(vector-set! x 0 11)
(vector-ref y 0))

15

Ñ objects: (define <o1> (vector 10 20))
defined: (define x <o1>)
evaluate: (begin (define y x)

(vector-set! x 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 10 20))
defined: (define x <o1>)
evaluate: (begin (define y <o1>)

(vector-set! x 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 10 20))
defined: (define x <o1>)

(define y <o1>)
evaluate: (begin (void)

(vector-set! x 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 10 20))
defined: (define x <o1>)

(define y <o1>)
evaluate: (begin (vector-set! x 0 11)

(vector-ref y 0))
Ñ objects: (define <o1> (vector 10 20))

defined: (define x <o1>)
(define y <o1>)

evaluate: (begin (vector-set! <o1> 0 11)
(vector-ref y 0))

Ñ objects: (define <o1> (vector 11 20))
defined: (define x <o1>)

(define y <o1>)
evaluate: (begin (void)

(vector-ref y 0))
Ñ objects: (define <o1> (vector 11 20))

defined: (define x <o1>)
(define y <o1>)

evaluate: (vector-ref y 0)
Ñ objects: (define <o1> (vector 11 20))

defined: (define x <o1>)
(define y <o1>)

evaluate: (vector-ref <o1> 0)
Ñ objects: (define <o1> (vector 11 20))

defined: (define x <o1>)
(define y <o1>)

evaluate: 11

16

The distinction between a top-level variable and an object reference is crucial. A top-level
variable is not a value, so it must be evaluated. Each time a variable expression is evaluated,
the value of the variable is extracted from the current set of definitions. An object reference,
in contrast, is a value and therefore needs no further evaluation. The evaluation steps above
use angle-bracketed <o1> for an object reference to distinguish it from a variable name.

An object reference can never appear directly in a text-based source program. A program
representation created with datum->syntax, however, can embed direct references to exist-
ing objects.

1.1.6 Object Identity and Comparisons

The eq? operator compares two values, returning #t when the values refer to the same
object. This form of equality is suitable for comparing objects that support imperative update
(e.g., to determine that the effect of modifying an object through one reference is visible
through another reference). Also, an eq? test evaluates quickly, and eq?-based hashing is
more lightweight than equal?-based hashing in hash tables.

In some cases, however, eq? is unsuitable as a comparison operator, because the generation
of objects is not clearly defined. In particular, two applications of + to the same two exact
integers may or may not produce results that are eq?, although the results are always equal?.
Similarly, evaluation of a lambda form typically generates a new procedure object, but it
may re-use a procedure object previously generated by the same source lambda form.

The behavior of a datatype with respect to eq? is generally specified with the datatype and
its associated procedures.

1.1.7 Garbage Collection
See §16 “Memory
Management” for
functions related to
garbage collection.

In the program state

objects: (define <o1> (vector 10 20))
(define <o2> (vector 0))

defined: (define x <o1>)
evaluate: (+ 1 x)

evaluation cannot depend on <o2>, because it is not part of the program to evaluate, and it
is not referenced by any definition that is accessible by the program. The object is said to
not be reachable. The object <o2> may therefore be removed from the program state by
garbage collection.

A few special compound datatypes hold weak references to objects. Such weak references
are treated specially by the garbage collector in determining which objects are reachable for
the remainder of the computation. If an object is reachable only via a weak reference, then

17

the object can be reclaimed, and the weak reference is replaced by a different value (typically
#f).

As a special case, a fixnum is always considered reachable by the garbage collector. Many
other values are always reachable due to the way they are implemented and used: A character
in the Latin-1 range is always reachable, because equal? Latin-1 characters are always eq?,
and all of the Latin-1 characters are referenced by an internal module. Similarly, null,
#t, #f, eof, and #<void> and are always reachable. Values produced by quote remain
reachable when the quote expression itself is reachable.

1.1.8 Procedure Applications and Local Variables

Given

f(x) = x + 10

an algebra student simplifies f(7) as follows:

f(7) = 7 + 10 = 17

The key step in this simplification is to take the body of the defined function f and replace
each x with the actual value 7.

Racket procedure application works much the same way. A procedure is an object, so eval-
uating (f 7) starts with a variable lookup:

objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (f 7)

Ñ objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (<p1> 7)

Unlike in algebra, however, the value associated with a procedure argument variable can be
changed in the body of a procedure by using set!, as in the example (lambda (x) (begin
(set! x 3) x)). Since the value associated with argument variable x can be changed, the
value cannot be substituted for x when the procedure is first applied. We do not use the

term “parameter
variable” to refer to
the argument
variable names
declared with a
function. This
choice avoids
confusion with
parameters.

Instead, a new location is created for each variable on each application. The argument value
is placed in the location, and each instance of the variable in the procedure body is replaced
with the new location:

objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (<p1> 7)

Ñ objects: (define <p1> (lambda (x) (+ x 10)))

18

defined: (define f <p1>)
(define xloc 7)

evaluate: (+ xloc 10)
Ñ objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)
(define xloc 7)

evaluate: (+ 7 10)
Ñ objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)
(define xloc 7)

evaluate: 17

A location is the same as a top-level variable, but when a location is generated, it (concep-
tually) uses a name that has not been used before and that cannot be generated again or
accessed directly.

Generating a location in this way means that set! evaluates for local variables, including
argument variables, in the same way as for top-level variables, because the local variable is
always replaced with a location by the time the set! form is evaluated:

objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
evaluate: (f 7)

Ñ objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
evaluate: (<p1> 7)

Ñ objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)

(define xloc 7)
evaluate: (begin (set! xloc 3) xloc)

Ñ objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)

(define xloc 3)
evaluate: (begin (void) xloc)

Ñ objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)

(define xloc 3)
evaluate: xloc

Ñ objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)

(define xloc 3)
evaluate: 3

The location-generation and substitution step of procedure application requires that the ar-
gument is a value. Therefore, in ((lambda (x) (+ x 10)) (+ 1 2)), the (+ 1 2) sub-

19

expression must be simplified to the value 3, and then 3 can be placed into a location for x.
In other words, Racket is a call-by-value language.

Evaluation of a local-variable form, such as (let ([x (+ 1 2)]) expr), is the same as
for a procedure call. After (+ 1 2) produces a value, it is stored in a fresh location that
replaces every instance of x in expr .

1.1.9 Variables and Locations

A variable is a placeholder for a value, and expressions in an initial program refer to vari-
ables. A top-level variable is both a variable and a location. Any other variable is always
replaced by a location at run-time; thus, evaluation of expressions involves only locations. A
single local variable (i.e., a non-top-level, non-module-level variable), such as an argument
variable, can correspond to different locations during different applications.

For example, in the program

(define y (+ (let ([x 5]) x) 6))

both y and x are variables. The y variable is a top-level variable, and the x is a local variable.
When this code is evaluated, a location is created for x to hold the value 5, and a location is
also created for y to hold the value 11.

The replacement of a variable with a location during evaluation implements Racket’s lexical
scoping. For example, when an argument variable x is replaced by the location xloc, it is
replaced throughout the body of the procedure, including any nested lambda forms. As a
result, future references to the variable always access the same location.

1.1.10 Modules and Module-Level Variables
See §3.1 “Modules:
module, module*,
...” for the syntax of
modules.

Most definitions in Racket are in modules. In terms of evaluation, a module is essentially
a prefix on a defined name, so that different modules can define the same name. That is, a
module-level variable is like a top-level variable from the perspective of evaluation.

One difference between a module and a top-level definition is that a module can be declared
without instantiating its module-level definitions. Evaluation of a require instantiates (i.e.,
triggers the instantiation of) the declared module, which creates variables that correspond to
its module-level definitions.

For example, given the module declaration

(module m racket
(define x 10))

20

the evaluation of (require 'm) creates the variable x and installs 10 as its value. This x
is unrelated to any top-level definition of x (as if it were given a unique, module-specific
prefix).

Phases See also §16.2.6
“General Phase
Levels” in The
Racket Guide.

The purpose of phases is to address the necessary separation of names defined at execution
time versus names defined at expansion time.

A module can be instantiated in multiple phases. A phase is an integer that, like a mod-
ule name, is effectively a prefix on the names of module-level definitions. Phase 0 is the
execution-time phase.

A top-level require instantiates a module at phase 0, if the module is not already instan-
tiated at phase 0. A top-level (require (for-syntax)) instantiates a module at
phase 1 (if it is not already instantiated at that phase); for-syntax also has a different
binding effect on further program parsing, as described in §1.2.3.4 “Introducing Bindings”.

Within a module, some definitions are already shifted by a phase: the begin-for-syntax
form is similar to begin, but it shifts expressions and definitions by a relative phase +1.
Likewise, the define-for-syntax form is similar to define, but shifts the definition by
+1. Thus, if the module is instantiated at phase 1, the variables defined with begin-for-
syntax are created at phase 2, and so on. Moreover, this relative phase acts as another layer
of prefixing, so that x defined with define and x defined with define-for-syntax can
co-exist in a module without colliding. A begin-for-syntax form can be nested within a
begin-for-syntax form, in which case the inner definitions and expressions are in relative
phase +2, and so on. Higher phases are mainly related to program parsing instead of normal
evaluation.

If a module instantiated at phase n requires another module, then the required module is
first instantiated at phase n, and so on transitively. (Module requires cannot form cycles.) If
a module instantiated at phase n requires another module M for-syntax, then M becomes
available at phase n+1, and it later may be instantiated at phase n+1. If a module that is
available at phase n (for ną0) requires another module M for-template, then M becomes
available at phase n-1, and so on. Instantiations of available modules above phase 0 are
triggered on demand as described in §1.2.3.9 “Module Expansion, Phases, and Visits”.

A final distinction among module instantiations is that multiple instantiations may exist
at phase 1 and higher. These instantiations are created by the parsing of module forms
(see §1.2.3.9 “Module Expansion, Phases, and Visits”), and are, again, conceptually distin-
guished by prefixes.

Top-level variables can exist in multiple phases in the same way as within modules. For
example, define within begin-for-syntax creates a phase 1 variable. Furthermore, re-
flective operations like make-base-namespace and eval provide access to top-level vari-
ables in higher phases, while module instantiations (triggered by require) relative to such
top-levels are in correspondingly higher phases.

21

The Separate Compilation Guarantee

When a module is compiled, its phase 1 is instantiated. This can, in turn, trigger the transitive
instantiation of many other modules at other phases, including phase 1. Racket provides a
very strong guarantee about this instantiation called “The Separate Compilation Guarantee”:

Any effects of the instantiation of the module’s phase 1 due to compilation on
the Racket runtime system are discarded.

The guarantee concerns effects. There are two different kinds of effects: internal and exter-
nal.

Internal effects are exemplified by mutation. Mutation is the action of a function such as
set-box!, which changes the value contained in the box. The modified box is not observ-
able outside Racket, so the effect is said to be “internal.” By definition, internal effects are
not detectable outside the Racket program.

External effects are exemplified by input/output (I/O). I/O is the action of a function such
as tcp-connect, which communicates with the operating system to send network packets
outside the machine running Racket. The transmission of these packets is observable outside
Racket, in particular by the receiving computer or any routers in between. External effects
exist to be detectable outside the Racket program and are often detectable using physical
processes.

An effect is discarded when it is no longer detectable. For instance, the mutation of a box
from 3 to 4 is discarded when it ceases to be detectable that it was ever changed and thus
would still contain 3. Because external effects are intrinsically observable outside Racket,
they are irreversible and cannot be discarded.

Thus, The Separate Compilation Guarantee only concerns effects like mutation, because they
are exclusively effects “on the Racket runtime system” and not “on the physical universe.”

There are many things a Racket program can do that appear to be internal effects but are
actually external effects. For instance, bytes-set! is typically an internal effect, except
when the bytes are created by make-shared-bytes, which allocates in space observable
by other processes. Thus, effects which modify those bytes are not discardable, so bytes-
set!, in this case, has an external effect.

The opposite is also true: some things which appear to be external are actually internal.
For instance, if a Racket program starts multiple threads and uses mutation to communicate
between them, that mutation is purely internal, because Racket’s threads are defined entirely
internally (they are not related to operating system threads).

Furthermore, whenever a Racket program calls an unsafe function, the Racket runtime sys-
tem makes no promises about its effects. For instance, all foreign calls use ffi/unsafe, so
all foreign calls are unsafe and their effects cannot be discarded by Racket.

22

Finally, The Separate Compilation Guarantee only concerns instantiations at phase 1 during
compilation and not all phase 1 instantiations generally, such as when its phase 1 is required
and used for effects via reflective mechanisms.

The practical consequence of this guarantee is that because effects are never visible, no
module can detect whether a module it requires is already compiled. Thus, it can never
change the compilation of one module to have already compiled a different module. In
particular, if module A is shared by the phase 1 portion of modules X and Y, then any
internal effects while X is compiled are not visible during the compilation of Y, regardless
of whether X and Y are compiled during the same execution of Racket’s runtime system and
regardless of the order of compilation.

The following set of modules demonstrate this guarantee. First, we define a module with the
ability to observe effects via a box:

(module box racket/base
(provide (all-defined-out))
(define b (box 0)))

Next, we define two syntax transformers that use and mutate this box:

(module transformers racket/base
(provide (all-defined-out))
(require (for-syntax racket/base 'box))
(define-syntax (sett stx)
(set-box! b 2)
#'(void))

(define-syntax (gett stx)
#`#,(unbox b)))

Next, we define a module that uses these transformers:

(module user racket/base
(provide (all-defined-out))
(require 'transformers)
(sett)
(define gott (gett)))

Finally, we define a second module that uses these transformers and the user module:

(module test racket/base
(require 'box 'transformers 'user)
(displayln gott)
(displayln (gett))

23

(sett)
(displayln (gett))

(displayln (unbox b)))

This module displays:

• 2, because the (gett) in module user expanded to 2.

• 0, because the effects of compiling user were discarded.

• 2, because the effect of (sett) inside test has not yet been discarded.

• 0, because the effects of sett at phase 1 are irrelevant to the phase 0 use of b in
(unbox b).

Furthermore, this display will never change, regardless of which order these modules are
compiled in or whether they are compiled at the same time or separately.

In contrast, if these modules were changed to store the value of b in a file on the filesystem,
then the program would only display 2.

The Separate Compilation Guarantee is described in more detail in the paper “Composable
and Compilable Macros” [Flatt02], including informative examples. The paper “Advanced
Macrology and the implementation of Typed Scheme” [Culpepper07] also contains an ex-
tended example of why it is important and how to design effectful syntactic extensions in its
presence.

Cross-Phase Persistent Modules

Module declarations that fit a highly constrained form—including a (#%declare
#:cross-phase-persistent) form in the module body—create cross-phase persistent
modules. A cross-phase persistent module’s instantiations across all phases share the vari-
ables produced by the first instantiation of the module. Additionally, cross-phase persistent
module instantiations persist across module registries when they share a common module
declaration.

Examples:

> (module cross '#%kernel
(#%declare #:cross-phase-persistent)
(#%provide x)
(define-values (x) (gensym)))

> (module noncross '#%kernel
(#%provide x)
(define-values (x) (gensym)))

24

> (define ns (current-namespace))
> (define (same-instence? mod)

(namespace-require mod)
(define a
(parameterize ([current-namespace (make-base-namespace)])
(namespace-attach-module-declaration ns mod)
(namespace-require mod)
(namespace-variable-value 'x)))

(define b
(parameterize ([current-namespace (make-base-namespace)])
(namespace-attach-module-declaration ns mod)
(namespace-require mod)
(namespace-variable-value 'x)))

(eq? a b))
> (same-instence? ''noncross)
#f
> (same-instence? ''cross)
#t

The intent of a cross-phase persistent module is to support values that are recognizable after
phase crossings. For example, when a macro transformer running in phase 1 raises a syntax
error as represented by an exn:fail:syntax instance, the instance is recognizable by a
phase-0 exception handler wrapping a call to eval or expand that triggered the syntax error,
because the exn:fail:syntax structure type is defined by a cross-phase persistent module.

A cross-phase persistent module imports only other cross-phase persistent modules, and it
contains only definitions that bind variables to functions, structure types and related func-
tions, or structure-type properties and related functions. A cross-phase persistent module
never includes syntax literals (via quote-syntax) or variable references (via #%variable-
reference). See §1.2.7 “Cross-Phase Persistent Module Declarations” for the syntactic
specification of a cross-phase persistent module declaration.

A documented module should be assumed non–cross-phase persistent unless it is specified
as cross-phase persistent (such as racket/kernel).

Module Redeclarations

When a module is declared using a name with which a module is already declared, the new
declaration’s definitions replace and extend the old declarations. If a variable in the old
declaration has no counterpart in the new declaration, the old variable continues to exist, but
its binding is not included in the lexical information for the module body. If a new variable
definition has a counterpart in the old declaration, it effectively assigns to the old variable.

If a module is instantiated in the current namespace’s base phase before the module is rede-
clared, the redeclaration of the module is immediately instantiated in that phase.

25

If the current inspector does not manage a module’s declaration inspector (see §14.10 “Code
Inspectors”), then the module cannot be redeclared. Similarly, a cross-phase persistent mod-
ule cannot be redeclared. Even if redeclaration succeeds, instantiation of a module that is
previously instantiated may fail if instantiation for the redeclaration attempts to modify vari-
ables that are constant (see compile-enforce-module-constants).

Submodules

A module or module* form within a top-level module form declares a submodule. A sub-
module is accessed relative to its enclosing module, usually with a submod path. Submod-
ules can be nested to any depth.

Although a submodule is lexically nested within a module, it cannot necessarily access the
bindings of its enclosing module directly. More specifically, a submodule declared with
module cannot require from its enclosing module, but the enclosing module can require
the submodule. In contrast, a submodule declared with module* conceptually follows its
enclosing module, so can require from its enclosing module, but the enclosing module
cannot require the submodule. Unless a submodule imports from its enclosing module
or vice versa, then visits or instantiations of the two modules are independent, and their
implementations may even be loaded from bytecode sources at different times.

A submodule declared with module can import any preceding submodule declared with
module. A submodule declared with module* can import any preceding module declared
with module* and any submodule declared with module.

When a submodule declaration has the form (module* name #f), then all of the
bindings of the enclosing module’s bodies are visible in the submodule’s body, and the sub-
module implicitly imports the enclosing module. The submodule can provide any bindings
that it inherits from its enclosing module.

1.1.11 Continuation Frames and Marks
See §10.5
“Continuation
Marks” for
continuation-mark
forms and
functions.

Every continuation C can be partitioned into continuation frames C1, C2, ..., Cn such that
C = C1[C2[...[Cn]]], and no frame Ci can be itself partitioned into smaller continuations.
Evaluation steps add frames to and remove frames from the current continuation, typically
one at a time.

Each frame is conceptually annotated with a set of continuation marks. A mark consists
of a key and its value. The key is an arbitrary value, and each frame includes at most one
mark for any given key. Various operations set and extract marks from continuations, so that
marks can be used to attach information to a dynamic extent. For example, marks can be
used to record information for a “stack trace” to be presented when an exception is raised,
or to implement dynamic scope.

26

1.1.12 Prompts, Delimited Continuations, and Barriers
See §10.4
“Continuations” for
continuation and
prompt functions.

A prompt is a special kind of continuation frame that is annotated with a specific prompt
tag (essentially a continuation mark). Various operations allow the capture of frames in the
continuation from the redex position out to the nearest enclosing prompt with a particular
prompt tag; such a continuation is sometimes called a delimited continuation. Other opera-
tions allow the current continuation to be extended with a captured continuation (specifically,
a composable continuation). Yet other operations abort the computation to the nearest en-
closing prompt with a particular tag, or replace the continuation to the nearest enclosing
prompt with another one. When a delimited continuation is captured, the marks associated
with the relevant frames are also captured.

A continuation barrier is another kind of continuation frame that prohibits certain replace-
ments of the current continuation with another. Specifically, a continuation can be replaced
by another only when the replacement does not introduce any continuation barriers. A con-
tinuation barrier thus prevents “downward jumps” into a continuation that is protected by
a barrier. Certain operations install barriers automatically; in particular, when an excep-
tion handler is called, a continuation barrier prohibits the continuation of the handler from
capturing the continuation past the exception point.

An escape continuation is essentially a derived concept. It combines a prompt for escape
purposes with a continuation for mark-gathering purposes. As the name implies, escape
continuations are used only to abort to the point of capture.

1.1.13 Threads
See §11
“Concurrency and
Parallelism” for
thread and
synchronization
functions.

Racket supports multiple threads of evaluation. Threads run concurrently, in the sense that
one thread can preempt another without its cooperation, but threads currently all run on the
same processor (i.e., the same underlying operating system process and thread). See also
§11.4 “Futures”.

Threads are created explicitly by functions such as thread. In terms of the evaluation
model, each step in evaluation actually deals with multiple concurrent expressions, up to
one per thread, rather than a single expression. The expressions all share the same objects
and top-level variables, so that they can communicate through shared state, and sequential
consistency is guaranteed (i.e., the result is consistent with some global sequence imposed
on all evaluation steps across threads). Most evaluation steps involve a single step in a
single expression, but certain synchronization primitives require multiple threads to progress
together in one step.

In addition to the state that is shared among all threads, each thread has its own private state
that is accessed through thread cells. A thread cell is similar to a normal mutable object,
but a change to the value inside a thread cell is seen only when extracting a value from that
cell in the same thread. A thread cell can be preserved; when a new thread is created, the

27

creating thread’s value for a preserved thread cell serves as the initial value for the cell in
the created thread. For a non-preserved thread cell, a new thread sees the same initial value
(specified when the thread cell is created) as all other threads.

1.1.14 Parameters
See §11.3.2
“Parameters” for
parameter forms
and functions.

Parameters are essentially a derived concept in Racket; they are defined in terms of contin-
uation marks and thread cells. However, parameters are also “built in,” due to the fact that
some primitive procedures consult parameter values. For example, the default output stream
for primitive output operations is specified by a parameter.

A parameter is a setting that is both thread-specific and continuation-specific. In the empty
continuation, each parameter corresponds to a preserved thread cell; a corresponding param-
eter procedure accesses and sets the thread cell’s value for the current thread.

In a non-empty continuation, a parameter’s value is determined through a parameteriza-
tion that is associated with the nearest enclosing continuation frame via a continuation mark
(whose key is not directly accessible). A parameterization maps each parameter to a pre-
served thread cell, and the combination of the thread cell and the current thread yields the
parameter’s value. A parameter procedure sets or accesses the relevant thread cell for its
parameter.

Various operations, such as parameterize or call-with-parameterization, install a
parameterization into the current continuation’s frame.

1.1.15 Exceptions
See §10.2
“Exceptions” for
exception forms,
functions, and
types.

Exceptions are essentially a derived concept in Racket; they are defined in terms of continu-
ations, prompts, and continuation marks. However, exceptions are also “built in,” due to the
fact that primitive forms and procedures may raise exceptions.

An exception handler to catch exceptions can be associated with a continuation frame though
a continuation mark (whose key is not directly accessible). When an exception is raised, the
current continuation’s marks determine a chain of exception handler procedures that are
consulted to handle the exception. A handler for uncaught exceptions is designated through
a built-in parameter.

One potential action of an exception handler is to abort the current continuation up to an
enclosing prompt with a particular prompt tag. The default handler for uncaught exceptions,
in particular, aborts to a particular tag for which a prompt is always present, because the
prompt is installed in the outermost frame of the continuation for any new thread.

28

1.1.16 Custodians
See §14.7
“Custodians” for
custodian functions.A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners,

UDP sockets, byte converters, and places. Whenever a thread, etc., is created, it is placed
under the management of the current custodian as determined by the current-custodian
parameter. Custodians also

manage eventspaces
from
racket/gui/base.

Except for the root custodian, every custodian itself is managed by a custodian, so that cus-
todians form a hierarchy. Every object managed by a subordinate custodian is also managed
by the custodian’s owner.

When a custodian is shut down via custodian-shutdown-all, it forcibly and immediately
closes the ports, TCP connections, etc., that it manages, as well as terminating (or suspend-
ing) its threads. A custodian that has been shut down cannot manage new objects. After the
current custodian is shut down, if a procedure is called that attempts to create a managed
resource (e.g., open-input-file, thread), then the exn:fail:contract exception is
raised.

A thread can have multiple managing custodians, and a suspended thread created with
thread/suspend-to-kill can have zero custodians. Extra custodians become asso-
ciated with a thread through thread-resume (see §11.1.2 “Suspending, Resuming, and
Killing Threads”). When a thread has multiple custodians, it is not necessarily killed by a
custodian-shutdown-all. Instead, shut-down custodians are removed from the thread’s
managing custodian set, and the thread is killed when its managing set becomes empty.

The values managed by a custodian are semi-weakly held by the custodian: a will can be ex-
ecuted for a value that is managed by a custodian; in addition, weak references via weak hash
tables, ephemerons, or weak boxes can be dropped on the 3m or CGC variants of Racket, but
not on the CS variant. For all variants, a custodian only weakly references its subordinate
custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the
custodian may be garbage collected, at which point its subordinates become immediately
subordinate to the collected custodian’s superordinate (owner) custodian.

In addition to the other entities managed by a custodian, a custodian box created with make-
custodian-box strongly holds onto a value placed in the box until the box’s custodian is
shut down. However, the custodian only weakly retains the box itself, so the box and its
content can be collected if there are no other references to them.

When Racket is compiled with support for per-custodian memory accounting (see
custodian-memory-accounting-available?), the current-memory-use procedure
can report a custodian-specific result. This result determines how much memory is occupied
by objects that are reachable from the custodian’s managed values, especially its threads, and
including its sub-custodians’ managed values. If an object is reachable from two custodians
where neither is an ancestor of the other, an object is arbitrarily charged to one or the other,
and the choice can change after each collection; objects reachable from both a custodian
and its descendant, however, are reliably charged to the custodian and not to the descen-

29

dants, unless the custodian can reach the objects only through a descendant custodian or a
descendant’s thread. Reachability for per-custodian accounting does not include weak ref-
erences, references to threads managed by other custodians, references to other custodians,
or references to custodian boxes for other custodians.

1.2 Syntax Model

The syntax of a Racket program is defined by

• a read pass that processes a character stream into a syntax object; and

• an expand pass that processes a syntax object to produce one that is fully parsed.

For details on the read pass, see §1.3 “The Reader”. Source code is normally read in read-
syntax mode, which produces a syntax object.

The expand pass recursively processes a syntax object to produce a complete parse of the
program. Binding information in a syntax object drives the expansion process, and when the
expansion process encounters a binding form, it extends syntax objects for sub-expression
with new binding information.

1.2.1 Identifiers, Binding, and Scopes
§4.2 “Identifiers
and Binding” in The
Racket Guide
introduces binding.

An identifier is a source-program entity. Parsing (i.e., expanding) a Racket program reveals
that some identifiers correspond to variables, some refer to syntactic forms (such as lambda,
which is the syntactic form for functions), some refer to transformers for macro expansion,
and some are quoted to produce symbols or syntax objects. An identifier binds another (i.e.,
it is a binding) when the former is parsed as a variable or syntactic form and the latter is
parsed as a reference to the former; the latter is bound.

For example, as a fragment of source, the text

(let ([x 5]) x)

includes two identifiers: let and x (which appears twice). When this source is parsed in a
context where let has its usual meaning, the first x binds the second x.

Bindings and references are determined through scope sets. A scope corresponds to a region
of the program that is either in part of the source or synthesized through elaboration of the
source. Nested binding contexts (such as nested functions) create nested scopes, while macro
expansion creates scopes that overlap in more complex ways. Conceptually, each scope is
represented by a unique token, but the token is not directly accessible. Instead, each scope
is represented by a value that is internal to the representation of a program.

30

A form is a fragment of a program, such as an identifier or a function call. A form is
represented as a syntax object, and each syntax object has an associated set of scopes (i.e.,
a scope set). In the above example, the representations of the xs include the scope that
corresponds to the let form.

When a form parses as the binding of a particular identifier, parsing updates a global table
that maps a combination of an identifier’s symbol and scope set to its meaning: a variable,
a syntactic form, or a transformer. An identifier refers to a particular binding when the
reference’s symbol and the identifier’s symbol are the same, and when the reference’s scope
set is a superset of the binding’s scope set. For a given identifier, multiple bindings may have
scope sets that are subsets of the identifier’s; in that case, the identifier refers to the binding
whose set is a superset of all others; if no such binding exists, the reference is ambiguous
(and triggers a syntax error if it is parsed as an expression). A binding shadows any binding
(i.e., it is shadowing any binding) that the same symbol but a subset of scopes.

For example, in

(let ([x 5]) x)

in a context where let corresponds to the usual syntactic form, the parsing of let introduces
a new scope for the binding of x. Since the second x receives that scope as part of the let
body, the first x binds the second x. In the more complex case

(let ([x 5])
(let ([x 6])
x))

the inner let creates a second scope for the second xs, so its scope set is a superset of the
first x’s scope set—which means that the binding for the second x shadows the one for the
first x, and the third x refers to the binding created by the second one.

A top-level binding is a binding from a definition at the top-level; a module binding is a
binding from a definition in a module; all other bindings are local bindings. Within a module,
references to top-level bindings are disallowed. An identifier without a binding is unbound.

Throughout the documentation, identifiers are typeset to suggest the way that they are parsed.
A hyperlinked identifier like lambda indicates a reference to a syntactic form or variable. A
plain identifier like x is a variable or a reference to an unspecified top-level variable.

Every binding has a phase level in which it can be referenced, where a phase level normally
corresponds to an integer (but the special label phase level does not correspond to an integer).
Phase level 0 corresponds to the run time of the enclosing module (or the run time of top-
level expressions). Bindings in phase level 0 constitute the base environment. Phase level
1 corresponds to the time during which the enclosing module (or top-level expression) is
expanded; bindings in phase level 1 constitute the transformer environment. Phase level
-1 corresponds to the run time of a different module for which the enclosing module is

31

imported for use at phase level 1 (relative to the importing module); bindings in phase level
-1 constitute the template environment. The label phase level does not correspond to any
execution time; it is used to track bindings (e.g., to identifiers within documentation) without
implying an execution dependency.

An identifier can have different bindings in different phase levels. More precisely, the scope
set associated with a form can be different at different phase levels; a top-level or module
context implies a distinct scope at every phase level, while scopes from macro expansion
or other syntactic forms are added to a form’s scope sets at all phases. The context of each
binding and reference determines the phase level whose scope set is relevant.

Changed in version 6.3 of package base: Changed local bindings to have a specific phase level, like top-level and
module bindings.

1.2.2 Syntax Objects

A syntax object combines a simpler Racket value, such as a symbol or pair, with lexical
information, source-location information, syntax properties, and tamper status. The lexical
information of a syntax object comprises a set of scope sets, one for each phase level. In
particular, an identifier is represented as a syntax object containing a symbol, and its lexical
information can be combined with the global table of bindings to determine its binding (if
any) at each phase level.

For example, a car identifier might have lexical information that designates it as the car
from the racket/base language (i.e., the built-in car). Similarly, a lambda identifier’s
lexical information may indicate that it represents a procedure form. Some other identifier’s
lexical information may indicate that it references a top-level variable.

When a syntax object represents a more complex expression than an identifier or simple
constant, its internal components can be extracted. Even for extracted identifiers, detailed
information about binding is available mostly indirectly; two identifiers can be compared to
determine whether they refer to the same binding (i.e., free-identifier=?), or whether
the identifiers have the same scope set so that each identifier would bind the other if one were
in a binding position and the other in an expression position (i.e., bound-identifier=?).

For example, when the program written as

(let ([x 5]) (+ x 6))

is represented as a syntax object, then two syntax objects can be extracted for the two xs.
Both the free-identifier=? and bound-identifier=? predicates will indicate that the
xs are the same. In contrast, the let identifier is not free-identifier=? or bound-
identifier=? to either x.

The lexical information in a syntax object is independent of the rest of the syntax object, and

32

it can be copied to a new syntax object in combination with an arbitrary other Racket value.
Thus, identifier-binding information in a syntax object is predicated on the symbolic name
of the identifier as well as the identifier’s lexical information; the same question with the
same lexical information but different base value can produce a different answer.

For example, combining the lexical information from let in the program above to 'x would
not produce an identifier that is free-identifier=? to either x, since it does not appear
in the scope of the x binding. Combining the lexical context of the 6 with 'x, in contrast,
would produce an identifier that is bound-identifier=? to both xs.

The quote-syntax form bridges the evaluation of a program and the representation of a
program. Specifically, (quote-syntax datum #:local) produces a syntax object that
preserves all of the lexical information that datum had when it was parsed as part of the
quote-syntax form. Note that (quote-syntax datum) form is similar, but it removes
certain scopes from the datum ’s scope sets; see quote-syntax for more information.

1.2.3 Expansion (Parsing)

Expansion recursively processes a syntax object in a particular phase level, starting with
phase level 0. Bindings from the syntax object’s lexical information drive the expansion pro-
cess, and cause new bindings to be introduced for the lexical information of sub-expressions.
In some cases, a sub-expression is expanded in a deeper phase than the enclosing expression.

Fully Expanded Programs

A complete expansion produces a syntax object matching the following grammar: Beware that the
symbolic names of
identifiers in a fully
expanded program
may not match the
symbolic names in
the grammar. Only
the binding
(according to
free-identifier=?)
matters.

top-level-form = general-top-level-form
| (#%expression expr)
| (module id module-path

(#%plain-module-begin
module-level-form ...))

| (begin top-level-form ...)
| (begin-for-syntax top-level-form ...)

module-level-form = general-top-level-form
| (#%provide raw-provide-spec ...)
| (begin-for-syntax module-level-form ...)
| submodule-form
| (#%declare declaration-keyword ...)

submodule-form = (module id module-path
(#%plain-module-begin
module-level-form ...))

33

| (module* id module-path
(#%plain-module-begin
module-level-form ...))

| (module* id #f
(#%plain-module-begin
module-level-form ...))

general-top-level-form = expr
| (define-values (id ...) expr)
| (define-syntaxes (id ...) expr)
| (#%require raw-require-spec ...)

expr = id
| (#%plain-lambda formals expr ...+)
| (case-lambda (formals expr ...+) ...)
| (if expr expr expr)
| (begin expr ...+)
| (begin0 expr expr ...)
| (let-values ([(id ...) expr] ...)

expr ...+)
| (letrec-values ([(id ...) expr] ...)

expr ...+)
| (set! id expr)
| (quote datum)
| (quote-syntax datum)
| (quote-syntax datum #:local)
| (with-continuation-mark expr expr expr)
| (#%plain-app expr ...+)
| (#%top . id)
| (#%variable-reference id)
| (#%variable-reference (#%top . id))
| (#%variable-reference)

formals = (id ...)
| (id ...+ . id)
| id

A fully-expanded syntax object corresponds to a parse of a program (i.e., a parsed program),
and lexical information on its identifiers indicates the parse.

More specifically, the typesetting of identifiers in the above grammar is significant. For
example, the second case for expr is a syntax-object list whose first element is an identifier,
where the identifier’s lexical information specifies a binding to the #%plain-lambda of the
racket/base language (i.e., the identifier is free-identifier=? to one whose binding is
#%plain-lambda). In all cases, identifiers above typeset as syntactic-form names refer to
the bindings defined in §3 “Syntactic Forms”.

34

In a fully expanded program for a namespace whose base phase is 0, the relevant phase level
for a binding in the program is N if the bindings has N surrounding begin-for-syntax
and define-syntaxes forms—not counting any begin-for-syntax forms that wrap a
module or module* form for the body of the module or module*, unless a module* form as
#f in place of a module-path after the id . The datum in a quote-syntax form preserves
its information for all phase levels.

A reference to a local binding in a fully expanded program has a scope set that matches
its binding identifier exactly. Additional scopes, if any, are removed. As a result, bound-
identifier=? can be used to correlate local binding identifiers with reference identifiers,
while free-identifier=? must be used to relate references to module bindings or top-
level bindings.

In addition to the grammar above, #%expression can appear in a fully local-expanded
expression position. For example, #%expression can appear in the result from local-
expand when the stop list is empty. Reference-identifier scope sets are reduced in local-
expanded expressions only when the local-expand stop list is empty.

Changed in version 6.3 of package base: Added the #:local variant of quote-syntax; removed
letrec-syntaxes+values from possibly appearing in a fully local-expanded form.

Expansion Steps

In a recursive expansion, each single step in expanding a syntax object at a particular phase
level depends on the immediate shape of the syntax object being expanded:

• If it is an identifier (i.e., a syntax-object symbol), then a binding is determined by the
identifier’s lexical information. If the identifier has a binding, that binding is used to
continue. If the identifier is unbound, a new syntax-object symbol '#%top is created
using the lexical information of the identifier; if this #%top identifier has no binding,
then parsing fails with an exn:fail:syntax exception. Otherwise, the new identifier
is combined with the original identifier in a new syntax-object pair (also using the
same lexical information as the original identifier), and the #%top binding is used to
continue.

Changed in version 6.3 of package base: Changed the introduction of #%top in a top-level context to
unbound identifiers only.

• If it is a syntax-object pair whose first element is an identifier, and if the identifier
has a binding other than as a top-level variable, then the identifier’s binding is used to
continue.

• If it is a syntax-object pair of any other form, then a new syntax-object symbol '#%app
is created using the lexical information of the pair. If the resulting #%app identifier has
no binding, parsing fails with an exn:fail:syntax exception. Otherwise, the new
identifier is combined with the original pair to form a new syntax-object pair (also
using the same lexical information as the original pair), and the #%app binding is used
to continue.

35

• If it is any other syntax object, then a new syntax-object symbol '#%datum is created
using the lexical information of the original syntax object. If the resulting #%datum
identifier has no binding, parsing fails with an exn:fail:syntax exception. Other-
wise, the new identifier is combined with the original syntax object in a new syntax-
object pair (using the same lexical information as the original pair), and the #%datum
binding is used to continue.

Thus, the possibilities that do not fail lead to an identifier with a particular binding. This
binding refers to one of three things:

• A transformer, such as introduced by define-syntax or let-syntax. If the as-
sociated value is a procedure of one argument, the procedure is called as a syntax
transformer (described below), and parsing starts again with the syntax-object re-
sult. If the transformer binding is to any other kind of value, parsing fails with an
exn:fail:syntax exception. The call to the syntax transformer is parameterized
to set current-namespace to a namespace that shares bindings and variables with
the namespace being used to expand, except that its base phase is one greater.

• A variable binding, such as introduced by a module-level define or by let. In this
case, if the form being parsed is just an identifier, then it is parsed as a reference to the
corresponding variable. If the form being parsed is a syntax-object pair, then an #%app
is added to the front of the syntax-object pair in the same way as when the first item
in the syntax-object pair is not an identifier (third case in the previous enumeration),
and parsing continues.

• A core syntactic form, which is parsed as described for each form in §3 “Syntactic
Forms”. Parsing a core syntactic form typically involves recursive parsing of sub-
forms, and may introduce bindings that determine the parsing of sub-forms.

Expansion Context

Each expansion step occurs in a particular context, and transformers and core syntactic forms
may expand differently for different contexts. For example, a module form is allowed only
in a top-level context, and it fails in other contexts. The possible contexts are as follows:

• top-level context : outside of any module, definition, or expression, except that sub-
expressions of a top-level begin form are also expanded as top-level forms.

• module-begin context : inside the body of a module, as the only form within the
module.

• module context : in the body of a module (inside the module-begin layer).

• internal-definition context : in a nested context that allows both definitions and ex-
pressions.

• expression context : in a context where only expressions are allowed.

36

Different core syntactic forms parse sub-forms using different contexts. For example, a let
form always parses the right-hand expressions of a binding in an expression context, but it
starts parsing the body in an internal-definition context.

Introducing Bindings

Bindings are introduced during expansion when certain core syntactic forms are encoun-
tered:

• When a require form is encountered at the top level or module level, each symbol
specified by the form is paired with the scope set of the specification to introduce new
bindings. If not otherwise indicated in the require form, bindings are introduced at
the phase levels specified by the exporting modules: phase level 0 for each normal
provide, phase level 1 for each for-syntax provide, and so on. The for-meta
provide form allows exports at an arbitrary phase level (as long as a binding exists
within the module at the phase level).

A for-syntax sub-form within require imports similarly, but the resulting bindings
have a phase level that is one more than the exported phase levels, when exports for
the label phase level are still imported at the label phase level. More generally, a for-
meta sub-form within require imports with the specified phase level shift; if the
specified shift is #f, or if for-label is used to import, then all bindings are imported
into the label phase level.

• When a define, define-values, define-syntax, or define-syntaxes form is
encountered at the top level or module level, a binding is added phase level 0 (i.e., the
base environment is extended) for each defined identifier.

• When a begin-for-syntax form is encountered at the top level or module level,
bindings are introduced as for define-values and define-syntaxes, but at phase
level 1 (i.e., the transformer environment is extended). More generally, begin-for-
syntax forms can be nested, an each begin-for-syntax shifts its body definition
by one phase level.

• When a let-values form is encountered, the body of the let-values form is ex-
tended (by creating new syntax objects) with a fresh scope. The scope is added
to the identifiers themselves, so that the identifiers in binding position are bound-
identifier=? to uses in the fully expanded form, and so they are not bound-
identifier=? to other identifiers. The new bindings are at the phase level at which
the let-values form is expanded.

• When a letrec-values or letrec-syntaxes+values form is encountered, bind-
ings are added as for let-values, except that the right-hand-side expressions are also
extended with the new scope.

• Definitions in internal-definition contexts introduce new scopes and bindings as de-
scribed in §1.2.3.8 “Internal Definitions”.

37

For example, in

(let-values ([(x) 10]) (+ x y))

the binding introduced for x applies to the x in the body, because a fresh scope is created and
added to both the binding x and reference x. The same scope is added to the y, but since it
has a different symbol than the binding x, it does not refer to the new binding. Any x outside
of this let-values form does not receive the fresh scope and therefore does not refer to the
new binding.

Transformer Bindings

In a top-level context or module context, when the expander encounters a define-
syntaxes form, the binding that it introduces for the defined identifiers is a transformer
binding. The value of the binding exists at expansion time, rather than run time (though the
two times can overlap), though the binding itself is introduced with phase level 0 (i.e., in the
base environment).

The value for the binding is obtained by evaluating the expression in the define-syntaxes
form. This expression must be expanded (i.e., parsed) before it can be evaluated, and it is
expanded at phase level 1 (i.e., in the transformer environment) instead of phase level 0.

If the resulting value is a procedure of one argument or the result of make-set!-
transformer on a procedure, then it is used as a syntax transformer (a.k.a. macro). The
procedure is expected to accept a syntax object and return a syntax object. A use of the bind-
ing (at phase level 0) triggers a call of the syntax transformer by the expander; see §1.2.3.2
“Expansion Steps”.

Before the expander passes a syntax object to a transformer, the syntax object is extended
with a fresh macro-introduction scope (that applies to all sub-syntax objects) to distinguish
syntax objects at the macro’s use site from syntax objects that are introduced by the macro;
in the result of the transformer the presence of the scope is flipped, so that introduced syntax
objects retain the scope, and use-site syntax objects do not have it. In addition, if the use
of a transformer is in the same definition context as its binding, the use-site syntax object
is extended with an additional fresh use-site scope that is not flipped in the transformer’s
result, so that only use-site syntax objects have the use-site scope.

The scope-introduction process for macro expansion helps keep binding in an expanded pro-
gram consistent with the lexical structure of the source program. For example, the expanded
form of the program

(define x 12)
(define-syntax m
(syntax-rules ()
[(_ id) (let ([x 10]) id)]))

(m x)

38

is

(define x 12)
(define-syntax m)
(let-values ([(x) 10]) x)

However, the result of the last expression is 12, not 10. The reason is that the transformer
bound to m introduces the binding x, but the referencing x is present in the argument to
the transformer. The introduced x is left with one fresh scope, while the reference x has a
different fresh scope, so the binding x is not bound-identifier=? to the body x.

A use-site scope on a binding identifier is ignored when the definition is in the same context
where the use-site scope was introduced. This special treatment of use-site scopes allows a
macro to expand to a visible definition. For example, the expanded form of the program

(define-syntax m
(syntax-rules ()
[(_ id) (define id 5)]))

(m x)
x

is

(define-syntax m)
(define x 5)
x

where the x in the define form has a use-site scope that is not present on the final x. The
final x nevertheless refers to the definition, because the use-site scope is effectively removed
before installing the definition’s binding. In contrast, the expansion of

(define-syntax m
(syntax-rules ()
[(_ id) (let ([x 4])

(let ([id 5])
x))]))

(m x)

is

(define-syntax m)
(let ([x 4])
(let ([x 5])
x))

39

where the second x has a use-site scope that prevents it from binding the final x. The use-
site scope is not ignored in this case, because the binding is not part of the definition context
where (m x) was expanded.

The set! form works with the make-set!-transformer and prop:set!-transformer
property to support assignment transformers that transform set! expressions. An assign-
ment transformer contains a procedure that is applied by set! in the same way as a normal
transformer by the expander.

The make-rename-transformer procedure or prop:rename-transformer property cre-
ates a value that is also handled specially by the expander and by set! as a trans-
former binding’s value. When id is bound to a rename transformer produced by make-
rename-transformer, it is replaced with the target identifier passed to make-rename-
transformer. In addition, as long as the target identifier does not have a true value for the
'not-free-identifier=? syntax property, the binding table is extended to indicate that
id is an alias for the identifier in the rename transformer. The free-identifier=? func-
tion follows aliasing chains to determine equality of bindings, the identifier-binding
function similarly follows aliasing chains, and the provide form exports id as the target
identifier. Finally, the syntax-local-value function follows rename transformer chains
even when binding aliases are not installed.

In addition to using scopes to track introduced identifiers, the expander tracks the expansion
history of a form through syntax properties such as 'origin. See §12.7 “Syntax Object
Properties” for more information.

Finally, the expander uses a tamper status to control the way that unexported and protected
module bindings are used. See §12.8 “Syntax Taints” for more information on a tamper
status.

The expander’s handling of letrec-syntaxes+values is similar to its handling of
define-syntaxes. A letrec-syntaxes+values can be expanded in an arbitrary phase
level n (not just 0), in which case the expression for the transformer binding is expanded at
phase level n+1.

The expressions in a begin-for-syntax form are expanded and evaluated in the same
way as for define-syntaxes. However, any introduced bindings from definition within
begin-for-syntax are at phase level 1 (not a transformer binding at phase level 0).

Local Binding Context

Although the binding of an identifier can be uniquely determined from the combination of its
lexical information and the global binding table, the expander also maintains a local binding
context that records additional information about local bindings to ensure they are not used
outside of the lexical region in which they are bound.

Due to the way local binding forms like let add a fresh scope to both bound identifiers and
body forms, it isn’t ordinarily possible for an identifier to reference a local binding without

40

appearing in the body of the let. However, if macros use compile-time state to stash bound
identifiers, or use local-expand to extract identifiers from an expanded binding form, they
can violate this constraint. For example, the following stash-id and unstash-id macros
cooperate to move a reference to a locally-bound x identifier outside of the lexical region in
which it is bound:

> (begin-for-syntax
(define stashed-id #f))

> (define-syntax (stash-id stx)
(syntax-case stx ()
[(_ id)
(begin
(set! stashed-id #'id)
#'(void))]))

> (define-syntax (unstash-id stx)
stashed-id)

> (let ([x 42])
(stash-id x)
(unstash-id))

42
> (unstash-id)
identifier used out of context: #ăsyntax:eval:5:0 xą

In general, an identifier’s lexical information is not sufficient to know whether or not its
binding is available in the enclosing context, since the scope set for the identifier stored in
stashed-id unambiguously refers to a binding in the global binding table. This can be
observed by the fact that identifier-binding produces 'lexical, not #f:

> (define-syntax (stashed-id-binding stx)
#`'#,(identifier-binding stashed-id))

> (stashed-id-binding)
'lexical

However, the reference produced by (unstash-id) in the above program is still illegal,
even if it isn’t technically unbound. To record the fact that x’s binding is in scope only within
the body of its corresponding let form, the expander adds x’s binding to the local binding
context while expanding the let body. More generally, the expander adds all local variable
bindings to the local binding context while expanding expressions in which a reference to
the variable would be legal. When the expander encounters an identifier bound to a local
variable, and the associated binding is not in the current local binding context, it raises a
syntax error.

The local binding context also tracks local transformer bindings (i.e. bindings bound by
forms like let-syntax) in a similar way, except that the context also stores the compile-
time value associated with the transformer. When an identifier that is locally bound as a

41

transformer is used in application position as a syntax transformer, or its compile-time value
is looked up using syntax-local-value, the local binding context is consulted to retrieve
the value. If the binding is in scope, its associated compile-time value is used; otherwise, the
expander raises a syntax error.

Examples:

> (define-syntax (stashed-id-local-value stx)
#`'#,(syntax-local-value stashed-id))

> (let-syntax ([y 42])
(stash-id y)
(stashed-id-local-value))

42
> (stashed-id-local-value)
syntax-local-value: identifier is not bound to syntax:
#ăsyntax:eval:11:0 yą

Partial Expansion

In certain contexts, such as an internal-definition context or module context, partial expan-
sion is used to determine whether forms represent definitions, expressions, or other declara-
tion forms. Partial expansion works by cutting off the normal recursive expansion when the
relevant binding is for a primitive syntactic form.

As a special case, when expansion would otherwise add an #%app, #%datum, or #%top iden-
tifier to an expression, and when the binding turns out to be the primitive #%app, #%datum,
or #%top form, then expansion stops without adding the identifier.

Internal Definitions

An internal-definition context supports local definitions mixed with expressions. Forms
that allow internal definitions document such positions using the body meta-variable.
Definitions in an internal-definition context are equivalent to local binding via letrec-
syntaxes+values; macro expansion converts internal definitions to a letrec-
syntaxes+values form.

Expansion relies on partial expansion of each body in an internal-definition sequence. Par-
tial expansion of each body produces a form matching one of the following cases:

• A define-values form: The binding table is immediately enriched with bindings for
the define-values form. Further expansion of the definition is deferred, and partial
expansion continues with the rest of the body.

• A define-syntaxes form: The right-hand side is expanded and evaluated (as for a
letrec-syntaxes+values form), and a transformer binding is installed for the body
sequence before partial expansion continues with the rest of the body.

42

• A primitive expression form other than begin: Further expansion of the expression is
deferred, and partial expansion continues with the rest of the body.

• A begin form: The sub-forms of the begin are spliced into the internal-definition
sequence, and partial expansion continues with the first of the newly-spliced forms (or
the next form, if the begin had no sub-forms).

After all body forms are partially expanded, if no definitions were encountered, then
the expressions are collected into a begin form as the internal-definition context’s ex-
pansion. Otherwise, at least one expression must appear after the last definition, and
any expr that appears between definitions is converted to (define-values () (be-
gin expr (values))); the definitions are then converted to bindings in a letrec-
syntaxes+values form, and all expressions after the last definition become the body of
the letrec-syntaxes+values form.

Before partial expansion begins, expansion of an internal-definition context begins with the
introduction of a fresh outside-edge scope on the content of the internal-definition context.
This outside-edge scope effectively identifies syntax objects that are present in the original
form. An inside-edge scope is also created and added to the original content; furthermore,
the inside-edge scope is added to the result of any partial expansion. This inside-edge scope
ensures that all bindings introduced by the internal-definition context have a particular scope
in common.

Module Expansion, Phases, and Visits

Expansion of a module form proceeds in a similar way to expansion of an internal-definition
context: an outside-edge scope is created for the original module content, and an inside-
edge scope is added to both the original module and any form that appears during a partial
expansion of the module’s top-level forms to uncover definitions and imports.

A require form not only introduces bindings at expansion time, but also visits the refer-
enced module when it is encountered by the expander. That is, the expander instantiates
any variables defined in the module within begin-for-syntax, and it also evaluates all
expressions for define-syntaxes transformer bindings.

Module visits propagate through requires in the same way as module instantiation. More-
over, when a module is visited at phase 0, any module that it requires for-syntax is
instantiated at phase 1, while further requires for-template leading back to phase 0
causes the required module to be visited at phase 0 (i.e., not instantiated).

During compilation, the top-level of module context is itself implicitly visited. Thus, when
the expander encounters (require (for-syntax)), it immediately instantiates the
required module at phase 1, in addition to adding bindings at phase level 1 (i.e., the trans-
former environment). Similarly, the expander immediately evaluates any form that it en-
counters within begin-for-syntax.

Phases beyond 0 are visited on demand. For example, when the right-hand side of a phase-0

43

let-syntax is to be expanded, then modules that are available at phase 1 are visited. More
generally, initiating expansion at phase n visits modules at phase n, which in turn instantiates
modules at phase n+1. These visits and instantiations apply to available modules in the
enclosing namespace’s module registry; a per-registry lock prevents multiple threads from
concurrently instantiating and visiting available modules.

When the expander encounters require and (require (for-syntax)) within a
module context, the resulting visits and instantiations are specific to the expansion of the
enclosing module, and are kept separate from visits and instantiations triggered from a top-
level context or from the expansion of a different module. Along the same lines, when a
module is attached to a namespace through namespace-attach-module, modules that it
requires are transitively attached, but instances are attached only at phases at or below the
namespace’s base phase.

Macro-Introduced Bindings

When a top-level definition binds an identifier that originates from a macro expansion, the
definition captures only uses of the identifier that are generated by the same expansion due
to the fresh scope that is generated for the expansion.

Examples:

> (define-syntax def-and-use-of-x
(syntax-rules ()
[(def-and-use-of-x val)
; x below originates from this macro:
(begin (define x val) x)]))

> (define x 1)
> x
1
> (def-and-use-of-x 2)
2
> x
1
> (define-syntax def-and-use

(syntax-rules ()
[(def-and-use x val)
; "x" below was provided by the macro use:
(begin (define x val) x)]))

> (def-and-use x 3)
3
> x
3

For a top-level definition (outside of a module), the order of evaluation affects the binding
of a generated definition for a generated identifier use. If the use precedes the definition,

44

then the use is resolved with the bindings that are in place that at point, which will not be
a macro-generated binding. (No such dependency on order occurs within a module, since a
module binding covers the entire module body.) To support the declaration of an identifier
before its use, the define-syntaxes form avoids binding an identifier if the body of the
define-syntaxes declaration produces zero results.

Examples:

> (define bucket-1 0)
> (define bucket-2 0)
> (define-syntax def-and-set!-use-of-x

(syntax-rules ()
[(def-and-set!-use-of-x val)
(begin (set! bucket-1 x) (define x val) (set! bucket-

2 x))]))
> (define x 1)
> (def-and-set!-use-of-x 2)
> x
1
> bucket-1
1
> bucket-2
2
> (define-syntax defs-and-uses/fail

(syntax-rules ()
[(def-and-use)
(begin
; Initial reference to even precedes definition:
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

> (defs-and-uses/fail)
even: undefined;

cannot reference an identifier before its definition
in module: top-level

> (define-syntax defs-and-uses
(syntax-rules ()
[(def-and-use)
(begin
; Declare before definition via no-values define-

syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

> (defs-and-uses)

45

#t

Macro-generated require and provide clauses also introduce and reference generation-
specific bindings (due to the added scope) with the same ordering effects as for definitions.
The bindings depend on the scope set attached to specific parts of the form:

• In require, for a require-spec of the form (rename-in [orig-id bind-id])
or (only-in [orig-id bind-id]), the bind-id supplies the scope set for
the binding. In require for other require-specs, the generator of the require-
spec determines the scope set.

• In provide, for a provide-spec of the form id , the exported identifier is the one
that binds id , but the external name is the plain, symbolic part of id . The excep-
tions for all-except-out are similarly determined, as is the orig-id binding of
a rename-out form, and plain symbols are used for the external names. For all-
defined-out, only identifiers with definitions having only the scopes of (all-
defined-out) form are exported; the external name is the plain symbol from the
definition.

1.2.4 Compilation

Before expanded code is evaluated, it is first compiled. A compiled form has essentially the
same information as the corresponding expanded form, though the internal representation
naturally dispenses with identifiers for syntactic forms and local bindings. One significant
difference is that a compiled form is almost entirely opaque, so the information that it con-
tains cannot be accessed directly (which is why some identifiers can be dropped). At the
same time, a compiled form can be marshaled to and from a byte string, so it is suitable for
saving and re-loading code.

Although individual read, expand, compile, and evaluate operations are available, the oper-
ations are often combined automatically. For example, the eval procedure takes a syntax
object and expands it, compiles it, and evaluates it.

1.2.5 Namespaces
See §14.1
“Namespaces” for
functions that
manipulate
namespaces.

A namespace is both a starting point for parsing and a starting point for running compiled
code. A namespace also has a module registry that maps module names to module decla-
rations (see §1.1.10 “Modules and Module-Level Variables”). This registry is shared by all
phase levels, and it applies both to parsing and to running compiled code.

As a starting point for parsing, a namespace provides scopes (one per phase level, plus one
that spans all phase levels). Operations such as namespace-require create initial bindings
using the namespace’s scopes, and the further expansion and evaluation in the namespace

46

can create additional bindings. Evaluation of a form with a namespace always adds the
namespace’s phase-specific scopes to the form and to any result of expanding the top-level
form; as a result, every binding identifier has at least one scope. The namespace’s additional
scope, which is added at all phase levels, is added only on request (e.g., by using eval as
opposed to eval-syntax). Except for namespaces generated by a module (see module-
>namespace), every namespace uses the same scope as the one added to all phase levels,
while the scopes specific to a phase level are always distinct.

As a starting point evaluating compiled code, each namespace encapsulates a distinct set of
top-level variables at various phases, as well as a potentially distinct set of module instances
in each phase. That is, even though module declarations are shared for all phase levels,
module instances are distinct for each phase. Each namespace has a base phase, which
corresponds to the phase used by reflective operations such as eval and dynamic-require.
In particular, using eval on a require form instantiates a module in the namespace’s base
phase.

After a namespace is created, module instances from existing namespaces can be attached
to the new namespace. In terms of the evaluation model, top-level variables from differ-
ent namespaces essentially correspond to definitions with different prefixes, but attaching
a module uses the same prefix for the module’s definitions in namespaces where it is at-
tached. The first step in evaluating any compiled expression is to link its top-level variable
and module-level variable references to specific variables in the namespace.

At all times during evaluation, some namespace is designated as the current namespace. The
current namespace has no particular relationship, however, with the namespace that was used
to expand the code that is executing, or with the namespace that was used to link the compiled
form of the currently evaluating code. In particular, changing the current namespace during
evaluation does not change the variables to which executing expressions refer. The current
namespace only determines the behavior of reflective operations to expand code and to start
evaluating expanded/compiled code.

Examples:

> (define x 'orig) ; define in the original namespace
; The following let expression is compiled in the original
; namespace, so direct references to x see 'orig.
> (let ([n (make-base-namespace)]) ; make new namespace

(parameterize ([current-namespace n])
(eval '(define x 'new)) ; evals in the new namespace
(display x) ; displays 'orig
(display (eval 'x)))) ; displays 'new

orignew

If an identifier is bound to syntax or to an import, then defining the identifier as a variable
shadows the syntax or import in future uses of the environment. Similarly, if an identifier is
bound to a top-level variable, then binding the identifier to syntax or an import shadows the

47

variable; the variable’s value remains unchanged, however, and may be accessible through
previously evaluated expressions.

Examples:

> (define x 5)
> (define (f) x)
> x
5
> (f)
5
> (define-syntax x (syntax-id-rules () [_ 10]))
> x
10
> (f)
5
> (define x 7)
> x
7
> (f)
7
> (module m racket (define x 8) (provide x))
> (require 'm)
> x
8
> (f)
7

Like a top-level namespace, each module form has an associated scope to span all phase
levels of the module’s content, plus a scope at each phase level. The latter is added to every
form, original or appearing through partial macro expansion, within the module’s immediate
body. Those same scopes are propagated to a namespace created by module->namespace
for the module. Meanwhile, parsing of a module form begins by removing the all scopes that
correspond to the enclosing top-level or (in the case of submodules) module and module*
forms.

1.2.6 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values,
such as procedures. For example, evaluating the following expression:

(let ([f (lambda () 0)]) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The

48

error message is able to report f as the name of the procedure. In this case, Racket decides,
at compile-time, to name as 'f all procedures created by the let-bound lambda. See

procedure-rename
to override a
procedure’s inferred
name at runtime.

Names are inferred whenever possible for procedures. Names closer to an expression take
precedence. For example, in

(define my-f
(let ([f (lambda () 0)]) f))

the procedure bound to my-f will have the inferred name 'f.

When an 'inferred-name property is attached to a syntax object for an expression (see
§12.7 “Syntax Object Properties”), the property value is used for naming the expression,
and it overrides any name that was inferred from the expression’s context. Normally, the
property value should be a symbol. A 'inferred-name property value of #<void> hides a
name that would otherwise be inferred from context (perhaps because a binding identifier’s
was automatically generated and should not be exposed).

To support the propagation and merging of consistent properties during expansions, the value
of the 'inferred-name property can be a tree formed with cons where all of the leaves are
the same. For example, (cons 'name 'name) is equivalent to 'name, and (cons (void)
(void)) is equivalent to #<void>.

When an inferred name is not available, but a source location is available, a name is con-
structed using the source location information. Inferred and property-assigned names are
also available to syntax transformers, via syntax-local-name.

1.2.7 Cross-Phase Persistent Module Declarations

A module is cross-phase persistent only if it fits the following grammar, which uses
non-terminals from §1.2.3.1 “Fully Expanded Programs”, only if it includes (#%de-
clare #:cross-phase-persistent), only it includes no uses of quote-syntax or
#%variable-reference, and only if no module-level binding is set!ed.

cross-module = (module id module-path
(#%plain-module-begin

cross-form ...))

cross-form = (#%declare #:cross-phase-persistent)
| (begin cross-form ...)
| (#%provide raw-provide-spec ...)
| submodule-form
| (define-values (id ...) cross-expr)
| (#%require raw-require-spec ...)

49

cross-expr = id
| (quote cross-datum)
| (#%plain-lambda formals expr ...+)
| (case-lambda (formals expr ...+) ...)
| (#%plain-app cons cross-expr ...+)
| (#%plain-app list cross-expr ...+)
| (#%plain-app make-struct-type cross-expr ...+)
| (#%plain-app make-struct-type-property

cross-expr ...+)
| (#%plain-app gensym)
| (#%plain-app gensym string)
| (#%plain-app string->uninterned-symbol string)

cross-datum = number
| boolean
| identifier
| string
| bytes
| ()

This grammar applies after expansion, but because a cross-phase persistent module imports
only from other cross-phase persistent modules, the only relevant expansion steps are the
implicit introduction of #%plain-module-begin, implicit introduction of #%plain-app,
and implicit introduction and/or expansion of #%datum.

1.3 The Reader

Racket’s reader is a recursive-descent parser that can be configured through a readtable and
various other parameters. This section describes the reader’s parsing when using the default
readtable.

Reading from a stream produces one datum. If the result datum is a compound value, then
reading the datum typically requires the reader to call itself recursively to read the component
data.

The reader can be invoked in either of two modes: read mode, or read-syntax mode.
In read-syntax mode, the result is always a syntax object that includes source-location
and (initially empty) lexical information wrapped around the sort of datum that read mode
would produce. In the case of pairs, vectors, and boxes, the content is also wrapped re-
cursively as a syntax object. Unless specified otherwise, this section describes the reader’s
behavior in read mode, and read-syntax mode does the same modulo wrapping of the
final result.

Reading is defined in terms of Unicode characters; see §13.1 “Ports” for information on how
a byte stream is converted to a character stream.

50

Symbols, keywords, strings, byte strings, regexps, characters, and numbers produced by
the reader in read-syntax mode are interned, which means that such values in the result
of read-syntax are always eq? when they are equal? (whether from the same call or
different calls to read-syntax). Symbols and keywords are interned in both read and
read-syntax mode. Sending an interned value across a place channel does not necessarily
produce an interned value at the receiving place. See also datum-intern-literal and
datum->syntax.

1.3.1 Delimiters and Dispatch

Along with whitespace, the following characters are delimiters:

() [] { } " , ' ` ;

A delimited sequence that starts with any other character is typically parsed as either a sym-
bol, number, or extflonum, but a few non-delimiter characters play special roles:

• # has a special meaning as an initial character in a delimited sequence; its meaning
depends on the characters that follow; see below.

• | starts a subsequence of characters to be included verbatim in the delimited sequence
(i.e., they are never treated as delimiters, and they are not case-folded when case-
insensitivity is enabled); the subsequence is terminated by another |, and neither the
initial nor terminating | is part of the subsequence.

• \ outside of a | pair causes the following character to be included verbatim in a de-
limited sequence.

More precisely, after skipping whitespace, the reader dispatches based on the next character
or characters in the input stream as follows:

(starts a pair or list; see §1.3.6 “Reading Pairs and Lists”
[starts a pair or list; see §1.3.6 “Reading Pairs and Lists”
{ starts a pair or list; see §1.3.6 “Reading Pairs and Lists”
) matches (or raises exn:fail:read
] matches [or raises exn:fail:read
} matches { or raises exn:fail:read
" starts a string; see §1.3.7 “Reading Strings”
' starts a quote; see §1.3.8 “Reading Quotes”
` starts a quasiquote; see §1.3.8 “Reading Quotes”
, starts a [splicing] unquote; see §1.3.8 “Reading Quotes”
; starts a line comment; see §1.3.9 “Reading Comments”

#t or #T true; see §1.3.5 “Reading Booleans”
#f or #F false; see §1.3.5 “Reading Booleans”

#(starts a vector; see §1.3.10 “Reading Vectors”

51

#[starts a vector; see §1.3.10 “Reading Vectors”
#{ starts a vector; see §1.3.10 “Reading Vectors”

#fl(or #Fl(starts a flvector; see §1.3.10 “Reading Vectors”
#fl[or #Fl[starts a flvector; see §1.3.10 “Reading Vectors”
#fl{ or #Fl{ starts a flvector; see §1.3.10 “Reading Vectors”
#fx(or #Fx(starts a fxvector; see §1.3.10 “Reading Vectors”
#fx[or #Fx[starts a fxvector; see §1.3.10 “Reading Vectors”
#fx{ or #Fx{ starts a fxvector; see §1.3.10 “Reading Vectors”

#s(starts a structure literal; see §1.3.11 “Reading Structures”
#s[starts a structure literal; see §1.3.11 “Reading Structures”
#s{ starts a structure literal; see §1.3.11 “Reading Structures”
#\ starts a character; see §1.3.14 “Reading Characters”
#" starts a byte string; see §1.3.7 “Reading Strings”
#% starts a symbol; see §1.3.2 “Reading Symbols”
#: starts a keyword; see §1.3.15 “Reading Keywords”
#& starts a box; see §1.3.13 “Reading Boxes”
#| starts a block comment; see §1.3.9 “Reading Comments”
#; starts an S-expression comment; see §1.3.9 “Reading Comments”
#' starts a syntax quote; see §1.3.8 “Reading Quotes”
#! starts a line comment; see §1.3.9 “Reading Comments”
#!/ starts a line comment; see §1.3.9 “Reading Comments”
#! may start a reader extension; see §1.3.18 “Reading via an Extension”
#` starts a syntax quasiquote; see §1.3.8 “Reading Quotes”
#, starts a syntax [splicing] unquote; see §1.3.8 “Reading Quotes”
#„ starts compiled code; see §1.4.16 “Printing Compiled Code”

#i or #I starts a number; see §1.3.3 “Reading Numbers”
#e or #E starts a number; see §1.3.3 “Reading Numbers”
#x or #X starts a number or extflonum; see §1.3.3 “Reading Numbers”
#o or #O starts a number or extflonum; see §1.3.3 “Reading Numbers”
#d or #D starts a number or extflonum; see §1.3.3 “Reading Numbers”
#b or #B starts a number or extflonum; see §1.3.3 “Reading Numbers”

#<< starts a string; see §1.3.7 “Reading Strings”
#rx starts a regular expression; see §1.3.16 “Reading Regular Expressions”
#px starts a regular expression; see §1.3.16 “Reading Regular Expressions”

#ci, #cI, #Ci, or #CI switches case sensitivity; see §1.3.2 “Reading Symbols”
#cs, #cS, #Cs, or #CS switches case sensitivity; see §1.3.2 “Reading Symbols”

#hash starts a hash table; see §1.3.12 “Reading Hash Tables”
#reader starts a reader extension use; see §1.3.18 “Reading via an Extension”
#lang starts a reader extension use; see §1.3.18 “Reading via an Extension”

#xdigit10y
+(starts a vector; see §1.3.10 “Reading Vectors”

#xdigit10y
+[starts a vector; see §1.3.10 “Reading Vectors”

#xdigit10y
+{ starts a vector; see §1.3.10 “Reading Vectors”

#flxdigit10y
+(starts a flvector; see §1.3.10 “Reading Vectors”

#flxdigit10y
+[starts a flvector; see §1.3.10 “Reading Vectors”

#flxdigit10y
+{ starts a flvector; see §1.3.10 “Reading Vectors”

#Flxdigit10y
+(starts a flvector; see §1.3.10 “Reading Vectors”

52

#Flxdigit10y
+[starts a flvector; see §1.3.10 “Reading Vectors”

#Flxdigit10y
+{ starts a flvector; see §1.3.10 “Reading Vectors”

#fxxdigit10y
+(starts a fxvector; see §1.3.10 “Reading Vectors”

#fxxdigit10y
+[starts a fxvector; see §1.3.10 “Reading Vectors”

#fxxdigit10y
+{ starts a fxvector; see §1.3.10 “Reading Vectors”

#Fxxdigit10y
+(starts a fxvector; see §1.3.10 “Reading Vectors”

#Fxxdigit10y
+[starts a fxvector; see §1.3.10 “Reading Vectors”

#Fxxdigit10y
+{ starts a fxvector; see §1.3.10 “Reading Vectors”

#xdigit10y
{1,8}= binds a graph tag; see §1.3.17 “Reading Graph Structure”

#xdigit10y
{1,8}# uses a graph tag; see §1.3.17 “Reading Graph Structure”

otherwise starts a symbol; see §1.3.2 “Reading Symbols”

1.3.2 Reading Symbols
§3.6 “Symbols” in
The Racket Guide
introduces the
syntax of symbols.

A sequence that does not start with a delimiter or # is parsed as either a symbol, a number (see
§1.3.3 “Reading Numbers”), or a extflonum (see §1.3.4 “Reading Extflonums”), except that
. by itself is never parsed as a symbol or number (unless the read-accept-dot parameter
is set to #f). A #% also starts a symbol. The resulting symbol is interned. A successful
number or extflonum parse takes precedence over a symbol parse.

When the read-case-sensitive parameter is set to #f, characters in the sequence that
are not quoted by | or \ are first case-normalized. If the reader encounters #ci, #CI, #Ci,
or #cI, then it recursively reads the following datum in case-insensitive mode. If the reader
encounters #cs, #CS, #Cs, or #cS, then it recursively reads the following datum in case-
sensitive mode.

Examples:
Apple reads equal to (string->symbol "Apple")
Ap#ple reads equal to (string->symbol "Ap#ple")
Ap ple reads equal to (string->symbol "Ap")
Ap| |ple reads equal to (string->symbol "Ap ple")
Ap\ ple reads equal to (string->symbol "Ap ple")
#ci Apple reads equal to (string->symbol "apple")
#ci |A|pple reads equal to (string->symbol "Apple")
#ci \Apple reads equal to (string->symbol "Apple")
#ci#cs Apple reads equal to (string->symbol "Apple")
#%Apple reads equal to (string->symbol "#%Apple")

1.3.3 Reading Numbers
§3.2 “Numbers” in
The Racket Guide
introduces the
syntax of numbers.

A sequence that does not start with a delimiter is parsed as a number when it matches the
following grammar case-insensitively for xnumber10y (decimal), where n is a meta-meta-
variable in the grammar. The resulting number is interned in read-syntax mode.

53

A number is optionally prefixed by an exactness specifier, #e (exact) or #i (inexact), which
specifies its parsing as an exact or inexact number; see §4.2 “Numbers” for information
on number exactness. As the non-terminal names suggest, a number that has no exactness
specifier and matches only xinexact-numberny is normally parsed as an inexact number, oth-
erwise it is parsed as an exact number. If the read-decimal-as-inexact parameter is set
to #f, then all numbers without an exactness specifier are instead parsed as exact.

If the reader encounters #b (binary), #o (octal), #d (decimal), or #x (hexadecimal), it must be
followed by a sequence that is terminated by a delimiter or end-of-file, and that is either an
extflonum (see §1.3.4 “Reading Extflonums”) or matches the xgeneral-number2y, xgeneral-
number8y, xgeneral-number10y, or xgeneral-number16y grammar, respectively.

A #e or #i followed immediately by #b, #o, #d, or #x is treated the same as the reverse
order: #b, #o, #d, or #x followed by #e or #i.

An xexponent-markny in an inexact number serves both to specify an exponent and to spec-
ify a numerical precision. If single-flonums are supported (see §4.2 “Numbers”) and the
read-single-flonum parameter is set to #t, the marks f and s specify single-flonums. If
read-single-flonum is set to #f, or with any other mark, a double-precision flonum is
produced. If single-flonums are not supported and read-single-flonum is set to #t, then
the exn:fail:unsupported exception is raised when a single-flonum would otherwise be
produced. Special infinity and not-a-number flonums and single-flonums are distinct; spe-
cials with the .0 suffix, like +nan.0, are double-precision flonums, while specials with the
.f suffix, like +nan.0, are single-flonums if enabled though read-single-flonum.

A # in an xinexactny number is the same as 0, but # can be used to suggest that the digit’s
actual value is unknown.

All letters in a number representation are parsed case-insensitively, independent of the
read-case-sensitive parameter. For example, #I#D+InF.F+3I is parsed the same as
#i#d+inf.f+3i. In the grammar below, each literal lowercase letter stands for both itself
and its uppercase form.

xnumberny ::= xexactny | xinexactny
xexactny ::= xexact-rationalny | xexact-complexny

xexact-rationalny ::= [xsigny] xunsigned-rationalny
xunsigned-rationalny ::= xunsigned-integerny

| xunsigned-integerny / xunsigned-integerny

xexact-integerny ::= [xsigny] xunsigned-integerny

xunsigned-integerny ::= xdigitny+

xexact-complexny ::= xexact-rationalny xsigny xunsigned-rationalny i
xinexactny ::= xinexact-realny | xinexact-complexny

xinexact-realny ::= [xsigny] xinexact-normalny
| xsigny xinexact-specialny

xinexact-unsignedny ::= xinexact-normalny | xinexact-specialny
xinexact-normalny ::= xinexact-simpleny [xexp-markny xexact-integerny]
xinexact-simpleny ::= xdigits#ny [.] #*

54

| [xunsigned-integerny] . xdigits#ny

| xdigits#ny / xdigits#ny

xinexact-specialny ::= inf.0 | nan.0 | inf.f | nan.f
xdigits#ny ::= xdigitny+ #*
xinexact-complexny ::= [xinexact-realny] xsigny xinexact-unsignedny i

| xinexact-realny @ xinexact-realny
xsigny ::= + | -
xdigit16y ::= xdigit10y | a | b | c | d | e | f
xdigit10y ::= xdigit8y | 8 | 9
xdigit8y ::= xdigit2y | 2 | 3 | 4 | 5 | 6 | 7
xdigit2y ::= 0 | 1
xexp-mark16y ::= s | l
xexp-mark10y ::= xexp-mark16y | d | e | f
xexp-mark8y ::= xexp-mark10y

xexp-mark2y ::= xexp-mark10y

xgeneral-numberny ::= [xexactnessy] xnumberny

xexactnessy ::= #e | #i

Examples:
-1 reads equal to -1
1/2 reads equal to (/ 1 2)
1.0 reads equal to (exact->inexact 1)
1+2i reads equal to (make-rectangular 1 2)
1/2+3/4i reads equal to (make-rectangular (/ 1 2) (/ 3 4))
1.0+3.0e7i reads equal to (exact->inexact (make-rectangular 1 30000000))
2e5 reads equal to (exact->inexact 200000)
#i5 reads equal to (exact->inexact 5)
#e2e5 reads equal to 200000
#x2e5 reads equal to 741
#b101 reads equal to 5

1.3.4 Reading Extflonums

An extflonum has the same syntax as an xinexact-realny that includes an xexp-markny, but
with t or T in place of the xexp-markny. In addition, +inf.t, -inf.t, +nan.t, -nan.t are
extflonums. A #b (binary), #o (octal), #d (decimal), or #x (hexadecimal) radix specification
can prefix an extflonum, but #i or #e cannot, and a extflonum cannot be used to form a
complex number. The read-decimal-as-inexact parameter has no effect on extflonum
reading.

55

1.3.5 Reading Booleans

A #true, #t, #T followed by a delimiter is the input syntax for the boolean constant “true,”
and #false, #f, or #F followed by a delimiter is the complete input syntax for the boolean
constant “false.”

1.3.6 Reading Pairs and Lists

When the reader encounters a (, [, or {, it starts parsing a pair or list; see §4.9 “Pairs and
Lists” for information on pairs and lists.

To parse the pair or list, the reader recursively reads data until a matching),], or } (respec-
tively) is found, and it specially handles a delimited .. Pairs (), [], and {} are treated the
same way, so the remainder of this section simply uses “parentheses” to mean any of these
pair.

If the reader finds no delimited . among the elements between parentheses, then it produces
a list containing the results of the recursive reads.

If the reader finds two data between the matching parentheses that are separated by a de-
limited ., then it creates a pair. More generally, if it finds two or more data where the last
datum is preceded by a delimited ., then it constructs nested pairs: the next-to-last element
is paired with the last, then the third-to-last datum is paired with that pair, and so on.

If the reader finds three or more data between the matching parentheses, and if a pair of
delimited .s surrounds any other than the first and last elements, the result is a list containing
the element surrounded by .s as the first element, followed by the others in the read order.
This convention supports a kind of infix notation at the reader level.

In read-syntax mode, the recursive reads for the pair/list elements are themselves in read-
syntax mode, so that the result is a list or pair of syntax objects that is itself wrapped as
a syntax object. If the reader constructs nested pairs because the input included a single
delimited ., then only the innermost pair and outermost pair are wrapped as syntax objects.

Whether wrapping a pair or list, if the pair or list was formed with [and], then a 'paren-
shape property is attached to the result with the value #\[. If the read-square-bracket-
with-tag parameter is set to #t, then the resulting pair or list is wrapped by the equivalent
of (cons '#%brackets pair-or-list).

Similarly, if the list or pair was formed with { and }, then a 'paren-shape property is
attached to the result with the value #\{. If the read-curly-brace-with-tag parameter
is set to #t, then the resulting pair or list is wrapped by the equivalent of (cons '#%braces
pair-or-list).

If a delimited . appears in any other configuration, then the exn:fail:read exception is

56

raised. Similarly, if the reader encounters a),], or } that does not end a list being parsed,
then the exn:fail:read exception is raised.

Examples:
() reads equal to (list)
(1 2 3) reads equal to (list 1 2 3)
{1 2 3} reads equal to (list 1 2 3)
[1 2 3] reads equal to (list 1 2 3)
(1 (2) 3) reads equal to (list 1 (list 2) 3)
(1 . 3) reads equal to (cons 1 3)
(1 . (3)) reads equal to (list 1 3)
(1 . 2 . 3) reads equal to (list 2 1 3)

If the read-square-bracket-as-paren and read-square-bracket-with-tag param-
eters are set to #f, then when the reader encounters [and], the exn:fail:read exception
is raised. Similarly, if the read-curly-brace-as-paren and read-curly-brace-with-
tag parameters are set to #f, then when the reader encounters { and }, the exn:fail:read
exception is raised.

If the read-accept-dot parameter is set to #f, then a delimited . triggers an
exn:fail:read exception. If the read-accept-infix-dot parameter is set to #f, then
multiple delimited .s trigger an exn:fail:read exception, instead of the infix conversion.

1.3.7 Reading Strings
§3.4 “Strings
(Unicode)” in The
Racket Guide
introduces the
syntax of strings.

When the reader encounters ", it begins parsing characters to form a string. The string
continues until it is terminated by another " (that is not escaped by \). The resulting string
is interned in read-syntax mode.

Within a string sequence, the following escape sequences are recognized:

• \a: alarm (ASCII 7)

• \b: backspace (ASCII 8)

• \t: tab (ASCII 9)

• \n: linefeed (ASCII 10)

• \v: vertical tab (ASCII 11)

• \f: formfeed (ASCII 12)

• \r: return (ASCII 13)

• \e: escape (ASCII 27)

• \": double-quotes (without terminating the string)

57

• \': quote (i.e., the backslash has no effect)

• \\: backslash (i.e., the second is not an escaping backslash)

• \xdigit8y{1,3}: Unicode for the octal number specified by digit8{1,3} (i.e., 1 to 3
xdigit8ys), where each xdigit8y is 0, 1, 2, 3, 4, 5, 6, or 7. A longer form takes prece-
dence over a shorter form, and the resulting octal number must be between 0 and 255
decimal, otherwise the exn:fail:read exception is raised.

• \xxdigit16y
{1,2}: Unicode for the hexadecimal number specified by xdigit16y

{1,2},
where each xdigit16y is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, or f (case-insensitive).
The longer form takes precedence over the shorter form.

• \uxdigit16y
{1,4}: like \x, but with up to four hexadecimal digits (longer sequences

take precedence). The resulting hexadecimal number must be a valid argument to
integer->char, otherwise the exn:fail:read exception is raised—unless the en-
coding continues with another \u to form a surrogate-style encoding.

• \uxdigit16y
{4,4}\uxdigit16y

{4,4}: like \u, but for two hexadecimal numbers, where
the first is in the range #xD800 to #xDBFF and the second is in the range #xDC00 to
#xDFFF; the resulting character is the one represented by the numbers as a UTF-16
surrogate pair.

• \Uxdigit16y
{1,8}: like \x, but with up to eight hexadecimal digits (longer sequences

take precedence). The resulting hexadecimal number must be a valid argument to
integer->char, otherwise the exn:fail:read exception is raised.

• \xnewliney: elided, where xnewliney is either a linefeed, carriage return, or carriage
return–linefeed combination. This convention allows single-line strings to span mul-
tiple lines in the source.

If the reader encounters any other use of a backslash in a string constant, the
exn:fail:read exception is raised. §3.5 “Bytes and

Byte Strings” in
The Racket Guide
introduces the
syntax of byte
strings.

A string constant preceded by # is parsed as a byte string. (That is, #" starts a byte-string
literal.) See §4.4 “Byte Strings” for information on byte strings. The resulting byte string is
interned in read-syntax mode. Byte-string constants support the same escape sequences
as character strings, except \u and \U. Otherwise, each character within the byte-string
quotes must have a Unicode code-point number in the range 0 to 255, which is used as the
corresponding byte’s value; if a character is not in that range, the exn:fail:read exception
is raised.

When the reader encounters #<<, it starts parsing a here string. The characters following
#<< until a newline character define a terminator for the string. The content of the string
includes all characters between the #<< line and a line whose only content is the specified
terminator. More precisely, the content of the string starts after a newline following #<<,
and it ends before a newline that is followed by the terminator, where the terminator is itself
followed by either a newline or end-of-file. No escape sequences are recognized between

58

the starting and terminating lines; all characters are included in the string (and terminator)
literally. A return character is not treated as a line separator in this context. If no characters
appear between #<< and a newline or end-of-file, or if an end-of-file is encountered before a
terminating line, the exn:fail:read exception is raised.

Examples:
"Apple" reads equal to "Apple"
"\x41pple" reads equal to "Apple"
"\"Apple\"" reads equal to "\x22Apple\x22"
"\\" reads equal to "\x5C"
#"Apple" reads equal to (bytes 65 112 112 108 101)

1.3.8 Reading Quotes

When the reader encounters ', it recursively reads one datum and forms a new list containing
the symbol 'quote and the following datum. This convention is mainly useful for reading
Racket code, where 's can be used as a shorthand for (quote s).

Several other sequences are recognized and transformed in a similar way. Longer prefixes
take precedence over short ones:

' adds quote
` adds quasiquote
, adds unquote
,@ adds unquote-splicing
#' adds syntax
#` adds quasisyntax
#, adds unsyntax
#,@ adds unsyntax-splicing

Examples:
'apple reads equal to (list 'quote 'apple)
`(1 ,2) reads equal to (list 'quasiquote (list 1 (list 'unquote 2)))

The `, ,, and ,@ forms are disabled when the read-accept-quasiquote parameter is set
to #f, in which case the exn:fail:read exception is raised instead.

1.3.9 Reading Comments

A ; starts a line comment. When the reader encounters ;, it skips past all characters until the
next linefeed (ASCII 10), carriage return (ASCII 13), next-line (Unicode 133), line-separator
(Unicode 8232), or paragraph-separator (Unicode 8233) character.

A #| starts a nestable block comment. When the reader encounters #|, it skips past all

59

characters until a closing |#. Pairs of matching #| and |# can be nested.

A #; starts an S-expression comment. When the reader encounters #;, it recursively reads
one datum, and then discards it (continuing on to the next datum for the read result).

A #! (which is #! followed by a space) or #!/ starts a line comment that can be continued
to the next line by ending a line with \. This form of comment normally appears at the
beginning of a Unix script file.

Examples:
; comment reads equal to nothing
#| a |# 1 reads equal to 1
#| #| a |# 1 |# 2 reads equal to 2
#;1 2 reads equal to 2
#!/bin/sh reads equal to nothing
#! /bin/sh reads equal to nothing

1.3.10 Reading Vectors

When the reader encounters a #(, #[, or #{, it starts parsing a vector; see §4.11 “Vectors”
for information on vectors. A #fl in place of # starts an flvector, but is not allowed in read-
syntax mode; see §4.2.3.2 “Flonum Vectors” for information on flvectors. A #fx in place
of # starts an fxvector, but is not allowed in read-syntax mode; see §4.2.4.2 “Fixnum
Vectors” for information on fxvectors. The #[, #{, #fl[, #fl{, #fx[, and #fx{ forms can
be disabled through the read-square-bracket-as-paren and read-curly-brace-as-
paren parameters.

The elements of the vector are recursively read until a matching),], or } is found, just as for
lists (see §1.3.6 “Reading Pairs and Lists”). A delimited . is not allowed among the vector
elements. In the case of flvectors, the recursive read for element is implicitly prefixed with
#i and must produce a flonum. In the case of fxvectors, the recursive read for element is
implicitly prefixed with #e and must produce a fixnum.

An optional vector length can be specified between #, #fl, #fx and (, [, or {. The size
is specified using a sequence of decimal digits, and the number of elements provided for
the vector must be no more than the specified size. If fewer elements are provided, the last
provided element is used for the remaining vector slots; if no elements are provided, then 0
is used for all slots.

In read-syntax mode, each recursive read for vector elements is also in read-syntax
mode, so that the wrapped vector’s elements are also wrapped as syntax objects, and the
vector is immutable.

Examples:
#(1 apple 3) reads equal to (vector 1 'apple 3)
#3("apple" "banana") reads equal to (vector "apple" "banana" "banana")

60

#3() reads equal to (vector 0 0 0)

1.3.11 Reading Structures

When the reader encounters a #s(, #s[, or #s{, it starts parsing an instance of a prefab
structure type; see §5 “Structures” for information on structure types. The #s[and #s{
forms can be disabled through the read-square-bracket-as-paren and read-curly-
brace-as-paren parameters.

The elements of the structure are recursively read until a matching),], or } is found, just as
for lists (see §1.3.6 “Reading Pairs and Lists”). A single delimited . is not allowed among
the elements, but two .s can be used as in a list for an infix conversion.

The first element is used as the structure descriptor, and it must have the form (when quoted)
of a possible argument to make-prefab-struct; in the simplest case, it can be a symbol.
The remaining elements correspond to field values within the structure.

In read-syntax mode, the structure type must not have any mutable fields. The structure’s
elements are read in read-syntax mode, so that the wrapped structure’s elements are also
wrapped as syntax objects.

If the first structure element is not a valid prefab structure type key, or if the number of
provided fields is inconsistent with the indicated prefab structure type, the exn:fail:read
exception is raised.

1.3.12 Reading Hash Tables

A #hash starts an immutable hash-table constant with key matching based on equal?. The
characters after hash must parse as a list of pairs (see §1.3.6 “Reading Pairs and Lists”) with
a specific use of delimited .: it must appear between the elements of each pair in the list and
nowhere in the sequence of list elements. The first element of each pair is used as the key
for a table entry, and the second element of each pair is the associated value.

A #hasheq starts a hash table like #hash, except that it constructs a hash table based on eq?
instead of equal?.

A #hasheqv starts a hash table like #hash, except that it constructs a hash table based on
eqv? instead of equal?.

In all cases, the table is constructed by adding each mapping to the hash table from left to
right, so later mappings can hide earlier mappings if the keys are equivalent.

Examples, where make-... stands for make-immutable-hash:
#hash() reads equal to (make-... '())

61

#hasheq() reads equal to (make-...eq '())
#hash(("a" . 5)) reads equal to (make-... '(("a" . 5)))
#hasheq((a . 5) (b . 7)) reads equal to (make-...eq '((a . 5) (b . 7)))
#hasheq((a . 5) (a . 7)) reads equal to (make-...eq '((a . 7)))

1.3.13 Reading Boxes

When the reader encounters a #&, it starts parsing a box; see §4.12 “Boxes” for information
on boxes. The content of the box is determined by recursively reading the next datum.

In read-syntax mode, the recursive read for the box content is also in read-syntax mode,
so that the wrapped box’s content is also wrapped as a syntax object, and the box is im-
mutable.

Examples:
#&17 reads equal to (box 17)

1.3.14 Reading Characters
§3.3 “Characters”
in The Racket
Guide introduces
the syntax of
characters.

A #\ starts a character constant, which has one of the following forms:

• #\nul or #\null: NUL (ASCII 0); the next character must not be alphabetic.

• #\backspace: backspace (ASCII 8); the next character must not be alphabetic.

• #\tab: tab (ASCII 9); the next character must not be alphabetic.

• #\newline or #\linefeed: linefeed (ASCII 10); the next character must not be
alphabetic.

• #\vtab: vertical tab (ASCII 11); the next character must not be alphabetic.

• #\page: page break (ASCII 12); the next character must not be alphabetic.

• #\return: carriage return (ASCII 13); the next character must not be alphabetic.

• #\space: space (ASCII 32); the next character must not be alphabetic.

• #\rubout: delete (ASCII 127); the next character must not be alphabetic.

• #\xdigit8y{3,3}: Unicode for the octal number specified by three octal digits—as in
string escapes (see §1.3.7 “Reading Strings”), but constrained to exactly three digits.

• #\uxdigit16y
{1,4}: Unicode for the hexadecimal number specified by xdigit16y

{1,4}, as
in string escapes (see §1.3.7 “Reading Strings”).

• #\Uxdigit16y
{1,6}: like #\u, but with up to six hexadecimal digits.

62

• #\xcy: the character xcy, as long as #\xcy and the characters following it do not match
any of the previous cases, and as long as xcy or the character after xcy is not alphabetic.

Examples:
#\newline reads equal to (integer->char 10)
#\n reads equal to (integer->char 110)
#\u3BB reads equal to (integer->char 955)
#\λ reads equal to (integer->char 955)

1.3.15 Reading Keywords

A #: starts a keyword. The parsing of a keyword after the #: is the same as for a symbol,
including case-folding in case-insensitive mode, except that the part after #: is never parsed
as a number. The resulting keyword is interned.

Examples:
#:Apple reads equal to (string->keyword "Apple")
#:1 reads equal to (string->keyword "1")

1.3.16 Reading Regular Expressions

A #rx or #px starts a regular expression. The characters immediately after #rx or #px must
parse as a string or byte string (see §1.3.7 “Reading Strings”). A #rx prefix starts a regular
expression as would be constructed by regexp, #px as constructed by pregexp, #rx# as
constructed by byte-regexp, and #px# as constructed by byte-pregexp. The resulting
regular expression is interned in read-syntax mode.

Examples:
#rx".*" reads equal to (regexp ".*")
#px"[\\s]*" reads equal to (pregexp "[\\s]*")
#rx#".*" reads equal to (byte-regexp #".*")
#px#"[\\s]*" reads equal to (byte-pregexp #"[\\s]*")

1.3.17 Reading Graph Structure

A #xdigit10y
{1,8}= tags the following datum for reference via #xdigit10y

{1,8}#, which allows
the reader to produce a datum that has graph structure. Neither form is allowed in read-
syntax mode.

For a specific xdigit10y
{1,8} in a single read result, each #xdigit10y

{1,8}# reference is replaced
by the datum read for the corresponding #xdigit10y

{1,8}=; the definition #xdigit10y
{1,8}=

also produces just the datum after it. A #xdigit10y
{1,8}= definition can appear at most once,

63

and a #xdigit10y
{1,8}= definition must appear before a #xdigit10y

{1,8}# reference appears,
otherwise the exn:fail:read exception is raised. If the read-accept-graph parameter
is set to #f, then #xdigit10y

{1,8}= or #xdigit10y
{1,8}# triggers a exn:fail:read exception.

Although a comment parsed via #; discards the datum afterward, #xdigit10y
{1,8}= definitions

in the discarded datum still can be referenced by other parts of the reader input, as long as
both the comment and the reference are grouped together by some other form (i.e., some
recursive read); a top-level #; comment neither defines nor uses graph tags for other top-
level forms.

Examples:
(#1=100 #1# #1#) reads equal to (list 100 100 100)
#0=(1 . #0#) reads equal to (let* ([ph (make-placeholder #f)]

[v (cons 1 ph)])
(placeholder-set! ph v)
(make-reader-graph v))

1.3.18 Reading via an Extension
§17.2 “Reader
Extensions” in The
Racket Guide
introduces reader
extension.

When the reader encounters #reader, it loads an external reader procedure and applies it to
the current input stream.

The reader recursively reads the next datum after #reader, and passes it to the procedure
that is the value of the current-reader-guard parameter; the result is used as a module
path. The module path is passed to dynamic-require with either 'read or 'read-syntax
(depending on whether the reader is in read or read-syntax mode). The module is loaded
in a root namespace of the current namespace.

The arity of the resulting procedure determines whether it accepts extra source-location in-
formation: a read procedure accepts either one argument (an input port) or five, and a
read-syntax procedure accepts either two arguments (a name value and an input port) or
six. In either case, the four optional arguments are the reader’s module path (as a syntax
object in read-syntax mode) followed by the line (positive exact integer or #f), column
(non-negative exact integer or #f), and position (positive exact integer or #f) of the start of
the #reader form. The input port is the one whose stream contained #reader, where the
stream position is immediately after the recursively read module path.

The procedure should produce a datum result. If the result is a syntax object in read mode,
then it is converted to a datum using syntax->datum; if the result is not a syntax object in
read-syntax mode, then it is converted to one using datum->syntax. See also §13.7.2
“Reader-Extension Procedures” for information on the procedure’s results.

If the read-accept-reader parameter is set to #f, then if the reader encounters #reader,
the exn:fail:read exception is raised. §6.2.2 “The #lang

Shorthand” in The
Racket Guide
introduces #lang.

64

The #lang reader form is similar to #reader, but more constrained: the #lang must be
followed by a single space (ASCII 32), and then a non-empty sequence of alphanumeric
ASCII, +, -, _, and/or / characters terminated by whitespace or an end-of-file. The se-
quence must not start or end with /. A sequence #lang xnamey is equivalent to either
#reader (submod xnamey reader) or #reader xnamey/lang/reader, where the for-
mer is tried first guarded by a module-declared? check (but after filtering by current-
reader-guard, so both are passed to the value of current-reader-guard if the latter
is used). Note that the terminating whitespace (if any) is not consumed before the external
reading procedure is called. §17.3 “Defining

new #lang
Languages” in The
Racket Guide
introduces the
creation languages
for #lang.

Finally, #! is an alias for #lang followed by a space when #! is followed by alphanumeric
ASCII, +, -, or _. Use of this alias is discouraged except as needed to construct programs
that conform to certain grammars, such as that of R6RS [Sperber07]. The

syntax/module-reader
library provides a
domain-specific
language for writing
language readers.

By convention, #lang normally appears at the beginning of a file, possibly after comment
forms, to specify the syntax of a module.

If the read-accept-reader or read-accept-lang parameter is set to #f, then if the
reader encounters #lang or equivalent #!, the exn:fail:read exception is raised.

1.3.19 Reading with C-style Infix-Dot Notation

When the read-cdot parameter is set to #t, then a variety of changes occur in the reader.

First, symbols can no longer include the character ., unless the . is quoted with | or \.

Second, numbers can no longer include the character ., unless the number is prefixed with
#e, #i, #b, #o, #d, #x, or an equivalent prefix as discussed in §1.3.3 “Reading Numbers”. If
these numbers are followed by a . intended to be read as a C-style infix dot, then a delimiter
must precede the ..

Finally, after reading any datum x , the reader will seek through whitespace and comments
and look for zero or more sequences of a . followed by another datum y . It will then group
x and y together in a #%dot form so that x.y reads equal to (#%dot x y).

If x.y has another . after it, the reader will accumulate more .-separated datums, grouping
them from left-to-right. For example, x.y.z reads equal to (#%dot (#%dot x y) z).

In read-syntax mode, the #%dot symbol has the source location information of the .
character and the entire list has the source location information spanning from the start of x
to the end of y .

S-Expression Reader Language

#lang s-exp package: base §17.1.2 “Using
#lang s-exp” in
The Racket Guide
introduces the
s-exp
meta-language.65

https://pkgs.racket-lang.org/package/base

The s-exp “language” is a kind of meta-language. It reads the S-expression that follows
#lang s-exp and uses it as the language of a module form. It also reads all remaining
S-expressions until an end-of-file, using them for the body of the generated module.

That is,

#lang s-exp module-path
form ...

is equivalent to

(module name-id module-path
form ...)

where name-id is derived from the source input port’s name: if the port name is a filename
path, the filename without its directory path and extension is used for name-id , otherwise
name-id is anonymous-module.

Chaining Reader Language

#lang reader package: base §17.3.2 “Using
#lang reader” in
The Racket Guide
introduces the
reader
meta-language.

The reader “language” is a kind of meta-language. It reads the S-expression that follows
#lang reader and uses it as a module path (relative to the module being read) that effec-
tively takes the place of reader. In other words, the reader meta-language generalizes the
syntax of the module specified after #lang to be a module path, and without the implicit
addition of /lang/reader to the path.

1.4 The Printer

The Racket printer supports three modes:

• write mode prints core datatypes in such a way that using read on the output pro-
duces a value that is equal? to the printed value;

• display mode prints core datatypes in a more “end-user” style rather than “program-
mer” style; for example, a string displays as its content characters without surround-
ing "s or escapes;

• print mode by default—when print-as-expression is #t—prints most datatypes
in such a way that evaluating the output as an expression produces a value that is
equal? to the printed value; when print-as-expression is set to #f, then print
mode is like write mode.

66

https://pkgs.racket-lang.org/package/base

In print mode when print-as-expression is #t (as is the default), a value prints at a
quoting depth of either 0 (unquoted) or 1 (quoted). The initial quoting depth is accepted as
an optional argument by print, and printing of some compound datatypes adjusts the print
depth for component values. For example, when a list is printed at quoting depth 0 and all
of its elements are quotable, the list is printed with a ' prefix, and the list’s elements are
printed at quoting depth 1.

When the print-graph parameter is set to #t, then the printer first scans an object to detect
cycles. The scan traverses the components of pairs, mutable pairs, vectors, boxes (when
print-box is #t), hash tables (when print-hash-table is #t and when key are held
strongly), fields of structures exposed by struct->vector (when print-struct is #t),
and fields of structures exposed by printing when the structure’s type has the prop:custom-
write property. If print-graph is #t, then this information is used to print sharing through
graph definitions and references (see §1.3.17 “Reading Graph Structure”). If a cycle is
detected in the initial scan, then print-graph is effectively set to #t automatically.

With the exception of displaying byte strings, printing is defined in terms of Unicode char-
acters; see §13.1 “Ports” for information on how a character stream is written to a port’s
underlying byte stream.

1.4.1 Printing Symbols

Symbols containing spaces or special characters write using escaping \ and quoting |s.
When the read-case-sensitive parameter is set to #f, then symbols containing upper-
case characters also use escaping \ and quoting |s. In addition, symbols are quoted with
|s or leading \ when they would otherwise print the same as a numerical constant or as a
delimited . (when read-accept-dot is #t).

When read-accept-bar-quote is #t, |s are used in printing when one | at the beginning
and one | at the end suffice to correctly print the symbol. Otherwise, \s are always used to
escape special characters, instead of quoting them with |s.

When read-accept-bar-quote is #f, then | is not treated as a special character. The
following are always special characters:

() [] { } " , ' ` ; \

In addition, # is a special character when it appears at the beginning of the symbol, and when
it is not followed by %.

Symbols display without escaping or quoting special characters. That is, the display form
of a symbol is the same as the display form of symbol->string applied to the symbol.

Symbols print the same as they write, unless print-as-expression is set to #t (as is
the default) and the current quoting depth is 0. In that case, the symbol’s printed form is

67

prefixed with '. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.2 Printing Numbers

A number prints the same way in write, display, and print modes. For the purposes of
printing enclosing datatypes, a number is quotable.

A complex number that is not a real number always prints as xmy+xnyi or xmy-xnyi, where
xmy and xny (for a non-negative imaginary part) or -xny (for a negative imaginary part) are
the printed forms of its real and imaginary parts, respectively.

An exact 0 prints as 0. A positive, exact integer prints as a sequence of digits that does
not start with 0. A positive, exact, real, non-integer number prints as xmy/xny, where xmy
and xny are the printed forms of the number’s numerator and denominator (as determined
by numerator and denominator). A negative exact number prints with a - prefix on the
printed form of the number’s exact negation. When printing a number as hexadecimal (e.g.,
via number->string), digits a though f are printed in lowercase. A #e or radix marker
such as #d does not prefix the number.

A double-precision inexact number (i.e., a flonum) that is a rational number prints with
either a . decimal point, an e exponent marker and non-zero exponent, or both. The form
is selected to keep the output short, with the constraint that reading the printed form back in
produces an equal? number. A #i does not prefix the number, and # is never used in place
of a digit. A + does not prefix a positive number, but a + or - is printed before the exponent
if e is present. Positive infinity prints as +inf.0, negative infinity prints as -inf.0, and
not-a-number prints as +nan.0.

A single-precision inexact number that is a rational number prints like a double-precision
number, but always with an exponent, using f in place of e to indicate the number’s preci-
sion; if the number would otherwise print without an exponent, 0 (with no +) is printed as the
exponent part. Single-precision positive infinity prints as +inf.f, negative infinity prints as
-inf.f, and not-a-number prints as +nan.f.

1.4.3 Printing Extflonums

An extflonum prints the same way in write, display, and print modes. For the purposes
of printing enclosing datatypes, an extflonum is quotable.

An extflonum prints in the same way a single-precision inexact number (see §1.4.2 “Printing
Numbers”), but always with a t or T exponent marker or as a suffix for +inf.t, -inf.t, or
+nan.t. When extflonum operations are supported, printing always uses lowercase t; when
extflonum operations are not supported, an extflonum prints the same as its reader (see §1.3
“The Reader”) source, since reading is the only way to produce an extflonum.

68

1.4.4 Printing Booleans

The boolean constant #t prints as #true or #t in all modes (display, write, and print),
depending on the value of print-boolean-long-form, and the constant #f prints as
#false or #f. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.5 Printing Pairs and Lists

In write and display modes, an empty list prints as (). A pair normally prints starting
with (followed by the printed form of its car. The rest of the printed form depends on the
cdr:

• If the cdr is a pair or the empty list, then the printed form of the pair completes with
the printed form of the cdr, except that the leading (in the cdr’s printed form is
omitted.

• Otherwise, the printed for of the pair continues with a space, ., another space, the
printed form of the cdr, and a).

If print-reader-abbreviations is set to #t, then pair printing in write mode is ad-
justed in the case of a pair that starts a two-element list whose first element is 'quote,
'quasiquote, 'unquote, 'unquote-splicing, 'syntax, 'quasisyntax, 'unsyntax,
or 'unsyntax-splicing. In that case, the pair is printed with the corresponding reader
syntax: ', `, ,, ,@, #', #`, #,, or #,@, respectively. After the reader syntax, the second
element of the list is printed. When the list is a tail of an enclosing list, the tail is printed af-
ter a . in the enclosing list (after which the reader abbreviations work), instead of including
the tail as two elements of the enclosing list. If the reader syntax , or #, is followed by a
symbol that prints with a leading @, then the printer adds an extra space before the @.

The printed form of a pair is the same in both write and display modes, except as the
printed form of the pair’s car and cdr vary with the mode. The print form is also the same
if print-as-expression is #f or the quoting depth is 1.

For print mode when print-as-expression is #t and the quoting depth is 0, then the
empty list prints as '(). For a pair whose car and cdr are quotable, the pair prints in write
mode but with a ' prefix; the pair’s content is printed with quoting depth 1. Otherwise,
when the car or cdr is not quotable, then pair prints with either cons (when the cdr is
not a pair), list (when the pair is a list), or list* (otherwise) after the opening (, any
. that would otherwise be printed is suppressed, and the pair content is printed at quoting
depth 0. In all cases, when print-as-expression is #t for print mode, then the value
of print-reader-abbreviations is ignored and reader abbreviations are always used for
lists printed at quoting depth 1.

By default, mutable pairs (as created with mcons) print the same as pairs for write and

69

display, except that { and } are used instead of (and). Note that the reader treats {...}
and (...) equivalently on input, creating immutable pairs in both cases. Mutable pairs in
print mode with print-as-expression as #f or a quoting depth of 1 also use { and }.
In print mode with print-as-expression as #t and a quoting depth of 0, a mutable pair
prints as (mcons , the mcar and mcdr printed at quoting depth 0 and separated by a space,
and a closing).

If the print-pair-curly-braces parameter is set to #t, then pairs print using { and }
when not using print mode with print-as-expression as #t and a quoting depth of 0.
If the print-mpair-curly-braces parameter is set to #f, then mutable pairs print using
(and) in that mode.

For the purposes of printing enclosing datatypes, an empty list is always quotable, a pair is
quotable when its car and cdr are quotable, and a mutable list is never quotable.

Changed in version 6.9.0.6 of package base: Added a space when printing , or #, followed by a symbol that prints
with a leading @.

1.4.6 Printing Strings

All strings display as their literal character sequences.

The write or print form of a string starts with " and ends with another ". Between the
"s, each character is represented. Each graphic or blank character is represented as itself,
with two exceptions: " is printed as \", and \ is printed as \\. Each non-graphic, non-blank
character (according to char-graphic? and char-blank?) is printed using the escape se-
quences described in §1.3.7 “Reading Strings”, using \a, \b, \t, \n, \v, \f, \r, or \e
if possible, otherwise using \u with four hexadecimal digits or \U with eight hexadecimal
digits (using the latter only if the character value does not fit into four digits).

All byte strings display as their literal byte sequence; this byte sequence may not be a valid
UTF-8 encoding, so it may not correspond to a sequence of characters.

The write or print form of a byte string starts with #" and ends with a ". Between the "s,
each byte is written using the corresponding ASCII decoding if the byte is between 0 and
127 and the character is graphic or blank (according to char-graphic? and char-blank?).
Otherwise, the byte is written using \a, \b, \t, \n, \v, \f, \r, or \e if possible, otherwise
using \ followed by one to three octal digits (only as many as necessary).

For the purposes of printing enclosing datatypes, a string or a byte string is quotable.

70

1.4.7 Printing Vectors

In display mode, the printed form of a vector is # followed by the printed form of vector-
>list applied to the vector. In write mode, the printed form is the same, except that when
the print-vector-length parameter is #t, a decimal integer is printed after the #, and a
repeated last element is printed only once.

Vectors print the same as they write, unless print-as-expression is set to #t and the
current quoting depth is 0. In that case, if all of the vector’s elements are quotable, then the
vector’s printed form is prefixed with ' and its elements printed with quoting depth 1. If its
elements are not all quotable, then the vector prints as (vector , the elements at quoting
depth 0, and a closing). A vector is quotable when all of its elements are quotable.

In write or display mode, a flvector prints like a vector, but with a #fl prefix instead of
#. A fxvector similarly prints with a #fx prefix instead of #. The print-vector-length
parameter affects flvector and fxvector printing the same as vector printing. In print mode,
flvectors and fxvectors are not quotable, and they print like a vector at quoting depth 0 using
a (flvector or (fxvector prefix, respectively.

1.4.8 Printing Structures

When the print-struct parameter is set to #t, then the way that structures print depends
on details of the structure type for which the structure is an instance:

• If the structure type is a prefab structure type, then it prints in write or display
mode using #s(followed by the prefab structure type key, then the printed form of
each field in the structure, and then).

In print mode when print-as-expression is set to #t and the current quoting
depth is 0, if the structure’s content is all quotable, then the structure’s printed form
is prefixed with ' and its content is printed with quoting depth 1. If any of its content
is not quotable, then the structure type prints the same as a non-prefab structure type.

An instance of a prefab structure type is quotable when all of its content is quotable.

• If the structure has a prop:custom-write property value, then the associated proce-
dure is used to print the structure, unless the print-unreadable parameter is set to
#f.

For print mode, an instance of a structure type with a prop:custom-write property
is treated as quotable if it has the prop:custom-print-quotable property with a
value of 'always. If it has 'maybe as the property value, then the structure is treated
as quotable if its content is quotable, where the content is determined by the values
recursively printed by the structure’s prop:custom-write procedure. Finally, if the
structure has 'self as the property value, then it is treated as quotable.

71

In print mode when print-as-expression is #t, the structure’s prop:custom-
write procedure is called with either 0 or 1 as the quoting depth, normally depending
on the structure’s prop:custom-print-quotable property value. If the property
value is 'always, the quoting depth is normally 1. If the property value is 'maybe,
then the quoting depth is 1 if the structure is quotable, or normally 0 otherwise. If
the property value is 'self, then the quoting depth may be 0 or 1; it is normally 0
if the structure is not printed as a part of an enclosing quotable value, even though
the structure is treated as quotable. Finally, if the property value is 'never, then the
quoting depth is normally 0. The quoting depth can vary from its normal value if the
structure is printed with an explicit quoting depth of 1.

• If the structure’s type is transparent or if any ancestor is transparent (i.e., struct? on
the instance produces #t), then the structure prints as the vector produced by struct-
>vector in display mode, in write mode, or in print mode when print-as-
expression is set to #f or when the quoting depth is 0.

In print mode with print-as-expression as #t and a quoting depth of 0, the
structure content is printed with a (followed by the structure’s type name (as de-
termined by object-name) in write mode; the remaining elements are printed at
quoting depth 0 and separated by a space, and finally a closing).

A transparent structure type that is not a prefab structure type is never quotable.

• For any other structure type, the structure prints as an unreadable value; see §1.4.15
“Printing Unreadable Values” for more information.

If the print-struct parameter is set to #f, then all structures without a prop:custom-
write property print as unreadable values (see §1.4.15 “Printing Unreadable Values”) and
count as quotable.

1.4.9 Printing Hash Tables

When the print-hash-table parameter is set to #t, in write and display modes, a hash
table prints starting with #hash(, #hasheqv(, or #hasheq(for a table using equal?, eqv?,
or eq? key comparisons, respectively, as long as the hash table retains keys strongly. After
the prefix, each key–value mapping is shown as (, the printed form of a key, a space, ., a
space, the printed form the corresponding value, and), with an additional space if the key–
value pair is not the last to be printed. After all key–value pairs, the printed form completes
with).

In print mode when print-as-expression is #f or the quoting depth is 1, the printed
form is the same as for write. Otherwise, if the hash table’s keys and values are all quotable,
the table prints with a ' prefix, and the table’s key and values are printed at quoting depth
1. If some key or value is not quotable, the hash table prints as (hash , (hasheqv , or
(hasheq followed by alternating keys and values printed at quoting depth 1 and separated

72

by spaces, and finally a closing). A hash table is quotable when all of its keys and values
are quotable.

When the print-hash-table parameter is set to #f or when a hash table retains its keys
weakly, a hash table prints as #<hash> and counts as quotable.

1.4.10 Printing Boxes

When the print-box parameter is set to #t, a box prints as #& followed by the printed form
of its content in write, display, or print mode when print-as-expression is #f or
the quoting depth is 1.

In print mode when print-as-expression is #t and the quoting depth is 0, a box prints
with a ' prefix and its value is printed at quoting depth 1 when its content is quotable,
otherwise the box prints a (box followed by the content at quoting depth 0 and a closing).
A box is quotable when its content is quotable.

When the print-box parameter is set to #f, a box prints as #<box> and counts as quotable.

1.4.11 Printing Characters

Characters with the special names described in §1.3.14 “Reading Characters” write and
print using the same name. (Some characters have multiple names; the #\newline and
#\nul names are used instead of #\linefeed and #\null.) Other graphic characters (ac-
cording to char-graphic?) write as #\ followed by the single character, and all others
characters are written in #\u notation with four digits or #\U notation with eight digits (us-
ing the latter only if the character value does not fit in four digits).

All characters display directly as themselves (i.e., a single character).

For the purposes of printing enclosing datatypes, a character is quotable.

1.4.12 Printing Keywords

Keywords write, print, and display the same as symbols (see §1.4.1 “Printing Sym-
bols”) except with a leading #: (after any ' prefix added in print mode), and without spe-
cial handling for an initial # or when the printed form would match a number or a delimited
. (since #: distinguishes the keyword).

For the purposes of printing enclosing datatypes, a keyword is quotable.

73

1.4.13 Printing Regular Expressions

Regexp values write, display, and print starting with #px (for pregexp-based regexps)
or #rx (for regexp-based regexps) followed by the write form of the regexp’s source string
or byte string.

For the purposes of printing enclosing datatypes, a regexp value is quotable.

1.4.14 Printing Paths

Paths write and print as #<path:....>. A path displays the same as the string pro-
duced by path->string. For the purposes of printing enclosing datatypes, a path counts as
quotable.

Although a path can be converted to a string with path->string or to a byte string with
path->bytes, neither is clearly the right choice for printing a path and reading it back. If the
path value is meant to be moved among platforms, then a string is probably the right choice,
despite the potential for losing information when converting a path to a string. For a path
that is intended to be re-read on the same platform, a byte string is probably the right choice,
since it preserves information in an unportable way. Paths do not print in a readable way so
that programmers are not misled into thinking that either choice is always appropriate.

1.4.15 Printing Unreadable Values

For any value with no other printing specification, assuming that the print-unreadable
parameter is set to #t, the output form is #<xsomethingy>, where xsomethingy is specific to
the type of the value and sometimes to the value itself. If print-unreadable is set to #f,
then attempting to print an unreadable value raises exn:fail.

For the purposes of printing enclosing datatypes, a value that prints unreadably nevertheless
counts as quotable.

1.4.16 Printing Compiled Code

Compiled code as produced by compile prints using #„. Compiled code printed with #„
is essentially assembly code for Racket, and reading such a form produces a compiled form
when the read-accept-compiled parameter is set to #t.

Compiled code parsed from #„ is marked as non-runnable if the current code inspector (see
current-code-inspector) is not the original code inspector; on attempting to evaluate
or reoptimize non-runnable bytecode, exn:fail exception is raised. Otherwise, compiled
code parsed from #„ may contain references to unexported or protected bindings from a

74

module. Conceptually, the references in bytecode are associated with the current code in-
spector, where the code will only execute if that inspector controls the relevant module in-
vocation (see §14.10 “Code Inspectors”)—but the original code inspector controls all other
inspectors, anyway.

A compiled-form object may contain uninterned symbols (see §4.6 “Symbols”) that were
created by gensym or string->uninterned-symbol. When the compiled object is read
via #„, each uninterned symbol in the original form is mapped to a new uninterned sym-
bol, where multiple instances of a single symbol are consistently mapped to the same new
symbol. The original and new symbols have the same printed representation. Unreadable
symbols, which are typically generated indirectly during expansion and compilation, are
saved and restored consistently through #„.

The dynamic nature of uninterned symbols and their localization within #„ can cause prob-
lems when gensym or string->uninterned-symbol is used to construct an identifier for
a top-level or module binding (depending on how the identifier and its references are com-
piled). To avoid problems, generate distinct identifiers either with generate-temporaries
or by applying the result of make-syntax-introducer to an existing identifier; those func-
tions lead to top-level and module variables with unreadable symbolic names, and the names
are deterministic as long as expansion is otherwise deterministic.

A compiled form may contain path literals. Although paths are not normally printed in a way
that can be read back in, path literals can be written and read as part of compiled code. The
current-write-relative-directory parameter is used to convert the path to a relative
path as is it written, and then current-load-relative-directory parameter is used to
convert any relative path back as it is read. The relative-path conversion applies on reading
whether the path was originally relative or not.

For a path in a syntax object’s source, if the current-load-relative-directory pa-
rameter is not set of the path is not relative to the value of the current-load-relative-
directory parameter, then the path is coerced to a string that preserves only part of the path
(an in effort to make it less tied to the build-time filesystem, which can be different than the
run-time filesystem).

Finally, a compiled form may contain srcloc structures if the source field of the structure is
a path for some system, a string, a byte string, a symbol, or #f. For a path value (matching
the current platform’s convention), if the path cannot be recorded as a relative path based on
current-write-relative-directory, then it is converted to a string with at most two
path elements; if the path contains more than two elements, then the string contains .../,
the next-to-last element, / and the last element. The intent of the constraints on srcloc
values and the conversion of the source field is to preserve some source information but not
expose or record a path that makes no sense on a different filesystem or platform.

For internal testing purposes, when the PLT_VALIDATE_LOAD environment variable is set,
the reader runs a validator on bytecode parsed from #„. The validator may catch mis-
compilations or bytecode-file corruption. The validator may run lazily, such as checking a
procedure only when the procedure is called.

75

Changed in version 6.90.0.21 of package base: Adjusted the effect of changing the code inspector on parsed
bytecode, causing the reader to mark the loaded code as generally unrunnable instead of rejecting at read time
references to unsafe operations.
Changed in version 7.0: Allowed some srcloc values embedded in compiled code.

76

2 Notation for Documentation

This chapter introduces essential terminology and notation that is used throughout Racket
documentation.

2.1 Notation for Module Documentation

Since Racket programs are organized into modules, documentation reflects that organization
with an annotation at the beginning of a section or subsection that describes the bindings that
a particular module provides.

For example, the section that describes the functionality provided by racket/list starts

(require racket/list) package: base

Instead of require, some modules are introduced with #lang:

#lang racket/base package: base

Using #lang means that the module is normally used as the language of a whole module—
that is, by a module that starts #lang followed by the language—instead of imported with
require. Unless otherwise specified, however, a module name documented with #lang can
also be used with require to obtain the language’s bindings.

The module annotation also shows the package that the module belongs to on the right-hand
side. For more details about packages, see Package Management in Racket.

Sometimes, a module specification appears at the beginning of a document or at the start of
a section that contains many subsections. The document’s section or section’s subsections
are meant to “inherit” the module declaration of the enclosing document or section. Thus,
bindings documented in The Racket Reference are available from racket and racket/base
unless otherwise specified in a section or subsection.

2.2 Notation for Syntactic Form Documentation
§4.1 “Notation” in
The Racket Guide
introduces this
notation for
syntactic forms.

Syntactic forms are specified with a grammar. Typically, the grammar starts with an open
parenthesis followed by the syntactic form’s name, as in the grammar for if:

(if test-expr then-expr else-expr)

77

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

Since every form is expressed in terms of syntax objects, parentheses in a grammar specifi-
cation indicate a syntax object wrapping a list, and the leading if is an identifier that starts
the list whose binding is the if binding of the module being documented—in this case,
racket/base. Square brackets in the grammar indicate a syntax-object list in the same way
as parentheses, but in places square brackets are normally used by convention in a program’s
source.

Italic identifiers in the grammar are metavariables that correspond to other grammar produc-
tions. Certain metavariable names have implicit grammar productions:

• A metavariable that ends in id stands for an identifier.

• A metavariable that ends in keyword stands for a syntax-object keyword.

• A metavariable that ends with expr stands for any form, and the form will be parsed
as an expression.

• A metavariable that ends with body stands for any form; the form will be parsed as
either a local definition or an expression. A body can parse as a definition only if it
is not preceded by any expression, and the last body must be an expression; see also
§1.2.3.8 “Internal Definitions”.

• A metavariable that ends with datum stands for any form, and the form is normally
uninterpreted (e.g., quoted).

• A metavariable that ends with number or boolean stands for any syntax-object (i.e.,
literal) number or boolean, respectively.

In a grammar, form ... stands for any number of forms (possibly zero) matching form ,
while form ...+ stands for one or more forms matching form .

Metavariables without an implicit grammar are defined by productions alongside the syntac-
tic form’s overall grammar. For example, in

(lambda formals body ...+)

formals = id
| (id ...)
| (id ...+ . rest-id)

the formals metavariable stands for either an identifier, zero or more identifiers in a syntax-
object list, or a syntax object corresponding to a chain of one or more pairs where the chain
ends in an identifier instead of an empty list.

Some syntactic forms have multiple top-level grammars, in which case the documentation
of the syntactic forms shows multiple grammars. For example,

78

(init-rest id)
(init-rest)

indicates that init-rest can either be alone in its syntax-object list or followed by a single
identifier.

Finally, a grammar specification that includes expr metavariables may be augmented with
run-time contracts on some of the metavariables, which indicate a predicate that the result of
the expression must satisfy at run time. For example,

(parameterize ([parameter-expr value-expr] ...)
body ...+)

parameter-expr : parameter?

indicates that the result of each parameter-expr must be a value v for which
(parameter? v) returns true.

2.3 Notation for Function Documentation

Procedures and other values are described using a notation based on contracts. In essence,
these contracts describe the interfaces of the documented library using Racket predicates and
expressions.

For example, the following is the header of the definition of a typical procedure:

(char->integer char) Ñ exact-integer?
char : char?

The function being defined, char->integer, is typeset as if it were being applied. The
metavariables that come after the function name stand in for arguments. The white text in
the corner identifies the kind of value that is being documented.

Each metavariable is described with a contract. In the preceding example, the metavariable
char has the contract char?. This contract specifies that any argument char that answers
true to the char? predicate is valid. The documented function may or may not actually
check this property, but the contract signals the intent of the implementer.

The contract on the right of the arrow, exact-integer? in this case, specifies the expected
result that is produced by the function.

79

Contract specifications can be more expressive than just names of predicates. Consider the
following header for argmax:

(argmax proc lst) Ñ any
proc : (-> any/c real?)
lst : (and/c pair? list?)

The contract (-> any/c real?) denotes a function contract specifying that proc’s argu-
ment can be any single value and the result should be a real number. The contract (and/c
pair? list?) for lst specifies that lst should pass both pair? and list? (i.e., that it is
a non-empty list).

Both -> and and/c are examples of contract combinators. Contract combinators such as
or/c, cons/c, listof, and others are used throughout the documentation. Clicking on the
hyperlinked combinator name will provide more information on its meaning.

A Racket function may be documented as having one or more optional arguments. The read
function is an example of such a function:

(read [in]) Ñ any
in : input-port? = (current-input-port)

The brackets surrounding the in argument in the application syntax indicates that it is an
optional argument.

The header for read specifies a contract for the parameter in as usual. To the right of the
contract, it also specifies a default value (current-input-port) that is used if read is
called with no arguments.

Functions may also be documented as accepting mandatory or optional keyword-based ar-
guments. For example, the sort function has two optional, keyword-based arguments:

(sort lst
less-than?

[#:key extract-key
#:cache-keys? cache-keys?]) Ñ list?

lst : list?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f

The brackets around the extract-key and cache-keys? arguments indicate that they are
optional as before. The contract section of the header shows the default values that are
provided for these keyword arguments.

80

2.4 Notation for Structure Type Documentation

A structure type is also documented using contract notation:

(struct color (red green blue alpha))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))
alpha : (and/c natural-number/c (<=/c 255))

The structure type is typeset as it were declared in the source code of a program using the
struct form. Each field of the structure is documented with a corresponding contract that
specifies the values that are accepted for that field.

In the example above, the structure type color has four fields: red , green , blue , and
alpha . The constructor for the structure type accepts field values that satisfy (and/c
natural-number/c (<=/c 255)), i.e., non-negative exact integers up to 255.

Additional keywords may appear after the field names in the documentation for a structure
type:

(struct data-source (connector args extensions)
#:mutable)

connector : (or/c 'postgresql 'mysql 'sqlite3 'odbc)
args : list?
extensions : (listof (list/c symbol? any/c))

Here, the #:mutable keyword indicates that the fields of instances of the data-source
structure type can be mutated with their respective setter functions.

2.5 Notation for Parameter Documentation

A parameter is documented the same way as a function:

(current-command-line-arguments) Ñ (vectorof string?)
(current-command-line-arguments argv) Ñ void?

argv : (vectorof (and/c string? immutable?))

Since parameters can be referenced or set, there are two entries in the header above. Calling
current-command-line-arguments with no arguments accesses the parameter’s value,

81

which must be a vector whose elements pass both string? and immutable?. Calling
current-command-line-arguments with a single argument sets the parameter’s value,
where the value must be a vector whose elements pass string? (and a guard on the param-
eter coerces the strings to immutable form, if necessary).

2.6 Notation for Other Documentation

Some libraries provide bindings to constant values. These values are documented with a
separate header:

object% : class?

The racket/class library provides the object% value, which is the root of the class hier-
archy in Racket. Its documentation header just indicates that it is a value that satisfies the
predicate class?.

82

3 Syntactic Forms

This section describes the core syntax forms that appear in a fully expanded expression, plus
many closely related non-core forms. See §1.2.3.1 “Fully Expanded Programs” for the core
grammar.

Notation

Each syntactic form is described by a BNF-like notation that describes a combination of
(syntax-wrapped) pairs, symbols, and other data (not a sequence of characters). These gram-
matical specifications are shown as in the following specification of a something form:

(something id thing-expr ...)

thing-expr : number?

Within such specifications,

• ... indicates zero or more repetitions of the preceding datum; more generally, N
consecutive ...s a row indicate a consecutive repetition of the preceding N datums.

• ...+ indicates one or more repetitions of the preceding datum.

• Italic meta-identifiers play the role of non-terminals. Some meta-identifier names im-
ply syntactic constraints:

– A meta-identifier that ends in id stands for an identifier.

– A meta-identifier that ends in keyword stands for a keyword.

– A meta-identifier that ends with expr (such as thing-expr) stands for a sub-
form that is expanded as an expression.

– A meta-identifier that ends with body stands for a sub-form that is expanded in
an internal-definition context (see §1.2.3.8 “Internal Definitions”).

• Contracts indicate constraints on sub-expression results. For example, thing-expr
: number? indicates that the expression thing-expr must produce a number.

3.1 Modules: module, module*, ...
§6.2.1 “The
module Form” in
The Racket Guide
introduces module.

(module id module-path form ...)

Declares a top-level module or a submodule. For a top-level module, if the current-
module-declare-name parameter is set, the parameter value is used for the module name

83

and id is ignored, otherwise (quote id) is the name of the declared module. For a sub-
module, id is the name of the submodule to be used as an element within a submod module
path. For a module-like

form that works in
definitions context
other than the top
level or a module
body, see
define-package.

The module-path form must be as for require, and it supplies the initial bindings for the
body forms. That is, it is treated like a (require module-path) prefix before the forms,
except that the bindings introduced by module-path can be shadowed by definitions and
requires in the module body forms.

If a single form is provided, then it is partially expanded in a module-begin context. If
the expansion leads to #%plain-module-begin, then the body of the #%plain-module-
begin is the body of the module. If partial expansion leads to any other primitive form, then
the form is wrapped with #%module-begin using the lexical context of the module body;
this identifier must be bound by the initial module-path import, and its expansion must
produce a #%plain-module-begin to supply the module body. Finally, if multiple forms
are provided, they are wrapped with #%module-begin, as in the case where a single form
does not expand to #%plain-module-begin.

After such wrapping, if any, and before any expansion, an 'enclosing-module-name
property is attached to the #%module-begin syntax object (see §12.7 “Syntax Object Prop-
erties”); the property’s value is a symbol corresponding to id .

Each form is partially expanded (see §1.2.3.7 “Partial Expansion”) in a module context.
Further action depends on the shape of the form:

• If it is a begin form, the sub-forms are flattened out into the module’s body and
immediately processed in place of the begin.

• If it is a define-syntaxes form, then the right-hand side is evaluated (in phase 1),
and the binding is immediately installed for further partial expansion within the mod-
ule. Evaluation of the right-hand side is parameterized to set current-namespace
as in let-syntax.

• If it is a begin-for-syntax form, then the body is expanded (in phase 1) and eval-
uated. Expansion within a begin-for-syntax form proceeds with the same partial-
expansion process as for a module body, but in a higher phase, and saving all #%pro-
vide forms for all phases until the end of the module’s expansion. Evaluation of the
body is parameterized to set current-namespace as in let-syntax.

• If the form is a #%require form, bindings are introduced immediately, and the im-
ported modules are instantiated or visited as appropriate.

• If the form is a #%provide form, then it is recorded for processing after the rest of the
body.

• If the form is a define-values form, then the binding is installed immediately, but
the right-hand expression is not expanded further.

84

• If the form is a module form, then it is immediately expanded and declared for the
extent of the current top-level enclosing module’s expansion.

• If the form is a module* form, then it is not expanded further.

• Similarly, if the form is an expression, it is not expanded further.

After all forms have been partially expanded this way, then the remaining expression forms
(including those on the right-hand side of a definition) are expanded in an expression context.
After all expression forms, #%provide forms are processed in the order in which they appear
(independent of phase) in the expanded module. Finally, all module* forms are expanded in
order, so that each becomes available for use by subsequent module* forms; the enclosing
module itself is also available for use by module* submodules.

The scope of all imported identifiers covers the entire module body, except for nested mod-
ule and module* forms (assuming a non-#f module-path in the latter case). The scope
of any identifier defined within the module body similarly covers the entire module body
except for such nested module and module* forms. The ordering of syntax definitions does
not affect the scope of the syntax names; a transformer for A can produce expressions con-
taining B, while the transformer for B produces expressions containing A, regardless of the
order of declarations for A and B. However, a syntactic form that produces syntax definitions
must be defined before it is used.

No identifier can be imported or defined more than once at any phase level within a single
module, except that a definition via define-values or define-syntaxes can shadow a
preceding import via #%require; unless the shadowed import is from the module’s initial
module-path , a warning is logged to the initial logger. Every exported identifier must be
imported or defined. No expression can refer to a top-level variable. A module* form in
which the enclosing module’s bindings are visible (i.e., a nested module* with #f instead
of a module-path) can define or import bindings that shadow the enclosing module’s bind-
ings.

The evaluation of a module form does not evaluate the expressions in the body of the module
(except sometimes for redeclarations; see §1.1.10.4 “Module Redeclarations”). Evaluation
merely declares a module, whose full name depends both on id or (current-module-
declare-name).

A module body is executed only when the module is explicitly instantiated via require or
dynamic-require. On invocation, imported modules are instantiated in the order in which
they are required into the module (although earlier instantiations or transitive requires
can trigger the instantiation of a module before its order within a given module). Then,
expressions and definitions are evaluated in order as they appear within the module. Each
evaluation of an expression or definition is wrapped with a continuation prompt (see call-
with-continuation-prompt) for the default prompt tag and using a prompt handler that
re-aborts and propagates its argument to the next enclosing prompt. Each evaluation of a
definition is followed, outside of the prompt, by a check that each of the definition’s variables

85

has a value; if the portion of the prompt-delimited continuation that installs values is skipped,
then the exn:fail:contract:variable? exception is raised.

Accessing a module-level variable before it is defined signals a run-time error, just like ac-
cessing an undefined global variable. If a module (in its fully expanded form) does not con-
tain a set! for an identifier that defined within the module, then the identifier is a constant
after it is defined; its value cannot be changed afterward, not even through reflective mech-
anisms. The compile-enforce-module-constants parameter, however, can be used to
disable enforcement of constants.

When a syntax object representing a module form has a 'module-language syntax prop-
erty attached, and when the property value is a vector of three elements where the first is a
module path (in the sense of module-path?) and the second is a symbol, then the property
value is preserved in the corresponding compiled and/or declared module. The third com-
ponent of the vector should be printable and readable, so that it can be preserved in mar-
shaled bytecode. The racket/base and racket languages attach '#(racket/language-
info get-info #f) to a module form. See also module-compiled-language-info,
module->language-info, and racket/language-info.

See also §1.1.10 “Modules and Module-Level Variables”, §1.2.3.9 “Module Expansion,
Phases, and Visits”, and §12.9.1 “Information on Expanded Modules”.

Example:

> (module duck racket/base
(provide num-eggs quack)
(define num-eggs 2)
(define (quack n)
(unless (zero? n)
(printf "quack\n")
(quack (sub1 n)))))

Changed in version 6.3 of package base: Changed define-syntaxes and define-values to shadow any pre-
ceding import, and dropped the use of 'submodule syntax property values on nested module or module* forms.

(module* id module-path form ...)
(module* id #f form ...)

§6.2.3
“Submodules” in
The Racket Guide
introduces
module*.

Like module, but only for declaring a submodule within a module, and for submodules that
may require the enclosing module.

Instead of a module-path after id , #f indicates that all bindings from the enclosing module
are visible in the submodule. In that case, begin-for-syntax forms that wrap the module*
form shift the phase level of the enclosing module’s bindings relative to the submodule. The
macro expander handles such nesting by shifting the phase level of the module* form so that
its body starts at phase level 0, expanding, and then reverting the phase level shift; beware

86

that this process can leave syntax objects as 'origin syntax property values out-of-sync
with the expanded module.

When a module* form has a module-path , the submodule expansion starts by removing
the scopes of the enclosing module, the same as the module form. No shifting compensates
for any begin-for-syntax forms that may wrap the submodule.

(module+ id form ...)
§6.2.4 “Main and
Test Submodules”
in The Racket
Guide introduces
module+.

Declares and/or adds to a submodule named id .

Each addition for id is combined in order to form the entire submodule using (module*
id #f) at the end of the enclosing module. If there is only one module+ for a given
id , then (module+ id form ...) is equivalent to (module* id #f form ...), but
still moved to the end of the enclosing module.

When a module contains multiple submodules declared with module+, then the relative
order of the initial module+ declarations for each submodule determines the relative order
of the module* declarations at the end of the enclosing module.

A submodule must not be defined using module+ and module or module*. That is, if a
submodule is made of module+ pieces, then it must be made only of module+ pieces.

(#%module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

The #%module-begin form of racket/base wraps every top-level expression to print non-
#<void> results using current-print.

The #%module-begin form of racket/base also declares a configure-runtime sub-
module (before any other form), unless some form is either an immediate module or mod-
ule* form with the name configure-runtime. If a configure-runtime submodule is
added, the submodule calls the configure function of racket/runtime-config.

(#%printing-module-begin form ...)

Legal only in a module begin context.

Like #%module-begin, but without adding a configure-runtime submodule.

(#%plain-module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

(#%declare declaration-keyword ...)

declaration-keyword = #:cross-phase-persistent
| #:empty-namespace

87

Declarations that affect run-time or reflective properties of the module:

• #:cross-phase-persistent — declares the module as cross-phase persistent, and
reports a syntax error if the module does not meet the import or syntactic constraints
of a cross-phase persistent module.

• #:empty-namespace — declares that module->namespace for this module should
produce a namespace with no bindings; limiting namespace support in this way can
reduce the lexical information that otherwise must be preserved for the module.

A #%declare form must appear in a module context or a module-begin context. Each
declaration-keyword can be declared at most once within a module body.

Changed in version 6.3 of package base: Added #:empty-namespace.

3.2 Importing and Exporting: require and provide
§6.4 “Imports:
require” in The
Racket Guide
introduces
require.

(require require-spec ...)

88

require-spec = module-path
| (only-in require-spec id-maybe-renamed ...)
| (except-in require-spec id ...)
| (prefix-in prefix-id require-spec)
| (rename-in require-spec [orig-id bind-id] ...)
| (combine-in require-spec ...)
| (relative-in module-path require-spec ...)
| (only-meta-in phase-level require-spec ...)
| (for-syntax require-spec ...)
| (for-template require-spec ...)
| (for-label require-spec ...)
| (for-meta phase-level require-spec ...)
| derived-require-spec

module-path = root-module-path
| (submod root-module-path submod-path-element ...)
| (submod "." submod-path-element ...)
| (submod ".." submod-path-element ...)

root-module-path = (quote id)
| rel-string
| (lib rel-string ...+)
| id
| (file string)
| (planet id)
| (planet string)
| (planet rel-string

(user-string pkg-string vers)
rel-string ...)

submod-path-element = id
| ".."

id-maybe-renamed = id
| [orig-id bind-id]

phase-level = exact-integer
| #f

vers =
| nat
| nat minor-vers

minor-vers = nat
| (nat nat)
| (= nat)
| (+ nat)
| (- nat)

89

In a top-level context, require instantiates modules (see §1.1.10 “Modules and Module-
Level Variables”). In a top-level context or module context, expansion of require visits
modules (see §1.2.3.9 “Module Expansion, Phases, and Visits”). In both contexts and both
evaluation and expansion, require introduces bindings into a namespace or a module (see
§1.2.3.4 “Introducing Bindings”). A require form in a expression context or internal-
definition context is a syntax error.

A require-spec designates a particular set of identifiers to be bound in the importing
context. Each identifier is mapped to a particular export of a particular module; the identifier
to bind may be different from the symbolic name of the originally exported identifier. Each
identifier also binds at a particular phase level.

No identifier can be bound multiple times in a given phase level by an import, unless all of
the bindings refer to the same original definition in the same module. In a module context,
an identifier can be either imported or defined for a given phase level, but not both.

The syntax of require-spec can be extended via define-require-syntax, and when
multiple require-specs are specified in a require, the bindings of each require-spec
are visible for expanding later require-specs. The pre-defined forms (as exported by
racket/base) are as follows:

module-path

Imports all exported bindings from the named module, using the export iden-
tifiers as the local identifiers. (See below for information on module-path .)
The lexical context of the module-path form determines the context of the
introduced identifiers.

(only-in require-spec id-maybe-renamed ...)

Like require-spec , but constrained to those exports for which the identifiers
to bind match id-maybe-renamed : as id or as orig-id in [orig-id bind-
id]. If the id or orig-id of any id-maybe-renamed is not in the set that
require-spec describes, a syntax error is reported.

Examples:

> (require (only-in racket/tcp
tcp-listen
[tcp-accept my-accept]))

> tcp-listen
#<procedure:tcp-listen>
> my-accept
#<procedure:tcp-accept>
> tcp-accept

90

tcp-accept: undefined;
cannot reference an identifier before its definition

in module: top-level

(except-in require-spec id ...)

Like require-spec , but omitting those imports for which ids are the identi-
fiers to bind; if any id is not in the set that require-spec describes, a syntax
error is reported.

Examples:

> (require (except-in racket/tcp
tcp-listen))

> tcp-accept
#<procedure:tcp-accept>
> tcp-listen
tcp-listen: undefined;

cannot reference an identifier before its definition
in module: top-level

(prefix-in prefix-id require-spec)

Like require-spec , but adjusting each identifier to be bound by prefixing it
with prefix-id . The lexical context of the prefix-id is ignored, and instead
preserved from the identifiers before prefixing.

Examples:

> (require (prefix-in tcp: racket/tcp))
> tcp:tcp-accept
#<procedure:tcp-accept>
> tcp:tcp-listen
#<procedure:tcp-listen>

(rename-in require-spec [orig-id bind-id] ...)

Like require-spec , but replacing the identifier to bind orig-id with bind-
id ; if any orig-id is not in the set that require-spec describes, a syntax
error is reported.

Examples:

91

> (require (rename-in racket/tcp
(tcp-accept accept)
(tcp-listen listen)))

> accept
#<procedure:tcp-accept>
> listen
#<procedure:tcp-listen>

(combine-in require-spec ...)

The union of the require-specs. If two or more imports from the require-
specs have the same identifier name but they do not refer to the same original
binding, a syntax error is reported.

Examples:

> (require (combine-in (only-in racket/tcp tcp-accept)
(only-in racket/tcp tcp-listen)))

> tcp-accept
#<procedure:tcp-accept>
> tcp-listen
#<procedure:tcp-listen>

(relative-in module-path require-spec ...)

Like the union of the require-specs, but each relative module path in a
require-spec is treated as relative to module-path instead of the enclosing
context.

The require transformer that implements relative-in sets current-
require-module-path to adjust module paths in the require-specs.

(only-meta-in phase-level require-spec ...)

Like the combination of require-specs, but removing any binding that is not
for phase-level , where #f for phase-level corresponds to the label phase
level.

The following example imports bindings only at phase level 1, the transform
phase:

> (module nest racket
(provide (for-syntax meta-eggs)

(for-meta 1 meta-chicks)
num-eggs)

92

(define-for-syntax meta-eggs 2)
(define-for-syntax meta-chicks 3)
(define num-eggs 2))

> (require (only-meta-in 1 'nest))
> (define-syntax (desc stx)

(printf "„s „s\n" meta-eggs meta-chicks)
#'(void))

> (desc)
2 3
> num-eggs
num-eggs: undefined;

cannot reference an identifier before its definition
in module: top-level

The following example imports only bindings at phase level 0, the normal phase.

> (require (only-meta-in 0 'nest))
> num-eggs
2

(for-meta phase-level require-spec ...)

Like the combination of require-specs, but the binding specified by each
require-spec is shifted by phase-level . The label phase level corresponds
to #f, and a shifting combination that involves #f produces #f.

Examples:

> (module nest racket
(provide num-eggs)
(define num-eggs 2))

> (require (for-meta 0 'nest))
> num-eggs
2
> (require (for-meta 1 'nest))
> (define-syntax (roost stx)

(datum->syntax stx num-eggs))
> (roost)
2

(for-syntax require-spec ...)

Same as (for-meta 1 require-spec ...).

93

(for-template require-spec ...)

Same as (for-meta -1 require-spec ...).

(for-label require-spec ...)

Same as (for-meta #f require-spec ...). If an identifier in any of the
require-specs is bound at more than one phase level, a syntax error is re-
ported.

derived-require-spec

See define-require-syntax for information on expanding the set of
require-spec forms.

§6.3 “Module
Paths” in The
Racket Guide
introduces module
paths.

A module-path identifies a module, either a root module or a submodule that is declared
lexically within another module. A root module is identified either through a concrete name
in the form of an identifier, or through an indirect name that can trigger automatic loading of
the module declaration. Except for the (quote id) case below, the actual resolution of a
root module path is up to the current module name resolver (see current-module-name-
resolver), and the description below corresponds to the default module name resolver.

(quote id)

Refers to a submodule previously declared with the name id or a module previ-
ously declared interactively with the name id . When id refers to a submodule,
(quote id) is equivalent to (submod "." id).

Examples:

; a module declared interactively as test:
> (require 'test)

rel-string

A path relative to the containing source (as determined by current-load-
relative-directory or current-directory). Regardless of the current
platform, rel-string is always parsed as a Unix-format relative path: / is
the path delimiter (multiple adjacent /s are not allowed), .. accesses the parent
directory, and . accesses the current directory. The path cannot be empty or
contain a leading or trailing slash, path elements before than the last one cannot

94

include a file suffix (i.e., a . in an element other than . or ..), and the only
allowed characters are ASCII letters, ASCII digits, -, +, _, ., /, and %. Further-
more, a % is allowed only when followed by two lowercase hexadecimal digits,
and the digits must form a number that is not the ASCII value of a letter, digit,
-, +, or _. The % provision is

intended to support
a one-to-one
encoding of
arbitrary strings as
path elements (after
UTF-8 encoding).
Such encodings are
not decoded to
arrive at a filename,
but instead
preserved in the file
access.

If rel-string ends with a ".ss" suffix, it is converted to a ".rkt" suffix.
The compiled-load handler may reverse that conversion if a ".rkt" file does
not exist and a ".ss" exists.

Examples:

; a module named "x.rkt" in the same
; directory as the enclosing module's file:
> (require "x.rkt")
; a module named "x.rkt" in the parent directory
; of the enclosing module file's directory:
> (require "../x.rkt")

(lib rel-string ...+)

A path to a module installed into a collection (see §18.2 “Libraries and Col-
lections”). The rel-strings in lib are constrained similar to the plain rel-
string case, with the additional constraint that a rel-string cannot contain
. or .. directory indicators.

The specific interpretation of the path depends on the number and shape of the
rel-strings:

• If a single rel-string is provided, and if it consists of a single element
(i.e., no /) with no file suffix (i.e., no .), then rel-string names a col-
lection, and "main.rkt" is the library file name.
Examples:

; the main swindle library:
> (require (lib "swindle"))
; the same:
> (require (lib "swindle/main.rkt"))

• If a single rel-string is provided, and if it consists of multiple /-
separated elements, then each element up to the last names a collection,
subcollection, etc., and the last element names a file. If the last element
has no file suffix, ".rkt" is added, while a ".ss" suffix is converted to
".rkt".
Examples:

; "turbo.rkt" from the "swindle" collection:

95

> (require (lib "swindle/turbo"))
; the same:
> (require (lib "swindle/turbo.rkt"))
; the same:
> (require (lib "swindle/turbo.ss"))

• If a single rel-string is provided, and if it consists of a single element
with a file suffix (i.e, with a .), then rel-string names a file within
the "mzlib" collection. A ".ss" suffix is converted to ".rkt". (This
convention is for compatibility with older version of Racket.)
Examples:

; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss"))

• Otherwise, when multiple rel-strings are provided, the first rel-
string is effectively moved after the others, and all rel-strings are
appended with / separators. The resulting path names a collection, then
subcollection, etc., ending with a file name. No suffix is added automati-
cally, but a ".ss" suffix is converted to ".rkt". (This convention is for
compatibility with older version of Racket.)
Examples:

; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss" "mzlib"))

id

A shorthand for a lib form with a single rel-string whose characters are
the same as in the symbolic form of id . In addition to the constraints of a lib
rel-string , id must not contain ..

Example:

> (require racket/tcp)

(file string)

Similar to the plain rel-string case, but string is a path—possibly
absolute—using the current platform’s path conventions and expand-user-
path. A ".ss" suffix is converted to ".rkt".

Example:

> (require (file "„/tmp/x.rkt"))

96

(planet id)
(planet string)
(planet rel-string (user-string pkg-string vers)

rel-string ...)

Specifies a library available via the PLaneT server.

The first form is a shorthand for the last one, where the id ’s character sequence
must match the following xspecy grammar:

xspecy ::= xownery / xpkgy xliby
xownery ::= xelemy
xpkgy ::= xelemy | xelemy : xversiony
xversiony ::= xinty | xinty : xminory
xminory ::= xinty | <= xinty | >= xinty | = xinty

| xinty - xinty
xliby ::= xemptyy | / xpathy
xpathy ::= xelemy | xelemy / xpathy

and where an xelemy is a non-empty sequence of characters that are ASCII
letters, ASCII digits, -, +, _, or % followed by lowercase hexadecimal digits
(that do not encode one of the other allowed characters), and an xinty is a non-
empty sequence of ASCII digits. As this shorthand is expended, a ".plt"
extension is added to xpkgy, and a ".rkt" extension is added to xpathy; if no
xpathy is included, "main.rkt" is used in the expansion.

A (planet string) form is like a (planet id) form with the identifier
converted to a string, except that the string can optionally end with a file
extension (i.e., a .) for a xpathy. A ".ss" file extension is converted to ".rkt".

In the more general last form of a planet module path, the rel-strings are
similar to the lib form, except that the (user-string pkg-string vers)
names a PLaneT-based package instead of a collection. A version specification
can include an optional major and minor version, where the minor version can
be a specific number or a constraint: (nat nat) specifies an inclusive range,
(= nat) specifies an exact match, (+ nat) specifies a minimum version and
is equivalent to just nat , and (- nat) specifies a maximum version. The =, +,
and - identifiers in a minor-version constraint are recognized symbolically.

Examples:

; "main.rkt" in package "farm" by "mcdonald":
> (require (planet mcdonald/farm))
; "main.rkt" in version >= 2.0 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2))
; "main.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5))
; "duck.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5/duck))

97

(submod root-module-path submod-path-element ...)
(submod "." submod-path-element ...)
(submod ".." submod-path-element ...)

Identifies a submodule within the module specified by root-module-path
or relative to the current module in the case of (submod "."), where
(submod ".." submod-path-element ...) is equivalent to (submod "."
".." submod-path-element ...). Submodules have symbolic names, and
a sequence of identifiers as submod-path-elements determine a path of suc-
cessively nested submodules with the given names. A ".." as a submod-path-
element names the enclosing module of a submodule, and it’s intended for use
in (submod ".") and (submod "..") forms.

As require prepares to handle a sequence of require-specs, it logs a “prefetch” message
to the current logger at the 'info level, using the name 'module-prefetch, and including
message data that is a list of two elements: a list of module paths that appear to be imported,
and a directory path to use for relative module paths. The logged list of module paths may
be incomplete, but a compilation manager can use approximate prefetch information to start
on compilations in parallel.

Changed in version 6.0.1.10 of package base: Added prefetch logging.

(local-require require-spec ...)

Like require, but for use in a internal-definition context to import just into the local context.
Only bindings from phase level 0 are imported.

Examples:

> (let ()
(local-require racket/control)
fcontrol)

#<procedure:fcontrol>
> fcontrol
fcontrol: undefined;

cannot reference an identifier before its definition
in module: top-level

§6.5 “Exports:
provide” in The
Racket Guide
introduces
provide.

(provide provide-spec ...)

98

provide-spec = id
| (all-defined-out)
| (all-from-out module-path ...)
| (rename-out [orig-id export-id] ...)
| (except-out provide-spec provide-spec ...)
| (prefix-out prefix-id provide-spec)
| (struct-out id)
| (combine-out provide-spec ...)
| (protect-out provide-spec ...)
| (for-meta phase-level provide-spec ...)
| (for-syntax provide-spec ...)
| (for-template provide-spec ...)
| (for-label provide-spec ...)
| derived-provide-spec

phase-level = exact-integer
| #f

Declares exports from a module. A provide form must appear in a module context or a
module-begin context.

A provide-spec indicates one or more bindings to provide. For each exported binding,
the external name is a symbol that can be different from the symbolic form of the identifier
that is bound within the module. Also, each export is drawn from a particular phase level
and exported at the same phase level; by default, the relevant phase level is the number of
begin-for-syntax forms that enclose the provide form.

The syntax of provide-spec can be extended by bindings to provide transformers or pro-
vide pre-transformers, such as via define-provide-syntax, but the pre-defined forms are
as follows.

id

Exports id , which must be bound within the module (i.e., either defined or
imported) at the relevant phase level. The symbolic form of id is used as the
external name, and the symbolic form of the defined or imported identifier must
match (otherwise, the external name could be ambiguous).

Examples:

> (module nest racket
(provide num-eggs)
(define num-eggs 2))

> (require 'nest)
> num-eggs
2

99

If id has a transformer binding to a rename transformer, then the transformer
affects the exported binding. See make-rename-transformer for more infor-
mation.

(all-defined-out)

Exports all identifiers that are defined at the relevant phase level within the ex-
porting module, and that have the same lexical context as the (all-defined-
out) form, excluding bindings to rename transformers where the target identi-
fier has the 'not-provide-all-defined syntax property. The external name
for each identifier is the symbolic form of the identifier. Only identifiers accessi-
ble from the lexical context of the (all-defined-out) form are included; that
is, macro-introduced imports are not re-exported, unless the (all-defined-
out) form was introduced at the same time.

Examples:

> (module nest racket
(provide (all-defined-out))
(define num-eggs 2))

> (require 'nest)
> num-eggs
2

(all-from-out module-path ...)

Exports all identifiers that are imported into the exporting module using a
require-spec built on each module-path (see §3.2 “Importing and Export-
ing: require and provide”) with no phase-level shift. The symbolic name for
export is derived from the name that is bound within the module, as opposed
to the symbolic name of the export from each module-path . Only identifiers
accessible from the lexical context of the module-path are included; that is,
macro-introduced imports are not re-exported, unless the module-path was
introduced at the same time.

Examples:

> (module nest racket
(provide num-eggs)
(define num-eggs 2))

> (module hen-house racket
(require 'nest)
(provide (all-from-out 'nest)))

> (require 'hen-house)
> num-eggs
2

100

(rename-out [orig-id export-id] ...)

Exports each orig-id , which must be bound within the module at the relevant
phase level. The symbolic name for each export is export-id instead of orig-
id .

Examples:

> (module nest racket
(provide (rename-out [count num-eggs]))
(define count 2))

> (require 'nest)
> num-eggs
2
> count
count: undefined;

cannot reference an identifier before its definition
in module: top-level

(except-out provide-spec provide-spec ...)

Like the first provide-spec , but omitting the bindings listed in each subse-
quent provide-spec . If one of the latter bindings is not included in the initial
provide-spec , a syntax error is reported. The symbolic export name informa-
tion in the latter provide-specs is ignored; only the bindings are used.

Examples:

> (module nest racket
(provide (except-out (all-defined-out)

num-chicks))
(define num-eggs 2)
(define num-chicks 3))

> (require 'nest)
> num-eggs
2
> num-chicks
num-chicks: undefined;

cannot reference an identifier before its definition
in module: top-level

(prefix-out prefix-id provide-spec)

Like provide-spec , but with each symbolic export name from provide-
spec prefixed with prefix-id .

Examples:

101

> (module nest racket
(provide (prefix-out chicken: num-eggs))
(define num-eggs 2))

> (require 'nest)
> chicken:num-eggs
2

(struct-out id)

Exports the bindings associated with a structure type id . Typically, id is bound
with (struct id); more generally, id must have a transformer bind-
ing of structure-type information at the relevant phase level; see §5.7 “Struc-
ture Type Transformer Binding”. Furthermore, for each identifier mentioned
in the structure-type information, the enclosing module must define or import
one identifier that is free-identifier=?. If the structure-type information in-
cludes a super-type identifier, and if the identifier has a transformer binding of
structure-type information, the accessor and mutator bindings of the super-type
are not included by struct-out for export.

Examples:

> (module nest racket
(provide (struct-out egg))
(struct egg (color wt)))

> (require 'nest)
> (egg-color (egg 'blue 10))
'blue

(combine-out provide-spec ...)

The union of the provide-specs.

Examples:

> (module nest racket
(provide (combine-out num-eggs num-chicks))
(define num-eggs 2)
(define num-chicks 1))

> (require 'nest)
> num-eggs
2
> num-chicks
1

102

(protect-out provide-spec ...)

Like the union of the provide-specs, except that the exports are protected; re-
quiring modules may refer to these bindings, but may not extract these bindings
from macro expansions or access them via eval without access privileges. For
more details, see §14.10 “Code Inspectors”. The provide-spec must specify
only bindings that are defined within the exporting module.

Examples:

> (module nest racket
(provide num-eggs (protect-out num-chicks))
(define num-eggs 2)
(define num-chicks 3))

> (define weak-inspector (make-inspector (current-code-
inspector)))
> (define (weak-eval x)

(parameterize ([current-code-inspector weak-
inspector])

(define weak-ns (make-base-namespace))
(namespace-attach-module (current-namespace)

''nest
weak-ns)

(parameterize ([current-namespace weak-ns])
(namespace-require ''nest)
(eval x))))

> (require 'nest)
> (list num-eggs num-chicks)
'(2 3)
> (weak-eval 'num-eggs)
2
> (weak-eval 'num-chicks)
?: access disallowed by code inspector to protected variable

from module: 'nest
at: num-chicks

See also §15.4 “Code Inspectors for Trusted and Untrusted Code”.

(for-meta phase-level provide-spec ...)

Like the union of the provide-specs, but adjusted to apply to the phase level
specified by phase-level relative to the current phase level (where #f corre-
sponds to the label phase level). In particular, an id or rename-out form as
a provide-spec refers to a binding at phase-level relative to the current
level, an all-defined-out exports only definitions at phase-level relative

103

to the current phase level, and an all-from-out exports bindings imported
with a shift by phase-level .

Examples:

> (module nest racket
(begin-for-syntax
(define eggs 2))
(define chickens 3)
(provide (for-syntax eggs)

chickens))
> (require 'nest)
> (define-syntax (test-eggs stx)

(printf "Eggs are „a\n" eggs)
#'0)

> (test-eggs)
Eggs are 2
0
> chickens
3
> (module broken-nest racket

(define eggs 2)
(define chickens 3)
(provide (for-syntax eggs)

chickens))
eval:7:0: provide: provided identifier is not defined or
required

at: eggs
in: (#%provide (expand (provide-trampoline (for-syntax

eggs) chickens)))
> (module nest2 racket

(begin-for-syntax
(define eggs 2))
(provide (for-syntax eggs)))

> (require (for-meta 2 racket/base)
(for-syntax 'nest2))

> (define-syntax (test stx)
(define-syntax (show-eggs stx)
(printf "Eggs are „a\n" eggs)
#'0)

(begin
(show-eggs)
#'0))

Eggs are 2
> (test)
0

104

(for-syntax provide-spec ...)

Same as (for-meta 1 provide-spec ...).

(for-template provide-spec ...)

Same as (for-meta -1 provide-spec ...).

(for-label provide-spec ...)

Same as (for-meta #f provide-spec ...).

derived-provide-spec

See define-provide-syntax for information on expanding the set of
provide-spec forms.

Each export specified within a module must have a distinct symbolic export name, though
the same binding can be specified with the multiple symbolic names.

(for-meta phase-level require-spec ...)

See require and provide.

(for-syntax require-spec ...)

See require and provide.

(for-template require-spec ...)

See require and provide.

(for-label require-spec ...)

See require and provide.

105

(#%require raw-require-spec ...)

raw-require-spec = phaseless-spec
| (for-meta phase-level phaseless-spec ...)
| (for-syntax phaseless-spec ...)
| (for-template phaseless-spec ...)
| (for-label phaseless-spec ...)
| (just-meta phase-level raw-require-spec ...)

phase-level = exact-integer
| #f

phaseless-spec = raw-module-path
| (only raw-module-path id ...)
| (prefix prefix-id raw-module-path)
| (all-except raw-module-path id ...)
| (prefix-all-except prefix-id

raw-module-path id ...)
| (rename raw-module-path local-id exported-id)

raw-module-path = raw-root-module-path
| (submod raw-root-module-path id ...+)
| (submod "." id ...+)

raw-root-module-path = (quote id)
| rel-string
| (lib rel-string ...)
| id
| (file string)
| (planet rel-string

(user-string pkg-string vers ...))
| literal-path

The primitive import form, to which require expands. A raw-require-spec is simi-
lar to a require-spec in a require form, except that the syntax is more constrained,
not composable, and not extensible. Also, sub-form names like for-syntax and lib are
recognized symbolically, instead of via bindings. Although not formalized in the grammar
above, a just-meta form cannot appear within a just-meta form, but it can appear under
for-meta, for-syntax, for-template, or for-label.

Each raw-require-spec corresponds to the obvious require-spec , but the rename sub-
form has the identifiers in reverse order compared to rename-in.

For most raw-require-specs, the lexical context of the raw-require-spec determines
the context of introduced identifiers. The exception is the rename sub-form, where the

106

lexical context of the local-id is preserved.

A literal-path as a raw-root-module-path corresponds to a path in the sense of
path?. Since path values are never produced by read-syntax, they appear only in pro-
grammatically constructed expressions. They also appear naturally as arguments to func-
tions such as namespace-require, with otherwise take a quoted raw-module-spec.

(#%provide raw-provide-spec ...)

raw-provide-spec = phaseless-spec
| (for-meta phase-level phaseless-spec ...)
| (for-syntax phaseless-spec ...)
| (for-label phaseless-spec ...)
| (protect raw-provide-spec ...)

phase-level = exact-integer
| #f

phaseless-spec = id
| (rename local-id export-id)
| (struct struct-id (field-id ...))
| (all-from raw-module-path)
| (all-from-except raw-module-path id ...)
| (all-defined)
| (all-defined-except id ...)
| (prefix-all-defined prefix-id)
| (prefix-all-defined-except prefix-id id ...)
| (protect phaseless-spec ...)
| (expand (id . datum))

The primitive export form, to which provide expands. A raw-module-path is as for
#%require. A protect sub-form cannot appear within a protect sub-form.

Like #%require, the sub-form keywords for #%provide are recognized symbolically, and
nearly every raw-provide-spec has an obvious equivalent provide-spec via provide,
with the exception of the struct and expand sub-forms.

A (struct struct-id (field-id ...)) sub-form expands to struct-id , make-
struct-id , struct:struct-id , struct-id?, struct-id-field-id for each field-
id , and set-struct-id-field-id! for each field-id . The lexical context of the
struct-id is used for all generated identifiers.

Unlike #%require, the #%provide form is macro-extensible via an explicit expand sub-
form; the (id . datum) part is locally expanded as an expression (even though it is not
actually an expression), stopping when a begin form is produced; if the expansion result is
(begin raw-provide-spec ...), it is spliced in place of the expand form, otherwise a

107

syntax error is reported. The expand sub-form is not normally used directly; it provides a
hook for implementing provide and provide transformers.

The all-from and all-from-except forms re-export only identifiers that are accessi-
ble in lexical context of the all-from or all-from-except form itself. That is, macro-
introduced imports are not re-exported, unless the all-from or all-from-except form
was introduced at the same time. Similarly, all-defined and its variants export only defi-
nitions accessible from the lexical context of the phaseless-spec form.

3.2.1 Additional require Forms

(require racket/require) package: base

The bindings documented in this section are provided by the racket/require library, not
racket/base or racket.

The following forms support more complex selection and manipulation of sets of imported
identifiers.

(matching-identifiers-in regexp require-spec)

Like require-spec , but including only imports whose names match regexp . The regexp
must be a literal regular expression (see §4.7 “Regular Expressions”).

Examples:

> (module zoo racket/base
(provide tunafish swordfish blowfish

monkey lizard ant)
(define tunafish 1)
(define swordfish 2)
(define blowfish 3)
(define monkey 4)
(define lizard 5)
(define ant 6))

> (require racket/require)
> (require (matching-identifiers-in #rx"\\w*fish" 'zoo))
> tunafish
1
> swordfish
2
> blowfish
3
> monkey
monkey: undefined;

108

https://pkgs.racket-lang.org/package/base

cannot reference an identifier before its definition
in module: top-level

(subtract-in require-spec subtracted-spec ...)

Like require-spec , but omitting those imports that would be imported by one of the
subtracted-specs.

Examples:

> (module earth racket
(provide land sea air)
(define land 1)
(define sea 2)
(define air 3))

> (module mars racket
(provide aliens)
(define aliens 4))

> (module solar-system racket
(require 'earth 'mars)
(provide (all-from-out 'earth)

(all-from-out 'mars)))
> (require racket/require)
> (require (subtract-in 'solar-system 'earth))
> land
land: undefined;

cannot reference an identifier before its definition
in module: top-level

> aliens
4

(filtered-in proc-expr require-spec)

Applies an arbitrary transformation on the import names (as strings) of require-spec .
The proc-expr must evaluate at expansion time to a single-argument procedure, which is
applied on each of the names from require-spec . For each name, the procedure must
return either a string for the import’s new name or #f to exclude the import.

For example,

(require (filtered-in
(lambda (name)
(and (regexp-match? #rx"^[a-z-]+$" name)

(regexp-replace #rx"-" (string-
titlecase name) "")))

racket/base))

109

imports only bindings from racket/base that match the pattern #rx"^[a-z-]+$", and it
converts the names to “camel case.”

(path-up rel-string ...)

Specifies paths to modules named by the rel-strings similar to using the rel-strings
directly, except that if a required module file is not found relative to the enclosing source,
it is searched for in the parent directory, and then in the grand-parent directory, etc., all the
way to the root directory. The discovered path relative to the enclosing source becomes part
of the expanded form.

This form is useful in setting up a “project environment.” For example, using the following
"config.rkt" file in the root directory of your project:

#lang racket/base
(require racket/require-syntax

(for-syntax "utils/in-here.rkt"))

(provide utils-in)
(define-require-syntax utils-in in-here-transformer)

and using "utils/in-here.rkt" under the same root directory:

#lang racket/base
(require racket/runtime-path)
(provide in-here-transformer)
(define-runtime-path here ".")
(define (in-here-transformer stx)
(syntax-case stx ()
[(_ sym)
(identifier? #'sym)
(let ([path (build-path here (format "„a.rkt" (syntax-

e #'sym)))])
(datum->syntax stx `(file ,(path->string path)) stx))]))

then path-up works for any other module under the project directory to find
"config.rkt":

(require racket/require
(path-up "config.rkt")
(utils-in foo))

Note that the order of requires in the example is important, as each of the first two bind the
identifier used in the following.

An alternative in this scenario is to use path-up directly to find the utility module:

110

(require racket/require
(path-up "utils/foo.rkt"))

but then sub-directories that are called "utils" override the one in the project’s root. In
other words, the previous method requires only a single unique name.

(multi-in subs ...+)

subs = sub-path
| (sub-path ...)

sub-path = rel-string
| id

Specifies multiple files to be required from a hierarchy of directories or collections. The set
of required module paths is computed as the Cartesian product of the subs groups, where
each sub-path is combined with other sub-paths in order using a / separator. A sub-
path as a subs is equivalent to (sub-path). All sub-paths in a given multi-in form
must be either strings or identifiers.

Examples:

(require (multi-in racket (dict list)))

is equivalent to (require racket/dict racket/list)

(require (multi-in "math" "matrix" "utils.rkt"))

is equivalent to (require "math/matrix/utils.rkt")

(require (multi-in "utils" ("math.rkt" "matrix.rkt")))

is equivalent to (require "utils/math.rkt" "utils/matrix.rkt")

(require (multi-in ("math" "matrix") "utils.rkt"))

is equivalent to (require "math/utils.rkt" "matrix/utils.rkt")

(require (multi-in ("math" "matrix") ("utils.rkt" "helpers.rkt")))

is equivalent to (require "math/utils.rkt" "math/helpers.rkt"
"matrix/utils.rkt" "matrix/helpers.rkt")

111

3.2.2 Additional provide Forms

(require racket/provide) package: base

The bindings documented in this section are provided by the racket/provide library, not
racket/base or racket.

(matching-identifiers-out regexp provide-spec)

Like provide-spec , but including only exports of bindings with an external name that
matches regexp . The regexp must be a literal regular expression (see §4.7 “Regular Ex-
pressions”).

(filtered-out proc-expr provide-spec)

Analogous to filtered-in, but for filtering and renaming exports.

For example,

(provide (filtered-out
(lambda (name)
(and (regexp-match? #rx"^[a-z-]+$" name)

(regexp-replace
#rx"-" (string-titlecase name) "")))

(all-defined-out)))

exports only bindings that match the pattern #rx"^[a-z-]+$", and it converts the names to
“camel case.”

3.3 Literals: quote and #%datum

Many forms are implicitly quoted (via #%datum) as literals. See §1.2.3.2 “Expansion Steps”
for more information. §4.10 “Quoting:

quote and '” in
The Racket Guide
introduces quote.

(quote datum)

Produces a constant value corresponding to datum (i.e., the representation of the program
fragment) without its lexical information, source location, etc. Quoted pairs, vectors, and
boxes are immutable.

Examples:

> (quote x)
'x

112

https://pkgs.racket-lang.org/package/base

> (quote (+ 1 2))
'(+ 1 2)
> (+ 1 2)
3

(#%datum . datum)

Expands to (quote datum), as long as datum is not a keyword. If datum is a keyword, a
syntax error is reported.

See also §1.2.3.2 “Expansion Steps” for information on how the expander introduces #%da-
tum identifiers.

Examples:

> (#%datum . 10)
10
> (#%datum . x)
'x
> (#%datum . #:x)
eval:6:0: #%datum: keyword misused as an expression

at: #:x

3.4 Expression Wrapper: #%expression

(#%expression expr)

Produces the same result as expr . Using #%expression forces the parsing of a form as an
expression.

Examples:

> (#%expression (+ 1 2))
3
> (#%expression (define x 10))
eval:8:0: define: not allowed in an expression context

in: (define x 10)

The #%expression form is helpful in recursive definition contexts where expanding a sub-
sequent definition can provide compile-time information for the current expression. For ex-
ample, consider a define-sym-case macro that simply records some symbols at compile-
time in a given identifier.

113

(define-syntax (define-sym-case stx)
(syntax-case stx ()
[(_ id sym ...)
(andmap identifier? (syntax->list #'(sym ...)))
#'(define-syntax id

'(sym ...))]))

and then a variant of case that checks to make sure the symbols used in the expression match
those given in the earlier definition:

(define-syntax (sym-case stx)
(syntax-case stx ()
[(_ id val-expr [(sym) expr] ...)
(let ()
(define expected-ids
(syntax-local-value
#'id
(λ ()
(raise-syntax-error
'sym-case
"expected an identifier bound via define-sym-case"
stx
#'id))))

(define actual-ids (syntax->datum #'(sym ...)))
(unless (equal? expected-ids actual-ids)
(raise-syntax-error
'sym-case
(format "expected the symbols „s"

expected-ids)
stx))

#'(case val-expr [(sym) expr] ...))]))

If the definition follows the use like this, then the define-sym-case macro does not have
a chance to bind id and the sym-case macro signals an error:

> (let ()
(sym-case land-creatures 'bear

[(bear) 1]
[(fox) 2])

(define-sym-case land-creatures bear fox))
eval:11:0: sym-case: expected an identifier bound via
define-sym-case

at: land-creatures
in: (sym-case land-creatures (quote bear) ((bear) 1)

((fox) 2))

114

But if the sym-case is wrapped in an #%expression, then the expander does not need to
expand it to know it is an expression and it moves on to the define-sym-case expression.

> (let ()
(#%expression (sym-case sea-creatures 'whale

[(whale) 1]
[(squid) 2]))

(define-sym-case sea-creatures whale squid)
'more...)

'more...

Of course, a macro like sym-case should not require its clients to add #%expression;
instead it should check the basic shape of its arguments and then expand to #%expression
wrapped around a helper macro that calls syntax-local-value and finishes the expansion.

3.5 Variable References and #%top

id

Refers to a top-level, module-level, or local binding, when id is not bound as a transformer
(see §1.2.3 “Expansion”). At run-time, the reference evaluates to the value in the location
associated with the binding.

When the expander encounters an id that is not bound by a module-level or local binding,
it converts the expression to (#%top . id) giving #%top the lexical context of the id ;
typically, that context refers to #%top. See also §1.2.3.2 “Expansion Steps”.

Examples:

> (define x 10)
> x
10
> (let ([x 5]) x)
5
> ((lambda (x) x) 2)
2

(#%top . id)

Equivalent to id when id is bound to a module-level or top-level variable. In a top-level
context, (#%top . id) always refers to a top-level variable, even if id is unbound or
otherwise bound.

115

Within a module form, (#%top . id) expands to just id—with the obligation that id is
defined within the module and has no local binding in its context. At phase level 0, (#%top
. id) is an immediate syntax error if id is not bound. At phase level 1 and higher, a syntax
error is reported if id is not defined at the corresponding phase by the end of module-body
partial expansion.

See also §1.2.3.2 “Expansion Steps” for information on how the expander introduces #%top
identifiers.

Examples:

> (define x 12)
> (let ([x 5]) (#%top . x))
5

Changed in version 6.3 of package base: Changed the introduction of #%top in a top-level context to unbound
identifiers only.

3.6 Locations: #%variable-reference

(#%variable-reference id)
(#%variable-reference (#%top . id))
(#%variable-reference)

Produces an opaque variable reference value representing the location of id , which must
be bound as a variable. If no id is supplied, the resulting value refers to an “anonymous”
variable defined within the enclosing context (i.e., within the enclosing module, or at the top
level if the form is not inside a module).

A variable reference can be used with variable-reference->empty-namespace,
variable-reference->resolved-module-path, and variable-reference-
>namespace, but facilities like define-namespace-anchor and namespace-anchor-
>namespace wrap those to provide a clearer interface. A variable reference is also useful to
low-level extensions; see Inside: Racket C API.

3.7 Procedure Applications and #%app
§4.3 “Function
Calls” in The
Racket Guide
introduces
procedure
applications.

(proc-expr arg ...)

Applies a procedure, when proc-expr is not an identifier that has a transformer binding
(see §1.2.3 “Expansion”).

116

More precisely, the expander converts this form to (#%app proc-expr arg ...), giving
#%app the lexical context that is associated with the original form (i.e., the pair that com-
bines proc-expr and its arguments). Typically, the lexical context of the pair indicates the
procedure-application #%app that is described next. See also §1.2.3.2 “Expansion Steps”.

Examples:

> (+ 1 2)
3
> ((lambda (x #:arg y) (list y x)) #:arg 2 1)
'(2 1)

(#%app proc-expr arg ...)

Applies a procedure. Each arg is one of the following:

arg-expr

The resulting value is a non-keyword argument.

keyword arg-expr

The resulting value is a keyword argument using keyword . Each keyword in
the application must be distinct.

The proc-expr and arg-exprs are evaluated in order, left to right. If the result of proc-
expr is a procedure that accepts as many arguments as non-keyword arg-exprs, if it
accepts arguments for all of the keywords in the application, and if all required keyword-
based arguments are represented among the keywords in the application, then the procedure
is called with the values of the arg-exprs. Otherwise, the exn:fail:contract exception
is raised.

The continuation of the procedure call is the same as the continuation of the application
expression, so the results of the procedure are the results of the application expression.

The relative order of keyword -based arguments matters only for the order of arg-expr
evaluations; the arguments are associated with argument variables in the applied procedure
based on the keywords, and not their positions. The other arg-expr values, in contrast, are
associated with variables according to their order in the application form.

See also §1.2.3.2 “Expansion Steps” for information on how the expander introduces #%app
identifiers.

Examples:

117

> (#%app + 1 2)
3
> (#%app (lambda (x #:arg y) (list y x)) #:arg 2 1)
'(2 1)
> (#%app cons)
cons: arity mismatch;

the expected number of arguments does not match the given
number

expected: 2
given: 0

(#%plain-app proc-expr arg-expr ...)
(#%plain-app)

Like #%app, but without support for keyword arguments. As a special case, (#%plain-app)
produces '().

3.8 Procedure Expressions: lambda and case-lambda
§4.4 “Functions:
lambda” in The
Racket Guide
introduces
procedure
expressions.

(lambda kw-formals body ...+)
(λ kw-formals body ...+)

kw-formals = (arg ...)
| (arg ...+ . rest-id)
| rest-id

arg = id
| [id default-expr]
| keyword id
| keyword [id default-expr]

Produces a procedure. The kw-formals determines the number of arguments and which
keyword arguments that the procedure accepts.

Considering only the first arg case, a simple kw-formals has one of the following three
forms:

(id ...)

The procedure accepts as many non-keyword argument values as the number of
ids. Each id is associated with an argument value by position.

118

(id ...+ . rest-id)

The procedure accepts any number of non-keyword arguments greater or equal
to the number of ids. When the procedure is applied, the ids are associated
with argument values by position, and all leftover arguments are placed into a
list that is associated to rest-id .

rest-id

The procedure accepts any number of non-keyword arguments. All arguments
are placed into a list that is associated with rest-id .

More generally, an arg can include a keyword and/or default value. Thus, the first two cases
above are more completely specified as follows:

(arg ...)

Each arg has the following four forms:

id

Adds one to both the minimum and maximum number of non-
keyword arguments accepted by the procedure. The id is associated
with an actual argument by position.

[id default-expr]

Adds one to the maximum number of non-keyword arguments ac-
cepted by the procedure. The id is associated with an actual argu-
ment by position, and if no such argument is provided, the default-
expr is evaluated to produce a value associated with id . No arg
with a default-expr can appear before an id without a default-
expr and without a keyword .

keyword id

The procedure requires a keyword-based argument using keyword .
The id is associated with a keyword-based actual argument using
keyword .

119

keyword [id default-expr]

The procedure accepts a keyword-based argument using keyword .
The id is associated with a keyword-based actual argument using
keyword , if supplied in an application; otherwise, the default-
expr is evaluated to obtain a value to associate with id .

The position of a keyword arg in kw-formals does not matter, but each spec-
ified keyword must be distinct.

(arg ...+ . rest-id)

Like the previous case, but the procedure accepts any number of non-keyword
arguments beyond its minimum number of arguments. When more arguments
are provided than non-keyword arguments among the args, the extra argu-
ments are placed into a list that is associated to rest-id .

The kw-formals identifiers are bound in the bodys. When the procedure is applied, a new
location is created for each identifier, and the location is filled with the associated argu-
ment value. The locations are created and filled in order, with default-exprs evaluated as
needed to fill locations. In other words,

argument bindings
with default-value
expressions are
evaluated analogous
to let*.

If any identifier appears in the bodys that is not one of the identifiers in kw-formals , then
it refers to the same location that it would if it appeared in place of the lambda expression.
(In other words, variable reference is lexically scoped.)

When multiple identifiers appear in a kw-formals , they must be distinct according to
bound-identifier=?.

If the procedure produced by lambda is applied to fewer or more by-position or by-keyword
arguments than it accepts, to by-keyword arguments that it does not accept, or without re-
quired by-keyword arguments, then the exn:fail:contract exception is raised.

The last body expression is in tail position with respect to the procedure body.

Examples:

> ((lambda (x) x) 10)
10
> ((lambda (x y) (list y x)) 1 2)
'(2 1)
> ((lambda (x [y 5]) (list y x)) 1 2)
'(2 1)
> (let ([f (lambda (x #:arg y) (list y x))])

(list (f 1 #:arg 2)
(f #:arg 2 1)))

120

'((2 1) (2 1))

When compiling a lambda or case-lambda expression, Racket looks for a 'method-
arity-error property attached to the expression (see §12.7 “Syntax Object Properties”).
If it is present with a true value, and if no case of the procedure accepts zero arguments,
then the procedure is marked so that an exn:fail:contract:arity exception involving
the procedure will hide the first argument, if one was provided. (Hiding the first argument
is useful when the procedure implements a method, where the first argument is implicit in
the original source). The property affects only the format of exn:fail:contract:arity
exceptions, not the result of procedure-arity.

When a keyword-accepting procedure is bound to an identifier in certain ways, and when
the identifier is used in the function position of an application form, then the application
form may be expanded in such a way that the original binding is obscured as the target of
the application. To help expose the connection between the function application and func-
tion declaration, an identifier in the expansion of the function application is tagged with a
syntax property accessible via syntax-procedure-alias-property if it is effectively
an alias for the original identifier. An identifier in the expansion is tagged with a syn-
tax property accessible via syntax-procedure-converted-arguments-property if it
is like the original identifier except that the arguments are converted to a flattened form:
keyword arguments, required by-position arguments, by-position optional arguments, and
rest arguments—all as required, by-position arguments; the keyword arguments are sorted
by keyword name, each optional keyword argument is followed by a boolean to indicate
whether a value is provided, and #f is used for an optional keyword argument whose value
is not provided; optional by-position arguments include #f for each non-provided argument,
and then the sequence of optional-argument values is followed by a parallel sequence of
booleans to indicate whether each optional-argument value was provided.

(case-lambda [formals body ...+] ...)

formals = (id ...)
| (id ...+ . rest-id)
| rest-id

Produces a procedure. Each [formals body ...+] clause is analogous to a single
lambda procedure; applying the case-lambda-generated procedure is the same as apply-
ing a procedure that corresponds to one of the clauses—the first procedure that accepts the
given number of arguments. If no corresponding procedure accepts the given number of
arguments, the exn:fail:contract exception is raised.

Note that a case-lambda clause supports only formals , not the more general kw-formals
of lambda. That is, case-lambda does not directly support keyword and optional argu-
ments.

Example:

121

> (let ([f (case-lambda
[() 10]
[(x) x]
[(x y) (list y x)]
[r r])])

(list (f)
(f 1)
(f 1 2)
(f 1 2 3)))

'(10 1 (2 1) (1 2 3))

(#%plain-lambda formals body ...+)

Like lambda, but without support for keyword or optional arguments.

3.9 Local Binding: let, let*, letrec, ...
§4.6 “Local
Binding” in The
Racket Guide
introduces local
binding.

(let ([id val-expr] ...) body ...+)
(let proc-id ([id init-expr] ...) body ...+)

The first form evaluates the val-exprs left-to-right, creates a new location for each id , and
places the values into the locations. It then evaluates the bodys, in which the ids are bound.
The last body expression is in tail position with respect to the let form. The ids must be
distinct according to bound-identifier=?.

Examples:

> (let ([x 5]) x)
5
> (let ([x 5])

(let ([x 2]
[y x])

(list y x)))
'(5 2)

The second form evaluates the init-exprs; the resulting values become arguments in an
application of a procedure (lambda (id ...) body ...+), where proc-id is bound
within the bodys to the procedure itself.

Example:

> (let fac ([n 10])
(if (zero? n)

122

1
(* n (fac (sub1 n)))))

3628800

(let* ([id val-expr] ...) body ...+)

Like let, but evaluates the val-exprs one by one, creating a location for each id as soon
as the value is available. The ids are bound in the remaining val-exprs as well as the
bodys, and the ids need not be distinct; later bindings shadow earlier bindings.

Example:

> (let* ([x 1]
[y (+ x 1)])

(list y x))
'(2 1)

(letrec ([id val-expr] ...) body ...+)

Like let, including left-to-right evaluation of the val-exprs, but the locations for all ids
are created first, all ids are bound in all val-exprs as well as the bodys, and each id is
initialized immediately after the corresponding val-expr is evaluated. The ids must be
distinct according to bound-identifier=?.

Referencing or assigning to an id before its initialization raises
exn:fail:contract:variable. If an id (i.e., the binding instance or id) has an
'undefined-error-name syntax property whose value is a symbol, the symbol is used as
the name of the variable for error reporting, instead of the symbolic form of id .

Example:

> (letrec ([is-even? (lambda (n)
(or (zero? n)

(is-odd? (sub1 n))))]
[is-odd? (lambda (n)

(and (not (zero? n))
(is-even? (sub1 n))))])

(is-odd? 11))
#t

Changed in version 6.0.1.2 of package base: Changed reference or assignment of an uninitialized id to an error.

(let-values ([(id ...) val-expr] ...) body ...+)

123

Like let, except that each val-expr must produce as many values as corresponding ids,
otherwise the exn:fail:contract exception is raised. A separate location is created for
each id , all of which are bound in the bodys.

Example:

> (let-values ([(x y) (quotient/remainder 10 3)])
(list y x))

'(1 3)

(let*-values ([(id ...) val-expr] ...) body ...+)

Like let*, except that each val-expr must produce as many values as corresponding ids.
A separate location is created for each id , all of which are bound in the later val-exprs
and in the bodys.

Example:

> (let*-values ([(x y) (quotient/remainder 10 3)]
[(z) (list y x)])

z)
'(1 3)

(letrec-values ([(id ...) val-expr] ...) body ...+)

Like letrec, except that each val-expr must produce as many values as corresponding
ids. A separate location is created for each id , all of which are bound in all val-exprs
and in the bodys.

Example:

> (letrec-values ([(is-even? is-odd?)
(values
(lambda (n)
(or (zero? n)

(is-odd? (sub1 n))))
(lambda (n)
(or (= n 1)

(is-even? (sub1 n)))))])
(is-odd? 11))

#t

(let-syntax ([id trans-expr] ...) body ...+)

124

See also
splicing-let-syntax.

Creates a transformer binding (see §1.2.3.5 “Transformer Bindings”) of each id with the
value of trans-expr , which is an expression at phase level 1 relative to the surrounding
context. (See §1.2.1 “Identifiers, Binding, and Scopes” for information on phase levels.)

The evaluation of each trans-expr is parameterized to set current-namespace to a
namespace that shares bindings and variables with the namespace being used to expand the
let-syntax form, except that its base phase is one greater.

Each id is bound in the bodys, and not in other trans-exprs.

(letrec-syntax ([id trans-expr] ...) body ...+)
See also
splicing-letrec-syntax.

Like let-syntax, except that each id is also bound within all trans-exprs.

(let-syntaxes ([(id ...) trans-expr] ...) body ...+)
See also
splicing-let-syntaxes.

Like let-syntax, but each trans-expr must produce as many values as corresponding
ids, each of which is bound to the corresponding value.

(letrec-syntaxes ([(id ...) trans-expr] ...) body ...+)
See also
splicing-letrec-syntaxes.

Like let-syntax, except that each id is also bound within all trans-exprs.

(letrec-syntaxes+values ([(trans-id ...) trans-expr] ...)
([(val-id ...) val-expr] ...)

body ...+)

Combines letrec-syntaxes with a variant of letrec-values: each trans-id and val-
id is bound in all trans-exprs and val-exprs.

The letrec-syntaxes+values form is the core form for local compile-time bindings,
since forms like letrec-syntax and internal-definition contexts expand to it. In a fully
expanded expression (see §1.2.3.1 “Fully Expanded Programs”), the trans-id bindings
are discarded and the form reduces to a combination of letrec-values or let-values.

For variables bound by letrec-syntaxes+values, the location-creation rules differ
slightly from letrec-values. The [(val-id ...) val-expr] binding clauses are par-
titioned into minimal sets of clauses that satisfy the following rule: if a clause has a val-id
binding that is referenced (in a full expansion) by the val-expr of an earlier clause, the
two clauses and all in between are in the same set. If a set consists of a single clause whose
val-expr does not refer to any of the clause’s val-ids, then locations for the val-ids are
created after the val-expr is evaluated. Otherwise, locations for all val-ids in a set are
created just before the first val-expr in the set is evaluated. For the purposes of forming
sets, a (quote-syntax datum #:local) form counts as a reference to all bindings in the
letrec-syntaxes+values form

125

The end result of the location-creation rules is that scoping and evaluation order are the
same as for letrec-values, but the compiler has more freedom to optimize away location
creation. The rules also correspond to a nesting of let-values and letrec-values, which
is how letrec-syntaxes+values for a fully-expanded expression.

See also local, which supports local bindings with define, define-syntax, and more.

3.10 Local Definitions: local

(require racket/local) package: base

The bindings documented in this section are provided by the racket/local and racket
libraries, but not racket/base.

(local [definition ...] body ...+)

Like letrec-syntaxes+values, except that the bindings are expressed in the same way
as in the top-level or in a module body: using define, define-values, define-syntax,
struct, etc. Definitions are distinguished from non-definitions by partially expanding def-
inition forms (see §1.2.3.7 “Partial Expansion”). As in the top-level or in a module body,
a begin-wrapped sequence is spliced into the sequence of definitions.

3.11 Constructing Graphs: shared

(require racket/shared) package: base

The bindings documented in this section are provided by the racket/shared and racket
libraries, but not racket/base.

(shared ([id expr] ...) body ...+)

Binds ids with shared structure according to exprs and then evaluates the body-exprs,
returning the result of the last expression.

The shared form is similar to letrec, except that special forms of expr are recognized
(after partial macro expansion) to construct graph-structured data, where the corresponding
letrec would instead produce a use-before-initialization error.

Each expr (after partial expansion) is matched against the following shared-expr gram-
mar, where earlier variants in a production take precedence over later variants:

shared-expr = shell-expr
| plain-expr

126

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

shell-expr = (cons in-immutable-expr in-immutable-expr)
| (list in-immutable-expr ...)
| (list* in-immutable-expr ...)
| (append early-expr ... in-immutable-expr)
| (vector-immutable in-immutable-expr ...)
| (box-immutable in-immutable-expr)
| (mcons patchable-expr patchable-expr)
| (vector patchable-expr ...)
| (box patchable-expr)
| (prefix:make-id patchable-expr ...)

in-immutable-expr = shell-id
| shell-expr
| early-expr

shell-id = id

patchable-expr = expr

early-expr = expr

plain-expr = expr

The prefix:make-id identifier above matches three kinds of references. The first kind is
any binding whose name has make- in the middle, and where prefix:id has a transformer
binding to structure information with a full set of mutator bindings; see §5.7 “Structure Type
Transformer Binding”. The second kind is an identifier that itself has a transformer binding
to structure information. The third kind is an identifier that has a 'constructor-for syntax
property whose value is an identifier with a transformer binding to structure information. A
shell-id , meanwhile, must be one of the ids bound by the shared form to a shell-
expr .

When the exprs of the shared form are parsed as shared-expr (taking into account the or-
der of the variants for parsing precedence), the sub-expressions that were parsed via early-
expr will be evaluated first when the shared form is evaluated. Among such expressions,
they are evaluated in the order as they appear within the shared form. However, any ref-
erence to an id bound by shared produces a use-before-initialization errror, even if the
binding for the id appears before the corresponding early-expr within the shared form.

The shell-ids and shell-exprs (not counting patchable-expr and early-expr sub-
expressions) are effectively evaluated next:

• A shell-id reference produces the same value as the corresponding id will produce
within the bodys, assuming that id is never mutated with set!. This special handling
of a shell-id reference is one way in which shared supports the creation of cyclic
data, including immutable cyclic data.

127

• A shell-expr of the form (mcons patchable-expr patchable-expr), (vec-
tor patchable-expr ...), (box patchable-expr), or (prefix:make-id
patchable-expr ...) produces a mutable value whose content positions are ini-
tialized to undefined. Each content position is patched (i.e., updated) after the cor-
responding patchable-expr expression is later evaluated.

Next, the plain-exprs are evaluated as for letrec, where a reference to an id raises
exn:fail:contract:variable if it is evaluated before the right-hand side of the id bind-
ing.

Finally, the patchable-exprs are evaluated and their values replace undefineds in the
results of shell-exprs. At this point, all ids are bound, so patchable-exprs can create
data cycles (but only with cycles that can be created via mutation).

Examples:

> (shared ([a (cons 1 a)])
a)

#0='(1 . #0#)
> (shared ([a (cons 1 b)]

[b (cons 2 a)])
a)

#0='(1 2 . #0#)
> (shared ([a (cons 1 b)]

[b 7])
a)

'(1 . 7)
> (shared ([a a]) ; no indirection...

a)
a: undefined;

cannot use before initialization
> (shared ([a (cons 1 b)] ; b is early...

[b a])
a)

a: undefined;
cannot use before initialization
> (shared ([a (mcons 1 b)] ; b is patchable...

[b a])
a)

#0=(mcons 1 #0#)
> (shared ([a (vector b b b)]

[b (box 1)])
(set-box! b 5)
a)

'#(#&5 #&5 #&5)
> (shared ([a (box b)]

128

[b (vector (unbox a) ; unbox after a is patched
(unbox c))] ; unbox before c is patched

[c (box b)])
b)

#0='#(#0# #<undefined>)

3.12 Conditionals: if, cond, and, and or
§4.7 “Conditionals”
in The Racket
Guide introduces
conditionals.

(if test-expr then-expr else-expr)

Evaluates test-expr . If it produces any value other than #f, then then-expr is evaluated,
and its results are the result for the if form. Otherwise, else-expr is evaluated, and its
results are the result for the if form. The then-expr and else-expr are in tail position
with respect to the if form.

Examples:

> (if (positive? -5) (error "doesn't get here") 2)
2
> (if (positive? 5) 1 (error "doesn't get here"))
1
> (if 'we-have-no-bananas "yes" "no")
"yes"

(cond cond-clause ...)

cond-clause = [test-expr then-body ...+]
| [else then-body ...+]
| [test-expr => proc-expr]
| [test-expr]

§4.7.3 “Chaining
Tests: cond” in The
Racket Guide
introduces cond.

A cond-clause that starts with else must be the last cond-clause .

If no cond-clauses are present, the result is #<void>.

If only a [else then-body ...+] is present, then the then-bodys are evaluated. The
results from all but the last then-body are ignored. The results of the last then-body ,
which is in tail position with respect to the cond form, are the results for the whole cond
form.

Otherwise, the first test-expr is evaluated. If it produces #f, then the result is the same as
a cond form with the remaining cond-clauses, in tail position with respect to the original
cond form. Otherwise, evaluation depends on the form of the cond-clause :

129

[test-expr then-body ...+]

The then-bodys are evaluated in order, and the results from all but the last
then-body are ignored. The results of the last then-body , which is in tail
position with respect to the cond form, provides the result for the whole cond
form.

[test-expr => proc-expr]

The proc-expr is evaluated, and it must produce a procedure that accepts one
argument, otherwise the exn:fail:contract exception is raised. The proce-
dure is applied to the result of test-expr in tail position with respect to the
cond expression.

[test-expr]

The result of the test-expr is returned as the result of the cond form. The
test-expr is not in tail position.

Examples:

> (cond)
> (cond

[else 5])
5
> (cond

[(positive? -5) (error "doesn't get here")]
[(zero? -5) (error "doesn't get here, either")]
[(positive? 5) 'here])

'here
> (cond

[(member 2 '(1 2 3)) => (lambda (l) (map - l))])
'(-2 -3)
> (cond

[(member 2 '(1 2 3))])
'(2 3)

else

Recognized specially within forms like cond. An else form as an expression is a syntax
error.

130

=>

Recognized specially within forms like cond. A => form as an expression is a syntax error.

(and expr ...)
§4.7.2 “Combining
Tests: and and or”
in The Racket Guide
introduces and.

If no exprs are provided, then result is #t.

If a single expr is provided, then it is in tail position, so the results of the and expression
are the results of the expr .

Otherwise, the first expr is evaluated. If it produces #f, the result of the and expression is
#f. Otherwise, the result is the same as an and expression with the remaining exprs in tail
position with respect to the original and form.

Examples:

> (and)
#t
> (and 1)
1
> (and (values 1 2))
1
2
> (and #f (error "doesn't get here"))
#f
> (and #t 5)
5

(or expr ...)
§4.7.2 “Combining
Tests: and and or”
in The Racket Guide
introduces or.

If no exprs are provided, then result is #f.

If a single expr is provided, then it is in tail position, so the results of the or expression are
the results of the expr .

Otherwise, the first expr is evaluated. If it produces a value other than #f, that result is the
result of the or expression. Otherwise, the result is the same as an or expression with the
remaining exprs in tail position with respect to the original or form.

Examples:

> (or)
#f
> (or 1)
1
> (or (values 1 2))

131

1
2
> (or 5 (error "doesn't get here"))
5
> (or #f 5)
5

3.13 Dispatch: case

(case val-expr case-clause ...)

case-clause = [(datum ...) then-body ...+]
| [else then-body ...+]

Evaluates val-expr and uses the result to select a case-clause . The selected clause is the
first one with a datum whose quoted form is equal? to the result of val-expr . If no such
datum is present, the else case-clause is selected; if no else case-clause is present,
either, then the result of the case form is #<void>. The case form of

racket differs
from that of R6RS:
Scheme or R5RS:
Legacy Scheme by
being based
equal? instead of
eqv? (in addition to
allowing internal
definitions).

For the selected case-clause , the results of the last then-body , which is in tail position
with respect to the case form, are the results for the whole case form.

A case-clause that starts with else must be the last case-clause .

The case form can dispatch to a matching case-clause in O(log N) time for N datums.

Examples:

> (case (+ 7 5)
[(1 2 3) 'small]
[(10 11 12) 'big])

'big
> (case (- 7 5)

[(1 2 3) 'small]
[(10 11 12) 'big])

'small
> (case (string-append "do" "g")

[("cat" "dog" "mouse") "animal"]
[else "mineral or vegetable"])

"animal"
> (case (list 'y 'x)

[((a b) (x y)) 'forwards]
[((b a) (y x)) 'backwards])

'backwards

132

> (case 'x
[(x) "ex"]
[('x) "quoted ex"])

"ex"
> (case (list 'quote 'x)

[(x) "ex"]
[('x) "quoted ex"])

"quoted ex"

(define (classify c)
(case (char-general-category c)
[(ll lu lt ln lo) "letter"]
[(nd nl no) "number"]
[else "other"]))

> (classify #\A)
"letter"
> (classify #\1)
"number"
> (classify #\!)
"other"

3.14 Definitions: define, define-syntax, ...
§4.5 “Definitions:
define” in The
Racket Guide
introduces
definitions.

(define id expr)
(define (head args) body ...+)

head = id
| (head args)

args = arg ...
| arg rest-id

arg = arg-id
| [arg-id default-expr]
| keyword arg-id
| keyword [arg-id default-expr]

The first form binds id to the result of expr , and the second form binds id to a procedure.
In the second case, the generated procedure is (CVT (head args) body ...+), using
the CVT meta-function defined as follows:

(CVT (id . kw-formals) . datum) = (lambda kw-formals . datum)
(CVT (head . kw-formals) . datum) = (lambda kw-formals expr)

if (CVT head . datum) = expr

133

In an internal-definition context, a define form introduces a local binding; see §1.2.3.8 “In-
ternal Definitions”. At the top level, the top-level binding for id is created after evaluating
expr , if it does not exist already, and the top-level mapping of id (in the namespace linked
with the compiled definition) is set to the binding at the same time.

In a context that allows liberal expansion of define, id is bound as syntax if expr is an
immediate lambda form with keyword arguments or args include keyword arguments.

Examples:

(define x 10)

> x
10

(define (f x)
(+ x 1))

> (f 10)
11

(define ((f x) [y 20])
(+ x y))

> ((f 10) 30)
40
> ((f 10))
30

(define-values (id ...) expr)

Evaluates the expr , and binds the results to the ids, in order, if the number of re-
sults matches the number of ids; if expr produces a different number of results, the
exn:fail:contract exception is raised.

In an internal-definition context (see §1.2.3.8 “Internal Definitions”), a define-values
form introduces local bindings. At the top level, the top-level binding for each id is created
after evaluating expr , if it does not exist already, and the top-level mapping of each id (in
the namespace linked with the compiled definition) is set to the binding at the same time.

Examples:

> (define-values () (values))
> (define-values (x y z) (values 1 2 3))
> z
3

134

If a define-values form for a function definition in a module body has a 'compiler-
hint:cross-module-inline syntax property with a true value, then the Racket treats the
property as a performance hint. See §19.5 “Function-Call Optimizations” in The Racket
Guide for more information, and see also begin-encourage-inline.

(define-syntax id expr)
(define-syntax (head args) body ...+)

The first form creates a transformer binding (see §1.2.3.5 “Transformer Bindings”) of id
with the value of expr , which is an expression at phase level 1 relative to the surrounding
context. (See §1.2.1 “Identifiers, Binding, and Scopes” for information on phase levels.)
Evaluation of expr side is parameterized to set current-namespace as in let-syntax.

The second form is a shorthand the same as for define; it expands to a definition of the first
form where the expr is a lambda form.

In an internal-definition context (see §1.2.3.8 “Internal Definitions”), a define-syntax
form introduces a local binding.

Examples:

> (define-syntax foo
(syntax-rules ()
((_ a ...)
(printf "„a\n" (list a ...)))))

> (foo 1 2 3 4)
(1 2 3 4)
> (define-syntax (bar syntax-object)

(syntax-case syntax-object ()
((_ a ...)
#'(printf "„a\n" (list a ...)))))

> (bar 1 2 3 4)
(1 2 3 4)

(define-syntaxes (id ...) expr)

Like define-syntax, but creates a transformer binding for each id . The expr should
produce as many values as ids, and each value is bound to the corresponding id .

When expr produces zero values for a top-level define-syntaxes (i.e., not in a module
or internal-definition position), then the ids are effectively declared without binding; see
§1.2.3.10 “Macro-Introduced Bindings”.

In an internal-definition context (see §1.2.3.8 “Internal Definitions”), a define-syntaxes
form introduces local bindings.

Examples:

135

> (define-syntaxes (foo1 foo2 foo3)
(let ([transformer1 (lambda (syntax-object)

(syntax-case syntax-object ()
[(_) #'1]))]

[transformer2 (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'2]))]

[transformer3 (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'3]))])

(values transformer1
transformer2
transformer3)))

> (foo1)
1
> (foo2)
2
> (foo3)
3

(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)

Like define, except that the binding is at phase level 1 instead of phase level 0 rela-
tive to its context. The expression for the binding is also at phase level 1. (See §1.2.1
“Identifiers, Binding, and Scopes” for information on phase levels.) The form is a short-
hand for (begin-for-syntax (define id expr)) or (begin-for-syntax (define
(head args) body ...+)).

Within a module, bindings introduced by define-for-syntax must appear before their
uses or in the same define-for-syntax form (i.e., the define-for-syntax form must
be expanded before the use is expanded). In particular, mutually recursive functions bound
by define-for-syntax must be defined by the same define-for-syntax form.

Examples:

> (define-for-syntax helper 2)
> (define-syntax (make-two syntax-object)

(printf "helper is „a\n" helper)
#'2)

> (make-two)
helper is 2
2
; ‘helper' is not bound in the runtime phase
> helper
helper: undefined;

136

cannot reference an identifier before its definition
in module: top-level

> (define-for-syntax (filter-ids ids)
(filter identifier? ids))

> (define-syntax (show-variables syntax-object)
(syntax-case syntax-object ()
[(_ expr ...)
(with-syntax ([(only-ids ...)

(filter-ids (syntax->list #'(expr ...)))])
#'(list only-ids ...))]))

> (let ([a 1] [b 2] [c 3])
(show-variables a 5 2 b c))

'(1 2 3)

(define-values-for-syntax (id ...) expr)

Like define-for-syntax, but expr must produce as many values as supplied ids, and all
of the ids are bound (at phase level 1).

Examples:

> (define-values-for-syntax (foo1 foo2) (values 1 2))
> (define-syntax (bar syntax-object)

(printf "foo1 is „a foo2 is „a\n" foo1 foo2)
#'2)

> (bar)
foo1 is 1 foo2 is 2
2

3.14.1 require Macros

(require racket/require-syntax) package: base

The bindings documented in this section are provided by the racket/require-syntax
library, not racket/base or racket.

(define-require-syntax id proc-expr)
(define-require-syntax (id args ...) body ...+)

The first form is like define-syntax, but for a require sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a require sub-
form.

This form expands to define-syntax with a use of make-require-transformer (see
§12.4.1 “require Transformers” for more information).

137

https://pkgs.racket-lang.org/package/base

The second form is a shorthand the same as for define-syntax; it expands to a definition
of the first form where the proc-expr is a lambda form.

(syntax-local-require-introduce stx) Ñ syntax?
stx : syntax?

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

3.14.2 provide Macros

(require racket/provide-syntax) package: base

The bindings documented in this section are provided by the racket/provide-syntax
library, not racket/base or racket.

(define-provide-syntax id proc-expr)
(define-provide-syntax (id args ...) body ...+)

The first form is like define-syntax, but for a provide sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a provide sub-
form.

This form expands to define-syntax with a use of make-provide-transformer (see
§12.4.2 “provide Transformers” for more information).

The second form is a shorthand the same as for define-syntax; it expands to a definition
of the first form where the expr is a lambda form.

(syntax-local-provide-introduce stx) Ñ syntax?
stx : syntax?

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

3.15 Sequencing: begin, begin0, and begin-for-syntax
§4.8 “Sequencing”
in The Racket
Guide introduces
begin and begin0.

(begin form ...)
(begin expr ...+)

138

https://pkgs.racket-lang.org/package/base

The first form applies when begin appears at the top level, at module level, or in an internal-
definition position (before any expression in the internal-definition sequence). In that case,
the begin form is equivalent to splicing the forms into the enclosing context.

The second form applies for begin in an expression position. In that case, the exprs are
evaluated in order, and the results are ignored for all but the last expr . The last expr is in
tail position with respect to the begin form.

Examples:

> (begin
(define x 10)
x)

10
> (+ 1 (begin

(printf "hi\n")
2))

hi
3
> (let-values ([(x y) (begin

(values 1 2 3)
(values 1 2))])

(list x y))
'(1 2)

(begin0 expr ...+)

Evaluates the first expr , then evaluates the other exprss in order, ignoring their results. The
results of the first expr are the results of the begin0 form; the first expr is in tail position
only if no other exprs are present.

Example:

> (begin0
(values 1 2)
(printf "hi\n"))

hi
1
2

(begin-for-syntax form ...)

Allowed only in a top-level context or module context, shifts the phase level of each form
by one:

139

• expressions reference bindings at a phase level one greater than in the context of the
begin-for-syntax form;

• define, define-values, define-syntax, and define-syntaxes forms bind at a
phase level one greater than in the context of the begin-for-syntax form;

• in require and provide forms, the default phase level is greater, which is roughly
like wrapping the content of the require form with for-syntax;

• expression form expr : converted to (define-values-for-syntax () (begin
expr (values))), which effectively evaluates the expression at expansion time and,
in the case of a module context, preserves the expression for future visits of the mod-
ule.

See also module for information about expansion order and partial expansion for begin-
for-syntax within a module context. Evaluation of an expr within begin-for-syntax
is parameterized to set current-namespace as in let-syntax.

3.16 Guarded Evaluation: when and unless
§4.8.3 “Effects If...:
when and unless”
in The Racket
Guide introduces
when and unless.

(when test-expr body ...+)

Evaluates test-expr . If the result is #f, then the result of the when expression is #<void>.
Otherwise, the bodys are evaluated, and the last body is in tail position with respect to the
when form.

Examples:

> (when (positive? -5)
(display "hi"))

> (when (positive? 5)
(display "hi")
(display " there"))

hi there

(unless test-expr body ...+)

Equivalent to (when (not test-expr) body ...+).

Examples:

> (unless (positive? 5)
(display "hi"))

> (unless (positive? -5)
(display "hi")
(display " there"))

hi there

140

3.17 Assignment: set! and set!-values
§4.9 “Assignment:
set!” in The
Racket Guide
introduces set!.

(set! id expr)

If id has a transformer binding to an assignment transformer, as produced by make-set!-
transformer or as an instance of a structure type with the prop:set!-transformer
property, then this form is expanded by calling the assignment transformer with the full
expressions. If id has a transformer binding to a rename transformer as produced by
make-rename-transformer or as an instance of a structure type with the prop:rename-
transformer property, then this form is expanded by replacing id with the target iden-
tifier (e.g., the one provided to make-rename-transformer). If a transformer binding
has both prop:set!-transformer and prop:rename-transformer properties, the lat-
ter takes precedence.

Otherwise, evaluates expr and installs the result into the location for id , which must be
bound as a local variable or defined as a top-level variable or module-level variable. If id
refers to an imported binding, a syntax error is reported. If id refers to a top-level variable
that has not been defined, the exn:fail:contract exception is raised.

See also compile-allow-set!-undefined.

Examples:

> (define x 12)
> (set! x (add1 x))
> x
13
> (let ([x 5])

(set! x (add1 x))
x)

6
> (set! i-am-not-defined 10)
set!: assignment disallowed;

cannot set variable before its definition
variable: i-am-not-defined
in module: top-level

(set!-values (id ...) expr)

Assuming that all ids refer to variables, this form evaluates expr , which must produce as
many values as supplied ids. The location of each id is filled with the corresponding value
from expr in the same way as for set!.

Example:

141

> (let ([a 1]
[b 2])

(set!-values (a b) (values b a))
(list a b))

'(2 1)

More generally, the set!-values form is expanded to

(let-values ([(tmp-id ...) expr])
(set! id tmp-id) ...)

which triggers further expansion if any id has a transformer binding to an assignment trans-
former.

3.18 Iterations and Comprehensions: for, for/list, ...
§11 “Iterations and
Comprehensions”
in The Racket
Guide introduces
iterations and
comprehensions.

The for iteration forms are based on SRFI-42 [SRFI-42].

3.18.1 Iteration and Comprehension Forms

(for (for-clause ...) body-or-break ... body)

for-clause = [id seq-expr]
| [(id ...) seq-expr]
| #:when guard-expr
| #:unless guard-expr
| break-clause

break-clause = #:break guard-expr
| #:final guard-expr

body-or-break = body
| break-clause

seq-expr : sequence?

Iteratively evaluates bodys. The for-clauses introduce bindings whose scope includes
body and that determine the number of times that body is evaluated. A break-clause
either among the for-clauses or bodys stops further iteration.

In the simple case, each for-clause has one of its first two forms, where [id seq-expr]
is a shorthand for [(id) seq-expr]. In this simple case, the seq-exprs are evaluated
left-to-right, and each must produce a sequence value (see §4.14.1 “Sequences”).

142

The for form iterates by drawing an element from each sequence; if any sequence is empty,
then the iteration stops, and #<void> is the result of the for expression. Otherwise a loca-
tion is created for each id to hold the values of each element; the sequence produced by a
seq-expr must return as many values for each iteration as corresponding ids.

The ids are then bound in the body , which is evaluated, and whose results are ignored.
Iteration continues with the next element in each sequence and with fresh locations for each
id .

A for form with zero for-clauses is equivalent to a single for-clause that binds an
unreferenced id to a sequence containing a single element. All of the ids must be distinct
according to bound-identifier=?.

If any for-clause has the form #:when guard-expr , then only the preceding clauses
(containing no #:when or #:unless) determine iteration as above, and the body is effec-
tively wrapped as

(when guard-expr
(for (for-clause ...) body ...+))

using the remaining for-clauses. A for-clause of the form #:unless guard-expr
corresponds to the same transformation with unless in place of when.

A #:break guard-expr clause is similar to a #:unless guard-expr clause, but when
#:break avoids evaluation of the bodys, it also effectively ends all sequences within the for
form. A #:final guard-expr clause is similar to #:break guard-expr , but instead of
immediately ending sequences and skipping the bodys, it allows at most one more element
from each later sequence and at most one more evaluation of the following bodys. Among
the bodys, besides stopping the iteration and preventing later body evaluations, a #:break
guard-expr or #:final guard-expr clause starts a new internal-definition context.

In the case of list and stream sequences, the for form itself does not keep each element
reachable. If a list or stream produced by a seq-expr is otherwise unreachable, and if
the for body can no longer reference an id for a list element, then the element is subject
to garbage collection. The make-do-sequence sequence constructor supports additional
sequences that behave like lists and streams in this way.

Examples:

> (for ([i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #f)])

(display (list i j k)))
(1 a #t)(1 a #f)(3 c #t)(3 c #f)
> (for ([(i j) #hash(("a" . 1) ("b" . 20))])

(display (list i j)))

143

(b 20)(a 1)
> (for ([i '(1 2 3)]

[j "abc"]
#:break (not (odd? i))
[k #(#t #f)])

(display (list i j k)))
(1 a #t)(1 a #f)
> (for ([i '(1 2 3)]

[j "abc"]
#:final (not (odd? i))
[k #(#t #f)])

(display (list i j k)))
(1 a #t)(1 a #f)(2 b #t)
> (for ([i '(1 2 3)]

[j "abc"]
[k #(#t #f)])

#:break (not (or (odd? i) k))
(display (list i j k)))

(1 a #t)
> (for ()

(display "here"))
here
> (for ([i '()])

(error "doesn't get here"))

Changed in version 6.7.0.4 of package base: Added support for the optional second result.

(for/list (for-clause ...) body-or-break ... body)

Iterates like for, but that the last expression in the bodys must produce a single value, and
the result of the for/list expression is a list of the results in order. When evaluation of a
body is skipped due to a #:when or #:unless clause, the result list includes no correspond-
ing element.

Examples:

> (for/list ([i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #f)])

(list i j k))
'((1 #\a #t) (1 #\a #f) (3 #\c #t) (3 #\c #f))
> (for/list ([i '(1 2 3)]

[j "abc"]
#:break (not (odd? i))
[k #(#t #f)])

144

(list i j k))
'((1 #\a #t) (1 #\a #f))
> (for/list () 'any)
'(any)
> (for/list ([i '()])

(error "doesn't get here"))
'()

(for/vector maybe-length (for-clause ...) body-or-break ... body)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

Iterates like for/list, but results are accumulated into a vector instead of a list.

If the optional #:length clause is specified, the result of length-expr determines the
length of the result vector. In that case, the iteration can be performed more efficiently, and
it terminates when the vector is full or the requested number of iterations have been per-
formed, whichever comes first. If length-expr specifies a length longer than the number
of iterations, then the remaining slots of the vector are initialized to the value of fill-expr ,
which defaults to 0 (i.e., the default argument of make-vector).

Examples:

> (for/vector ([i '(1 2 3)]) (number->string i))
'#("1" "2" "3")
> (for/vector #:length 2 ([i '(1 2 3)]) (number->string i))
'#("1" "2")
> (for/vector #:length 4 ([i '(1 2 3)]) (number->string i))
'#("1" "2" "3" 0)
> (for/vector #:length 4 #:fill "?" ([i '(1 2 3)]) (number-
>string i))
'#("1" "2" "3" "?")

The for/vector form may allocate a vector and mutate it after each iteration of body ,
which means that capturing a continuation during body and applying it multiple times may
mutate a shared vector.
(for/hash (for-clause ...) body-or-break ... body)
(for/hasheq (for-clause ...) body-or-break ... body)
(for/hasheqv (for-clause ...) body-or-break ... body)

Like for/list, but the result is an immutable hash table; for/hash creates a table using
equal? to distinguish keys, for/hasheq produces a table using eq?, and for/hasheqv

145

produces a table using eqv?. The last expression in the bodys must return two values: a key
and a value to extend the hash table accumulated by the iteration.

Example:

> (for/hash ([i '(1 2 3)])
(values i (number->string i)))

'#hash((1 . "1") (2 . "2") (3 . "3"))

(for/and (for-clause ...) body-or-break ... body)

Iterates like for, but when last expression of body produces #f, then iteration terminates,
and the result of the for/and expression is #f. If the body is never evaluated, then the
result of the for/and expression is #t. Otherwise, the result is the (single) result from the
last evaluation of body .

Examples:

> (for/and ([i '(1 2 3 "x")])
(i . < . 3))

#f
> (for/and ([i '(1 2 3 4)])

i)
4
> (for/and ([i '(1 2 3 4)])

#:break (= i 3)
i)

2
> (for/and ([i '()])

(error "doesn't get here"))
#t

(for/or (for-clause ...) body-or-break ... body)

Iterates like for, but when last expression of body produces a value other than #f, then
iteration terminates, and the result of the for/or expression is the same (single) value. If
the body is never evaluated, then the result of the for/or expression is #f. Otherwise, the
result is #f.

Examples:

> (for/or ([i '(1 2 3 "x")])
(i . < . 3))

#t
> (for/or ([i '(1 2 3 4)])

i)

146

1
> (for/or ([i '()])

(error "doesn't get here"))
#f

(for/sum (for-clause ...) body-or-break ... body)

Iterates like for, but each result of the last body is accumulated into a result with +.

Example:

> (for/sum ([i '(1 2 3 4)]) i)
10

(for/product (for-clause ...) body-or-break ... body)

Iterates like for, but each result of the last body is accumulated into a result with *.

Example:

> (for/product ([i '(1 2 3 4)]) i)
24

(for/lists (id ... maybe-result)
(for-clause ...)

body-or-break ... body)

maybe-result =
| #:result result-expr

Similar to for/list, but the last body expression should produce as many values as given
ids. The ids are bound to the lists accumulated so far in the for-clauses and bodys.

If a result-expr is provided, it is used as with for/fold when iteration terminates; oth-
erwise, the result is as many lists as supplied ids

Examples:

> (for/lists (l1 l2 l3)
([i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #f)])

(values i j k))

147

'(1 1 3 3)
'(#\a #\a #\c #\c)
'(#t #f #t #f)
> (for/lists (acc)

([x '(tvp tofu seitan tvp tofu)]
#:unless (member x acc))

x)
'(tvp tofu seitan)
> (for/lists (firsts seconds #:result (list firsts seconds))

([pr '((1 . 2) (3 . 4) (5 . 6))])
(values (car pr) (cdr pr)))

'((1 3 5) (2 4 6))

Changed in version 7.1.0.2 of package base: Added the #:result form.

(for/first (for-clause ...) body-or-break ... body)

Iterates like for, but after body is evaluated the first time, then the iteration terminates, and
the for/first result is the (single) result of body . If the body is never evaluated, then the
result of the for/first expression is #f.

Examples:

> (for/first ([i '(1 2 3 "x")]
#:when (even? i))

(number->string i))
"2"
> (for/first ([i '()])

(error "doesn't get here"))
#f

(for/last (for-clause ...) body-or-break ... body)

Iterates like for, but the for/last result is the (single) result of the last evaluation of body .
If the body is never evaluated, then the result of the for/last expression is #f.

Examples:

> (for/last ([i '(1 2 3 4 5)]
#:when (even? i))

(number->string i))
"4"
> (for/last ([i '()])

(error "doesn't get here"))
#f

148

(for/fold ([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

maybe-result =
| #:result result-expr

Iterates like for. Before iteration starts, the init-exprs are evaluated to produce initial
accumulator values. At the start of each iteration, a location is generated for each accum-
id , and the corresponding current accumulator value is placed into the location. The last
expression in body must produce as many values as accum-ids, and those values become
the current accumulator values. When iteration terminates, if a result-expr is provided
then the result of the for/fold is the result of evaluating result-expr (with accum-ids
in scope and bound to their final values), otherwise the results of the for/fold expression
are the accumulator values.

An accum-id and a binding from a for-clause can be the same identifier. In that case,
the accum-id binding shadows the one in a for-clause within the body-or-break and
body forms (even though, syntactically, a for-clause is closer to to the body).

Examples:

> (for/fold ([sum 0]
[rev-roots null])
([i '(1 2 3 4)])

(values (+ sum i) (cons (sqrt i) rev-roots)))
10
'(2 1.7320508075688772 1.4142135623730951 1)
> (for/fold ([acc '()]

[seen (hash)]
#:result (reverse acc))
([x (in-list '(0 1 1 2 3 4 4 4))])

(cond
[(hash-ref seen x #f)
(values acc seen)]
[else (values (cons x acc)

(hash-set seen x #t))]))
'(0 1 2 3 4)

Changed in version 6.11.0.1 of package base: Added the #:result form.

(for/foldr ([accum-id init-expr] ... accum-option ...)
(for-clause ...)

body-or-break ... body)

149

accum-option = #:result result-expr
| #:delay
| #:delay-as delayed-id
| #:delay-with delayer-id

Like for/fold, but analogous to foldr rather than foldl: the given sequences are still
iterated in the same order, but the loop body is evaluated in reverse order. Evaluation of a
for/foldr expression uses space proportional to the number of iterations it performs, and
all elements produced by the given sequences are retained until backwards evaluation of the
loop body begins (assuming the element is, in fact, referenced in the body).

Examples:

> (define (in-printing seq)
(sequence-map (lambda (v) (println v) v) seq))

> (for/foldr ([acc '()])
([v (in-printing (in-range 1 4))])

(println v)
(cons v acc))

1
2
3
3
2
1
'(1 2 3)

Furthermore, unlike for/fold, the accum-ids are not bound within guard-exprs or
body-or-break forms that appear before a break-clause .

While the aforementioned limitations make for/foldr less generally useful than
for/fold, for/foldr provides the additional capability to iterate lazily via the #:delay,
#:delay-as, and #:delay-with options, which can mitigate many of for/foldr’s dis-
advantages. If at least one such option is specified, the loop body is given explicit control
over when iteration continues: by default, each accum-id is bound to a promise that, when
forced, produces the accum-id ’s current value.

In this mode, iteration does not continue until one such promise is forced, which triggers
any additional iteration necessary to produce a value. If the loop body is lazy in its accum-
ids—that is, it returns a value without forcing any of them—then the loop (or any of its
iterations) will produce a value before iteration has completely finished. If a reference to
at least one such promise is retained, then forcing it will resume iteration from the point at
which it was suspended, even if control has left the dynamic extent of the loop body.

Examples:

> (for/foldr ([acc '()] #:delay)

150

([v (in-range 1 4)])
(printf "--> „v\n" v)
(begin0
(cons v (force acc))
(printf "<-- „v\n" v)))

--> 1
--> 2
--> 3
<-- 3
<-- 2
<-- 1
'(1 2 3)
> (define resume

(for/foldr ([acc '()] #:delay)
([v (in-range 1 5)])

(printf "--> „v\n" v)
(begin0
(cond
[(= v 1) (force acc)]
[(= v 2) acc]
[else (cons v (force acc))])

(printf "<-- „v\n" v))))
--> 1
--> 2
<-- 2
<-- 1
> (force resume)
--> 3
--> 4
<-- 4
<-- 3
'(3 4)

This extra control over iteration order allows for/foldr to both consume and construct
infinite sequences, so long as it is at least sometimes lazy in its accumulators. See also

for/stream for a
more convenient
(albeit less flexible)
way to lazily
transform infinite
sequences.
(Internally,
for/stream is
defined in terms of
for/foldr.)

Examples:

> (define squares (for/foldr ([s empty-stream] #:delay)
([n (in-naturals)])

(stream-cons (* n n) (force s))))
> (stream->list (stream-take squares 10))
'(0 1 4 9 16 25 36 49 64 81)

The suspension introduced by the #:delay option does not ordinarily affect the loop’s even-
tual return value, but if #:delay and #:result are combined, the accum-ids will be de-

151

layed in the scope of the result-expr in the same way they are delayed within the loop
body. This can be used to introduce an additional layer of suspension around the evaluation
of the entire loop, if desired.

Examples:

> (define evaluated-yet? #f)
> (for/foldr ([acc (set! evaluated-yet? #t)] #:delay) ()

(force acc))
> evaluated-yet?
#t

> (define evaluated-yet? #f)
> (define start

(for/foldr ([acc (set! evaluated-yet? #t)] #:delay #:result acc) ()
(force acc)))

> evaluated-yet?
#f
> (force start)
> evaluated-yet?
#t

If the #:delay-as option is provided, then delayed-id is bound to an additional promise
that returns the values of all accum-ids at once. When multiple accum-ids are provided,
forcing this promise can be slightly more efficient than forcing the promises bound to the
accum-ids individually.

If the #:delay-with option is provided, the given delayer-id is used to suspend nested it-
erations (instead of the default, delay). A form of the shape (delayer-id recur-expr)
is constructed and placed in expression position, where recur-expr is an expression that,
when evaluated, will perform the next iteration and return its result (or results). Sensible
choices for delayer-id include lazy, delay/sync, delay/thread, or any of the other
promise constructors from racket/promise, as well as thunk from racket/function.
However, beware that choices such as thunk or delay/name may evaluate their subexpres-
sion multiple times, which can lead to nonsensical results for sequences that have state, as
the state will be shared between all evaluations of the recur-expr .

If multiple accum-ids are given, the #:delay-with option is provided, and delayer-
id is not bound to one of delay, lazy, delay/strict, delay/sync, delay/thread, or
delay/idle, the accum-ids will not be bound at all, even within the loop body. Instead,
the #:delay-as option must be specified to access the accumulator values via delayed-id .

Added in version 7.3.0.3 of package base.

(for* (for-clause ...) body-or-break ... body)

152

Like for, but with an implicit #:when #t between each pair of for-clauses, so that all
sequence iterations are nested.

Example:

> (for* ([i '(1 2)]
[j "ab"])

(display (list i j)))
(1 a)(1 b)(2 a)(2 b)

(for*/list (for-clause ...) body-or-break ... body)
(for*/lists (id ... maybe-result) (for-clause ...)

body-or-break ... body)
(for*/vector maybe-length (for-clause ...) body-or-break ... body)
(for*/hash (for-clause ...) body-or-break ... body)
(for*/hasheq (for-clause ...) body-or-break ... body)
(for*/hasheqv (for-clause ...) body-or-break ... body)
(for*/and (for-clause ...) body-or-break ... body)
(for*/or (for-clause ...) body-or-break ... body)
(for*/sum (for-clause ...) body-or-break ... body)
(for*/product (for-clause ...) body-or-break ... body)
(for*/first (for-clause ...) body-or-break ... body)
(for*/last (for-clause ...) body-or-break ... body)
(for*/fold ([accum-id init-expr] ... maybe-result) (for-clause ...)

body-or-break ... body)
(for*/foldr ([accum-id init-expr] ... accum-option ...)

(for-clause ...)
body-or-break ... body)

Like for/list, etc., but with the implicit nesting of for*.

Example:

> (for*/list ([i '(1 2)]
[j "ab"])

(list i j))
'((1 #\a) (1 #\b) (2 #\a) (2 #\b))

Changed in version 7.3.0.3 of package base: Added the for*/foldr form.

3.18.2 Deriving New Iteration Forms

(for/fold/derived orig-datum
([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

153

Like for/fold, but the extra orig-datum is used as the source for all syntax errors.

Examples:

> (define-syntax (for/digits stx)
(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#'(let-values

([(n k)
(for/fold/derived

original ([n 0] [k 1])
clauses
body ...
(values (+ n (* tail-expr k)) (* k 10)))])

n))]))
; If we misuse for/digits, we can get good error reporting
; because the use of orig-datum allows for source correlation:
> (for/digits

[a (in-list '(1 2 3))]
[b (in-list '(4 5 6))]

(+ a b))
eval:3:0: for/digits: bad sequence binding clause

at: a
in: (for/digits (a (in-list (quote (1 2 3)))) (b (in-list

(quote (4 5 6)))) (+ a b))
> (for/digits

([a (in-list '(1 2 3))]
[b (in-list '(2 4 6))])

(+ a b))
963
; Another example: compute the max during iteration:
> (define-syntax (for/max stx)

(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#'(for/fold/derived original

([current-max -inf.0])
clauses
body ...
(define maybe-new-max tail-expr)
(if (> maybe-new-max current-max)

maybe-new-max
current-max)))]))

> (for/max ([n '(3.14159 2.71828 1.61803)]
[s '(-1 1 1)])

154

(* n s))
2.71828

Changed in version 6.11.0.1 of package base: Added the #:result form.

(for*/fold/derived orig-datum
([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

Like for*/fold, but the extra orig-datum is used as the source for all syntax errors.

Examples:

> (define-syntax (for*/digits stx)
(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#'(let-values

([(n k)
(for*/fold/derived original ([n 0] [k 1])
clauses
body ...
(values (+ n (* tail-expr k)) (* k 10)))])

n))]))
> (for*/digits

[ds (in-list '((8 3) (1 1)))]
[d (in-list ds)]

d)
eval:8:0: for*/digits: bad sequence binding clause

at: ds
in: (for*/digits (ds (in-list (quote ((8 3) (1 1))))) (d

(in-list ds)) d)
> (for*/digits

([ds (in-list '((8 3) (1 1)))]
[d (in-list ds)])

d)
1138

Changed in version 6.11.0.1 of package base: Added the #:result form.

(for/foldr/derived orig-datum
([accum-id init-expr] ... accum-option ...) (for-clause ...)
body-or-break ... body)

(for*/foldr/derived orig-datum
([accum-id init-expr] ... accum-option ...) (for-clause ...)
body-or-break ... body)

155

Like for/foldr and for*/foldr, but the extra orig-datum is used as the source for all
syntax errors as in for/fold/derived and for*/fold/derived.

Added in version 7.3.0.3 of package base.

(define-sequence-syntax id
expr-transform-expr
clause-transform-expr)

expr-transform-expr :
(or/c (-> identifier?)

(syntax? . -> . syntax?))

clause-transform-expr : (syntax? . -> . syntax?)

Defines id as syntax. An (id . rest) form is treated specially when used to generate a
sequence in a for-clause of for (or one of its variants). In that case, the procedure result
of clause-transform-expr is called to transform the clause.

When id is used in any other expression position, the result of expr-transform-expr is
used. If it is a procedure of zero arguments, then the result must be an identifier other-id ,
and any use of id is converted to a use of other-id . Otherwise,expr-transform-expr
must produce a procedure (of one argument) that is used as a macro transformer.

When the clause-transform-expr transformer is used, it is given a for-clause as an
argument, where the clause’s form is normalized so that the left-hand side is a parenthesized
sequence of identifiers. The right-hand side is of the form (id . rest). The result can
be either #f, to indicate that the forms should not be treated specially (perhaps because the
number of bound identifiers is inconsistent with the (id . rest) form), or a new for-
clause to replace the given one. The new clause might use :do-in. To protect identifiers
in the result of clause-transform-expr , use for-clause-syntax-protect instead of
syntax-protect.

Examples:

> (define (check-nat n)
(unless (exact-nonnegative-integer? n)
(raise-argument-error 'in-digits "exact-nonnegative-

integer?" n)))
> (define-sequence-syntax in-digits

(lambda () #'in-digits/proc)
(lambda (stx)
(syntax-case stx ()
[[(d) (_ nat)]
#'[(d)

(:do-in
([(n) nat])
(check-nat n)

156

([i n])
(not (zero? i))
([(j d) (quotient/remainder i 10)])
#true
#true
[j])]]

[_ #f])))
> (define (in-digits/proc n)

(for/list ([d (in-digits n)]) d))
> (for/list ([d (in-digits 1138)]) d)
'(8 3 1 1)
> (map in-digits (list 137 216))
'((7 3 1) (6 1 2))

(:do-in ([(outer-id ...) outer-expr] ...)
outer-check
([loop-id loop-expr] ...)
pos-guard
([(inner-id ...) inner-expr] ...)
pre-guard
post-guard
(loop-arg ...))

A form that can only be used as a seq-expr in a for-clause of for (or one of its variants).

Within a for, the pieces of the :do-in form are spliced into the iteration essentially as
follows:

(let-values ([(outer-id ...) outer-expr] ...)
outer-check
(let loop ([loop-id loop-expr] ...)
(if pos-guard

(let-values ([(inner-id ...) inner-expr] ...)
(if pre-guard

(let body-bindings
(if post-guard

(loop loop-arg ...)
done-expr))

done-expr))
done-expr)))

where body-bindings and done-expr are from the context of the :do-in use. The iden-
tifiers bound by the for clause are typically part of the ([(inner-id ...) inner-expr]
...) section.

157

The actual loop binding and call has additional loop arguments to support iterations in
parallel with the :do-in form, and the other pieces are similarly accompanied by pieces
from parallel iterations.

For an example of :do-in, see define-sequence-syntax.

(for-clause-syntax-protect stx) Ñ syntax?
stx : syntax?

Provided for-syntax: Like syntax-protect, but allows the for expander to disarm the
result syntax object, and arms the pieces of a clause instead of the entire syntax object.

Use this function to protect the result of a clause-transform-expr that is bound by
define-sequence-syntax.

3.18.3 Do Loops

(do ([id init-expr step-expr-maybe] ...)
(stop?-expr finish-expr ...)

expr ...)

step-expr-maybe =
| step-expr

Iteratively evaluates the exprs for as long as stop?-expr returns #f.

To initialize the loop, the init-exprs are evaluated in order and bound to the corresponding
ids. The ids are bound in all expressions within the form other than the init-exprs.

After the ids have been bound, the stop?-expr is evaluated. If it produces #f, each expr
is evaluated for its side-effect. The ids are then effectively updated with the values of the
step-exprs, where the default step-expr for id is just id ; more precisely, iteration con-
tinues with fresh locations for the ids that are initialized with the values of the corresponding
step-exprs.

When stop?-expr produces a true value, then the finish-exprs are evaluated in order,
and the last one is evaluated in tail position to produce the overall value for the do form. If
no finish-expr is provided, the value of the do form is #<void>.

3.19 Continuation Marks: with-continuation-mark

(with-continuation-mark key-expr val-expr result-expr)

158

The key-expr , val-expr , and result-expr expressions are evaluated in order. After
key-expr is evaluated to obtain a key and val-expr is evaluated to obtain a value, the key
is mapped to the value as a continuation mark in the current continuation’s initial continu-
ation frame. If the frame already has a mark for the key, the mark is replaced. Finally, the
result-expr is evaluated; the continuation for evaluating result-expr is the continua-
tion of the with-continuation-mark expression (so the result of the result-expr is the
result of the with-continuation-mark expression, and result-expr is in tail position
for the with-continuation-mark expression). §10.5

“Continuation
Marks” provides
more information
on continuation
marks.

3.20 Quasiquoting: quasiquote, unquote, and unquote-splicing
§4.11
“Quasiquoting:
quasiquote and
‘” in The Racket
Guide introduces
quasiquote.

(quasiquote datum)

The same as 'datum if datum does not include (unquote expr) or (unquote-splicing
expr). An (unquote expr) form escapes from the quote, however, and the result of
the expr takes the place of the (unquote expr) form in the quasiquote result. An
(unquote-splicing expr) similarly escapes, but the expr must produce a list, and its
elements are spliced as multiple values place of the (unquote-splicing expr), which
must appear as the car of a quoted pair, as an element of a quoted vector, or as an element
of a quoted prefab structure; in the case of a pair, if the cdr of the relevant quoted pair
is empty, then expr need not produce a list, and its result is used directly in place of the
quoted pair (in the same way that append accepts a non-list final argument). In a quoted
hash table, an (unquote expr) or (unquote-splicing expr) expression escapes only
in the second element of an entry pair (i.e., the value), while entry keys are always implicitly
quoted. If unquote or unquote-splicing appears within quasiquote in any other way
than as (unquote expr) or (unquote-splicing expr), a syntax error is reported.

Examples:

> (quasiquote (0 1 2))
'(0 1 2)
> (quasiquote (0 (unquote (+ 1 2)) 4))
'(0 3 4)
> (quasiquote (0 (unquote-splicing (list 1 2)) 4))
'(0 1 2 4)
> (quasiquote (0 (unquote-splicing 1) 4))
unquote-splicing: contract violation

expected: list?
given: 1

> (quasiquote (0 (unquote-splicing 1)))
'(0 . 1)

A quasiquote, unquote, or unquote-splicing form is typically abbreviated with `, ,,
or ,@, respectively. See also §1.3.8 “Reading Quotes”.

159

Examples:

> `(0 1 2)
'(0 1 2)
> `(1 ,(+ 1 2) 4)
'(1 3 4)
> `#s(stuff 1 ,(+ 1 2) 4)
'#s(stuff 1 3 4)
> ‘#hash(("a" . ,(+ 1 2)))
'#hash(("a" . 3))
> `#hash((,(+ 1 2) . "a"))
'#hash((,(+ 1 2) . "a"))
> `(1 ,@(list 1 2) 4)
'(1 1 2 4)
> `#(1 ,@(list 1 2) 4)
'#(1 1 2 4)

A quasiquote form within the original datum increments the level of quasiquotation:
within the quasiquote form, each unquote or unquote-splicing is preserved, but a
further nested unquote or unquote-splicing escapes. Multiple nestings of quasiquote
require multiple nestings of unquote or unquote-splicing to escape.

Examples:

> `(1 `,(+ 1 ,(+ 2 3)) 4)
'(1 `,(+ 1 5) 4)
> `(1 ```,,@,,@(list (+ 1 2)) 4)
'(1 ```„@,3 4)

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are
needed without analyzing unquote and unquote-splicing expressions. For example, in

`(,1 2 3)

a single tail '(2 3) is used for every evaluation of the quasiquote expression. When
allocating fresh data, the quasiquote form allocates mutable vectors, mutable boxes and
immutable hashes.

Examples:

> (immutable? `#(,0))
#f
> (immutable? `#hash((a . ,0)))
#t

160

unquote

See quasiquote, where unquote is recognized as an escape. An unquote form as an
expression is a syntax error.

unquote-splicing

See quasiquote, where unquote-splicing is recognized as an escape. An unquote-
splicing form as an expression is a syntax error.

3.21 Syntax Quoting: quote-syntax

(quote-syntax datum)
(quote-syntax datum #:local)

Similar to quote, but produces a syntax object that preserves the lexical information and
source-location information attached to datum at expansion time.

When #:local is specified, then all scopes in the syntax object’s lexical information are
preserved. When #:local is omitted, then the scope sets within datum are pruned to omit
the scope for any binding form that appears between the quote-syntax form and the en-
closing top-level context, module body, or phase level crossing, whichever is closer.

Unlike syntax (#'), quote-syntax does not substitute pattern variables bound by with-
syntax, syntax-parse, or syntax-case.

Examples:

> (syntax? (quote-syntax x))
#t
> (quote-syntax (1 2 3))
#<syntax:eval:78:0 (1 2 3)>
> (with-syntax ([a #'5])

(quote-syntax (a b c)))
#<syntax:eval:79:0 (a b c)>
> (free-identifier=? (let ([x 1]) (quote-syntax x))

(quote-syntax x))
#t
> (free-identifier=? (let ([x 1]) (quote-syntax x #:local))

(quote-syntax x))
#f

Changed in version 6.3 of package base: Added scope pruning and support for #:local.

161

3.22 Interaction Wrapper: #%top-interaction

(#%top-interaction . form)

Expands to simply form . The #%top-interaction form is similar to #%app and
#%module-begin, in that it provides a hook to control interactive evaluation through load
(more precisely, the default load handler) or read-eval-print-loop.

3.23 Blocks: block

(require racket/block) package: base

The bindings documented in this section are provided by the racket/block library, not
racket/base or racket.

(block defn-or-expr ...)

Supports a mixture of expressions and mutually recursive definitions, as in a module body.
Unlike an internal-definition context, the last defn-or-expr need not be an expression.

The result of the block form is the result of the last defn-or-expr if it is an expression,
#<void> otherwise. If no defn-or-expr is provided (after flattening begin forms), the
result is #<void>.

The final defn-or-expr is executed in tail position, if it is an expression.

Examples:

> (define (f x)
(block
(define y (add1 x))
(displayln y)
(define z (* 2 y))
(+ 3 z)))

> (f 12)
13
29

3.24 Internal-Definition Limiting: #%stratified-body

(#%stratified-body defn-or-expr ...)

162

https://pkgs.racket-lang.org/package/base

Like (let () defn-or-expr ...) for an internal-definition context sequence, except
that an expression is not allowed to precede a definition, and all definitions are treated as re-
ferring to all other definitions (i.e., locations for variables are all allocated first, like letrec
and unlike letrec-syntaxes+values).

The #%stratified-body form is useful for implementing syntactic forms or languages
that supply a more limited kind of internal-definition context.

3.25 Performance Hints: begin-encourage-inline

(require racket/performance-hint) package: base

The bindings documented in this section are provided by the racket/performance-hint
library, not racket/base or racket.

(begin-encourage-inline form ...)

Attaches a 'compiler-hint:cross-module-inline syntax property to each form ,
which is useful when a form is a function definition. See define-values.

The begin-encourage-inline form is also provided by the (submod
racket/performance-hint begin-encourage-inline) module, which has fewer
dependencies than racket/performance-hint.

Changed in version 6.2 of package base: Added the (submod racket/performance-hint
begin-encourage-inline) submodule.

(define-inline id expr)
(define-inline (head args) body ...+)

head = id
| (head args)

args = arg ...
| arg rest-id

arg = arg-id
| [arg-id default-expr]
| keyword arg-id
| keyword [arg-id default-expr]

Like define, but ensures that the definition will be inlined at its call sites. Recursive calls
are not inlined, to avoid infinite inlining. Higher-order uses are supported, but also not
inlined.

163

https://pkgs.racket-lang.org/package/base

define-inline may interfere with the Racket compiler’s own inlining heuristics, and
should only be used when other inlining attempts (such as begin-encourage-inline)
fail.

3.26 Importing Modules Lazily: lazy-require

(require racket/lazy-require) package: base

The bindings documented in this section are provided by the racket/lazy-require li-
brary, not racket/base or racket.

(lazy-require [module-path (fun-import ...)] ...)

fun-import = fun-id
| (orig-fun-id fun-id)

Defines each fun-id as a function that, when called, dynamically requires the export named
orig-fun-id from the module specified by module-path and calls it with the same argu-
ments. If orig-fun-id is not given, it defaults to fun-id .

If the enclosing relative phase level is not 0, then module-path is also placed in a sub-
module (with a use of define-runtime-module-path-index at phase level 0 within the
submodule). Introduced submodules have the names lazy-require-auxn-m , where n is
a phase-level number and m is a number.

When the use of a lazily-required function triggers module loading, it also triggers a use of
register-external-module to declare an indirect compilation dependency (in case the
function is used in the process of compiling a module).

Examples:

> (lazy-require
[racket/list (partition)])

> (partition even? '(1 2 3 4 5))
'(2 4)
'(1 3 5)
> (module hello racket/base

(provide hello)
(printf "starting hello server\n")
(define (hello) (printf "hello!\n")))

> (lazy-require
['hello ([hello greet])])

> (greet)
starting hello server
hello!

164

https://pkgs.racket-lang.org/package/base

(lazy-require-syntax [module-path (macro-import ...)] ...)

macro-import = macro-id
| (orig-macro-id macro-id)

Like lazy-require but for macros. That is, it defines each macro-id as a macro that,
when used, dynamically loads the macro’s implementation from the given module-path .
If orig-macro-id is not given, it defaults to macro-id .

Use lazy-require-syntax in the implementation of a library with large, complicated
macros to avoid a dependence from clients of the library on the macro “compilers.” Note
that only macros with exceptionally large compile-time components (such as Typed Racket,
which includes a type checker and optimizer) benefit from lazy-require-syntax; typical
macros do not.

Warning: lazy-require-syntax breaks the invariants that Racket’s module loader and
linker rely on; these invariants normally ensure that the references in code produced by
a macro are loaded before the code runs. Safe use of lazy-require-syntax requires a
particular structure in the macro implementation. (In particular, lazy-require-syntax
cannot simply be introduced in the client code.) The macro implementation must follow
these rules:

1. the interface module must require the runtime-support module

2. the compiler module must require the runtime-support module via an absolute mod-
ule path rather than a relative path

To explain the concepts of “interface, compiler, and runtime-support modules”, here is an
example module that exports a macro:

(module original racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))

(define-syntax-rule (ntimes n expr)
(ntimes-proc n (lambda () expr)))

(provide ntimes))

Suppose we want to use lazy-require-syntax to lazily load the implementation of the
ntimes macro transformer. The original module must be split into three parts:

(module runtime-support racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))

(provide ntimes-proc))

165

(module compiler racket/base
(require 'runtime-support)
(define-syntax-rule (ntimes n expr)
(ntimes-proc n (lambda () expr)))

(provide ntimes))
(module interface racket/base
(require racket/lazy-require)
(require 'runtime-support)
(lazy-require-syntax ['compiler (ntimes)])
(provide ntimes))

The runtime support module contains the function and value definitions that the macro refers
to. The compiler module contains the macro definition(s) themselves—the part of the code
that “disappears” after compile time. The interface module lazily loads the macro trans-
former, but it makes sure the runtime support module is defined at run time by requiring it
normally. In a larger example, of course, the runtime support and compiler may both consist
of multiple modules.

Here what happens when we don’t separate the runtime support into a separate module:

> (module bad-no-runtime racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))

(define-syntax-rule (ntimes n expr)
(ntimes-proc n (lambda () expr)))

(provide ntimes))
> (module bad-client racket/base

(require racket/lazy-require)
(lazy-require-syntax ['bad-no-runtime (ntimes)])
(ntimes 3 (printf "hello?\n")))

> (require 'bad-client)
no module instance found:
#ăresolved-module-path:'bad-no-runtimeą 0

A similar error occurs when the interface module doesn’t introduce a dependency on the
runtime support module.

166

4 Datatypes
§3 “Built-In
Datatypes” in The
Racket Guide
introduces
Datatypes.

Each pre-defined datatype comes with a set of procedures for manipulating instances of the
datatype.

4.1 Booleans and Equality

True and false booleans are represented by the values #t and #f, respectively, though oper-
ations that depend on a boolean value typically treat anything other than #f as true. The #t
value is always eq? to itself, and #f is always eq? to itself.

See §1.3.5 “Reading Booleans” for information on reading booleans and §1.4.4 “Printing
Booleans” for information on printing booleans.

See also and, or, andmap, and ormap.

(boolean? v) Ñ boolean?
v : any/c

Returns #t if v is #t or #f, #f otherwise.

Examples:

> (boolean? #f)
#t
> (boolean? #t)
#t
> (boolean? 'true)
#f

(not v) Ñ boolean?
v : any/c

Returns #t if v is #f, #f otherwise.

Examples:

> (not #f)
#t
> (not #t)
#f
> (not 'we-have-no-bananas)
#f

167

(equal? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Two values are equal? if and only if they are eqv?, unless otherwise specified for a partic-
ular datatype.

Datatypes with further specification of equal? include strings, byte strings, pairs, muta-
ble pairs, vectors, boxes, hash tables, and inspectable structures. In the last six cases,
equality is recursively defined; if both v1 and v2 contain reference cycles, they are equal
when the infinite unfoldings of the values would be equal. See also gen:equal+hash and
prop:impersonator-of.

Examples:

> (equal? 'yes 'yes)
#t
> (equal? 'yes 'no)
#f
> (equal? (* 6 7) 42)
#t
> (equal? (expt 2 100) (expt 2 100))
#t
> (equal? 2 2.0)
#f
> (let ([v (mcons 1 2)]) (equal? v v))
#t
> (equal? (mcons 1 2) (mcons 1 2))
#t
> (equal? (integer->char 955) (integer->char 955))
#t
> (equal? (make-string 3 #\z) (make-string 3 #\z))
#t
> (equal? #t #t)
#t

(eqv? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Two values are eqv? if and only if they are eq?, unless otherwise specified for a particular
datatype.

The number and character datatypes are the only ones for which eqv? differs from eq?.
Two numbers are eqv? when they have the same exactness, precision, and are both equal

168

and non-zero, both 0.0, both 0.0, both -0.0, both -0.0, both +nan.0, or both +nan.0—
considering real and imaginary components separately in the case of complex numbers. Two
characters are eqv? when their char->integer results are equal.

Examples:

> (eqv? 'yes 'yes)
#t
> (eqv? 'yes 'no)
#f
> (eqv? (* 6 7) 42)
#t
> (eqv? (expt 2 100) (expt 2 100))
#t
> (eqv? 2 2.0)
#f
> (let ([v (mcons 1 2)]) (eqv? v v))
#t
> (eqv? (mcons 1 2) (mcons 1 2))
#f
> (eqv? (integer->char 955) (integer->char 955))
#t
> (eqv? (make-string 3 #\z) (make-string 3 #\z))
#f
> (eqv? #t #t)
#t

(eq? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Return #t if v1 and v2 refer to the same object, #f otherwise. As a special case among
numbers, two fixnums that are = are also the same according to eq?. See also §1.1.6 “Object
Identity and Comparisons”.

Examples:

> (eq? 'yes 'yes)
#t
> (eq? 'yes 'no)
#f
> (eq? (* 6 7) 42)
#t
> (eq? (expt 2 100) (expt 2 100))
#f
> (eq? 2 2.0)

169

#f
> (let ([v (mcons 1 2)]) (eq? v v))
#t
> (eq? (mcons 1 2) (mcons 1 2))
#f
> (eq? (integer->char 955) (integer->char 955))
#f
> (eq? (make-string 3 #\z) (make-string 3 #\z))
#f
> (eq? #t #t)
#t

(equal?/recur v1 v2 recur-proc) Ñ boolean?
v1 : any/c
v2 : any/c
recur-proc : (any/c any/c -> any/c)

Like equal?, but using recur-proc for recursive comparisons (which means that reference
cycles are not handled automatically). Non-#f results from recur-proc are converted to
#t before being returned by equal?/recur.

Examples:

> (equal?/recur 1 1 (lambda (a b) #f))
#t
> (equal?/recur '(1) '(1) (lambda (a b) #f))
#f
> (equal?/recur '#(1 1 1) '#(1 1.2 3/4)

(lambda (a b) (<= (abs (- a b)) 0.25)))
#t

(immutable? v) Ñ boolean?
v : any/c

Returns #t if v is an immutable string, byte string, vector, hash table, or box, #f otherwise.

Note that immutable? is not a general predicate for immutability (despite its name). It
works only for a handful of datatypes for which a single predicate—string?, vector?,
etc.—recognizes both mutable and immutable variants of the datatype. In particular,
immutable? produces #f for a pair, even though pairs are immutable, since pair? implies
immutability.

Examples:

> (immutable? 'hello)

170

#f
> (immutable? "a string")
#t
> (immutable? (box 5))
#f
> (immutable? #(0 1 2 3))
#t
> (immutable? (make-hash))
#f
> (immutable? (make-immutable-hash '([a b])))
#t
> (immutable? #t)
#f

gen:equal+hash : any/c

A generic interface (see §5.4 “Generic Interfaces”) that supplies an equality predicate and
hashing functions for a structure type. The following methods must be implemented:

• equal-proc : (-> any/c any/c (-> any/c any/c boolean?) any/c) —
tests whether the first two arguments are equal, where both values are instances of
the structure type to which the generic interface is associated (or a subtype of the
structure type).

The third argument is an equal? predicate to use for recursive equality checks; use the
given predicate instead of equal? to ensure that data cycles are handled properly and
to work with equal?/recur (but beware that an arbitrary function can be provided
to equal?/recur for recursive checks, which means that arguments provided to the
predicate might be exposed to arbitrary code).

The equal-proc is called for a pair of structures only when they are not eq?, and only
when they both have a gen:equal+hash value inherited from the same structure type.
With this strategy, the order in which equal? receives two structures does not matter.
It also means that, by default, a structure sub-type inherits the equality predicate of its
parent, if any.

• hash-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a hash code for the given structure, like equal-hash-code. The first
argument is an instance of the structure type (or one of its subtypes) to which the
generic interface is associated.

The second argument is an equal-hash-code-like procedure to use for recursive
hash-code computation; use the given procedure instead of equal-hash-code to en-
sure that data cycles are handled properly.

• hash2-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a secondary hash code for the given structure. This procedure is like
hash-proc , but analogous to equal-secondary-hash-code.

171

Take care to ensure that hash-proc and hash2-proc are consistent with equal-proc .
Specifically, hash-proc and hash2-proc should produce the same value for any two struc-
tures for which equal-proc produces a true value.

When a structure type has no gen:equal+hash implementation, then transparent structures
(i.e., structures with an inspector that is controlled by the current inspector) are equal?
when they are instances of the same structure type (not counting sub-types), and when
they have equal? field values. For transparent structures, equal-hash-code and equal-
secondary-hash-code derive hash code using the field values. For opaque structure types,
equal? is the same as eq?, and equal-hash-code and equal-secondary-hash-code re-
sults are based only on eq-hash-code. If a structure has a prop:impersonator-of prop-
erty, then the prop:impersonator-of property takes precedence over gen:equal+hash
if the property value’s procedure returns a non-#f value when applied to the structure.

Examples:

> (define (farm=? farm1 farm2 recursive-equal?)
(and (= (farm-apples farm1)

(farm-apples farm2))
(= (farm-oranges farm1)

(farm-oranges farm2))
(= (farm-sheep farm1)

(farm-sheep farm2))))
> (define (farm-hash-1 farm recursive-equal-hash)

(+ (* 10000 (farm-apples farm))
(* 100 (farm-oranges farm))
(* 1 (farm-sheep farm))))

> (define (farm-hash-2 farm recursive-equal-hash)
(+ (* 10000 (farm-sheep farm))

(* 100 (farm-apples farm))
(* 1 (farm-oranges farm))))

> (define-struct farm (apples oranges sheep)
#:methods gen:equal+hash
[(define equal-proc farm=?)
(define hash-proc farm-hash-1)
(define hash2-proc farm-hash-2)])

> (define east (make-farm 5 2 20))
> (define west (make-farm 18 6 14))
> (define north (make-farm 5 20 20))
> (define south (make-farm 18 6 14))
> (equal? east west)
#f
> (equal? east north)
#f
> (equal? west south)
#t

172

prop:equal+hash : struct-type-property?

A deprecated structure type property (see §5.3 “Structure Type Properties”) that supplies an
equality predicate and hashing functions for a structure type. The gen:equal+hash generic
interface should be used, instead. A prop:equal+hash property value is a list of three
procedures that correspond to the methods of gen:equal+hash.

4.1.1 Boolean Aliases

(require racket/bool) package: base

The bindings documented in this section are provided by the racket/bool and racket
libraries, but not racket/base.

true : boolean?

An alias for #t.

false : boolean?

An alias for #f.

(symbol=? a b) Ñ boolean?
a : symbol?
b : symbol?

Returns (equal? a b) (if a and b are symbols).

(boolean=? a b) Ñ boolean?
a : boolean?
b : boolean?

Returns (equal? a b) (if a and b are booleans).

(false? v) Ñ boolean?
v : any/c

Returns (not v).

(nand expr ...)

Same as (not (and expr ...)).

Examples:

173

https://pkgs.racket-lang.org/package/base

> (nand #f #t)
#t
> (nand #f (error 'ack "we don't get here"))
#t

(nor expr ...)

Same as (not (or expr ...)).

In the two argument case, returns #t if neither of the arguments is a true value.

Examples:

> (nor #f #t)
#f
> (nor #t (error 'ack "we don't get here"))
#f

(implies expr1 expr2)

Checks to be sure that the first expression implies the second.

Same as (if expr1 expr2 #t).

Examples:

> (implies #f #t)
#t
> (implies #f #f)
#t
> (implies #t #f)
#f
> (implies #f (error 'ack "we don't get here"))
#t

(xor b1 b2) Ñ any
b1 : any/c
b2 : any/c

Returns the exclusive or of b1 and b2 .

If exactly one of b1 and b2 is not #f, then return it. Otherwise, returns #f.

Examples:

174

> (xor 11 #f)
11
> (xor #f 22)
22
> (xor 11 22)
#f
> (xor #f #f)
#f

4.2 Numbers
§3.2 “Numbers” in
The Racket Guide
introduces numbers.All numbers are complex numbers. Some of them are real numbers, and all of the real num-

bers that can be represented are also rational numbers, except for +inf.0 (positive infinity),
+inf.f (single-precision variant, when enabled via read-single-flonum), -inf.0 (neg-
ative infinity), -inf.f (single-precision variant, when enabled), +nan.0 (not-a-number),
and +nan.f (single-precision variant, when enabled). Among the rational numbers, some
are integers, because round applied to the number produces the same number. See §1.3.3

“Reading Numbers”
for information on
the syntax of
number literals.

Orthogonal to those categories, each number is also either an exact number or an inexact
number. Unless otherwise specified, computations that involve an inexact number produce
inexact results. Certain operations on inexact numbers, however, produce an exact number,
such as multiplying an inexact number with an exact 0. Operations that mathematically
produce irrational numbers for some rational arguments (e.g., sqrt) may produce inexact
results even for exact arguments.

In the case of complex numbers, either the real and imaginary parts are both exact or inexact
with the same precision, or the number has an exact zero real part and an inexact imaginary
part; a complex number with an exact zero imaginary part is a real number.

Inexact real numbers are implemented as double-precision IEEE floating-point numbers,
also known as flonums, or as single-precision IEEE floating-point numbers, also known as
single-flonums. Single-flonums are supported only when (single-flonum-available?)
reports #t. Although we write +inf.f, -inf.f, and +nan.f to mean single-flonums, those
forms read as double-precision flonums by default, since read-single-flonum is #f by de-
fault. When single-flonums are supported, inexact numbers are still represented as flonums
by default, and single precision is used only when a computation starts with single-flonums.

Inexact numbers can be coerced to exact form, except for the inexact numbers +inf.0,
+inf.f, -inf.0, -inf.f, +nan.0, and +nan.f, which have no exact form. Dividing a
number by exact zero raises an exception; dividing a non-zero number other than +nan.0 or
+nan.f by an inexact zero returns +inf.0, +inf.f, -inf.0 or -inf.f, depending on the
sign and precision of the dividend. The +nan.0 value is not = to itself, but +nan.0 is eqv?
to itself, and +nan.f is similarly eqv? but not = to itself. Conversely, (= 0.0 -0.0) is #t,
but (eqv? 0.0 -0.0) is #f, and the same for 0.0 and -0.0 (which are single-precision
variants). The datum -nan.0 refers to the same constant as +nan.0, and -nan.f is the same

175

as +nan.f.

Calculations with infinites produce results consistent with IEEE double- or single-precision
floating point where IEEE specifies the result; in cases where IEEE provides no specification,
the result corresponds to the limit approaching infinity, or +nan.0 or +nan.f if no such limit
exists.

The precision and size of exact numbers is limited only by available memory (and the pre-
cision of operations that can produce irrational numbers). In particular, adding, multiplying,
subtracting, and dividing exact numbers always produces an exact result.

A fixnum is an exact integer whose two’s complement representation fit into 31 bits on a
32-bit platform or 63 bits on a 64-bit platform; furthermore, no allocation is required when
computing with fixnums. See also the racket/fixnum module, below.

Two fixnums that are = are also the same according to eq?. Otherwise, the result of eq?
applied to two numbers is undefined, except that numbers produced by the default reader in
read-syntax mode are interned and therefore eq? when they are eqv?.

Two real numbers are eqv? when they are both inexact with the same precision or both
exact, and when they are = (except for +nan.0, +nan.f, 0.0, 0.0, -0.0, and -0.0, as noted
above). Two complex numbers are eqv? when their real and imaginary parts are eqv?. Two
numbers are equal? when they are eqv?.

See §1.3.3 “Reading Numbers” for information on reading numbers and §1.4.2 “Printing
Numbers” for information on printing numbers.

4.2.1 Number Types

(number? v) Ñ boolean?
v : any/c

Returns #t if v is a number, #f otherwise.

Examples:

> (number? 1)
#t
> (number? 2+3i)
#t
> (number? "hello")
#f
> (number? +nan.0)
#t

176

(complex? v) Ñ boolean?
v : any/c

Returns (number? v), because all numbers are complex numbers.

(real? v) Ñ boolean?
v : any/c

Returns #t if v is a real number, #f otherwise.

Examples:

> (real? 1)
#t
> (real? +inf.0)
#t
> (real? 2+3i)
#f
> (real? 2.0+0.0i)
#f
> (real? "hello")
#f

(rational? v) Ñ boolean?
v : any/c

Returns #t if v is a rational number, #f otherwise.

Examples:

> (rational? 1)
#t
> (rational? +inf.0)
#f
> (rational? "hello")
#f

(integer? v) Ñ boolean?
v : any/c

Returns #t if v is a number that is an integer, #f otherwise.

Examples:

177

> (integer? 1)
#t
> (integer? 2.3)
#f
> (integer? 4.0)
#t
> (integer? +inf.0)
#f
> (integer? 2+3i)
#f
> (integer? "hello")
#f

(exact-integer? v) Ñ boolean?
v : any/c

Returns (and (integer? v) (exact? v)).

Examples:

> (exact-integer? 1)
#t
> (exact-integer? 4.0)
#f

(exact-nonnegative-integer? v) Ñ boolean?
v : any/c

Returns (and (exact-integer? v) (not (negative? v))).

Examples:

> (exact-nonnegative-integer? 0)
#t
> (exact-nonnegative-integer? -1)
#f

(exact-positive-integer? v) Ñ boolean?
v : any/c

Returns (and (exact-integer? v) (positive? v)).

Examples:

178

> (exact-positive-integer? 1)
#t
> (exact-positive-integer? 0)
#f

(inexact-real? v) Ñ boolean?
v : any/c

Returns (and (real? v) (inexact? v)).

(fixnum? v) Ñ boolean?
v : any/c

Return #t if v is a fixnum, #f otherwise.

Note: the result of this function is platform-dependent, so using it in syntax transformers can
lead to platform-dependent bytecode files.

(flonum? v) Ñ boolean?
v : any/c

Return #t if v is a flonum, #f otherwise.

(double-flonum? v) Ñ boolean?
v : any/c

Identical to flonum?.

(single-flonum? v) Ñ boolean?
v : any/c

Return #t if v is a single-flonum (i.e., a single-precision floating-point number), #f other-
wise.

(single-flonum-available?) Ñ boolean?

Returns #t if single-flonums are supported on the current platform, #f otherwise.

Currently, single-flonum-available? produces #t when (system-type 'vm) pro-
duces 'racket, and single-flonum-available? produces #f otherwise.

If the result is #f, then single-flonum? also produces #f for all arguments.

Added in version 7.3.0.5 of package base.

179

(zero? z) Ñ boolean?
z : number?

Returns (= 0 z).

Examples:

> (zero? 0)
#t
> (zero? -0.0)
#t

(positive? x) Ñ boolean?
x : real?

Returns (> x 0).

Examples:

> (positive? 10)
#t
> (positive? -10)
#f
> (positive? 0.0)
#f

(negative? x) Ñ boolean?
x : real?

Returns (< x 0).

Examples:

> (negative? 10)
#f
> (negative? -10)
#t
> (negative? -0.0)
#f

(even? n) Ñ boolean?
n : integer?

Returns (zero? (modulo n 2)).

Examples:

180

> (even? 10.0)
#t
> (even? 11)
#f
> (even? +inf.0)
even?: contract violation

expected: integer
given: +inf.0

(odd? n) Ñ boolean?
n : integer?

Returns (not (even? n)).

Examples:

> (odd? 10.0)
#f
> (odd? 11)
#t
> (odd? +inf.0)
odd?: contract violation

expected: integer
given: +inf.0

(exact? z) Ñ boolean?
z : number?

Returns #t if z is an exact number, #f otherwise.

Examples:

> (exact? 1)
#t
> (exact? 1.0)
#f

(inexact? z) Ñ boolean?
z : number?

Returns #t if z is an inexact number, #f otherwise.

Examples:

181

> (inexact? 1)
#f
> (inexact? 1.0)
#t

(inexact->exact z) Ñ exact?
z : number?

Coerces z to an exact number. If z is already exact, it is returned. If z is +inf.0, -inf.0,
+nan.0, +inf.f, -inf.f, or +nan.f, then the exn:fail:contract exception is raised.

Examples:

> (inexact->exact 1)
1
> (inexact->exact 1.0)
1

(exact->inexact z) Ñ inexact?
z : number?

Coerces z to an inexact number. If z is already inexact, it is returned.

Examples:

> (exact->inexact 1)
1.0
> (exact->inexact 1.0)
1.0

(real->single-flonum x) Ñ single-flonum?
x : real?

Coerces x to a single-precision floating-point number. If x is already a single-precision
floating-point number, it is returned.

(real->double-flonum x) Ñ flonum?
x : real?

Coerces x to a double-precision floating-point number. If x is already a double-precision
floating-point number, it is returned.

182

4.2.2 Generic Numerics

Most Racket numeric operations work on any kind of number.

Arithmetic

(+ z ...) Ñ number?
z : number?

Returns the sum of the zs, adding pairwise from left to right. If no arguments are provided,
the result is 0.

Examples:

> (+ 1 2)
3
> (+ 1.0 2+3i 5)
8.0+3.0i
> (+)
0

(- z) Ñ number?
z : number?

(- z w ...+) Ñ number?
z : number?
w : number?

When no ws are supplied, returns (- 0 z). Otherwise, returns the subtraction of the ws
from z working pairwise from left to right.

Examples:

> (- 5 3.0)
2.0
> (- 1)
-1
> (- 2+7i 1 3)
-2+7i

(* z ...) Ñ number?
z : number?

Returns the product of the zs, multiplying pairwise from left to right. If no arguments are
provided, the result is 1. Multiplying any number by exact 0 produces exact 0.

Examples:

183

> (* 2 3)
6
> (* 8.0 9)
72.0
> (* 1+2i 3+4i)
-5+10i

(/ z) Ñ number?
z : number?

(/ z w ...+) Ñ number?
z : number?
w : number?

When no ws are supplied, returns (/ 1 z). Otherwise, returns the division of z by the ws
working pairwise from left to right.

If z is exact 0 and no w is exact 0, then the result is exact 0. If any w is exact 0, the
exn:fail:contract:divide-by-zero exception is raised.

Examples:

> (/ 3 4)
3/4
> (/ 81 3 3)
9
> (/ 10.0)
0.1
> (/ 1+2i 3+4i)
11/25+2/25i

(quotient n m) Ñ integer?
n : integer?
m : integer?

Returns (truncate (/ n m)).

Examples:

> (quotient 10 3)
3
> (quotient -10.0 3)
-3.0
> (quotient +inf.0 3)
quotient: contract violation

expected: integer?

184

given: +inf.0
argument position: 1st
other arguments...:

3

(remainder n m) Ñ integer?
n : integer?
m : integer?

Returns q with the same sign as n such that

• (abs q) is between 0 (inclusive) and (abs m) (exclusive), and

• (+ q (* m (quotient n m))) equals n .

If m is exact 0, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

> (remainder 10 3)
1
> (remainder -10.0 3)
-1.0
> (remainder 10.0 -3)
1.0
> (remainder -10 -3)
-1
> (remainder +inf.0 3)
remainder: contract violation

expected: integer?
given: +inf.0
argument position: 1st
other arguments...:

3

(quotient/remainder n m) Ñ integer? integer?
n : integer?
m : integer?

Returns (values (quotient n m) (remainder n m)), but the combination may be
computed more efficiently than separate calls to quotient and remainder.

Example:

> (quotient/remainder 10 3)

185

3
1

(modulo n m) Ñ integer?
n : integer?
m : integer?

Returns q with the same sign as m where

• (abs q) is between 0 (inclusive) and (abs m) (exclusive), and

• the difference between q and (- n (* m (quotient n m))) is a multiple of m .

If m is exact 0, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

> (modulo 10 3)
1
> (modulo -10.0 3)
2.0
> (modulo 10.0 -3)
-2.0
> (modulo -10 -3)
-1
> (modulo +inf.0 3)
modulo: contract violation

expected: integer?
given: +inf.0
argument position: 1st
other arguments...:

3

(add1 z) Ñ number?
z : number?

Returns (+ z 1).

(sub1 z) Ñ number?
z : number?

Returns (- z 1).

(abs x) Ñ number?
x : real?

186

Returns the absolute value of x .

Examples:

> (abs 1.0)
1.0
> (abs -1)
1

(max x ...+) Ñ real?
x : real?

Returns the largest of the xs, or +nan.0 if any x is +nan.0. If any x is inexact, the result is
coerced to inexact. See also argmax.

Examples:

> (max 1 3 2)
3
> (max 1 3 2.0)
3.0

(min x ...+) Ñ real?
x : real?

Returns the smallest of the xs, or +nan.0 if any x is +nan.0. If any x is inexact, the result
is coerced to inexact. See also argmin.

Examples:

> (min 1 3 2)
1
> (min 1 3 2.0)
1.0

(gcd n ...) Ñ rational?
n : rational?

Returns the greatest common divisor (a non-negative number) of the ns; for non-integer
ns, the result is the gcd of the numerators divided by the lcm of the denominators. If no
arguments are provided, the result is 0. If all arguments are zero, the result is zero.

Examples:

187

> (gcd 10)
10
> (gcd 12 81.0)
3.0
> (gcd 1/2 1/3)
1/6

(lcm n ...) Ñ rational?
n : rational?

Returns the least common multiple (a non-negative number) of the ns; non-integer ns, the
result is the absolute value of the product divided by the gcd. If no arguments are provided,
the result is 1. If any argument is zero, the result is zero; furthermore, if any argument is
exact 0, the result is exact 0.

Examples:

> (lcm 10)
10
> (lcm 3 4.0)
12.0
> (lcm 1/2 2/3)
2

(round x) Ñ (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

Returns the integer closest to x , resolving ties in favor of an even number, but +inf.0,
-inf.0, and +nan.0 round to themselves.

Examples:

> (round 17/4)
4
> (round -17/4)
-4
> (round 2.5)
2.0
> (round -2.5)
-2.0
> (round +inf.0)
+inf.0

(floor x) Ñ (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

188

Returns the largest integer that is no more than x , but +inf.0, -inf.0, and +nan.0 floor to
themselves.

Examples:

> (floor 17/4)
4
> (floor -17/4)
-5
> (floor 2.5)
2.0
> (floor -2.5)
-3.0
> (floor +inf.0)
+inf.0

(ceiling x) Ñ (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

Returns the smallest integer that is at least as large as x , but +inf.0, -inf.0, and +nan.0
ceiling to themselves.

Examples:

> (ceiling 17/4)
5
> (ceiling -17/4)
-4
> (ceiling 2.5)
3.0
> (ceiling -2.5)
-2.0
> (ceiling +inf.0)
+inf.0

(truncate x) Ñ (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

Returns the integer farthest from 0 that is not farther from 0 than x , but +inf.0, -inf.0,
and +nan.0 truncate to themselves.

Examples:

> (truncate 17/4)
4

189

> (truncate -17/4)
-4
> (truncate 2.5)
2.0
> (truncate -2.5)
-2.0
> (truncate +inf.0)
+inf.0

(numerator q) Ñ integer?
q : rational?

Coerces q to an exact number, finds the numerator of the number expressed in its simplest
fractional form, and returns this number coerced to the exactness of q .

Examples:

> (numerator 5)
5
> (numerator 17/4)
17
> (numerator 2.3)
2589569785738035.0

(denominator q) Ñ integer?
q : rational?

Coerces q to an exact number, finds the denominator of the number expressed in its simplest
fractional form, and returns this number coerced to the exactness of q .

Examples:

> (denominator 5)
1
> (denominator 17/4)
4
> (denominator 2.3)
1125899906842624.0

(rationalize x tolerance) Ñ real?
x : real?
tolerance : real?

Among the real numbers within (abs tolerance) of x , returns the one corresponding
to an exact number whose denominator is the smallest. If multiple integers are within
tolerance of x , the one closest to 0 is used.

190

Examples:

> (rationalize 1/4 1/10)
1/3
> (rationalize -1/4 1/10)
-1/3
> (rationalize 1/4 1/4)
0
> (rationalize 11/40 1/4)
1/2

Number Comparison

(= z w ...) Ñ boolean?
z : number?
w : number?

Returns #t if all of the arguments are numerically equal, #f otherwise. An inexact number
is numerically equal to an exact number when the exact coercion of the inexact number is
the exact number. Also, 0.0 and -0.0 are numerically equal, but +nan.0 is not numerically
equal to itself.

Examples:

> (= 1 1.0)
#t
> (= 1 2)
#f
> (= 2+3i 2+3i 2+3i)
#t
> (= 1)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(< x y ...) Ñ boolean?
x : real?
y : real?

Returns #t if the arguments in the given order are strictly increasing, #f otherwise.

Examples:

> (< 1 1)
#f

191

> (< 1 2 3)
#t
> (< 1)
#t
> (< 1 +inf.0)
#t
> (< 1 +nan.0)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(<= x y ...) Ñ boolean?
x : real?
y : real?

Returns #t if the arguments in the given order are non-decreasing, #f otherwise.

Examples:

> (<= 1 1)
#t
> (<= 1 2 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(> x y ...+) Ñ boolean?
x : real?
y : real?

Returns #t if the arguments in the given order are strictly decreasing, #f otherwise.

Examples:

> (> 1 1)
#f
> (> 3 2 1)
#t
> (> +inf.0 1)
#t
> (> +nan.0 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

192

(>= x y ...) Ñ boolean?
x : real?
y : real?

Returns #t if the arguments in the given order are non-increasing, #f otherwise.

Examples:

> (>= 1 1)
#t
> (>= 1 2 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

Powers and Roots

(sqrt z) Ñ number?
z : number?

Returns the principal square root of z . The result is exact if z is exact and z ’s square root is
rational. See also integer-sqrt.

Examples:

> (sqrt 4/9)
2/3
> (sqrt 2)
1.4142135623730951
> (sqrt -1)
0+1i

(integer-sqrt n) Ñ complex?
n : integer?

Returns (floor (sqrt n)) for positive n . The result is exact if n is exact. For negative
n , the result is (* (integer-sqrt (- n)) 0+1i).

Examples:

> (integer-sqrt 4.0)
2.0
> (integer-sqrt 5)
2

193

> (integer-sqrt -4.0)
0+2.0i
> (integer-sqrt -4)
0+2i

(integer-sqrt/remainder n) Ñ complex? integer?
n : integer?

Returns (integer-sqrt n) and (- n (expt (integer-sqrt n) 2)).

Examples:

> (integer-sqrt/remainder 4.0)
2.0
0.0
> (integer-sqrt/remainder 5)
2
1

(expt z w) Ñ number?
z : number?
w : number?

Returns z raised to the power of w .

If w is exact 0, the result is exact 1. If w is 0.0 or -0.0 and z is a real number other than
exact 1 or 0, the result is 1.0 (even if z is +nan.0).

If z is exact 1, the result is exact 1. If z is 1.0 and w is a real number, the result is 1.0 (even
if w is +nan.0).

If z is exact 0, the result is as follows:

• w is exact 0 — result is 1

• w is 0.0 or -0.0 — result is 1.0

• real part of w is negative — the exn:fail:contract:divide-by-zero exception
is raised

• w is nonreal with a nonpositive real part — the exn:fail:contract:divide-by-
zero exception is raised

• w is +nan.0 — result is +nan.0

• otherwise — result is 0

194

Further special cases when w is a real number: These special cases
correspond to pow
in C99 [C99],
except when z is
negative and w is a
not an integer.

• (expt 0.0 w):

– w is negative — result is +inf.0

– w is positive — result is 0.0

• (expt -0.0 w):

– w is negative:

* w is an odd integer — result is -inf.0

* w otherwise rational — result is +inf.0

– w is positive:

* w is an odd integer — result is -0.0

* w otherwise rational — result is 0.0

• (expt z -inf.0) for positive z :

– z is less than 1.0 — result is +inf.0

– z is greater than 1.0 — result is 0.0

• (expt z +inf.0) for positive z :

– z is less than 1.0 — result is 0.0

– z is greater than 1.0 — result is +inf.0

• (expt -inf.0 w) for integer w :

– w is negative:

* w is odd — result is -0.0

* w is even — result is 0.0

– w is positive:

* w is odd — result is -inf.0

* w is even — result is +inf.0

• (expt +inf.0 w):

– w is negative — result is 0.0

– w is positive — result is +inf.0

Examples:

195

> (expt 2 3)
8
> (expt 4 0.5)
2.0
> (expt +inf.0 0)
1

(exp z) Ñ number?
z : number?

Returns Euler’s number raised to the power of z . The result is normally inexact, but it is
exact 1 when z is an exact 0. See also expt.

Examples:

> (exp 1)
2.718281828459045
> (exp 2+3i)
-7.315110094901103+1.0427436562359045i
> (exp 0)
1

(log z [b]) Ñ number?
z : number?
b : number? = (exp 1)

Returns the natural logarithm of z . The result is normally inexact, but it is exact 0 when
z is an exact 1. When z is exact 0, exn:fail:contract:divide-by-zero exception is
raised.

If b is provided, it serves as an alternative base. It is equivalent to (/ (log z) (log b)),
but can potentially run faster. If b is exact 1, exn:fail:contract:divide-by-zero
exception is raised.

Consider using fllogb instead when accuracy is important.

Examples:

> (log (exp 1))
1.0
> (log 2+3i)
1.2824746787307684+0.982793723247329i
> (log 1)
0
> (log 100 10)

196

2.0
> (log 8 2)
3.0
> (log 5 5)
1.0

Changed in version 6.9.0.1 of package base: Added second argument for arbitrary bases.

Trigonometric Functions

(sin z) Ñ number?
z : number?

Returns the sine of z , where z is in radians. The result is normally inexact, but it is exact 0
if z is exact 0.

Examples:

> (sin 3.14159)
2.65358979335273e-06
> (sin 1.0+5.0i)
62.44551846769653+40.0921657779984i

(cos z) Ñ number?
z : number?

Returns the cosine of z , where z is in radians.

Examples:

> (cos 3.14159)
-0.9999999999964793
> (cos 1.0+5.0i)
40.095806306298826-62.43984868079963i

(tan z) Ñ number?
z : number?

Returns the tangent of z , where z is in radians. The result is normally inexact, but it is exact
0 if z is exact 0.

Examples:

> (tan 0.7854)
1.0000036732118496
> (tan 1.0+5.0i)
8.256719834227411e-05+1.0000377833796008i

197

(asin z) Ñ number?
z : number?

Returns the arcsine in radians of z . The result is normally inexact, but it is exact 0 if z is
exact 0.

Examples:

> (asin 0.25)
0.25268025514207865
> (asin 1.0+5.0i)
0.1937931365549322+2.3309746530493123i

(acos z) Ñ number?
z : number?

Returns the arccosine in radians of z .

Examples:

> (acos 0.25)
1.318116071652818
> (acos 1.0+5.0i)
1.3770031902399644-2.3309746530493123i

(atan z) Ñ number?
z : number?

(atan y x) Ñ number?
y : real?
x : real?

In the one-argument case, returns the arctangent of the inexact approximation of z , except
that the result is an exact 0 for z as 0, and the exn:fail:contract:divide-by-zero
exception is raised for z as exact 0+1i or exact 0-1i.

In the two-argument case, the result is roughly the same as (atan (/ (exact->inexact
y)) (exact->inexact x)), but the signs of y and x determine the quadrant of the result.
Moreover, a suitable angle is returned when y divided by x produces +nan.0 in the case that
neither y nor x is +nan.0. Finally, if y is exact 0 and x is a positive number, the result is
exact 0. If both x and y are exact 0, the exn:fail:contract:divide-by-zero exception
is raised.

Examples:

198

> (atan 0.5)
0.4636476090008061
> (atan 2 1)
1.1071487177940904
> (atan -2 -1)
-2.0344439357957027
> (atan 1.0+5.0i)
1.530881333938778+0.19442614214700213i
> (atan +inf.0 -inf.0)
2.356194490192345

Changed in version 7.2.0.2 of package base: Changed to raise exn:fail:contract:divide-by-zero for 0+1i
and 0-1i and to produce exact 0 for any positive x (not just exact values) when y is 0.

Complex Numbers

(make-rectangular x y) Ñ number?
x : real?
y : real?

Creates a complex number with x as the real part and y as the imaginary part. That is,
returns (+ x (* y 0+1i)).

Example:

> (make-rectangular 3 4.0)
3.0+4.0i

(make-polar magnitude angle) Ñ number?
magnitude : real?
angle : real?

Creates a complex number which, if thought of as a point, is magnitude away from the
origin and is rotated angle radians counter clockwise from the positive x-axis. That is,
returns (+ (* magnitude (cos angle)) (* magnitude (sin angle) 0+1i)).

Examples:

> (make-polar 10 (* pi 1/2))
6.123233995736766e-16+10.0i
> (make-polar 10 (* pi 1/4))
7.0710678118654755+7.071067811865475i

(real-part z) Ñ real?
z : number?

199

Returns the real part of the complex number z in rectangle coordinates.

Examples:

> (real-part 3+4i)
3
> (real-part 5.0)
5.0

(imag-part z) Ñ real?
z : number?

Returns the imaginary part of the complex number z in rectangle coordinates.

Examples:

> (imag-part 3+4i)
4
> (imag-part 5.0)
0
> (imag-part 5.0+0.0i)
0.0

(magnitude z) Ñ (and/c real? (not/c negative?))
z : number?

Returns the magnitude of the complex number z in polar coordinates. A complex number
with +inf.0 or -inf.0 as a component has magnitude +inf.0, even if the other component
is +nan.0.

Examples:

> (magnitude -3)
3
> (magnitude 3.0)
3.0
> (magnitude 3+4i)
5

Changed in version 7.2.0.2 of package base: Changed to always return +inf.0 for a complex number with a
+inf.0 or -inf.0 component.

(angle z) Ñ real?
z : number?

200

Returns the angle of the complex number z in polar coordinates.

The result is guaranteed to be between (- pi) and pi, possibly equal to pi (but never equal
to (- pi)).

Examples:

> (angle -3)
3.141592653589793
> (angle 3.0)
0
> (angle 3+4i)
0.9272952180016122
> (angle +inf.0+inf.0i)
0.7853981633974483
> (angle -1)
3.141592653589793

Bitwise Operations

(bitwise-ior n ...) Ñ exact-integer?
n : exact-integer?

Returns the bitwise “inclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.

Examples:

> (bitwise-ior 1 2)
3
> (bitwise-ior -32 1)
-31

(bitwise-and n ...) Ñ exact-integer?
n : exact-integer?

Returns the bitwise “and” of the ns in their (semi-infinite) two’s complement representation.
If no arguments are provided, the result is -1.

Examples:

> (bitwise-and 1 2)
0
> (bitwise-and -32 -1)
-32

201

(bitwise-xor n ...) Ñ exact-integer?
n : exact-integer?

Returns the bitwise “exclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.

Examples:

> (bitwise-xor 1 5)
4
> (bitwise-xor -32 -1)
31

(bitwise-not n) Ñ exact-integer?
n : exact-integer?

Returns the bitwise “not” of n in its (semi-infinite) two’s complement representation.

Examples:

> (bitwise-not 5)
-6
> (bitwise-not -1)
0

(bitwise-bit-set? n m) Ñ boolean?
n : exact-integer?
m : exact-nonnegative-integer?

Returns #t when the m th bit of n is set in n ’s (semi-infinite) two’s complement representa-
tion.

This operation is equivalent to (not (zero? (bitwise-and n (arithmetic-shift 1
m)))), but it is faster and runs in constant time when n is positive.

Examples:

> (bitwise-bit-set? 5 0)
#t
> (bitwise-bit-set? 5 2)
#t
> (bitwise-bit-set? -5 (expt 2 700))
#t

202

(bitwise-bit-field n start end) Ñ exact-integer?
n : exact-integer?
start : exact-nonnegative-integer?
end : (and/c exact-nonnegative-integer?

(>=/c start))

Extracts the bits between position start and (- end 1) (inclusive) from n and shifts them
down to the least significant portion of the number.

This operation is equivalent to the computation

(bitwise-and (sub1 (arithmetic-shift 1 (- end start)))
(arithmetic-shift n (- start)))

but it runs in constant time when n is positive, start and end are fixnums, and (- end
start) is no more than the maximum width of a fixnum.

Each pair of examples below uses the same numbers, showing the result both in binary and
as integers.

Examples:

> (format "„b" (bitwise-bit-field (string->number "1101" 2) 1 1))
"0"
> (bitwise-bit-field 13 1 1)
0
> (format "„b" (bitwise-bit-field (string->number "1101" 2) 1 3))
"10"
> (bitwise-bit-field 13 1 3)
2
> (format "„b" (bitwise-bit-field (string->number "1101" 2) 1 4))
"110"
> (bitwise-bit-field 13 1 4)
6

(arithmetic-shift n m) Ñ exact-integer?
n : exact-integer?
m : exact-integer?

Returns the bitwise “shift” of n in its (semi-infinite) two’s complement representation. If
m is non-negative, the integer n is shifted left by m bits; i.e., m new zeros are introduced as
rightmost digits. If m is negative, n is shifted right by (- m) bits; i.e., the rightmost m digits
are dropped.

Examples:

203

> (arithmetic-shift 1 10)
1024
> (arithmetic-shift 255 -3)
31

(integer-length n) Ñ exact-integer?
n : exact-integer?

Returns the number of bits in the (semi-infinite) two’s complement representation of n after
removing all leading zeros (for non-negative n) or ones (for negative n).

Examples:

> (integer-length 8)
4
> (integer-length -8)
3

Random Numbers When secu-
rity is a concern, use
crypto-random-bytes
instead of random.

(random k [rand-gen]) Ñ exact-nonnegative-integer?
k : (integer-in 1 4294967087)
rand-gen : pseudo-random-generator?

= (current-pseudo-random-generator)
(random min max [rand-gen]) Ñ exact-nonnegative-integer?

min : exact-integer?
max : (integer-in (+ 1 min) (+ 4294967087 min))
rand-gen : pseudo-random-generator?

= (current-pseudo-random-generator)
(random [rand-gen]) Ñ (and/c real? inexact? (>/c 0) (</c 1))

rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)

When called with an integer argument k , returns a random exact integer in the range 0 to
k -1.

When called with two integer arguments min and max , returns a random exact integer in the
range min to max -1.

When called with zero arguments, returns a random inexact number between 0 and 1, exclu-
sive.

In each case, the number is provided by the given pseudo-random number generator (which
defaults to the current one, as produced by current-pseudo-random-generator). The
generator maintains an internal state for generating numbers. The random number generator
uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm [L'Ecuyer02].

204

Changed in version 6.4 of package base: Added support for ranges.

(random-seed k) Ñ void?
k : (integer-in 0 (sub1 (expt 2 31)))

Seeds the current pseudo-random number generator with k . Seeding a generator sets its
internal state deterministically; that is, seeding a generator with a particular number forces
it to produce a sequence of pseudo-random numbers that is the same across runs and across
platforms.

The random-seed function is convenient for some purposes, but note that the space of states
for a pseudo-random number generator is much larger that the space of allowed values for
k . Use vector->pseudo-random-generator! to set a pseudo-random number generator
to any of its possible states.

(make-pseudo-random-generator) Ñ pseudo-random-generator?

Returns a new pseudo-random number generator. The new generator is seeded with a number
derived from (current-milliseconds).

(pseudo-random-generator? v) Ñ boolean?
v : any/c

Returns #t if v is a pseudo-random number generator, #f otherwise.

(current-pseudo-random-generator) Ñ pseudo-random-generator?
(current-pseudo-random-generator rand-gen) Ñ void?

rand-gen : pseudo-random-generator?

A parameter that determines the pseudo-random number generator used by random.

(pseudo-random-generator->vector rand-gen)
Ñ pseudo-random-generator-vector?
rand-gen : pseudo-random-generator?

Produces a vector that represents the complete internal state of rand-gen . The vector is
suitable as an argument to vector->pseudo-random-generator to recreate the generator
in its current state (across runs and across platforms).

(vector->pseudo-random-generator vec)
Ñ pseudo-random-generator?
vec : pseudo-random-generator-vector?

Produces a pseudo-random number generator whose internal state corresponds to vec .

205

(vector->pseudo-random-generator! rand-gen
vec) Ñ void?

rand-gen : pseudo-random-generator?
vec : pseudo-random-generator-vector?

Like vector->pseudo-random-generator, but changes rand-gen to the given state, in-
stead of creating a new generator.

(pseudo-random-generator-vector? v) Ñ boolean?
v : any/c

Returns #t if v is a vector of six exact integers, where the first three integers are in the
range 0 to 4294967086, inclusive; the last three integers are in the range 0 to 4294944442,
inclusive; at least one of the first three integers is non-zero; and at least one of the last three
integers is non-zero. Otherwise, the result is #f.

Other Randomness Utilities

(require racket/random) package: base

(crypto-random-bytes n) Ñ bytes?
n : exact-positive-integer?

Provides an interface to randomness from the underlying operating system. Use crypto-
random-bytes instead of random wherever security is a concern.

Returns n random bytes. On Unix systems, the bytes are obtained from "/dev/urandom",
while Windows uses the RtlGenRand system function.

Example:

> (crypto-random-bytes 14)
#"\0\1\1\2\3\5\b\r\25\"7Y\220\351"

Added in version 6.3 of package base.

(random-ref seq [rand-gen]) Ñ any/c
seq : sequence?
rand-gen : pseudo-random-generator?

= (current-pseudo-random-generator)

Returns a random element of the sequence. Like sequence-length, does not terminate on
infinite sequences, and evaluates the entire sequence.

Added in version 6.4 of package base.

206

https://pkgs.racket-lang.org/package/base

(random-sample seq
n

[rand-gen
#:replacement? replacement?]) Ñ (listof any/c)

seq : sequence?
n : exact-positive-integer?
rand-gen : pseudo-random-generator?

= (current-pseudo-random-generator)
replacement? : any/c = #t

Returns a list of n elements of seq , picked at random, listed in any order. If replacement?
is non-false, elements are drawn with replacement, which allows for duplicates.

Like sequence-length, does not terminate on infinite sequences, and evaluates the entire
sequence.

Added in version 6.4 of package base.

Number–String Conversions

(number->string z [radix]) Ñ string?
z : number?
radix : (or/c 2 8 10 16) = 10

Returns a string that is the printed form of z (see §1.4.2 “Printing Numbers”) in the base
specified by radix . If z is inexact, radix must be 10, otherwise the exn:fail:contract
exception is raised.

Examples:

> (number->string 3.0)
"3.0"
> (number->string 255 8)
"377"

(string->number s
[radix
convert-mode
decimal-mode
single-mode])

Ñ (or/c number? #f string? extflonum?)
s : string?
radix : (integer-in 2 16) = 10
convert-mode : (or/c 'number-or-false 'read)

= 'number-or-false

207

decimal-mode : (or/c 'decimal-as-inexact 'decimal-as-exact)
= (if (read-decimal-as-inexact)

'decimal-as-inexact
'decimal-as-exact)

single-mode : (or/c 'single 'double)
= (if (read-single-flonum)

'single
'double)

Reads and returns a number datum from s (see §1.3.3 “Reading Numbers”). The optional
radix argument specifies the default base for the number, which can be overridden by #b,
#o, #d, or #x in the string.

If convert-mode is 'number-or-false, the result is #f if s does not parse exactly as
a number datum (with no whitespace). If convert-mode is 'read, the result can be an
extflonum, and it can be a string that contains an error message if read of s would report a
reader exception (but the result can still be #f if read would report a symbol).

The decimal-mode argument controls number parsing the same way that the read-
decimal-as-inexact parameter affects read.

The single-mode argument controls number parsing the same way that the read-single-
flonum parameter affects read.

Examples:

> (string->number "3.0+2.5i")
3.0+2.5i
> (string->number "hello")
#f
> (string->number "111" 7)
57
> (string->number "#b111" 7)
7
> (string->number "#e+inf.0" 10 'read)
"no exact representation for +inf.0"
> (string->number "10.3" 10 'read 'decimal-as-exact)
103/10

Changed in version 6.8.0.2 of package base: Added the convert-mode and decimal-mode arguments.
Changed in version 7.3.0.5: Added the single-mode argument.

(real->decimal-string n [decimal-digits]) Ñ string?
n : real?
decimal-digits : exact-nonnegative-integer? = 2

208

Prints n into a string and returns the string. The printed form of n shows exactly decimal-
digits digits after the decimal point. The printed form uses a minus sign if n is negative,
and it does not use a plus sign if n is positive.

Before printing, n is converted to an exact number, multiplied by (expt 10 decimal-
digits), rounded, and then divided again by (expt 10 decimal-digits). The result
of this process is an exact number whose decimal representation has no more than decimal-
digits digits after the decimal (and it is padded with trailing zeros if necessary).

Examples:

> (real->decimal-string pi)
"3.14"
> (real->decimal-string pi 5)
"3.14159"

(integer-bytes->integer bstr
signed?

[big-endian?
start
end]) Ñ exact-integer?

bstr : bytes?
signed? : any/c
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the machine-format number encoded in bstr to an exact integer. The start and
end arguments specify the substring to decode, where (- end start) must be 1, 2, 4, or
8. If signed? is true, then the bytes are decoded as a two’s-complement number, otherwise
it is decoded as an unsigned integer. If big-endian? is true, then the first byte’s value
provides the most significant eight bits of the number, otherwise the first byte provides the
least-significant eight bits, and so on.

Changed in version 6.10.0.1 of package base: Added support for decoding a 1-byte string.

(integer->integer-bytes n
size-n
signed?

[big-endian?
dest-bstr
start]) Ñ bytes?

n : exact-integer?
size-n : (or/c 1 2 4 8)
signed? : any/c
big-endian? : any/c = (system-big-endian?)

209

dest-bstr : (and/c bytes? (not/c immutable?))
= (make-bytes size-n)

start : exact-nonnegative-integer? = 0

Converts the exact integer n to a machine-format number encoded in a byte string of length
size-n , which must be 1, 2, 4, or 8. If signed? is true, then the number is encoded as
two’s complement, otherwise it is encoded as an unsigned bit stream. If big-endian? is
true, then the most significant eight bits of the number are encoded in the first byte of the
resulting byte string, otherwise the least-significant bits are encoded in the first byte, and so
on.

The dest-bstr argument must be a mutable byte string of length size-n . The encoding
of n is written into dest-bstr starting at offset start , and dest-bstr is returned as the
result.

If n cannot be encoded in a byte string of the requested size and format, the
exn:fail:contract exception is raised. If dest-bstr is not of length size-n , the
exn:fail:contract exception is raised.

Changed in version 6.10.0.1 of package base: Added support for encoding a 1-byte value.

(floating-point-bytes->real bstr
[big-endian?
start
end]) Ñ flonum?

bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the IEEE floating-point number encoded in bstr from position start (inclusive)
to end (exclusive) to an inexact real number. The difference between start an end must
be either 4 or 8 bytes. If big-endian? is true, then the first byte’s ASCII value provides the
most significant eight bits of the IEEE representation, otherwise the first byte provides the
least-significant eight bits, and so on.

(real->floating-point-bytes x
size-n

[big-endian?
dest-bstr
start]) Ñ bytes?

x : real?
size-n : (or/c 4 8)
big-endian? : any/c = (system-big-endian?)
dest-bstr : (and/c bytes? (not/c immutable?))

= (make-bytes size-n)
start : exact-nonnegative-integer? = 0

210

Converts the real number x to its IEEE representation in a byte string of length size-
n , which must be 4 or 8. If big-endian? is true, then the most significant eight bits of
the number are encoded in the first byte of the resulting byte string, otherwise the least-
significant bits are encoded in the first character, and so on.

The dest-bstr argument must be a mutable byte string of length size-n . The encoding
of n is written into dest-bstr starting with byte start , and dest-bstr is returned as the
result.

If dest-bstr is provided and it has less than start plus size-n bytes, the
exn:fail:contract exception is raised.

(system-big-endian?) Ñ boolean?

Returns #t if the native encoding of numbers is big-endian for the machine running Racket,
#f if the native encoding is little-endian.

Extra Constants and Functions

(require racket/math) package: base

The bindings documented in this section are provided by the racket/math and racket
libraries, but not racket/base.

pi : flonum?

An approximation of π, the ratio of a circle’s circumference to its diameter.

Examples:

> pi
3.141592653589793
> (cos pi)
-1.0

pi.f : (or/c single-flonum? flonum?)

The same value as pi, but as a single-precision floating-point number if the current platform
supports it.

Changed in version 7.3.0.5 of package base: Allow value to be a double-precision flonum.

(degrees->radians x) Ñ real?
x : real?

Converts an x -degree angle to radians.

Examples:

211

https://pkgs.racket-lang.org/package/base

> (degrees->radians 180)
3.141592653589793
> (sin (degrees->radians 45))
0.7071067811865475

(radians->degrees x) Ñ real?
x : real?

Converts x radians to degrees.

Examples:

> (radians->degrees pi)
180.0
> (radians->degrees (* 1/4 pi))
45.0

(sqr z) Ñ number?
z : number?

Returns (* z z).

(sgn x) Ñ (or/c (=/c -1) (=/c 0) (=/c 1) +nan.0 +nan.f)
x : real?

Returns the sign of x as either -1, 0, 1, or not-a-number.

Examples:

> (sgn 10)
1
> (sgn -10.0)
-1.0
> (sgn 0)
0
> (sgn +nan.0)
+nan.0

(conjugate z) Ñ number?
z : number?

Returns the complex conjugate of z .

Examples:

212

> (conjugate 1)
1
> (conjugate 3+4i)
3-4i

(sinh z) Ñ number?
z : number?

Returns the hyperbolic sine of z .

(cosh z) Ñ number?
z : number?

Returns the hyperbolic cosine of z .

(tanh z) Ñ number?
z : number?

Returns the hyperbolic tangent of z .

(exact-round x) Ñ exact-integer?
x : rational?

Equivalent to (inexact->exact (round x)).

(exact-floor x) Ñ exact-integer?
x : rational?

Equivalent to (inexact->exact (floor x)).

(exact-ceiling x) Ñ exact-integer?
x : rational?

Equivalent to (inexact->exact (ceiling x)).

(exact-truncate x) Ñ exact-integer?
x : rational?

Equivalent to (inexact->exact (truncate x)).

(order-of-magnitude r) Ñ (and/c exact? integer?)
r : (and/c real? positive?)

Computes the greatest exact integer m such that:

213

(<= (expt 10 m)
(inexact->exact r))

Hence also:

(< (inexact->exact r)
(expt 10 (add1 m)))

Examples:

> (order-of-magnitude 999)
2
> (order-of-magnitude 1000)
3
> (order-of-magnitude 1/100)
-2
> (order-of-magnitude 1/101)
-3

(nan? x) Ñ boolean?
x : real?

Returns #t if x is eqv? to +nan.0 or +nan.f; otherwise #f.

(infinite? x) Ñ boolean?
x : real?

Returns #t if x is +inf.0, -inf.0, +inf.f, -inf.f; otherwise #f.

(positive-integer? x) Ñ boolean?
x : any/c

Like exact-positive-integer?, but also returns #t for positive inexact? integers.

Added in version 6.8.0.2 of package base.

(negative-integer? x) Ñ boolean?
x : any/c

The same as (and (integer? x) (negative? x)).

Added in version 6.8.0.2 of package base.

(nonpositive-integer? x) Ñ boolean?
x : any/c

214

The same as (and (integer? x) (not (positive? x))).

Added in version 6.8.0.2 of package base.

(nonnegative-integer? x) Ñ boolean?
x : any/c

Like exact-nonnegative-integer?, but also returns #t for non-negative inexact? in-
tegers.

Added in version 6.8.0.2 of package base.

(natural? x) Ñ boolean?
x : any/c

An alias for exact-nonnegative-integer?.

Added in version 6.8.0.2 of package base.

4.2.3 Flonums

(require racket/flonum) package: base

The racket/flonum library provides operations like fl+ that consume and produce only
flonums. Flonum-specific operations can provide better performance when used consis-
tently, and they are as safe as generic operations like +. See also §19.8

“Fixnum and
Flonum
Optimizations” in
The Racket Guide.

Flonum Arithmetic

(fl+ a ...) Ñ flonum?
a : flonum?

(fl- a b ...) Ñ flonum?
a : flonum?
b : flonum?

(fl* a ...) Ñ flonum?
a : flonum?

(fl/ a b ...) Ñ flonum?
a : flonum?
b : flonum?

(flabs a) Ñ flonum?
a : flonum?

Like +, -, *, /, and abs, but constrained to consume flonums. The result is always a flonum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for fl+ and fl* and one or more
arguments for fl- and fl/.

215

https://pkgs.racket-lang.org/package/base

(fl= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(fl< a b ...) Ñ boolean?
a : flonum?
b : flonum?

(fl> a b ...) Ñ boolean?
a : flonum?
b : flonum?

(fl<= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(fl>= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(flmin a b ...) Ñ flonum?
a : flonum?
b : flonum?

(flmax a b ...) Ñ flonum?
a : flonum?
b : flonum?

Like =, <, >, <=, >=, min, and max, but constrained to consume flonums.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(flround a) Ñ flonum?
a : flonum?

(flfloor a) Ñ flonum?
a : flonum?

(flceiling a) Ñ flonum?
a : flonum?

(fltruncate a) Ñ flonum?
a : flonum?

Like round, floor, ceiling, and truncate, but constrained to consume flonums.

(flsin a) Ñ flonum?
a : flonum?

(flcos a) Ñ flonum?
a : flonum?

(fltan a) Ñ flonum?
a : flonum?

(flasin a) Ñ flonum?
a : flonum?

216

(flacos a) Ñ flonum?
a : flonum?

(flatan a) Ñ flonum?
a : flonum?

(fllog a) Ñ flonum?
a : flonum?

(flexp a) Ñ flonum?
a : flonum?

(flsqrt a) Ñ flonum?
a : flonum?

Like sin, cos, tan, asin, acos, atan, log, exp, and sqrt, but constrained to consume
and produce flonums. The result is +nan.0 when a number outside the range -1.0 to 1.0 is
given to flasin or flacos, or when a negative number is given to fllog or flsqrt.

(flexpt a b) Ñ flonum?
a : flonum?
b : flonum?

Like expt, but constrained to consume and produce flonums.

Due to the result constraint, the results compared to expt differ in the following cases: These special cases
correspond to pow
in C99 [C99].

• (flexpt -1.0 +inf.0) — 1.0

• (flexpt a +inf.0) where a is negative — (expt (abs a) +inf.0)

• (flexpt a -inf.0) where a is negative — (expt (abs a) -inf.0)

• (expt -inf.0 b) where b is a non-integer:

– b is negative — 0.0

– b is positive — +inf.0

• (flexpt a b) where a is negative and b is not an integer — +nan.0

(->fl a) Ñ flonum?
a : exact-integer?

Like exact->inexact, but constrained to consume exact integers, so the result is always a
flonum.

(fl->exact-integer a) Ñ exact-integer?
a : flonum?

Like inexact->exact, but constrained to consume an integer flonum, so the result is always
an exact integer.

217

(make-flrectangular a b)
Ñ (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

a : flonum?
b : flonum?

(flreal-part a) Ñ flonum?
a : (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

(flimag-part a) Ñ flonum?
a : (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

Like make-rectangular, real-part, and imag-part, but both parts of the complex num-
ber must be inexact.
(flrandom rand-gen) Ñ (and flonum? (>/c 0) (</c 1))

rand-gen : pseudo-random-generator?

Equivalent to (random rand-gen).

Flonum Vectors

A flvector is like a vector, but it holds only inexact real numbers. This representation can be
more compact, and unsafe operations on flvectors (see racket/unsafe/ops) can execute
more efficiently than unsafe operations on vectors of inexact reals.

An f64vector as provided by ffi/vector stores the same kinds of values as a flvector,
but with extra indirections that make f64vectors more convenient for working with foreign
libraries. The lack of indirections makes unsafe flvector access more efficient.

Two flvectors are equal? if they have the same length, and if the values in corresponding
slots of the flvectors are equal?.

A printed flvector starts with #fl(, optionally with a number between the #fl and (. See
§1.3.10 “Reading Vectors” for information on reading flvectors and §1.4.7 “Printing Vec-
tors” for information on printing flvectors.

(flvector? v) Ñ boolean?
v : any/c

Returns #t if v is a flvector, #f otherwise.

(flvector x ...) Ñ flvector?
x : flonum?

218

Creates a flvector containing the given inexact real numbers.

Example:

> (flvector 2.0 3.0 4.0 5.0)
(flvector 2.0 3.0 4.0 5.0)

(make-flvector size [x]) Ñ flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x .

Example:

> (make-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)

(flvector-length vec) Ñ exact-nonnegative-integer?
vec : flvector?

Returns the length of vec (i.e., the number of slots in the flvector).

(flvector-ref vec pos) Ñ flonum?
vec : flvector?
pos : exact-nonnegative-integer?

Returns the inexact real number in slot pos of vec . The first slot is position 0, and the last
slot is one less than (flvector-length vec).

(flvector-set! vec pos x) Ñ flonum?
vec : flvector?
pos : exact-nonnegative-integer?
x : flonum?

Sets the inexact real number in slot pos of vec . The first slot is position 0, and the last slot
is one less than (flvector-length vec).

(flvector-copy vec [start end]) Ñ flvector?
vec : flvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh flvector of size (- end start), with all of the elements of vec from start
(inclusive) to end (exclusive).

219

(in-flvector vec [start stop step]) Ñ sequence?
vec : flvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start , stop , and step are as in in-vector.

A in-flvector application can provide better performance for flvector iteration when it
appears directly in a for clause.

(for/flvector maybe-length (for-clause ...) body ...)
(for*/flvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

fill-expr : flonum?

Like for/vector or for*/vector, but for flvectors. The default fill-expr produces
0.0.

(shared-flvector x ...) Ñ flvector?
x : flonum?

Creates a flvector containing the given inexact real numbers. For communication among
places, the new flvector is allocated in the shared memory space.

Example:

> (shared-flvector 2.0 3.0 4.0 5.0)
(flvector 2.0 3.0 4.0 5.0)

(make-shared-flvector size [x]) Ñ flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x . For
communication among places, the new flvector is allocated in the shared memory space.

Example:

220

> (make-shared-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)

4.2.4 Fixnums

(require racket/fixnum) package: base

The racket/fixnum library provides operations like fx+ that consume and produce only
fixnums. The operations in this library are meant to be safe versions of unsafe operations
like unsafe-fx+. These safe operations are generally no faster than using generic primitives
like +.

The expected use of the racket/fixnum library is for code where the require of
racket/fixnum is replaced with

(require (filtered-in
(λ (name) (regexp-replace #rx"unsafe-" name ""))
racket/unsafe/ops))

to drop in unsafe versions of the library. Alternately, when encountering crashes with code
that uses unsafe fixnum operations, use the racket/fixnum library to help debug the prob-
lems.

Fixnum Arithmetic

(fx+ a ...) Ñ fixnum?
a : fixnum?

(fx- a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

(fx* a ...) Ñ fixnum?
a : fixnum?

(fxquotient a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(fxremainder a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(fxmodulo a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(fxabs a) Ñ fixnum?
a : fixnum?

Safe versions of unsafe-fx+, unsafe-fx-, unsafe-fx*, unsafe-fxquotient, unsafe-

221

https://pkgs.racket-lang.org/package/base

fxremainder, unsafe-fxmodulo, and unsafe-fxabs. The exn:fail:contract:non-
fixnum-result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for fx+ and fx* and one or more
arguments for fx-.

(fxand a ...) Ñ fixnum?
a : fixnum?

(fxior a ...) Ñ fixnum?
a : fixnum?

(fxxor a ...) Ñ fixnum?
a : fixnum?

(fxnot a) Ñ fixnum?
a : fixnum?

(fxlshift a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(fxrshift a b) Ñ fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fxand, unsafe-fxior, unsafe-fxxor, unsafe-fxnot,
unsafe-fxlshift, and unsafe-fxrshift. The exn:fail:contract:non-fixnum-
result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow any number of arguments for fxand, fxior, and fxxor.

(fx= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(fx< a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(fx> a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(fx<= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(fx>= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(fxmin a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

222

(fxmax a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fx=, unsafe-fx<, unsafe-fx>, unsafe-fx<=, unsafe-fx>=,
unsafe-fxmin, and unsafe-fxmax.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(fx->fl a) Ñ flonum?
a : fixnum?

(fl->fx a) Ñ fixnum?
a : flonum?

Safe versions of unsafe-fx->fl and unsafe-fl->fx.

(fixnum-for-every-system? v) Ñ boolean?
v : any/c

Returns #t if v is a fixnum and is represented by fixnum by every Racket implementation,
#f otherwise.

Added in version 7.3.0.11 of package base.

Fixnum Vectors

A fxvector is like a vector, but it holds only fixnums. The only advantage of a fxvector over
a vector is that a shared version can be created with functions like shared-fxvector.

Two fxvectors are equal? if they have the same length, and if the values in corresponding
slots of the fxvectors are equal?.

A printed fxvector starts with #fx(, optionally with a number between the #fx and (. See
§1.3.10 “Reading Vectors” for information on reading fxvectors and §1.4.7 “Printing Vec-
tors” for information on printing fxvectors.

(fxvector? v) Ñ boolean?
v : any/c

Returns #t if v is a fxvector, #f otherwise.

(fxvector x ...) Ñ fxvector?
x : fixnum?

Creates a fxvector containing the given fixnums.

Example:

223

> (fxvector 2 3 4 5)
(fxvector 2 3 4 5)

(make-fxvector size [x]) Ñ fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

Creates a fxvector with size elements, where every slot in the fxvector is filled with x .

Example:

> (make-fxvector 4 3)
(fxvector 3 3 3 3)

(fxvector-length vec) Ñ exact-nonnegative-integer?
vec : fxvector?

Returns the length of vec (i.e., the number of slots in the fxvector).

(fxvector-ref vec pos) Ñ fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?

Returns the fixnum in slot pos of vec . The first slot is position 0, and the last slot is one
less than (fxvector-length vec).

(fxvector-set! vec pos x) Ñ fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?
x : fixnum?

Sets the fixnum in slot pos of vec . The first slot is position 0, and the last slot is one less
than (fxvector-length vec).

(fxvector-copy vec [start end]) Ñ fxvector?
vec : fxvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh fxvector of size (- end start), with all of the elements of vec from
start (inclusive) to end (exclusive).

(in-fxvector vec [start stop step]) Ñ sequence?
vec : fxvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

224

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start , stop , and step are as in in-vector.

An in-fxvector application can provide better performance for fxvector iteration when it
appears directly in a for clause.

(for/fxvector maybe-length (for-clause ...) body ...)
(for*/fxvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

fill-expr : fixnum?

Like for/vector or for*/vector, but for fxvectors. The default fill-expr produces 0.

(shared-fxvector x ...) Ñ fxvector?
x : fixnum?

Creates a fxvector containing the given fixnums. For communication among places, the new
fxvector is allocated in the shared memory space.

Example:

> (shared-fxvector 2 3 4 5)
(fxvector 2 3 4 5)

(make-shared-fxvector size [x]) Ñ fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

Creates a fxvector with size elements, where every slot in the fxvector is filled with x . For
communication among places, the new fxvector is allocated in the shared memory space.

Example:

> (make-shared-fxvector 4 3)
(fxvector 3 3 3 3)

4.2.5 Extflonums

(require racket/extflonum) package: base

225

https://pkgs.racket-lang.org/package/base

An extflonum is an extended-precision (80-bit) floating-point number. Extflonum arithmetic
is supported on platforms with extended-precision hardware and where the extflonum imple-
mentation does not conflict with normal double-precision arithmetic (i.e., on x86 and x86_64
platforms when Racket is compiled to use SSE instructions for floating-point operations, and
on Windows when "longdouble.dll" is available).

A extflonum is not a number in the sense of number?. Only extflonum-specific operations
such as extfl+ perform extflonum arithmetic.

A literal extflonum is written like an inexact number, but using an explicit t or T expo-
nent marker (see §1.3.4 “Reading Extflonums”). For example, 3.5t0 is an extflonum. The
extflonum values for infinity are +inf.t and -inf.t. The extflonum value for not-a-number
is +nan.t.

If (extflonum-available?) produces #f, then all operations exported by
racket/extflonum raise exn:fail:unsupported, except for extflonum?,
extflonum-available?, and extflvector? (which always work). The reader (see
§1.3 “The Reader”) always accepts extflonum input; when extflonum operations are not
supported, printing an extflonum from the reader uses its source notation (as opposed to
normalizing the format).

Two extflonums are equal? if extfl= produces #t for the extflonums. If extflonums are
not supported in a platform, extflonums are equal? only if they are eq?.

(extflonum? v) Ñ boolean?
v : any/c

Returns #t if v is an extflonum, #f otherwise.

(extflonum-available?) Ñ boolean?

Returns #t if extflonum operations are supported on the current platform, #f otherwise.

Extflonum Arithmetic

(extfl+ a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(extfl- a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(extfl* a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(extfl/ a b) Ñ extflonum?
a : extflonum?
b : extflonum?

226

(extflabs a) Ñ extflonum?
a : extflonum?

Like fl+, fl-, fl*, fl/, and flabs, but for extflonums.

(extfl= a b) Ñ boolean?
a : extflonum?
b : extflonum?

(extfl< a b) Ñ boolean?
a : extflonum?
b : extflonum?

(extfl> a b) Ñ boolean?
a : extflonum?
b : extflonum?

(extfl<= a b) Ñ boolean?
a : extflonum?
b : extflonum?

(extfl>= a b) Ñ boolean?
a : extflonum?
b : extflonum?

(extflmin a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(extflmax a b) Ñ extflonum?
a : extflonum?
b : extflonum?

Like fl=, fl<, fl>, fl<=, fl>=, flmin, and flmax, but for extflonums.

(extflround a) Ñ extflonum?
a : extflonum?

(extflfloor a) Ñ extflonum?
a : extflonum?

(extflceiling a) Ñ extflonum?
a : extflonum?

(extfltruncate a) Ñ extflonum?
a : extflonum?

Like flround, flfloor, flceiling, and fltruncate, but for extflonums.

(extflsin a) Ñ extflonum?
a : extflonum?

(extflcos a) Ñ extflonum?
a : extflonum?

(extfltan a) Ñ extflonum?
a : extflonum?

227

(extflasin a) Ñ extflonum?
a : extflonum?

(extflacos a) Ñ extflonum?
a : extflonum?

(extflatan a) Ñ extflonum?
a : extflonum?

(extfllog a) Ñ extflonum?
a : extflonum?

(extflexp a) Ñ extflonum?
a : extflonum?

(extflsqrt a) Ñ extflonum?
a : extflonum?

(extflexpt a b) Ñ extflonum?
a : extflonum?
b : extflonum?

Like flsin, flcos, fltan, flasin, flacos, flatan, fllog, flexp, and flsqrt, and
flexpt, but for extflonums.

(->extfl a) Ñ extflonum?
a : exact-integer?

(extfl->exact-integer a) Ñ exact-integer?
a : extflonum?

(real->extfl a) Ñ extflonum?
a : real?

(extfl->exact a) Ñ (and/c real? exact?)
a : extflonum?

(extfl->inexact a) Ñ flonum?
a : extflonum?

The first four are like ->fl, fl->exact, fl->real, inexact->exact, but for extflonums.
The extfl->inexact function converts a extflonum to its closest flonum approximation.

Extflonum Constants

pi.t : extflonum?

Like pi, but with 80 bits precision.

Extflonum Vectors

An extflvector is like an flvector, but it holds only extflonums. See also §17.4 “Unsafe
Extflonum Operations”.

Two extflvectors are equal? if they have the same length, and if the values in corresponding
slots of the extflvectors are equal?.

228

(extflvector? v) Ñ boolean?
v : any/c

(extflvector x ...) Ñ extflvector?
x : extflonum?

(make-extflvector size [x]) Ñ extflvector?
size : exact-nonnegative-integer?
x : extflonum? = 0.0t0

(extflvector-length vec) Ñ exact-nonnegative-integer?
vec : extflvector?

(extflvector-ref vec pos) Ñ extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?

(extflvector-set! vec pos x) Ñ extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?
x : extflonum?

(extflvector-copy vec [start end]) Ñ extflvector?
vec : extflvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Like flvector?, flvector, make-flvector, flvector-length, flvector-ref,
flvector-set, and flvector-copy, but for extflvectors.

(in-extflvector vec [start stop step]) Ñ sequence?
vec : extflvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

(for/extflvector maybe-length (for-clause ...) body ...)
(for*/extflvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

fill-expr : extflonum?

Like in-flvector, for/flvector, and for*/flvector, but for extflvectors.

(shared-extflvector x ...) Ñ extflvector?
x : extflonum?

(make-shared-extflvector size [x]) Ñ extflvector?
size : exact-nonnegative-integer?
x : extflonum? = 0.0t0

229

Like shared-flvector and make-shared-flvector, but for extflvectors.

Extflonum Byte Strings

(floating-point-bytes->extfl bstr
[big-endian?
start
end]) Ñ extflonum?

bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Like floating-point-bytes->real, but for extflonums: Converts the extended-precision
floating-point number encoded in bstr from position start (inclusive) to end (exclusive)
to an extflonum. The difference between start an end must be 10 bytes.

(extfl->floating-point-bytes x
[big-endian?
dest-bstr
start]) Ñ bytes?

x : extflonum?
big-endian? : any/c = (system-big-endian?)
dest-bstr : (and/c bytes? (not/c immutable?))

= (make-bytes 10)
start : exact-nonnegative-integer? = 0

Like real->floating-point-bytes, but for extflonums: Converts x to its representation
in a byte string of length 10.

4.3 Strings
§3.4 “Strings
(Unicode)” in The
Racket Guide
introduces strings.

A string is a fixed-length array of characters.

A string can be mutable or immutable. When an immutable string is provided to a pro-
cedure like string-set!, the exn:fail:contract exception is raised. String constants
generated by the default reader (see §1.3.7 “Reading Strings”) are immutable, and they are
interned in read-syntax mode.

Two strings are equal? when they have the same length and contain the same sequence of
characters.

A string can be used as a single-valued sequence (see §4.14.1 “Sequences”). The characters
of the string serve as elements of the sequence. See also in-string.

230

See §1.3.7 “Reading Strings” for information on reading strings and §1.4.6 “Printing
Strings” for information on printing strings.

See also: immutable?, symbol->string, bytes->string/utf-8.

4.3.1 String Constructors, Selectors, and Mutators

(string? v) Ñ boolean?
v : any/c

Returns #t if v is a string, #f otherwise.

Examples:

> (string? "Apple")
#t
> (string? 'apple)
#f

(make-string k [char]) Ñ string?
k : exact-nonnegative-integer?
char : char? = #\nul

Returns a new mutable string of length k where each position in the string is initialized with
the character char .

Example:

> (make-string 5 #\z)
"zzzzz"

(string char ...) Ñ string?
char : char?

Returns a new mutable string whose length is the number of provided chars, and whose
positions are initialized with the given chars.

Example:

> (string #\A #\p #\p #\l #\e)
"Apple"

(string->immutable-string str) Ñ (and/c string? immutable?)
str : string?

231

Returns an immutable string with the same content as str , returning str itself if str is
immutable.

(string-length str) Ñ exact-nonnegative-integer?
str : string?

Returns the length of str .

Example:

> (string-length "Apple")
5

(string-ref str k) Ñ char?
str : string?
k : exact-nonnegative-integer?

Returns the character at position k in str . The first position in the string corresponds to 0, so
the position k must be less than the length of the string, otherwise the exn:fail:contract
exception is raised.

Example:

> (string-ref "Apple" 0)
#\A

(string-set! str k char) Ñ void?
str : (and/c string? (not/c immutable?))
k : exact-nonnegative-integer?
char : char?

Changes the character position k in str to char . The first position in the string corre-
sponds to 0, so the position k must be less than the length of the string, otherwise the
exn:fail:contract exception is raised.

Examples:

> (define s (string #\A #\p #\p #\l #\e))
> (string-set! s 4 #\y)
> s
"Apply"

(substring str start [end]) Ñ string?
str : string?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (string-length str)

232

Returns a new mutable string that is (- end start) characters long, and that contains the
same characters as str from start inclusive to end exclusive. The first position in a string
corresponds to 0, so the start and end arguments must be less than or equal to the length of
str , and end must be greater than or equal to start , otherwise the exn:fail:contract
exception is raised.

Examples:

> (substring "Apple" 1 3)
"pp"
> (substring "Apple" 1)
"pple"

(string-copy str) Ñ string?
str : string?

Returns (substring str 0).

Examples:

> (define s1 "Yui")
> (define pilot (string-copy s1))
> (list s1 pilot)
'("Yui" "Yui")
> (for ([i (in-naturals)] [ch '(#\R #\e #\i)])

(string-set! pilot i ch))
> (list s1 pilot)
'("Yui" "Rei")

(string-copy! dest
dest-start
src

[src-start
src-end]) Ñ void?

dest : (and/c string? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : string?
src-start : exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (string-length src)

Changes the characters of dest starting at position dest-start to match the characters
in src from src-start (inclusive) to src-end (exclusive), where the first position in a
string corresponds to 0. The strings dest and src can be the same string, and in that case
the destination region can overlap with the source region; the destination characters after the
copy match the source characters from before the copy. If any of dest-start , src-start ,

233

or src-end are out of range (taking into account the sizes of the strings and the source and
destination regions), the exn:fail:contract exception is raised.

Examples:

> (define s (string #\A #\p #\p #\l #\e))
> (string-copy! s 4 "y")
> (string-copy! s 0 s 3 4)
> s
"lpply"

(string-fill! dest char) Ñ void?
dest : (and/c string? (not/c immutable?))
char : char?

Changes dest so that every position in the string is filled with char .

Examples:

> (define s (string #\A #\p #\p #\l #\e))
> (string-fill! s #\q)
> s
"qqqqq"

(string-append str ...) Ñ string?
str : string?

Returns a new mutable string that is as long as the sum of the given strs’ lengths, and that
contains the concatenated characters of the given strs. If no strs are provided, the result
is a zero-length string.

Example:

> (string-append "Apple" "Banana")
"AppleBanana"

(string->list str) Ñ (listof char?)
str : string?

Returns a new list of characters corresponding to the content of str . That is, the length
of the list is (string-length str), and the sequence of characters in str is the same
sequence in the result list.

Example:

234

> (string->list "Apple")
'(#\A #\p #\p #\l #\e)

(list->string lst) Ñ string?
lst : (listof char?)

Returns a new mutable string whose content is the list of characters in lst . That is, the
length of the string is (length lst), and the sequence of characters in lst is the same
sequence in the result string.

Example:

> (list->string (list #\A #\p #\p #\l #\e))
"Apple"

(build-string n proc) Ñ string?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . char?)

Creates a string of n characters by applying proc to the integers from 0 to (sub1 n) in
order. If str is the resulting string, then (string-ref str i) is the character produced
by (proc i).

Example:

> (build-string 5 (lambda (i) (integer->char (+ i 97))))
"abcde"

4.3.2 String Comparisons

(string=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Returns #t if all of the arguments are equal?.

Examples:

> (string=? "Apple" "apple")
#f
> (string=? "a" "as" "a")
#f

235

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string<? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Returns #t if the arguments are lexicographically sorted increasing, where individual char-
acters are ordered by char<?, #f otherwise.

Examples:

> (string<? "Apple" "apple")
#t
> (string<? "apple" "Apple")
#f
> (string<? "a" "b" "c")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string<=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string<?, but checks whether the arguments are nondecreasing.

Examples:

> (string<=? "Apple" "apple")
#t
> (string<=? "apple" "Apple")
#f
> (string<=? "a" "b" "b")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string>? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string<?, but checks whether the arguments are decreasing.

Examples:

236

> (string>? "Apple" "apple")
#f
> (string>? "apple" "Apple")
#t
> (string>? "c" "b" "a")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string>=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string<?, but checks whether the arguments are nonincreasing.

Examples:

> (string>=? "Apple" "apple")
#f
> (string>=? "apple" "Apple")
#t
> (string>=? "c" "b" "b")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Returns #t if all of the arguments are equal? after locale-insensitive case-folding via
string-foldcase.

Examples:

> (string-ci=? "Apple" "apple")
#t
> (string-ci=? "a" "a" "a")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci<? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

237

Like string<?, but checks whether the arguments would be in increasing order if each was
first case-folded using string-foldcase (which is locale-insensitive).

Examples:

> (string-ci<? "Apple" "apple")
#f
> (string-ci<? "apple" "banana")
#t
> (string-ci<? "a" "b" "c")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci<=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:

> (string-ci<=? "Apple" "apple")
#t
> (string-ci<=? "apple" "Apple")
#t
> (string-ci<=? "a" "b" "b")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci>? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be decreasing after case-
folding.

Examples:

> (string-ci>? "Apple" "apple")
#f
> (string-ci>? "banana" "Apple")
#t
> (string-ci>? "c" "b" "a")
#t

238

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci>=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nonincreasing after case-
folding.

Examples:

> (string-ci>=? "Apple" "apple")
#t
> (string-ci>=? "apple" "Apple")
#t
> (string-ci>=? "c" "b" "b")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.3.3 String Conversions

(string-upcase str) Ñ string?
str : string?

Returns a string whose characters are the upcase conversion of the characters in str . The
conversion uses Unicode’s locale-independent conversion rules that map code-point se-
quences to code-point sequences (instead of simply mapping a 1-to-1 function on code points
over the string), so the string produced by the conversion can be longer than the input string.

Examples:

> (string-upcase "abc!")
"ABC!"
> (string-upcase "Straße")
"STRASSE"

(string-downcase string) Ñ string?
string : string?

Like string-upcase, but the downcase conversion.

Examples:

239

> (string-downcase "aBC!")
"abc!"
> (string-downcase "Straße")
"straße"
> (string-downcase "KAOΣ")
"καoς"
> (string-downcase "Σ")
"σ"

(string-titlecase string) Ñ string?
string : string?

Like string-upcase, but the titlecase conversion only for the first character in each se-
quence of cased characters in str (ignoring case-ignorable characters).

Examples:

> (string-titlecase "aBC twO")
"Abc Two"
> (string-titlecase "y2k")
"Y2K"
> (string-titlecase "main straße")
"Main Straße"
> (string-titlecase "stra ße")
"Stra Sse"

(string-foldcase string) Ñ string?
string : string?

Like string-upcase, but the case-folding conversion.

Examples:

> (string-foldcase "aBC!")
"abc!"
> (string-foldcase "Straße")
"strasse"
> (string-foldcase "KAOΣ")
"καoσ"

(string-normalize-nfd string) Ñ string?
string : string?

Returns a string that is the Unicode normalized form D of string . If the given string is
already in the corresponding Unicode normal form, the string may be returned directly as
the result (instead of a newly allocated string).

240

(string-normalize-nfkd string) Ñ string?
string : string?

Like string-normalize-nfd, but for normalized form KD.

(string-normalize-nfc string) Ñ string?
string : string?

Like string-normalize-nfd, but for normalized form C.

(string-normalize-nfkc string) Ñ string?
string : string?

Like string-normalize-nfd, but for normalized form KC.

4.3.4 Locale-Specific String Operations

(string-locale=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string=?, but the strings are compared in a locale-specific way, based on the value of
current-locale. See §13.1.1 “Encodings and Locales” for more information on locales.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale<? str1 str2 ...+) Ñ boolean?
str1 : string?
str2 : string?

Like string<?, but the sort order compares strings in a locale-specific way, based on the
value of current-locale. In particular, the sort order may not be simply a lexicographic
extension of character ordering.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale>? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string>?, but locale-specific like string-locale<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

241

(string-locale-ci=? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string-locale=?, but strings are compared using rules that are both locale-specific
and case-insensitive (depending on what “case-insensitive” means for the current locale).

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale-ci<? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string<?, but both locale-sensitive and case-insensitive like string-locale-ci=?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale-ci>? str1 str2 ...) Ñ boolean?
str1 : string?
str2 : string?

Like string>?, but both locale-sensitive and case-insensitive like string-locale-ci=?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale-upcase string) Ñ string?
string : string?

Like string-upcase, but using locale-specific case-conversion rules based on the value of
current-locale.

(string-locale-downcase string) Ñ string?
string : string?

Like string-downcase, but using locale-specific case-conversion rules based on the value
of current-locale.

4.3.5 Additional String Functions

(require racket/string) package: base

The bindings documented in this section are provided by the racket/string and racket
libraries, but not racket/base.

242

https://pkgs.racket-lang.org/package/base

(string-append* str ... strs) Ñ string?
str : string?
strs : (listof string?)

Like string-append, but the last argument is used as a list of arguments for string-
append, so (string-append* str ... strs) is the same as (apply string-append
str ... strs). In other words, the relationship between string-append and string-
append* is similar to the one between list and list*.

Examples:

> (string-append* "a" "b" '("c" "d"))
"abcd"
> (string-append* (cdr (append* (map (lambda (x) (list ", " x))

'("Alpha" "Beta" "Gamma")))))
"Alpha, Beta, Gamma"

(string-join strs
[sep
#:before-first before-first
#:before-last before-last
#:after-last after-last]) Ñ string?

strs : (listof string?)
sep : string? = " "
before-first : string? = ""
before-last : string? = sep
after-last : string? = ""

Appends the strings in strs , inserting sep between each pair of strings in strs . before-
last , before-first , and after-last are analogous to the inputs of add-between: they
specify an alternate separator between the last two strings, a prefix string, and a suffix string
respectively.

Examples:

> (string-join '("one" "two" "three" "four"))
"one two three four"
> (string-join '("one" "two" "three" "four") ", ")
"one, two, three, four"
> (string-join '("one" "two" "three" "four") " potato ")
"one potato two potato three potato four"
> (string-join '("x" "y" "z") ", "

#:before-first "Todo: "
#:before-last " and "
#:after-last ".")

243

"Todo: x, y and z."

(string-normalize-spaces str
[sep
space
#:trim? trim?
#:repeat? repeat?]) Ñ string?

str : string?
sep : (or/c string? regexp?) = #px"\\s+"
space : string? = " "
trim? : any/c = #t
repeat? : any/c = #f

Normalizes spaces in the input str by trimming it (using string-trim and sep) and re-
placing all whitespace sequences in the result with space , which defaults to a single space.

Example:

> (string-normalize-spaces " foo bar baz \r\n\t")
"foo bar baz"

The result of (string-normalize-spaces str sep space) is the same as (string-
join (string-split str sep) space).

(string-replace str from to [#:all? all?]) Ñ string?
str : string?
from : (or/c string? regexp?)
to : string?
all? : any/c = #t

Returns str with all occurrences of from replaced with by to . If from is a string, it is
matched literally (as opposed to being used as a regular expression).

By default, all occurrences are replaced, but only the first match is replaced if all? is #f.

Example:

> (string-replace "foo bar baz" "bar" "blah")
"foo blah baz"

(string-split str
[sep
#:trim? trim?
#:repeat? repeat?]) Ñ (listof string?)

str : string?

244

sep : (or/c string? regexp?) = #px"\\s+"
trim? : any/c = #t
repeat? : any/c = #f

Splits the input str on sep , returning a list of substrings of str that are separated by sep ,
defaulting to splitting the input on whitespaces. The input is first trimmed using sep (see
string-trim), unless trim? is #f. Empty matches are handled in the same way as for
regexp-split. As a special case, if str is the empty string after trimming, the result is
'() instead of '("").

Like string-trim, provide sep to use a different separator, and repeat? controls match-
ing repeated sequences.

Examples:

> (string-split " foo bar baz \r\n\t")
'("foo" "bar" "baz")
> (string-split " ")
'()
> (string-split " " #:trim? #f)
'("" "")

(string-trim str
[sep
#:left? left?
#:right? right?
#:repeat? repeat?]) Ñ string?

str : string?
sep : (or/c string? regexp?) = #px"\\s+"
left? : any/c = #t
right? : any/c = #t
repeat? : any/c = #f

Trims the input str by removing prefix and suffix sep , which defaults to whitespace. A
string sep is matched literally (as opposed to being used as a regular expression).

Use #:left? #f or #:right? #f to suppress trimming the corresponding side. When
repeat? is #f (the default), only one match is removed from each side; when repeat? is
true, all initial or trailing matches are trimmed (which is an alternative to using a regular
expression sep that contains +).

Examples:

> (string-trim " foo bar baz \r\n\t")
"foo bar baz"

245

> (string-trim " foo bar baz \r\n\t" " " #:repeat? #t)
"foo bar baz \r\n\t"
> (string-trim "aaaxaayaa" "aa")
"axaay"

(non-empty-string? x) Ñ boolean?
x : any/c

Returns #t if x is a string and is not empty; returns #f otherwise.

Added in version 6.3 of package base.

(string-contains? s contained) Ñ boolean?
s : string?
contained : string?

(string-prefix? s prefix) Ñ boolean?
s : string?
prefix : string?

(string-suffix? s suffix) Ñ boolean?
s : string?
suffix : string?

Checks whether s includes at any location, start with, or ends with the second argument,
respectively.

Examples:

> (string-prefix? "Racket" "R")
#t
> (string-prefix? "Jacket" "R")
#f
> (string-suffix? "Racket" "et")
#t
> (string-contains? "Racket" "ack")
#t

Added in version 6.3 of package base.

4.3.6 Converting Values to Strings

(require racket/format) package: base

The bindings documented in this section are provided by the racket/format and racket
libraries, but not racket/base.

246

https://pkgs.racket-lang.org/package/base

The racket/format library provides functions for converting Racket values to strings. In
addition to features like padding and numeric formatting, the functions have the virtue of
being shorter than format (with format string), number->string, or string-append.

(„a v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = ""
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = ""
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Converts each v to a string in display mode—that is, like (format "„a" v)—then con-
catentates the results with separator between consecutive items, and then pads or truncates
the string to be at least min-width characters and at most max-width characters.

Examples:

> („a "north")
"north"
> („a 'south)
"south"
> („a #"east")
"east"
> („a #\w "e" 'st)
"west"
> („a (list "red" 'green #"blue"))
"(red green blue)"
> („a 17)

247

"17"
> („a #e1e20)
"100000000000000000000"
> („a pi)
"3.141592653589793"
> („a (expt 6.1 87))
"2.1071509386211452e+68"

The„a function is primarily useful for strings, numbers, and other atomic data. The„v and
„s functions are better suited to compound data.

Let s be the concatenated string forms of the vs plus separators. If s is longer than max-
width characters, it is truncated to exactly max-width characters. If s is shorter than min-
width characters, it is padded to exactly min-width characters. Otherwise s is returned
unchanged. If min-width is greater than max-width , an exception is raised.

If s is longer than max-width characters, it is truncated and the end of the string is replaced
with limit-marker . If limit-marker is longer than max-width , an exception is raised.
If limit-prefix? is #t, the beginning of the string is truncated instead of the end.

Examples:

> („a "abcde" #:max-width 5)
"abcde"
> („a "abcde" #:max-width 4)
"abcd"
> („a "abcde" #:max-width 4 #:limit-marker "*")
"abc*"
> („a "abcde" #:max-width 4 #:limit-marker "...")
"a..."
> („a "The quick brown fox" #:max-width 15 #:limit-marker "")
"The quick brown"
> („a "The quick brown fox" #:max-width 15 #:limit-marker "...")
"The quick br..."
> („a "The quick brown fox" #:max-width 15 #:limit-
marker "..." #:limit-prefix? #f)
"The quick br..."

If s is shorter than min-width , it is padded to at least min-width characters. If align
is 'left, then only right padding is added; if align is 'right, then only left padding
is added; and if align is 'center, then roughly equal amounts of left padding and right
padding are added.

Padding is specified as a non-empty string. Left padding consists of left-pad-string
repeated in its entirety as many times as possible followed by a prefix of left-pad-string

248

to fill the remaining space. In contrast, right padding consists of a suffix of right-pad-
string followed by a number of copies of right-pad-string in its entirety. Thus left
padding starts with the start of left-pad-string and right padding ends with the end of
right-pad-string .

Examples:

> („a "apple" #:min-width 20 #:align 'left)
"apple "
> („a "pear" #:min-width 20 #:align 'left #:right-pad-string "
.")
"pear"
> („a "plum" #:min-width 20 #:align 'right #:left-pad-string ".
")
". plum"
> („a "orange" #:min-width 20 #:align 'center

#:left-pad-string "- " #:right-pad-string " -")
"- - - -orange- - - -"

Use width to set both max-width and min-width simultaneously, ensuring that the result-
ing string is exactly width characters long:

> („a "terse" #:width 6)
"terse "
> („a "loquacious" #:width 6)
"loquac"

(„v v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = " "
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = "..."

249

limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like „a, but each value is converted like (format "„v" v), the default separator is " ",
and the default limit marker is "...".

Examples:

> („v "north")
"\"north\""
> („v 'south)
"'south"
> („v #"east")
"#\"east\""
> („v #\w)
"#\\w"
> („v (list "red" 'green #"blue"))
"'(\"red\" green #\"blue\")"

Use „v to produce text that talks about Racket values.

Example:

> (let ([nums (for/list ([i 10]) i)])
(„a "The even numbers in " („v nums)

" are " („v (filter even? nums)) "."))
"The even numbers in '(0 1 2 3 4 5 6 7 8 9) are '(0 2 4 6 8)."

(„s v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = " "

250

width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = "..."
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like „a, but each value is converted like (format "„s" v), the default separator is " ",
and the default limit marker is "...".

Examples:

> („s "north")
"\"north\""
> („s 'south)
"south"
> („s #"east")
"#\"east\""
> („s #\w)
"#\\w"
> („s (list "red" 'green #"blue"))
"(\"red\" green #\"blue\")"

(„e v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = " "
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)

251

limit-marker : string? = "..."
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like „a, but each value is converted like (format "„e" v), the default separator is " ",
and the default limit marker is "...".

Examples:

> („e "north")
"\"north\""
> („e 'south)
"'south"
> („e #"east")
"#\"east\""
> („e #\w)
"#\\w"
> („e (list "red" 'green #"blue"))
"'(\"red\" green #\"blue\")"

(„r x
[#:sign sign
#:base base
#:precision precision
#:notation notation
#:format-exponent format-exponent
#:min-width min-width
#:pad-string pad-string]) Ñ string?

x : rational?
sign : (or/c #f '+ '++ 'parens

(let ([ind (or/c string? (list/c string? string?))])
(list/c ind ind ind)))

= #f
base : (or/c (integer-in 2 36) (list/c 'up (integer-in 2 36)))

= 10
precision : (or/c exact-nonnegative-integer?

(list/c '= exact-nonnegative-integer?))
= 6

notation : (or/c 'positional 'exponential
(-> rational? (or/c 'positional 'exponential)))

= 'positional
format-exponent : (or/c #f string? (-> exact-integer? string?))

= #f

252

min-width : exact-positive-integer? = 1
pad-string : non-empty-string? = " "

Converts the rational number x to a string in either positional or exponential notation, de-
pending on notation . The exactness or inexactness of x does not affect its formatting.

The optional arguments control number formatting:

• notation — determines whether the number is printed in positional or exponential
notation. If notation is a function, it is applied to x to get the notation to be used.

Examples:

> („r 12345)
"12345"
> („r 12345 #:notation 'exponential)
"1.2345e+04"
> (let ([pick-notation

(lambda (x)
(if (or (< (abs x) 0.001) (> (abs x) 1000))

'exponential
'positional))])

(for/list ([i (in-range 1 5)])
(„r (expt 17 i) #:notation pick-notation)))

'("17" "289" "4.913e+03" "8.3521e+04")

• precision — controls the number of digits after the decimal point (or more accu-
rately, the radix point). When x is formatted in exponential form, precision applies
to the significand.

If precision is a natural number, then up to precision digits are displayed, but
trailing zeroes are dropped, and if all digits after the decimal point are dropped the
decimal point is also dropped. If precision is (list '= digits), then exactly
digits digits after the decimal point are used, and the decimal point is never dropped.

Examples:

> („r pi)
"3.141593"
> („r pi #:precision 4)
"3.1416"
> („r pi #:precision 0)
"3"
> („r 1.5 #:precision 4)
"1.5"
> („r 1.5 #:precision '(= 4))
"1.5000"

253

http://en.wikipedia.org/wiki/Radix_point

> („r 50 #:precision 2)
"50"
> („r 50 #:precision '(= 2))
"50.00"
> („r 50 #:precision '(= 0))
"50."

• min-width — if x would normally be printed with fewer than min-width digits
(including the decimal point but not including the sign indicator), the digits are left-
padded using pad-string .

Examples:

> („r 17)
"17"
> („r 17 #:min-width 4)
" 17"
> („r -42 #:min-width 4)
"- 42"
> („r 1.5 #:min-width 4)
" 1.5"
> („r 1.5 #:precision 4 #:min-width 10)
" 1.5"
> („r 1.5 #:precision '(= 4) #:min-width 10)
" 1.5000"
> („r #e1e10 #:min-width 6)
"10000000000"

• pad-string — specifies the string used to pad the number to at least min-width
characters (not including the sign indicator). The padding is placed between the sign
and the normal digits of x .

Examples:

> („r 17 #:min-width 4 #:pad-string "0")
"0017"
> („r -42 #:min-width 4 #:pad-string "0")
"-0042"

• sign — controls how the sign of the number is indicated:

– If sign is #f (the default), no sign output is generated if x is either positive or
zero, and a minus sign is prefixed if x is negative.
Example:

> (for/list ([x '(17 0 -42)]) („r x))
'("17" "0" "-42")

254

– If sign is '+, no sign output is generated if x is zero, a plus sign is prefixed if x
is positive, and a minus sign is prefixed if x is negative.
Example:

> (for/list ([x '(17 0 -42)]) („r x #:sign '+))
'("+17" "0" "-42")

– If sign is '++, a plus sign is prefixed if x is zero or positive, and a minus sign
is prefixed if x is negative.
Example:

> (for/list ([x '(17 0 -42)]) („r x #:sign '++))
'("+17" "+0" "-42")

– If sign is 'parens, no sign output is generated if x is zero or positive, and the
number is enclosed in parentheses if x is negative.
Example:

> (for/list ([x '(17 0 -42)]) („r x #:sign 'parens))
'("17" "0" "(42)")

– If sign is (list pos-ind zero-ind neg-ind), then pos-ind , zero-ind ,
and neg-ind are used to indicate positive, zero, and negative numbers, respec-
tively. Each indicator is either a string to be used as a prefix or a list containing
two strings: a prefix and a suffix.
Example:

> (let ([sign-table '(("" " up") "an even " ("" "
down"))])

(for/list ([x '(17 0 -42)]) („r x #:sign sign-
table)))
'("17 up" "an even 0" "42 down")

The default behavior is equivalent to '("" "" "-"); the 'parens mode is
equivalent to '("" "" ("(" ")")).

• base — controls the base that x is formatted in. If base is a number greater than 10,
then lower-case letters are used. If base is (list 'up base*) and base* is greater
than 10, then upper-case letters are used.

Examples:

> („r 100 #:base 7)
"202"
> („r 4.5 #:base 2)
"100.1"
> („r 3735928559 #:base 16)

255

"deadbeef"
> („r 3735928559 #:base '(up 16))
"DEADBEEF"
> („r 3735928559 #:base '(up 16) #:notation 'exponential)
"D.EADBEF*16^+07"

• format-exponent — determines how the exponent is displayed.

If format-exponent is a string, the exponent is displayed with an explicit sign (as
with a sign of '++) and at least two digits, separated from the significand by the
“exponent marker” format-exponent :

> („r 1234 #:notation 'exponential #:format-exponent "E")
"1.234E+03"

If format-exponent is #f, the “exponent marker” is "e" if base is 10 and a string
involving base otherwise:

> („r 1234 #:notation 'exponential)
"1.234e+03"
> („r 1234 #:notation 'exponential #:base 8)
"2.322*8^+03"

If format-exponent is a procedure, it is applied to the exponent and the resulting
string is appended to the significand:

> („r 1234 #:notation 'exponential
#:format-exponent (lambda (e) (format "E„a" e)))

"1.234E3"

256

(„.a v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = ""
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = ""
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

257

(„.v v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = " "
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = "..."
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

258

(„.s v
...

[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:limit-marker limit-marker
#:limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) Ñ string?

v : any/c
separator : string? = " "
width : (or/c exact-nonnegative-integer? #f) = #f
max-width : (or/c exact-nonnegative-integer? +inf.0)

= (or width +inf.0)
min-width : exact-nonnegative-integer? = (or width 0)
limit-marker : string? = "..."
limit-prefix? : boolean? = #f
align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like „a, „v, and „s, but each v is formatted like (format "„.a" v), (format "„.v"
v), and (format "„.s" v), respectively.

4.4 Byte Strings
§3.5 “Bytes and
Byte Strings” in
The Racket Guide
introduces byte
strings.

A byte string is a fixed-length array of bytes. A byte is an exact integer between 0 and 255
inclusive.

A byte string can be mutable or immutable. When an immutable byte string is provided to
a procedure like bytes-set!, the exn:fail:contract exception is raised. Byte-string
constants generated by the default reader (see §1.3.7 “Reading Strings”) are immutable, and
they are interned in read-syntax mode.

Two byte strings are equal? when they have the same length and contain the same sequence
of bytes.

A byte string can be used as a single-valued sequence (see §4.14.1 “Sequences”). The bytes
of the string serve as elements of the sequence. See also in-bytes.

See §1.3.7 “Reading Strings” for information on reading byte strings and §1.4.6 “Printing

259

Strings” for information on printing byte strings.

See also: immutable?.

4.4.1 Byte String Constructors, Selectors, and Mutators

(bytes? v) Ñ boolean?
v : any/c

Returns #t if v is a byte string, #f otherwise.

Examples:

> (bytes? #"Apple")
#t
> (bytes? "Apple")
#f

(make-bytes k [b]) Ñ bytes?
k : exact-nonnegative-integer?
b : byte? = 0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b .

Example:

> (make-bytes 5 65)
#"AAAAA"

(bytes b ...) Ñ bytes?
b : byte?

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs.

Example:

> (bytes 65 112 112 108 101)
#"Apple"

(bytes->immutable-bytes bstr) Ñ (and/c bytes? immutable?)
bstr : bytes?

260

Returns an immutable byte string with the same content as bstr , returning bstr itself if
bstr is immutable.

Examples:

> (bytes->immutable-bytes (bytes 65 65 65))
#"AAA"
> (define b (bytes->immutable-bytes (make-bytes 5 65)))
> (bytes->immutable-bytes b)
#"AAAAA"
> (eq? (bytes->immutable-bytes b) b)
#t

(byte? v) Ñ boolean?
v : any/c

Returns #t if v is a byte (i.e., an exact integer between 0 and 255 inclusive), #f otherwise.

Examples:

> (byte? 65)
#t
> (byte? 0)
#t
> (byte? 256)
#f
> (byte? -1)
#f

(bytes-length bstr) Ñ exact-nonnegative-integer?
bstr : bytes?

Returns the length of bstr .

Example:

> (bytes-length #"Apple")
5

(bytes-ref bstr k) Ñ byte?
bstr : bytes?
k : exact-nonnegative-integer?

Returns the character at position k in bstr . The first position in the bytes corre-
sponds to 0, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Example:

261

> (bytes-ref #"Apple" 0)
65

(bytes-set! bstr k b) Ñ void?
bstr : (and/c bytes? (not/c immutable?))
k : exact-nonnegative-integer?
b : byte?

Changes the character position k in bstr to b . The first position in the byte string cor-
responds to 0, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-set! s 4 121)
> s
#"Apply"

(subbytes bstr start [end]) Ñ bytes?
bstr : bytes?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (bytes-length str)

Returns a new mutable byte string that is (- end start) bytes long, and that contains the
same bytes as bstr from start inclusive to end exclusive. The start and end arguments
must be less than or equal to the length of bstr , and end must be greater than or equal to
start , otherwise the exn:fail:contract exception is raised.

Examples:

> (subbytes #"Apple" 1 3)
#"pp"
> (subbytes #"Apple" 1)
#"pple"

(bytes-copy bstr) Ñ bytes?
bstr : bytes?

Returns (subbytes str 0).

(bytes-copy! dest
dest-start
src

[src-start
src-end]) Ñ void?

262

dest : (and/c bytes? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : bytes?
src-start : exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (bytes-length src)

Changes the bytes of dest starting at position dest-start to match the bytes in src from
src-start (inclusive) to src-end (exclusive). The bytes strings dest and src can be the
same byte string, and in that case the destination region can overlap with the source region;
the destination bytes after the copy match the source bytes from before the copy. If any of
dest-start , src-start , or src-end are out of range (taking into account the sizes of the
bytes strings and the source and destination regions), the exn:fail:contract exception is
raised.

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-copy! s 4 #"y")
> (bytes-copy! s 0 s 3 4)
> s
#"lpply"

(bytes-fill! dest b) Ñ void?
dest : (and/c bytes? (not/c immutable?))
b : byte?

Changes dest so that every position in the bytes is filled with b .

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-fill! s 113)
> s
#"qqqqq"

(bytes-append bstr ...) Ñ bytes?
bstr : bytes?

Returns a new mutable byte string that is as long as the sum of the given bstrs’ lengths,
and that contains the concatenated bytes of the given bstrs. If no bstrs are provided, the
result is a zero-length byte string.

Example:

263

> (bytes-append #"Apple" #"Banana")
#"AppleBanana"

(bytes->list bstr) Ñ (listof byte?)
bstr : bytes?

Returns a new list of bytes corresponding to the content of bstr . That is, the length of the
list is (bytes-length bstr), and the sequence of bytes in bstr is the same sequence in
the result list.

Example:

> (bytes->list #"Apple")
'(65 112 112 108 101)

(list->bytes lst) Ñ bytes?
lst : (listof byte?)

Returns a new mutable byte string whose content is the list of bytes in lst . That is, the
length of the byte string is (length lst), and the sequence of bytes in lst is the same
sequence in the result byte string.

Example:

> (list->bytes (list 65 112 112 108 101))
#"Apple"

(make-shared-bytes k [b]) Ñ bytes?
k : exact-nonnegative-integer?
b : byte? = 0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b . For communication among places, the new byte string is allocated
in the shared memory space.

Example:

> (make-shared-bytes 5 65)
#"AAAAA"

(shared-bytes b ...) Ñ bytes?
b : byte?

264

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs. For communication among places, the new byte
string is allocated in the shared memory space.

Example:

> (shared-bytes 65 112 112 108 101)
#"Apple"

4.4.2 Byte String Comparisons

(bytes=? bstr1 bstr2 ...) Ñ boolean?
bstr1 : bytes?
bstr2 : bytes?

Returns #t if all of the arguments are eqv?.

Examples:

> (bytes=? #"Apple" #"apple")
#f
> (bytes=? #"a" #"as" #"a")
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(bytes<? bstr1 bstr2 ...) Ñ boolean?
bstr1 : bytes?
bstr2 : bytes?

Returns #t if the arguments are lexicographically sorted increasing, where individual bytes
are ordered by <, #f otherwise.

Examples:

> (bytes<? #"Apple" #"apple")
#t
> (bytes<? #"apple" #"Apple")
#f
> (bytes<? #"a" #"b" #"c")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

265

(bytes>? bstr1 bstr2 ...) Ñ boolean?
bstr1 : bytes?
bstr2 : bytes?

Like bytes<?, but checks whether the arguments are decreasing.

Examples:

> (bytes>? #"Apple" #"apple")
#f
> (bytes>? #"apple" #"Apple")
#t
> (bytes>? #"c" #"b" #"a")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.4.3 Bytes to/from Characters, Decoding and Encoding

(bytes->string/utf-8 bstr [err-char start end]) Ñ string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a UTF-8 encoding
of Unicode code points. If err-char is not #f, then it is used for bytes that fall in the
range 128 to 255 but are not part of a valid encoding sequence. (This rule is consistent with
reading characters from a port; see §13.1.1 “Encodings and Locales” for more details.) If
err-char is #f, and if the start to end substring of bstr is not a valid UTF-8 encoding
overall, then the exn:fail:contract exception is raised.

Example:

> (bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163))
"çðö£"

(bytes->string/locale bstr
[err-char
start
end]) Ñ string?

bstr : bytes?

266

err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr using the current locale’s
encoding (see also §13.1.1 “Encodings and Locales”). If err-char is not #f, it is used for
each byte in bstr that is not part of a valid encoding; if err-char is #f, and if the start
to end substring of bstr is not a valid encoding overall, then the exn:fail:contract
exception is raised.

(bytes->string/latin-1 bstr
[err-char
start
end]) Ñ string?

bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a Latin-1 encoding
of Unicode code points; i.e., each byte is translated directly to a character using integer-
>char, so the decoding always succeeds. The err-char argument is ignored, but present
for consistency with the other operations.

Example:

> (bytes->string/latin-1 (bytes 254 211 209 165))
"þÓÑ¥"

(string->bytes/utf-8 str [err-byte start end]) Ñ bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a byte string by encoding the start to end substring of str via UTF-8 (always
succeeding). The err-byte argument is ignored, but included for consistency with the
other operations.

Examples:

> (define b
(bytes->string/utf-8
(bytes 195 167 195 176 195 182 194 163)))

> (string->bytes/utf-8 b)

267

#"\303\247\303\260\303\266\302\243"
> (bytes->string/utf-8 (string->bytes/utf-8 b))
"çðö£"

(string->bytes/locale str [err-byte start end]) Ñ bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of str using the current locale’s
encoding (see also §13.1.1 “Encodings and Locales”). If err-byte is not #f, it is used for
each character in str that cannot be encoded for the current locale; if err-byte is #f, and
if the start to end substring of str cannot be encoded, then the exn:fail:contract
exception is raised.

(string->bytes/latin-1 str
[err-byte
start
end]) Ñ bytes?

str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of str using Latin-1; i.e., each
character is translated directly to a byte using char->integer. If err-byte is not #f, it is
used for each character in str whose value is greater than 255. If err-byte is #f, and if
the start to end substring of str has a character with a value greater than 255, then the
exn:fail:contract exception is raised.

Examples:

> (define b
(bytes->string/latin-1 (bytes 254 211 209 165)))

> (string->bytes/latin-1 b)
#"\376\323\321\245"
> (bytes->string/latin-1 (string->bytes/latin-1 b))
"þÓÑ¥"

(string-utf-8-length str [start end]) Ñ exact-nonnegative-integer?
str : string?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

268

Returns the length in bytes of the UTF-8 encoding of str ’s substring from start to end ,
but without actually generating the encoded bytes.

Examples:

> (string-utf-8-length
(bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163)))

8
> (string-utf-8-length "hello")
5

(bytes-utf-8-length bstr [err-char start end])
Ñ (or/c exact-nonnegative-integer? #f)
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the length in characters of the UTF-8 decoding of bstr ’s substring from start
to end , but without actually generating the decoded characters. If err-char is #f and the
substring is not a UTF-8 encoding overall, the result is #f. Otherwise, err-char is used to
resolve decoding errors as in bytes->string/utf-8.

Examples:

> (bytes-utf-8-length (bytes 195 167 195 176 195 182 194 163))
4
> (bytes-utf-8-length (make-bytes 5 65))
5

(bytes-utf-8-ref bstr [skip err-char start end]) Ñ (or/c char? #f)
bstr : bytes?
skip : exact-nonnegative-integer? = 0
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the skip th character in the UTF-8 decoding of bstr ’s substring from start to
end , but without actually generating the other decoded characters. If the substring is not
a UTF-8 encoding up to the skip th character (when err-char is #f), or if the substring
decoding produces fewer than skip characters, the result is #f. If err-char is not #f, it is
used to resolve decoding errors as in bytes->string/utf-8.

Examples:

269

> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 0)
#\ç
> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 1)
#\ð
> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 2)
#\ö
> (bytes-utf-8-ref (bytes 65 66 67 68) 0)
#\A
> (bytes-utf-8-ref (bytes 65 66 67 68) 1)
#\B
> (bytes-utf-8-ref (bytes 65 66 67 68) 2)
#\C

(bytes-utf-8-index bstr
skip

[err-char
start
end])

Ñ (or/c exact-nonnegative-integer? #f)
bstr : bytes?
skip : exact-nonnegative-integer?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the offset in bytes into bstr at which the skip th character’s encoding starts in the
UTF-8 decoding of bstr ’s substring from start to end (but without actually generating
the other decoded characters). The result is relative to the start of bstr , not to start . If the
substring is not a UTF-8 encoding up to the skip th character (when err-char is #f), or if
the substring decoding produces fewer than skip characters, the result is #f. If err-char
is not #f, it is used to resolve decoding errors as in bytes->string/utf-8.

Examples:

> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 0)
0
> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 1)
2
> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 2)
4
> (bytes-utf-8-index (bytes 65 66 67 68) 0)
0
> (bytes-utf-8-index (bytes 65 66 67 68) 1)
1
> (bytes-utf-8-index (bytes 65 66 67 68) 2)
2

270

4.4.4 Bytes to Bytes Encoding Conversion

(bytes-open-converter from-name to-name)
Ñ (or/c bytes-converter? #f)
from-name : string?
to-name : string?

Produces a byte converter to go from the encoding named by from-name to the encoding
named by to-name . If the requested conversion pair is not available, #f is returned instead
of a converter.

Certain encoding combinations are always available:

• (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except
that encoding errors in the input lead to a decoding failure.

• (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity con-
version, except that any input byte that is not part of a valid encoding sequence is
effectively replaced by the UTF-8 encoding sequence for #\uFFFD. (This handling
of invalid sequences is consistent with the interpretation of port bytes streams into
characters; see §13.1 “Ports”.)

• (bytes-open-converter "" "UTF-8") — converts from the current locale’s de-
fault encoding (see §13.1.1 “Encodings and Locales”) to UTF-8.

• (bytes-open-converter "UTF-8" "") — converts from UTF-8 to the current lo-
cale’s default encoding (see §13.1.1 “Encodings and Locales”).

• (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — con-
verts UTF-8 to UTF-16 on Unix and Mac OS, where each UTF-16 code unit is a
sequence of two bytes ordered by the current platform’s endianness. On Windows,
the input can include encodings that are not valid UTF-8, but which naturally ex-
tend the UTF-8 encoding to support unpaired surrogate code units, and the output is
a sequence of UTF-16 code units (as little-endian byte pairs), potentially including
unpaired surrogates.

• (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-
16") — like (bytes-open-converter "platform-UTF-8" "platform-UTF-
16"), but an input byte that is not part of a valid UTF-8 encoding sequence (or
valid for the unpaired-surrogate extension on Windows) is effectively replaced with
(char->integer #\?).

• (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — con-
verts UTF-16 (bytes ordered by the current platform’s endianness) to UTF-8 on Unix
and Mac OS. On Windows, the input can include UTF-16 code units that are unpaired
surrogates, and the corresponding output includes an encoding of each surrogate in
a natural extension of UTF-8. On Unix and Mac OS, surrogates are assumed to be

271

paired: a pair of bytes with the bits #xD800 starts a surrogate pair, and the #x03FF
bits are used from the pair and following pair (independent of the value of the #xDC00
bits). On all platforms, performance may be poor when decoding from an odd offset
within an input byte string.

A newly opened byte converter is registered with the current custodian (see §14.7 “Cus-
todians”), so that the converter is closed when the custodian is shut down. A converter is
not registered with a custodian (and does not need to be closed) if it is one of the guaran-
teed combinations not involving "" on Unix, or if it is any of the guaranteed combinations
(including "") on Windows and Mac OS. In the Racket

software
distributions for
Windows, a suitable
"iconv.dll" is
included with
"libmzschVERS .dll".

The set of available encodings and combinations varies by platform, depending on the
iconv library that is installed; the from-name and to-name arguments are passed on to
iconv_open. On Windows, "iconv.dll" or "libiconv.dll" must be in the same di-
rectory as "libmzschVERS .dll" (where VERS is a version number), in the user’s path, in
the system directory, or in the current executable’s directory at run time, and the DLL must
either supply _errno or link to "msvcrt.dll" for _errno; otherwise, only the guaranteed
combinations are available.

Use bytes-convert with the result to convert byte strings.

(bytes-close-converter converter) Ñ void
converter : bytes-converter?

Closes the given converter, so that it can no longer be used with bytes-convert or bytes-
convert-end.

(bytes-convert converter
src-bstr

[src-start-pos
src-end-pos
dest-bstr
dest-start-pos
dest-end-pos])

Ñ (or/c bytes? exact-nonnegative-integer?)
exact-nonnegative-integer?
(or/c 'complete 'continues 'aborts 'error)

converter : bytes-converter?
src-bstr : bytes?
src-start-pos : exact-nonnegative-integer? = 0
src-end-pos : exact-nonnegative-integer?

= (bytes-length src-bstr)
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? #f)

= (and dest-bstr
(bytes-length dest-bstr))

272

Converts the bytes from src-start-pos to src-end-pos in src-bstr .

If dest-bstr is not #f, the converted bytes are written into dest-bstr from dest-start-
pos to dest-end-pos . If dest-bstr is #f, then a newly allocated byte string holds the
conversion results, and if dest-end-pos is not #f, the size of the result byte string is no
more than (- dest-end-pos dest-start-pos).

The result of bytes-convert is three values:

• result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

• src-read-amt — the number of bytes successfully converted from src-bstr .

• 'complete, 'continues, 'aborts, or 'error — indicates how conversion termi-
nated:

– 'complete: The entire input was processed, and src-read-amt will be equal
to (- src-end-pos src-start-pos).

– 'continues: Conversion stopped due to the limit on the result size or the space
in dest-bstr ; in this case, fewer than (- dest-end-pos dest-start-pos)
bytes may be returned if more space is needed to process the next complete
encoding sequence in src-bstr .

– 'aborts: The input stopped part-way through an encoding sequence, and more
input bytes are necessary to continue. For example, if the last byte of input is 195
for a "UTF-8-permissive" decoding, the result is 'aborts, because another
byte is needed to determine how to use the 195 byte.

– 'error: The bytes starting at (+ src-start-pos src-read-amt) bytes in
src-bstr do not form a legal encoding sequence. This result is never produced
for some encodings, where all byte sequences are valid encodings. For example,
since "UTF-8-permissive" handles an invalid UTF-8 sequence by dropping
characters or generating “?,” every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of
bytes-convert is 'complete). This state can affect both further processing of input
and further generation of output, but only for conversions that involve “shift sequences”
to change modes within a stream. To terminate an input sequence and reset the converter,
use bytes-convert-end.

Examples:

> (define convert (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-convert convert (bytes 65 66 67 68))
#"\377\376A\0B\0C\0D\0"
4
'complete

273

> (bytes 195 167 195 176 195 182 194 163)
#"\303\247\303\260\303\266\302\243"
> (bytes-convert convert (bytes 195 167 195 176 195 182 194 163))
#"\347\0\360\0\366\0\243\0"
8
'complete
> (bytes-close-converter convert)

(bytes-convert-end converter
[dest-bstr
dest-start-pos
dest-end-pos])

Ñ (or/c bytes? exact-nonnegative-integer?)
(or/c 'complete 'continues)

converter : bytes-converter?
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? #f)

= (and dest-bstr
(bytes-length dest-bstr))

Like bytes-convert, but instead of converting bytes, this procedure generates an ending
sequence for the conversion (sometimes called a “shift sequence”), if any. Few encodings
use shift sequences, so this function will succeed with no output for most encodings. In any
case, successful output of a (possibly empty) shift sequence resets the converter to its initial
state.

The result of bytes-convert-end is two values:

• result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

• 'complete or 'continues — indicates whether conversion completed. If 'com-
plete, then an entire ending sequence was produced. If 'continues, then the con-
version could not complete due to the limit on the result size or the space in dest-
bstr , and the first result is either an empty byte string or 0.

(bytes-converter? v) Ñ boolean?
v : any/c

Returns #t if v is a byte converter produced by bytes-open-converter, #f otherwise.

Examples:

274

> (bytes-converter? (bytes-open-converter "UTF-8" "UTF-16"))
#t
> (bytes-converter? (bytes-open-converter "whacky" "not likely"))
#f
> (define b (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-close-converter b)
> (bytes-converter? b)
#t

(locale-string-encoding) Ñ any

Returns a string for the current locale’s encoding (i.e., the encoding normally identified by
""). See also system-language+country.

4.4.5 Additional Byte String Functions

(require racket/bytes) package: base

The bindings documented in this section are provided by the racket/bytes and racket
libraries, but not racket/base.

(bytes-append* str ... strs) Ñ bytes?
str : bytes?
strs : (listof bytes?)

Like bytes-append, but the last argument is used as a list of arguments for bytes-append,
so (bytes-append* str ... strs) is the same as (apply bytes-append str ...
strs). In other words, the relationship between bytes-append and bytes-append* is
similar to the one between list and list*.

Examples:

> (bytes-append* #"a" #"b" '(#"c" #"d"))
#"abcd"
> (bytes-append* (cdr (append* (map (lambda (x) (list #", " x))

'(#"Alpha" #"Beta" #"Gamma")))))
#"Alpha, Beta, Gamma"

(bytes-join strs sep) Ñ bytes?
strs : (listof bytes?)
sep : bytes?

Appends the byte strings in strs , inserting sep between each pair of bytes in strs .

Example:

275

https://pkgs.racket-lang.org/package/base

> (bytes-join '(#"one" #"two" #"three" #"four") #" potato ")
#"one potato two potato three potato four"

4.5 Characters
§3.3 “Characters”
in The Racket
Guide introduces
characters.

Characters range over Unicode scalar values, which includes characters whose values range
from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The scalar values are a subset
of the Unicode code points.

Two characters are eqv? if they correspond to the same scalar value. For each scalar value
less than 256, character values that are eqv? are also eq?. Characters produced by the default
reader are interned in read-syntax mode.

See §1.3.14 “Reading Characters” for information on reading characters and §1.4.11 “Print-
ing Characters” for information on printing characters.

Changed in version 6.1.1.8 of package base: Updated from Unicode 5.0.1 to Unicode 7.0.0.

4.5.1 Characters and Scalar Values

(char? v) Ñ boolean?
v : any/c

Return #t if v is a character, #f otherwise.

(char->integer char) Ñ exact-integer?
char : char?

Returns a character’s code-point number.

Example:

> (char->integer #\A)
65

(integer->char k) Ñ char?
k : (and/c exact-integer?

(or/c (integer-in 0 55295)
(integer-in 57344 1114111)))

Return the character whose code-point number is k . For k less than 256, the result is the
same object for the same k .

Example:

276

> (integer->char 65)
#\A

(char-utf-8-length char) Ñ (integer-in 1 6)
char : char?

Produces the same result as (bytes-length (string->bytes/utf-8 (string
char))).

4.5.2 Character Comparisons

(char=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Returns #t if all of the arguments are eqv?.

Examples:

> (char=? #\a #\a)
#t
> (char=? #\a #\A #\a)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char<? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Returns #t if the arguments are sorted increasing, where two characters are ordered by their
scalar values, #f otherwise.

Examples:

> (char<? #\A #\a)
#t
> (char<? #\a #\A)
#f
> (char<? #\a #\b #\c)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

277

(char<=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char<?, but checks whether the arguments are nondecreasing.

Examples:

> (char<=? #\A #\a)
#t
> (char<=? #\a #\A)
#f
> (char<=? #\a #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char>? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char<?, but checks whether the arguments are decreasing.

Examples:

> (char>? #\A #\a)
#f
> (char>? #\a #\A)
#t
> (char>? #\c #\b #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char>=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char<?, but checks whether the arguments are nonincreasing.

Examples:

> (char>=? #\A #\a)
#f

278

> (char>=? #\a #\A)
#t
> (char>=? #\c #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Returns #t if all of the arguments are eqv? after locale-insensitive case-folding via char-
foldcase.

Examples:

> (char-ci=? #\A #\a)
#t
> (char-ci=? #\a #\a #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci<? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char<?, but checks whether the arguments would be in increasing order if each was
first case-folded using char-foldcase (which is locale-insensitive).

Examples:

> (char-ci<? #\A #\a)
#f
> (char-ci<? #\a #\b)
#t
> (char-ci<? #\a #\b #\c)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci<=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

279

Like char-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:

> (char-ci<=? #\A #\a)
#t
> (char-ci<=? #\a #\A)
#t
> (char-ci<=? #\a #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci>? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be decreasing after case-folding.

Examples:

> (char-ci>? #\A #\a)
#f
> (char-ci>? #\b #\A)
#t
> (char-ci>? #\c #\b #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci>=? char1 char2 ...) Ñ boolean?
char1 : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be nonincreasing after case-
folding.

Examples:

> (char-ci>=? #\A #\a)
#t
> (char-ci>=? #\a #\A)
#t
> (char-ci>=? #\c #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

280

4.5.3 Classifications

(char-alphabetic? char) Ñ boolean?
char : char?

Returns #t if char has the Unicode “Alphabetic” property.

(char-lower-case? char) Ñ boolean?
char : char?

Returns #t if char has the Unicode “Lowercase” property.

(char-upper-case? char) Ñ boolean?
char : char?

Returns #t if char has the Unicode “Uppercase” property.

(char-title-case? char) Ñ boolean?
char : char?

Returns #t if char ’s Unicode general category is Lt, #f otherwise.

(char-numeric? char) Ñ boolean?
char : char?

Returns #t if char has the Unicode “Numeric” property.

(char-symbolic? char) Ñ boolean?
char : char?

Returns #t if char ’s Unicode general category is Sm, Sc, Sk, or So, #f otherwise.

(char-punctuation? char) Ñ boolean?
char : char?

Returns #t if char ’s Unicode general category is Pc, Pd, Ps, Pe, Pi, Pf, or Po, #f otherwise.

(char-graphic? char) Ñ boolean?
char : char?

Returns #t if char ’s Unicode general category is Ll, Lm, Lo, Lt, Lu, Nd, Nl, No, Mn, Mc,
or Me, or if one of the following produces #t when applied to char : char-alphabetic?,
char-numeric?, char-symbolic?, or char-punctuation?.

281

(char-whitespace? char) Ñ boolean?
char : char?

Returns #t if char has the Unicode “White_Space” property.

(char-blank? char) Ñ boolean?
char : char?

Returns #t if char ’s Unicode general category is Zs or if char is #\tab. (These correspond
to horizontal whitespace.)

(char-iso-control? char) Ñ boolean?
char : char?

Return #t if char is between #\nul and #\u001F inclusive or #\rubout and #\u009F
inclusive.

(char-general-category char) Ñ symbol?
char : char?

Returns a symbol representing the character’s Unicode general category, which is 'lu, 'll,
'lt, 'lm, 'lo, 'mn, 'mc, 'me, 'nd, 'nl, 'no, 'ps, 'pe, 'pi, 'pf, 'pd, 'pc, 'po, 'sc, 'sm,
'sk, 'so, 'zs, 'zp, 'zl, 'cc, 'cf, 'cs, 'co, or 'cn.

(make-known-char-range-list)
Ñ (listof (list/c exact-nonnegative-integer?

exact-nonnegative-integer?
boolean?))

Produces a list of three-element lists, where each three-element list represents a set of con-
secutive code points for which the Unicode standard specifies character properties. Each
three-element list contains two integers and a boolean; the first integer is a starting code-
point value (inclusive), the second integer is an ending code-point value (inclusive), and the
boolean is #t when all characters in the code-point range have identical results for all of the
character predicates above. The three-element lists are ordered in the overall result list such
that later lists represent larger code-point values, and all three-element lists are separated
from every other by at least one code-point value that is not specified by Unicode.

4.5.4 Character Conversions

(char-upcase char) Ñ char?
char : char?

282

Produces a character consistent with the 1-to-1 code point mapping defined by Unicode. If
char has no upcase mapping, char-upcase produces char . String procedures,

such as
string-upcase,
handle the case
where Unicode
defines a
locale-independent
mapping from the
code point to a
code-point
sequence (in
addition to the 1-1
mapping on scalar
values).

Examples:

> (char-upcase #\a)
#\A
> (char-upcase #\λ)
#\Λ
> (char-upcase #\space)
#\space

(char-downcase char) Ñ char?
char : char?

Like char-upcase, but for the Unicode downcase mapping.

Examples:

> (char-downcase #\A)
#\a
> (char-downcase #\Λ)
#\λ
> (char-downcase #\space)
#\space

(char-titlecase char) Ñ char?
char : char?

Like char-upcase, but for the Unicode titlecase mapping.

Examples:

> (char-upcase #\a)
#\A
> (char-upcase #\λ)
#\Λ
> (char-upcase #\space)
#\space

(char-foldcase char) Ñ char?
char : char?

Like char-upcase, but for the Unicode case-folding mapping.

Examples:

283

> (char-foldcase #\A)
#\a
> (char-foldcase #\Σ)
#\σ
> (char-foldcase #\ς)
#\σ
> (char-foldcase #\space)
#\space

4.6 Symbols
§3.6 “Symbols” in
The Racket Guide
introduces symbols.A symbol is like an immutable string, but symbols are normally interned, so that two symbols

with the same character content are normally eq?. All symbols produced by the default
reader (see §1.3.2 “Reading Symbols”) are interned.

The two procedures string->uninterned-symbol and gensym generate uninterned sym-
bols, i.e., symbols that are not eq?, eqv?, or equal? to any other symbol, although they
may print the same as other symbols.

The procedure string->unreadable-symbol returns an unreadable symbol that is par-
tially interned. The default reader (see §1.3.2 “Reading Symbols”) never produces a unread-
able symbol, but two calls to string->unreadable-symbol with equal? strings produce
eq? results. An unreadable symbol can print the same as an interned or uninterned symbol.
Unreadable symbols are useful in expansion and compilation to avoid collisions with sym-
bols that appear in the source; they are usually not generated directly, but they can appear in
the result of functions like identifier-binding.

Interned and unreadable symbols are only weakly held by the internal symbol table. This
weakness can never affect the result of an eq?, eqv?, or equal? test, but a symbol may
disappear when placed into a weak box (see §16.1 “Weak Boxes”) used as the key in
a weak hash table (see §4.13 “Hash Tables”), or used as an ephemeron key (see §16.2
“Ephemerons”).

See §1.3.2 “Reading Symbols” for information on reading symbols and §1.4.1 “Printing
Symbols” for information on printing symbols.

(symbol? v) Ñ boolean?
v : any/c

Returns #t if v is a symbol, #f otherwise.

Examples:

> (symbol? 'Apple)
#t

284

> (symbol? 10)
#f

(symbol-interned? sym) Ñ boolean?
sym : symbol?

Returns #t if sym is interned, #f otherwise.

Examples:

> (symbol-interned? 'Apple)
#t
> (symbol-interned? (gensym))
#f
> (symbol-interned? (string->unreadable-symbol "Apple"))
#f

(symbol-unreadable? sym) Ñ boolean?
sym : symbol?

Returns #t if sym is an unreadable symbol, #f otherwise.

Examples:

> (symbol-unreadable? 'Apple)
#f
> (symbol-unreadable? (gensym))
#f
> (symbol-unreadable? (string->unreadable-symbol "Apple"))
#t

(symbol->string sym) Ñ string?
sym : symbol?

Returns a freshly allocated mutable string whose characters are the same as in sym .

Example:

> (symbol->string 'Apple)
"Apple"

(string->symbol str) Ñ symbol?
str : string?

285

Returns an interned symbol whose characters are the same as in str .

Examples:

> (string->symbol "Apple")
'Apple
> (string->symbol "1")
'|1|

(string->uninterned-symbol str) Ñ symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new uninterned symbol. Call-
ing string->uninterned-symbol twice with the same str returns two distinct symbols.

Examples:

> (string->uninterned-symbol "Apple")
'Apple
> (eq? 'a (string->uninterned-symbol "a"))
#f
> (eq? (string->uninterned-symbol "a")

(string->uninterned-symbol "a"))
#f

(string->unreadable-symbol str) Ñ symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new unreadable symbol. Call-
ing string->unreadable-symbol twice with equivalent strs returns the same symbol,
but read never produces the symbol.

Examples:

> (string->unreadable-symbol "Apple")
'Apple
> (eq? 'a (string->unreadable-symbol "a"))
#f
> (eq? (string->unreadable-symbol "a")

(string->unreadable-symbol "a"))
#t

(gensym [base]) Ñ symbol?
base : (or/c string? symbol?) = "g"

286

Returns a new uninterned symbol with an automatically-generated name. The optional base
argument is a prefix symbol or string.

Example:

> (gensym "apple")
'apple3586

(symbol<? a-sym b-sym ...) Ñ boolean?
a-sym : symbol?
b-sym : symbol?

Returns #t if the arguments are sorted, where the comparison for each pair of symbols is the
same as using symbol->string with string->bytes/utf-8 and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.7 Regular Expressions
§9 “Regular
Expressions” in The
Racket Guide
introduces regular
expressions.

Regular expressions are specified as strings or byte strings, using the same pattern language
as either the Unix utility egrep or Perl. A string-specified pattern produces a character
regexp matcher, and a byte-string pattern produces a byte regexp matcher. If a character
regexp is used with a byte string or input port, it matches UTF-8 encodings (see §13.1.1
“Encodings and Locales”) of matching character streams; if a byte regexp is used with a
character string, it matches bytes in the UTF-8 encoding of the string.

A regular expression that is represented as a string or byte string can be compiled to a regexp
value, which can be used more efficiently by functions such as regexp-match compared to
the string or byte string form. The regexp and byte-regexp procedures convert a string
or byte string (respectively) into a regexp value using a syntax of regular expressions that is
most compatible to egrep. The pregexp and byte-pregexp procedures produce a regexp
value using a slightly different syntax of regular expressions that is more compatible with
Perl.

Two regexp values are equal? if they have the same source, use the same pattern language,
and are both character regexps or both byte regexps.

A literal or printed regexp value starts with #rx or #px. See §1.3.16 “Reading Regular
Expressions” for information on reading regular expressions and §1.4.13 “Printing Regular
Expressions” for information on printing regular expressions. Regexp values produced by
the default reader are interned in read-syntax mode.

The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds
to a source string with 32,000 literal characters or 5,000 operators.

287

4.7.1 Regexp Syntax

The following syntax specifications describe the content of a string that represents a regular
expression. The syntax of the corresponding string may involve extra escape characters.
For example, the regular expression (.*)\1 can be represented with the string "(.*)\\1"
or the regexp constant #rx"(.*)\\1"; the \ in the regular expression must be escaped to
include it in a string or regexp constant.

The regexp and pregexp syntaxes share a common core:

xregexpy ::= xpcesy Match xpcesy

| xregexpy|xregexpy Match either xregexpy, try left first ex1
xpcesy ::= Match empty

| xpceyxpcesy Match xpcey followed by xpcesy

xpcey ::= xrepeaty Match xrepeaty, longest possible ex3
| xrepeaty? Match xrepeaty, shortest possible ex6
| xatomy Match xatomy exactly once

xrepeaty ::= xatomy* Match xatomy 0 or more times ex3
| xatomy+ Match xatomy 1 or more times ex4
| xatomy? Match xatomy 0 or 1 times ex5

xatomy ::= (xregexpy) Match sub-expression xregexpy and report ex11
| [xrngy] Match any character in xrngy ex2
| [^xrngy] Match any character not in xrngy ex12
| . Match any (except newline in multi mode) ex13
| ^ Match start (or after newline in multi mode) ex14
| $ Match end (or before newline in multi mode) ex15
| xliteraly Match a single literal character ex1
| (?xmodey:xregexpy) Match xregexpy using xmodey ex35
| (?>xregexpy) Match xregexpy, only first possible
| xlooky Match empty if xlooky matches
| (?xtstyxpcesy|xpcesy) Match 1st xpcesy if xtsty, else 2nd xpcesy ex36
| (?xtstyxpcesy) Match xpcesy if xtsty, empty if not xtsty

| \ at end of pattern Match the nul character (ASCII 0)
xrngy ::=] xrngy contains] only ex27

| - xrngy contains - only ex28
| xmrngy xrngy contains everything in xmrngy

| xmrngy- xrngy contains - and everything in xmrngy

xmrngy ::=]xlrngy xmrngy contains] and everything in xlrngy ex29
| -xlrngy xmrngy contains - and everything in xlrngy ex29
| xlirngy xmrngy contains everything in xlirngy

xlirngy ::= xriliteraly xlirngy contains a literal character
| xriliteraly-xrliteraly xlirngy contains Unicode range inclusive ex22
| xlirngyxlrngy xlirngy contains everything in both

xlrngy ::= ^ xlrngy contains ^ ex30
| xrliteraly-xrliteraly xlrngy contains Unicode range inclusive
| ^xlrngy xlrngy contains ^ and more

288

| xlirngy xlrngy contains everything in xlirngy

xlooky ::= (?=xregexpy) Match if xregexpy matches ex31
| (?!xregexpy) Match if xregexpy doesn't match ex32
| (?<=xregexpy) Match if xregexpy matches preceding ex33
| (?<!xregexpy) Match if xregexpy doesn't match preceding ex34

xtsty ::= (xny) True if xnyth (has a match
| xlooky True if xlooky matches ex36

xmodey ::= Like the enclosing mode
| xmodeyi Like xmodey, but case-insensitive ex35
| xmodey-i Like xmodey, but sensitive
| xmodeys Like xmodey, but not in multi mode
| xmodey-s Like xmodey, but in multi mode
| xmodeym Like xmodey, but in multi mode
| xmodey-m Like xmodey, but not in multi mode

The following completes the grammar for regexp, which treats { and } as literals, \ as a
literal within ranges, and \ as a literal producer outside of ranges.

xliteraly ::= Any character except (,), *, +, ?, [, ., ^, \, or |
| \xaliteraly Match xaliteraly ex21

xaliteraly ::= Any character
xriliteraly ::= Any character except], -, or ^
xrliteraly ::= Any character except] or -

The following completes the grammar for pregexp, which uses { and } bounded repetition
and uses \ for meta-characters both inside and outside of ranges.

xrepeaty ::=
| xatomy{xny} Match xatomy exactly xny times ex7
| xatomy{xny,} Match xatomy xny or more times ex8
| xatomy{,xmy} Match xatomy between 0 and xmy times ex9
| xatomy{xny,xmy} Match xatomy between xny and xmy times ex10
| xatomy{} Match xatomy 0 or more times

xatomy ::=
| \xny Match latest reported match for xnyth (ex16
| xclassy Match any character in xclassy

| \b Match \w* boundary ex17
| \B Match where \b does not ex18
| \p{xpropertyy} Match (UTF-8 encoded) in xpropertyy ex19
| \P{xpropertyy} Match (UTF-8 encoded) not in xpropertyy ex20

xliteraly ::= Any character except (,), *, +, ?, [,], {, }, ., ^, \, or |
| \xaliteraly Match xaliteraly ex21

xaliteraly ::= Any character except a-z, A-Z, 0-9
xlirngy ::=

| xclassy xlirngy contains all characters in xclassy

| xposixy xlirngy contains all characters in xposixy ex26

289

| \xeliteraly xlirngy contains xeliteraly

xriliteraly ::= Any character except], \, -, or ^
xrliteraly ::= Any character except], \, or -
xeliteraly ::= Any character except a-z, A-Z
xclassy ::= \d Contains 0-9 ex23

| \D Contains characters not in \d
| \w Contains a-z, A-Z, 0-9, _ ex24
| \W Contains characters not in \w
| \s Contains space, tab, newline, formfeed, return ex25
| \S Contains characters not in \s

xposixy ::= [:alpha:] Contains a-z, A-Z
| [:upper:] Contains A-Z
| [:lower:] Contains a-z ex26
| [:digit:] Contains 0-9
| [:xdigit:] Contains 0-9, a-f, A-F
| [:alnum:] Contains a-z, A-Z, 0-9
| [:word:] Contains a-z, A-Z, 0-9, _
| [:blank:] Contains space and tab
| [:space:] Contains space, tab, newline, formfeed, return
| [:graph:] Contains all ASCII characters that use ink
| [:print:] Contains space, tab, and ASCII ink users
| [:cntrl:] Contains all characters with scalar value ă 32
| [:ascii:] Contains all ASCII characters

xpropertyy ::= xcategoryy Includes all characters in xcategoryy

| ^xcategoryy Includes all characters not in xcategoryy

In case-insensitive mode, a backreference of the form \xny matches case-insensitively only
with respect to ASCII characters.

The Unicode categories follow.

xcategoryy ::= Ll Letter, lowercase ex19
| Lu Letter, uppercase
| Lt Letter, titlecase
| Lm Letter, modifier
| L& Union of Ll, Lu, Lt, and Lm
| Lo Letter, other
| L Union of L& and Lo
| Nd Number, decimal digit
| Nl Number, letter
| No Number, other
| N Union of Nd, Nl, and No
| Ps Punctuation, open
| Pe Punctuation, close
| Pi Punctuation, initial quote
| Pf Punctuation, final quote

290

| Pc Punctuation, connector
| Pd Punctuation, dash
| Po Punctuation, other
| P Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
| Mn Mark, non-spacing
| Mc Mark, spacing combining
| Me Mark, enclosing
| M Union of Mn, Mc, and Me
| Sc Symbol, currency
| Sk Symbol, modifier
| Sm Symbol, math
| So Symbol, other
| S Union of Sc, Sk, Sm, and So
| Zl Separator, line
| Zp Separator, paragraph
| Zs Separator, space
| Z Union of Zl, Zp, and Zs
| Cc Other, control
| Cf Other, format
| Cs Other, surrogate
| Cn Other, not assigned
| Co Other, private use
| C Union of Cc, Cf, Cs, Cn, and Co
| . Union of all Unicode categories

Examples:

> (regexp-match #rx"a|b" "cat") ; ex1
'("a")
> (regexp-match #rx"[at]" "cat") ; ex2
'("a")
> (regexp-match #rx"ca*[at]" "caaat") ; ex3
'("caaat")
> (regexp-match #rx"ca+[at]" "caaat") ; ex4
'("caaat")
> (regexp-match #rx"ca?t?" "ct") ; ex5
'("ct")
> (regexp-match #rx"ca*?[at]" "caaat") ; ex6
'("ca")
> (regexp-match #px"ca{2}" "caaat") ; ex7, uses #px
'("caa")
> (regexp-match #px"ca{2,}t" "catcaat") ; ex8, uses #px
'("caat")
> (regexp-match #px"ca{,2}t" "caaatcat") ; ex9, uses #px
'("cat")
> (regexp-match #px"ca{1,2}t" "caaatcat") ; ex10, uses #px

291

'("cat")
> (regexp-match #rx"(c*)(a*)" "caat") ; ex11
'("caa" "c" "aa")
> (regexp-match #rx"[^ca]" "caat") ; ex12
'("t")
> (regexp-match #rx".(.)." "cat") ; ex13
'("cat" "a")
> (regexp-match #rx"^a|^c" "cat") ; ex14
'("c")
> (regexp-match #rx"a$|t$" "cat") ; ex15
'("t")
> (regexp-match #px"c(.)\\1t" "caat") ; ex16, uses #px
'("caat" "a")
> (regexp-match #px".\\b." "cat in hat") ; ex17, uses #px
'("t ")
> (regexp-match #px".\\B." "cat in hat") ; ex18, uses #px
'("ca")
> (regexp-match #px"\\p{Ll}" "Cat") ; ex19, uses #px
'("a")
> (regexp-match #px"\\P{Ll}" "cat!") ; ex20, uses #px
'("!")
> (regexp-match #rx"\\|" "c|t") ; ex21
'("|")
> (regexp-match #rx"[a-f]*" "cat") ; ex22
'("ca")
> (regexp-match #px"[a-f\\d]*" "1cat") ; ex23, uses #px
'("1ca")
> (regexp-match #px" [\\w]" "cat hat") ; ex24, uses #px
'(" h")
> (regexp-match #px"t[\\s]" "cat\nhat") ; ex25, uses #px
'("t\n")
> (regexp-match #px"[[:lower:]]+" "Cat") ; ex26, uses #px
'("at")
> (regexp-match #rx"[]]" "c]t") ; ex27
'("]")
> (regexp-match #rx"[-]" "c-t") ; ex28
'("-")
> (regexp-match #rx"[]a[]+" "c[a]t") ; ex29
'("[a]")
> (regexp-match #rx"[a^]+" "ca^t") ; ex30
'("a^")
> (regexp-match #rx".a(?=p)" "cat nap") ; ex31
'("na")
> (regexp-match #rx".a(?!t)" "cat nap") ; ex32
'("na")
> (regexp-match #rx"(?<=n)a." "cat nap") ; ex33

292

'("ap")
> (regexp-match #rx"(?<!c)a." "cat nap") ; ex34
'("ap")
> (regexp-match #rx"(?i:a)[tp]" "cAT nAp") ; ex35
'("Ap")
> (regexp-match #rx"(?(?<=c)a|b)+" "cabal") ; ex36
'("ab")

4.7.2 Additional Syntactic Constraints

In addition to matching a grammar, regular expressions must meet two syntactic restrictions:

• In a xrepeaty other than xatomy?, the xatomy must not match an empty sequence.

• In a (?<=xregexpy) or (?<!xregexpy), the xregexpy must match a bounded sequence
only.

These constraints are checked syntactically by the following type system. A type [n, m]
corresponds to an expression that matches between n and m characters. In the rule for
(xRegexpy), N means the number such that the opening parenthesis is the Nth opening
parenthesis for collecting match reports. Non-emptiness is inferred for a backreference pat-
tern, \xNy, so that a backreference can be used for repetition patterns; in the case of mutual
dependencies among backreferences, the inference chooses the fixpoint that maximizes non-
emptiness. Finiteness is not inferred for backreferences (i.e., a backreference is assumed to
match an arbitrarily large sequence).

xregexpy1 : [n1, m1] xregexpy2 : [n2, m2]
xregexpy1|xregexpy2 : [min(n1, n2), max(m1, m2)]

xpcey : [n1, m1] xpcesy : [n2, m2]
xpceyxpcesy : [n1+n2, m1+m2]

xrepeaty : [n, m]
xrepeaty? : [0, m]

xatomy : [n, m] n ą 0
xatomy* : [0,8]

xatomy : [n, m] n ą 0
xatomy+ : [1,8]

xatomy : [n, m]
xatomy? : [0, m]

xatomy : [n, m] n ą 0
xatomy{xny} : [n*xny, m*xny]

xatomy : [n, m] n ą 0
xatomy{xny,} : [n*xny,8]

293

xatomy : [n, m] n ą 0
xatomy{,xmy} : [0, m*xmy]

xatomy : [n, m] n ą 0
xatomy{xny,xmy} : [n*xny, m*xmy]

xregexpy : [n, m]
(xregexpy) : [n, m] αN=n

xregexpy : [n, m]
(?xmodey:xregexpy) : [n, m]

xregexpy : [n, m]
(?=xregexpy) : [0, 0]

xregexpy : [n, m]
(?!xregexpy) : [0, 0]

xregexpy : [n, m] m ă 8
(?<=xregexpy) : [0, 0]

xregexpy : [n, m] m ă 8
(?<!xregexpy) : [0, 0]

xregexpy : [n, m]
(?>xregexpy) : [n, m]

xtsty : [n0, m0] xpcesy1 : [n1, m1] xpcesy2 : [n2, m2]
(?xtstyxpcesy1|xpcesy2) : [min(n1, n2), max(m1, m2)]

xtsty : [n0, m0] xpcesy : [n1, m1]
(?xtstyxpcesy) : [0, m1]

(xny) : [αN,8] [xrngy] : [1, 1] [^xrngy] : [1, 1]

. : [1, 1] ^ : [0, 0] $: [0, 0]

xliteraly : [1, 1] \xny : [αN,8] xclassy : [1, 1]

\b : [0, 0] \B : [0, 0]

\p{xpropertyy} : [1, 6] \P{xpropertyy} : [1, 6]

4.7.3 Regexp Constructors

(regexp? v) Ñ boolean?
v : any/c

Returns #t if v is a regexp value created by regexp or pregexp, #f otherwise.

294

(pregexp? v) Ñ boolean?
v : any/c

Returns #t if v is a regexp value created by pregexp (not regexp), #f otherwise.

(byte-regexp? v) Ñ boolean?
v : any/c

Returns #t if v is a regexp value created by byte-regexp or byte-pregexp, #f otherwise.

(byte-pregexp? v) Ñ boolean?
v : any/c

Returns #t if v is a regexp value created by byte-pregexp (not byte-regexp), #f other-
wise.

(regexp str) Ñ regexp?
str : string?

(regexp str handler) Ñ any
str : string?
handler : (or/c #f (string? -> any))

Takes a string representation of a regular expression (using the syntax in §4.7.1 “Regexp
Syntax”) and compiles it into a regexp value. Other regular expression procedures accept
either a string or a regexp value as the matching pattern. If a regular expression string is
used multiple times, it is faster to compile the string once to a regexp value and use it for
repeated matches instead of using the string each time.

If handler is provided and not #f, it is called and its result is returned when str is not
a valid representation of a regular expression; the argument to handler is a string that de-
scribes the problem with str . If handler is #f or not provided, then exn:fail:contract
exception is raised.

The object-name procedure returns the source string for a regexp value.

Examples:

> (regexp "ap*le")
#rx"ap*le"
> (object-name #rx"ap*le")
"ap*le"
> (regexp "+" (λ (s) (list s)))
'("`+' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

295

(pregexp str) Ñ pregexp?
str : string?

(pregexp str handler) Ñ any
str : string?
handler : (or/c #f (string? -> any))

Like regexp, except that it uses a slightly different syntax (see §4.7.1 “Regexp Syntax”).
The result can be used with regexp-match, etc., just like the result from regexp.

Examples:

> (pregexp "ap*le")
#px"ap*le"
> (regexp? #px"ap*le")
#t
> (pregexp "+" (λ (s) (vector s)))
'#("`+' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

(byte-regexp bstr) Ñ byte-regexp?
bstr : bytes?

(byte-regexp bstr handler) Ñ any
bstr : bytes?
handler : (or/c #f (bytes? -> any))

Takes a byte-string representation of a regular expression (using the syntax in §4.7.1 “Regexp
Syntax”) and compiles it into a byte-regexp value.

If handler is provided, it is called and its result is returned if str is not a valid representa-
tion of a regular expression.

The object-name procedure returns the source byte string for a regexp value.

Examples:

> (byte-regexp #"ap*le")
#rx#"ap*le"
> (object-name #rx#"ap*le")
#"ap*le"
> (byte-regexp "ap*le")
byte-regexp: contract violation

expected: bytes?
given: "ap*le"

> (byte-regexp #"+" (λ (s) (list s)))
'("`+' follows nothing in pattern")

296

Changed in version 6.5.0.1 of package base: Added the handler argument.

(byte-pregexp bstr) Ñ byte-pregexp?
bstr : bytes?

(byte-pregexp bstr handler) Ñ any
bstr : bytes?
handler : (or/c #f (bytes? -> any))

Like byte-regexp, except that it uses a slightly different syntax (see §4.7.1 “Regexp Syn-
tax”). The result can be used with regexp-match, etc., just like the result from byte-
regexp.

Examples:

> (byte-pregexp #"ap*le")
#px#"ap*le"
> (byte-pregexp #"+" (λ (s) (vector s)))
'#("`+' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

(regexp-quote str [case-sensitive?]) Ñ string?
str : string?
case-sensitive? : any/c = #t

(regexp-quote bstr [case-sensitive?]) Ñ bytes?
bstr : bytes?
case-sensitive? : any/c = #t

Produces a string or byte string suitable for use with regexp to match the literal sequence of
characters in str or sequence of bytes in bstr . If case-sensitive? is true (the default),
the resulting regexp matches letters in str or bytes case-sensitively, otherwise it matches
case-insensitively.

Examples:

> (regexp-match "." "apple.scm")
'("a")
> (regexp-match (regexp-quote ".") "apple.scm")
'(".")

(regexp-max-lookbehind pattern) Ñ exact-nonnegative-integer?
pattern : (or/c regexp? byte-regexp?)

Returns the maximum number of bytes that pattern may consult before the starting posi-
tion of a match to determine the match. For example, the pattern (?<=abc)d consults three
bytes preceding a matching d, while e(?<=a..)d consults two bytes before a matching ed.
A ^ pattern may consult a preceding byte to determine whether the current position is the
start of the input or of a line.

297

4.7.4 Regexp Matching

(regexp-match pattern
input

[start-pos
end-pos
output-port
input-prefix])

Ñ (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))

(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Attempts to match pattern (a string, byte string, regexp value, or byte-regexp value) once
to a portion of input . The matcher finds a portion of input that matches and is closest to
the start of the input (after start-pos).

If input is a path, it is converted to a byte string with path->bytes if pattern is a
byte string or a byte-based regexp. Otherwise, input is converted to a string with path-
>string.

The optional start-pos and end-pos arguments select a portion of input for matching;
the default is the entire string or the stream up to an end-of-file. When input is a string,
start-pos is a character position; when input is a byte string, then start-pos is a byte
position; and when input is an input port, start-pos is the number of bytes to skip before
starting to match. The end-pos argument can be #f, which corresponds to the end of the
string or an end-of-file in the stream; otherwise, it is a character or byte position, like start-
pos . If input is an input port, and if an end-of-file is reached before start-pos bytes are
skipped, then the match fails.

In pattern , a start-of-string ^ refers to the first position of input after start-pos , as-
suming that input-prefix is #"". The end-of-input $ refers to the end-pos th position or
(in the case of an input port) an end-of-file, whichever comes first.

The input-prefix specifies bytes that effectively precede input for the purposes of ^
and other look-behind matching. For example, a #"" prefix means that ^ matches at the
beginning of the stream, while a #"\n" input-prefix means that a start-of-line ^ can
match the beginning of the input, while a start-of-file ^ cannot.

If the match fails, #f is returned. If the match succeeds, a list containing strings or byte

298

string, and possibly #f, is returned. The list contains strings only if input is a string and
pattern is not a byte regexp. Otherwise, the list contains byte strings (substrings of the
UTF-8 encoding of input , if input is a string).

The first [byte] string in a result list is the portion of input that matched pattern . If two
portions of input can match pattern , then the match that starts earliest is found.

Additional [byte] strings are returned in the list if pattern contains parenthesized sub-
expressions (but not when the opening parenthesis is followed by ?). Matches for the sub-
expressions are provided in the order of the opening parentheses in pattern . When sub-
expressions occur in branches of an | “or” pattern, in a * “zero or more” pattern, or other
places where the overall pattern can succeed without a match for the sub-expression, then a
#f is returned for the sub-expression if it did not contribute to the final match. When a single
sub-expression occurs within a * “zero or more” pattern or other multiple-match positions,
then the rightmost match associated with the sub-expression is returned in the list.

If the optional output-port is provided as an output port, the part of input from its
beginning (not start-pos) that precedes the match is written to the port. All of input
up to end-pos is written to the port if no match is found. This functionality is most useful
when input is an input port.

When matching an input port, a match failure reads up to end-pos bytes (or end-of-file),
even if pattern begins with a start-of-string ^; see also regexp-try-match. On suc-
cess, all bytes up to and including the match are eventually read from the port, but match-
ing proceeds by first peeking bytes from the port (using peek-bytes-avail!), and then
(re-)reading matching bytes to discard them after the match result is determined. Non-
matching bytes may be read and discarded before the match is determined. The matcher
peeks in blocking mode only as far as necessary to determine a match, but it may peek extra
bytes to fill an internal buffer if immediately available (i.e., without blocking). Greedy repeat
operators in pattern , such as * or +, tend to force reading the entire content of the port (up
to end-pos) to determine a match.

If the input port is read simultaneously by another thread, or if the port is a custom port
with inconsistent reading and peeking procedures (see §13.1.9 “Custom Ports”), then the
bytes that are peeked and used for matching may be different than the bytes read and dis-
carded after the match completes; the matcher inspects only the peeked bytes. To avoid
such interleaving, use regexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked.

Examples:

> (regexp-match #rx"x." "12x4x6")
'("x4")
> (regexp-match #rx"y." "12x4x6")
#f
> (regexp-match #rx"x." "12x4x6" 3)
'("x6")

299

> (regexp-match #rx"x." "12x4x6" 3 4)
#f
> (regexp-match #rx#"x." "12x4x6")
'(#"x4")
> (regexp-match #rx"x." "12x4x6" 0 #f (current-output-port))
12
'("x4")
> (regexp-match #rx"(-[0-9]*)+" "a-12--345b")
'("-12--345" "-345")

(regexp-match* pattern
input

[start-pos
end-pos
input-prefix
#:match-select match-select
#:gap-select? gap-select])

Ñ (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))

(listof (or/c string? (listof (or/c #f string?))))
(listof (or/c bytes? (listof (or/c #f bytes?)))))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
match-select : (or/c (list? . -> . (or/c any/c list?))

#f)
= car

gap-select : any/c = #f

Like regexp-match, but the result is a list of strings or byte strings corresponding to a
sequence of matches of pattern in input .

The pattern is used in order to find matches, where each match attempt starts at the end
of the last match, and ^ is allowed to match the beginning of the input (if input-prefix
is #"") only for the first match. Empty matches are handled like other matches, returning a
zero-length string or byte sequence (they are more useful in making this a complement of
regexp-split), but pattern is restricted from matching an empty sequence immediately
after an empty match.

If input contains no matches (in the range start-pos to end-pos), null is returned.
Otherwise, each item in the resulting list is a distinct substring or byte sequence from input
that matches pattern . The end-pos argument can be #f to match to the end of input
(which corresponds to an end-of-file if input is an input port).

Examples:

300

> (regexp-match* #rx"x." "12x4x6")
'("x4" "x6")
> (regexp-match* #rx"x*" "12x4x6")
'("" "" "x" "" "x" "" "")

match-select specifies the collected results. The default of car means that the result is the
list of matches without returning parenthesized sub-patterns. It can be given as a ‘selector’
function which chooses an item from a list, or it can choose a list of items. For example,
you can use cdr to get a list of lists of parenthesized sub-patterns matches, or values (as
an identity function) to get the full matches as well. (Note that the selector must choose an
element of its input list or a list of elements, but it must not inspect its input as they can be
either a list of strings or a list of position pairs. Furthermore, the selector must be consistent
in its choice(s).)

Examples:

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr)
'("4" "6")
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select values)
'(("x4" "4") ("x6" "6"))

In addition, specifying gap-select as a non-#f value will make the result an interleaved
list of the matches as well as the separators between them matches, starting and ending with
a separator. In this case, match-select can be given as #f to return only the separators,
making such uses equivalent to regexp-split.

Examples:

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr #:gap-
select? #t)
'("12" "4" "" "6" "")
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select #f #:gap-
select? #t)
'("12" "" "")

(regexp-try-match pattern
input

[start-pos
end-pos
output-port
input-prefix])

Ñ (if (and (or (string? pattern) (regexp? pattern))
(string? input))

(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))

301

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, except that if the match fails, no characters are read and
discarded from in.

This procedure is especially useful with a pattern that begins with a start-of-string ^ or
with a non-#f end-pos , since each limits the amount of peeking into the port. Otherwise,
beware that a large portion of the stream may be peeked (and therefore pulled into memory)
before the match succeeds or fails.
(regexp-match-positions pattern

input
[start-pos
end-pos
output-port
input-prefix])

Ñ (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

#f)))
#f)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns a list of number pairs (and #f) instead of a list of strings.
Each pair of numbers refers to a range of characters or bytes in input . If the result for the
same arguments with regexp-match would be a list of byte strings, the resulting ranges
correspond to byte ranges; in that case, if input is a character string, the byte ranges corre-
spond to bytes in the UTF-8 encoding of the string.

Range results are returned in a substring- and subbytes-compatible manner, independent
of start-pos . In the case of an input port, the returned positions indicate the number of
bytes that were read, including start-pos , before the first matching byte.

Examples:

> (regexp-match-positions #rx"x." "12x4x6")

302

'((2 . 4))
> (regexp-match-positions #rx"x." "12x4x6" 3)
'((4 . 6))
> (regexp-match-positions #rx"(-[0-9]*)+" "a-12--345b")
'((1 . 9) (5 . 9))

(regexp-match-positions* pattern
input

[start-pos
end-pos
input-prefix
#:match-select match-select])

Ñ (or/c (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))

(listof (listof (or/c #f (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)))))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
match-select : (list? . -> . (or/c any/c list?)) = car

Like regexp-match-positions, but returns multiple matches like regexp-match*.

Examples:

> (regexp-match-positions* #rx"x." "12x4x6")
'((2 . 4) (4 . 6))
> (regexp-match-positions* #rx"x(.)" "12x4x6" #:match-select cadr)
'((3 . 4) (5 . 6))

Note that unlike regexp-match*, there is no #:gap-select? input keyword, as this infor-
mation can be easily inferred from the resulting matches.

(regexp-match? pattern
input

[start-pos
end-pos
output-port
input-prefix]) Ñ boolean?

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f

303

output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns merely #t when the match succeeds, #f otherwise.

Examples:

> (regexp-match? #rx"x." "12x4x6")
#t
> (regexp-match? #rx"y." "12x4x6")
#f

(regexp-match-exact? pattern input) Ñ boolean?
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path?)

Like regexp-match?, but #t is only returned when the entire content of input matches
pattern .

Examples:

> (regexp-match-exact? #rx"x." "12x4x6")
#f
> (regexp-match-exact? #rx"1.*x." "12x4x6")
#t

(regexp-match-peek pattern
input

[start-pos
end-pos
progress
input-prefix])

Ñ (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#f)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, but only peeks bytes from input instead of reading
them. Furthermore, instead of an output port, the last optional argument is a progress event
for input (see port-progress-evt). If progress becomes ready, then the match stops

304

peeking from input and returns #f. The progress argument can be #f, in which case the
peek may continue with inconsistent information if another process meanwhile reads from
input .

Examples:

> (define p (open-input-string "a abcd"))
> (regexp-match-peek ".*bc" p)
'(#"a abc")
> (regexp-match-peek ".*bc" p 2)
'(#"abc")
> (regexp-match ".*bc" p 2)
'(#"abc")
> (peek-char p)
#\d
> (regexp-match ".*bc" p)
#f
> (peek-char p)
#<eof>

(regexp-match-peek-positions pattern
input

[start-pos
end-pos
progress
input-prefix])

Ñ (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

#f)))
#f)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-positions on input ports, but only peeks bytes from input instead
of reading them, and with a progress argument like regexp-match-peek.

305

(regexp-match-peek-immediate pattern
input

[start-pos
end-pos
progress
input-prefix])

Ñ (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#f)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek, but it attempts to match only bytes that are available from in-
put without blocking. The match fails if not-yet-available characters might be used to match
pattern .

(regexp-match-peek-positions-immediate pattern
input

[start-pos
end-pos
progress
input-prefix])

Ñ (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

#f)))
#f)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek-positions, but it attempts to match only bytes that are avail-
able from input without blocking. The match fails if not-yet-available characters might be
used to match pattern .

306

(regexp-match-peek-positions* pattern
input

[start-pos
end-pos
input-prefix
#:match-select match-select])

Ñ (or/c (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))

(listof (listof (or/c #f (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)))))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
match-select : (list? . -> . (or/c any/c list?)) = car

Like regexp-match-peek-positions, but returns multiple matches like regexp-match-
positions*.

(regexp-match/end pattern
input

[start-pos
end-pos
output-port
input-prefix
count])

Ñ

(if (and (or (string? pattern) (regexp? pattern))
(or/c (string? input) (path? input)))

(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

Like regexp-match, but with a second result: a byte string of up to count bytes that
correspond to the input (possibly including the input-prefix) leading to the end of the
match; the second result is #f if no match is found.

The second result can be useful as an input-prefix for attempting a second match on

307

input starting from the end of the first match. In that case, use regexp-max-lookbehind
to determine an appropriate value for count .

(regexp-match-positions/end pattern
input

[start-pos
end-pos
input-prefix
count])

Ñ
(listof (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?))
(or/c #f bytes?)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

(regexp-match-peek-positions/end pattern
input

[start-pos
end-pos
progress
input-prefix
count])

Ñ

(or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

#f)))
#f)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

308

(regexp-match-peek-positions-immediate/end pattern
input

[start-pos
end-pos
progress
input-prefix
count])

Ñ

(or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

#f)))
#f)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

Like regexp-match-positions, etc., but with a second result like regexp-match/end.

4.7.5 Regexp Splitting

(regexp-split pattern
input

[start-pos
end-pos
input-prefix])

Ñ (if (and (or (string? pattern) (regexp? pattern))
(string? input))

(cons/c string? (listof string?))
(cons/c bytes? (listof bytes?)))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

The complement of regexp-match*: the result is a list of strings (if pattern is a string
or character regexp and input is a string) or byte strings (otherwise) from input that are

309

separated by matches to pattern . Adjacent matches are separated with "" or #"". Zero-
length matches are treated the same as for regexp-match*.

If input contains no matches (in the range start-pos to end-pos), the result is a list
containing input ’s content (from start-pos to end-pos) as a single element. If a match
occurs at the beginning of input (at start-pos), the resulting list will start with an empty
string or byte string, and if a match occurs at the end (at end-pos), the list will end with an
empty string or byte string. The end-pos argument can be #f, in which case splitting goes
to the end of input (which corresponds to an end-of-file if input is an input port).

Examples:

> (regexp-split #rx" +" "12 34")
'("12" "34")
> (regexp-split #rx"." "12 34")
'("" "" "" "" "" "" "")
> (regexp-split #rx"" "12 34")
'("" "1" "2" " " " " "3" "4" "")
> (regexp-split #rx" *" "12 34")
'("" "1" "2" "" "3" "4" "")
> (regexp-split #px"\\b" "12, 13 and 14.")
'("" "12" ", " "13" " " "and" " " "14" ".")
> (regexp-split #rx" +" "")
'("")

4.7.6 Regexp Substitution

(regexp-replace pattern
input
insert

[input-prefix])
Ñ (if (and (or (string? pattern) (regexp? pattern))

(string? input))
string?
bytes?)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->* . bytes?))

input-prefix : bytes? = #""

Performs a match using pattern on input , and then returns a string or byte string in
which the matching portion of input is replaced with insert . If pattern matches no part
of input , then input is returned unmodified.

310

The insert argument can be either a (byte) string, or a function that returns a (byte) string.
In the latter case, the function is applied on the list of values that regexp-match would
return (i.e., the first argument is the complete match, and then one argument for each paren-
thesized sub-expression) to obtain a replacement (byte) string.

If pattern is a string or character regexp and input is a string, then insert must be a
string or a procedure that accept strings, and the result is a string. If pattern is a byte string
or byte regexp, or if input is a byte string, then insert as a string is converted to a byte
string, insert as a procedure is called with a byte string, and the result is a byte string.

If insert contains &, then & is replaced with the matching portion of input before it is
substituted into the match’s place. If insert contains \xny for some integer xny, then it is
replaced with the xnyth matching sub-expression from input . A & and \0 are aliases. If
the xnyth sub-expression was not used in the match, or if xny is greater than the number of
sub-expressions in pattern , then \xny is replaced with the empty string.

To substitute a literal & or \, use \& and \\, respectively, in insert . A \$ in insert is
equivalent to an empty sequence; this can be used to terminate a number xny following \. If
a \ in insert is followed by anything other than a digit, &, \, or $, then the \ by itself is
treated as \0.

Note that the \ described in the previous paragraphs is a character or byte of input . To
write such an input as a Racket string literal, an escaping \ is needed before the \. For
example, the Racket constant "\\1" is \1.

Examples:

> (regexp-replace #rx"mi" "mi casa" "su")
"su casa"
> (regexp-replace #rx"mi" "mi casa" string-upcase)
"MI casa"
> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "Mi Casa" "\\1y \\2")
"My Casa"
> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"

"\\1y \\2")
"my cerveza Mi Mi Mi"
> (regexp-replace #rx"x" "12x4x6" "\\\\")
"12\\4x6"
> (display (regexp-replace #rx"x" "12x4x6" "\\\\"))
12\4x6

(regexp-replace* pattern
input
insert

[start-pos
end-pos
input-prefix]) Ñ (or/c string? bytes?)

311

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->* . bytes?))

start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

Like regexp-replace, except that every instance of pattern in input is replaced with
insert , instead of just the first match. Only non-overlapping instances of pattern in
input are replaced, so instances of pattern within inserted strings are not replaced recur-
sively. Zero-length matches are treated the same as in regexp-match*.

The optional start-pos and end-pos arguments select a portion of input for matching;
the default is the entire string or the stream up to an end-of-file.

Examples:

> (regexp-replace* #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
"\\1y \\2")

"my cerveza My Mi Mi"
> (regexp-replace* #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"

(lambda (all one two)
(string-append (string-downcase one) "y"

(string-upcase two))))
"myCERVEZA myMI Mi"
> (regexp-replace* #px"\\w" "hello world" string-upcase 0 5)
"HELLO world"
> (display (regexp-replace* #rx"x" "12x4x6" "\\\\"))
12\4\6

(regexp-replaces input replacements) Ñ (or/c string? bytes?)
input : (or/c string? bytes?)
replacements : (listof

(list/c (or/c string? bytes? regexp? byte-regexp?)
(or/c string? bytes?

((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->* . bytes?))))

Performs a chain of regexp-replace* operations, where each element in replacements
specifies a replacement as a (list pattern replacement). The replacements are done
in order, so later replacements can apply to previous insertions.

Examples:

312

> (regexp-replaces "zero-or-more?"
'([#rx"-" "_"] [#rx"(.*)\\?$" "is_\\1"]))

"is_zero_or_more"
> (regexp-replaces "zero-or-more?"

'([#rx"e" "o"] [#rx"o" "oo"]))
"zooroo-oor-mooroo?"

(regexp-replace-quote str) Ñ string?
str : string?

(regexp-replace-quote bstr) Ñ bytes?
bstr : bytes?

Produces a string suitable for use as the third argument to regexp-replace to insert the
literal sequence of characters in str or bytes in bstr as a replacement. Concretely, every \
and & in str or bstr is protected by a quoting \.

Examples:

> (regexp-replace #rx"UT" "Go UT!" "A&M")
"Go AUTM!"
> (regexp-replace #rx"UT" "Go UT!" (regexp-replace-quote "A&M"))
"Go A&M!"

4.8 Keywords
§3.7 “Keywords” in
The Racket Guide
introduces
keywords.

A keyword is like an interned symbol, but its printed form starts with #:, and a keyword
cannot be used as an identifier. Furthermore, a keyword by itself is not a valid expression,
though a keyword can be quoted to form an expression that produces the symbol.

Two keywords are eq? if and only if they print the same (i.e., keywords are always interned).

Like symbols, keywords are only weakly held by the internal keyword table; see §4.6 “Sym-
bols” for more information.

See §1.3.15 “Reading Keywords” for information on reading keywords and §1.4.12 “Print-
ing Keywords” for information on printing keywords.

(keyword? v) Ñ boolean?
v : any/c

Returns #t if v is a keyword, #f otherwise.

(keyword->string keyword) Ñ string?
keyword : keyword?

313

Returns a string for the displayed form of keyword , not including the leading #:.

(string->keyword str) Ñ keyword?
str : string?

Returns a keyword whose displayed form is the same as that of str , but with a leading
#:.

(keyword<? a-keyword b-keyword ...) Ñ boolean?
a-keyword : keyword?
b-keyword : keyword?

Returns #t if the arguments are sorted, where the comparison for each pair of keywords is
the same as using keyword->string with string->bytes/utf-8 and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.9 Pairs and Lists
§3.8 “Pairs and
Lists” in The Racket
Guide introduces
pairs and lists.

A pair combines exactly two values. The first value is accessed with the car procedure, and
the second value is accessed with the cdr procedure. Pairs are not mutable (but see §4.10
“Mutable Pairs and Lists”).

A list is recursively defined: it is either the constant null, or it is a pair whose second value
is a list.

A list can be used as a single-valued sequence (see §4.14.1 “Sequences”). The elements of
the list serve as elements of the sequence. See also in-list.

Cyclic data structures can be created using only immutable pairs via read or make-reader-
graph. If starting with a pair and using some number of cdrs returns to the starting pair,
then the pair is not a list.

See §1.3.6 “Reading Pairs and Lists” for information on reading pairs and lists and §1.4.5
“Printing Pairs and Lists” for information on printing pairs and lists.

4.9.1 Pair Constructors and Selectors

(pair? v) Ñ boolean?
v : any/c

Returns #t if v is a pair, #f otherwise.

Examples:

314

> (pair? 1)
#f
> (pair? (cons 1 2))
#t
> (pair? (list 1 2))
#t
> (pair? '(1 2))
#t
> (pair? '())
#f

(null? v) Ñ boolean?
v : any/c

Returns #t if v is the empty list, #f otherwise.

Examples:

> (null? 1)
#f
> (null? '(1 2))
#f
> (null? '())
#t
> (null? (cdr (list 1)))
#t

(cons a d) Ñ pair?
a : any/c
d : any/c

Returns a newly allocated pair whose first element is a and second element is d .

Examples:

> (cons 1 2)
'(1 . 2)
> (cons 1 '())
'(1)

(car p) Ñ any/c
p : pair?

Returns the first element of the pair p .

Examples:

315

> (car '(1 2))
1
> (car (cons 2 3))
2

(cdr p) Ñ any/c
p : pair?

Returns the second element of the pair p .

Examples:

> (cdr '(1 2))
'(2)
> (cdr '(1))
'()

null : null?

The empty list.

Examples:

> null
'()
> '()
'()
> (eq? '() null)
#t

(list? v) Ñ boolean?
v : any/c

Returns #t if v is a list: either the empty list, or a pair whose second element is a list.
This procedure effectively takes constant time due to internal caching (so that any necessary
traversals of pairs can in principle count as an extra cost of allocating the pairs).

Examples:

> (list? '(1 2))
#t
> (list? (cons 1 (cons 2 '())))
#t
> (list? (cons 1 2))
#f

316

(list v ...) Ñ list?
v : any/c

Returns a newly allocated list containing the vs as its elements.

Examples:

> (list 1 2 3 4)
'(1 2 3 4)
> (list (list 1 2) (list 3 4))
'((1 2) (3 4))

(list* v ... tail) Ñ any/c
v : any/c
tail : any/c

Like list, but the last argument is used as the tail of the result, instead of the final element.
The result is a list only if the last argument is a list.

Examples:

> (list* 1 2)
'(1 . 2)
> (list* 1 2 (list 3 4))
'(1 2 3 4)

(build-list n proc) Ñ list?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any)

Creates a list of n elements by applying proc to the integers from 0 to (sub1 n) in order.
If lst is the resulting list, then (list-ref lst i) is the value produced by (proc i).

Examples:

> (build-list 10 values)
'(0 1 2 3 4 5 6 7 8 9)
> (build-list 5 (lambda (x) (* x x)))
'(0 1 4 9 16)

4.9.2 List Operations

(length lst) Ñ exact-nonnegative-integer?
lst : list?

317

Returns the number of elements in lst .

Examples:

> (length (list 1 2 3 4))
4
> (length '())
0

(list-ref lst pos) Ñ any/c
lst : pair?
pos : exact-nonnegative-integer?

Returns the element of lst at position pos , where the list’s first element is position 0. If
the list has pos or fewer elements, then the exn:fail:contract exception is raised.

The lst argument need not actually be a list; lst must merely start with a chain of at least
(add1 pos) pairs.

Examples:

> (list-ref (list 'a 'b 'c) 0)
'a
> (list-ref (list 'a 'b 'c) 1)
'b
> (list-ref (list 'a 'b 'c) 2)
'c
> (list-ref (cons 1 2) 0)
1
> (list-ref (cons 1 2) 1)
list-ref: index reaches a non-pair

index: 1
in: '(1 . 2)

(list-tail lst pos) Ñ any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the list after the first pos elements of lst . If the list has fewer than pos elements,
then the exn:fail:contract exception is raised.

The lst argument need not actually be a list; lst must merely start with a chain of at least
pos pairs.

Examples:

318

> (list-tail (list 1 2 3 4 5) 2)
'(3 4 5)
> (list-tail (cons 1 2) 1)
2
> (list-tail (cons 1 2) 2)
list-tail: index reaches a non-pair

index: 2
in: '(1 . 2)

> (list-tail 'not-a-pair 0)
'not-a-pair

(append lst ...) Ñ list?
lst : list?

(append lst ... v) Ñ any/c
lst : list?
v : any/c

When given all list arguments, the result is a list that contains all of the elements of the given
lists in order. The last argument is used directly in the tail of the result.

The last argument need not be a list, in which case the result is an “improper list.”

Examples:

> (append (list 1 2) (list 3 4))
'(1 2 3 4)
> (append (list 1 2) (list 3 4) (list 5 6) (list 7 8))
'(1 2 3 4 5 6 7 8)

(reverse lst) Ñ list?
lst : list?

Returns a list that has the same elements as lst , but in reverse order.

Example:

> (reverse (list 1 2 3 4))
'(4 3 2 1)

4.9.3 List Iteration

(map proc lst ...+) Ñ list?
proc : procedure?
lst : list?

319

Applies proc to the elements of the lsts from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied lsts, and
all lsts must have the same number of elements. The result is a list containing each result
of proc in order.

Examples:

> (map (lambda (number)
(+ 1 number))

'(1 2 3 4))
'(2 3 4 5)
> (map (lambda (number1 number2)

(+ number1 number2))
'(1 2 3 4)
'(10 100 1000 10000))

'(11 102 1003 10004)

(andmap proc lst ...+) Ñ any
proc : procedure?
lst : list?

Similar to map in the sense that proc is applied to each element of lst , but The andmap
function is actually
closer to foldl
than map, since
andmap doesn’t
produce a list. Still,
(andmap f (list
x y z)) is
equivalent to (and
(f x) (f y) (f
z)) in the same
way that (map f
(list x y z)) is
equivalent to (list
(f x) (f y) (f
z)).

• the result is #f if any application of proc produces #f, in which case proc is not
applied to later elements of the lsts; and

• the result is that of proc applied to the last elements of the lsts; more specifically,
the application of proc to the last elements in the lsts is in tail position with respect
to the andmap call.

If the lsts are empty, then #t is returned.

Examples:

> (andmap positive? '(1 2 3))
#t
> (andmap positive? '(1 2 a))
positive?: contract violation

expected: real?
given: 'a

> (andmap positive? '(1 -2 a))
#f
> (andmap + '(1 2 3) '(4 5 6))
9

320

(ormap proc lst ...+) Ñ any
proc : procedure?
lst : list?

Similar to map in the sense that proc is applied to each element of lst , but To continue the
andmap note above,
(ormap f (list
x y z)) is
equivalent to (or
(f x) (f y) (f
z)).

• the result is #f if every application of proc produces #f; and

• the result is that of the first application of proc producing a value other than #f, in
which case proc is not applied to later elements of the lsts; the application of proc
to the last elements of the lsts is in tail position with respect to the ormap call.

If the lsts are empty, then #f is returned.

Examples:

> (ormap eq? '(a b c) '(a b c))
#t
> (ormap positive? '(1 2 a))
#t
> (ormap + '(1 2 3) '(4 5 6))
5

(for-each proc lst ...+) Ñ void?
proc : procedure?
lst : list?

Similar to map, but proc is called only for its effect, and its result (which can be any number
of values) is ignored.

Example:

> (for-each (lambda (arg)
(printf "Got „a\n" arg)
23)

'(1 2 3 4))
Got 1
Got 2
Got 3
Got 4

(foldl proc init lst ...+) Ñ any/c
proc : procedure?
init : any/c
lst : list?

321

Like map, foldl applies a procedure to the elements of one or more lists. Whereas map
combines the return values into a list, foldl combines the return values in an arbitrary way
that is determined by proc .

If foldl is called with n lists, then proc must take n+1 arguments. The extra argument is
the combined return values so far. The proc is initially invoked with the first item of each
list, and the final argument is init . In subsequent invocations of proc , the last argument
is the return value from the previous invocation of proc . The input lsts are traversed from
left to right, and the result of the whole foldl application is the result of the last application
of proc . If the lsts are empty, the result is init .

Unlike foldr, foldl processes the lsts in constant space (plus the space for each call to
proc).

Examples:

> (foldl cons '() '(1 2 3 4))
'(4 3 2 1)
> (foldl + 0 '(1 2 3 4))
10
> (foldl (lambda (a b result)

(* result (- a b)))
1
'(1 2 3)
'(4 5 6))

-27

(foldr proc init lst ...+) Ñ any/c
proc : procedure?
init : any/c
lst : list?

Like foldl, but the lists are traversed from right to left. Unlike foldl, foldr processes the
lsts in space proportional to the length of lsts (plus the space for each call to proc).

Examples:

> (foldr cons '() '(1 2 3 4))
'(1 2 3 4)
> (foldr (lambda (v l) (cons (add1 v) l)) '() '(1 2 3 4))
'(2 3 4 5)

4.9.4 List Filtering

(filter pred lst) Ñ list?

322

pred : procedure?
lst : list?

Returns a list with the elements of lst for which pred produces a true value. The pred
procedure is applied to each element from first to last.

Example:

> (filter positive? '(1 -2 3 4 -5))
'(1 3 4)

(remove v lst [proc]) Ñ list?
v : any/c
lst : list?
proc : procedure? = equal?

Returns a list that is like lst , omitting the first element of lst that is equal to v using the
comparison procedure proc (which must accept two arguments).

Examples:

> (remove 2 (list 1 2 3 2 4))
'(1 3 2 4)
> (remove 2 (list 1 2 3 2 4) =)
'(1 3 2 4)
> (remove '(2) (list '(1) '(2) '(3)))
'((1) (3))
> (remove "2" (list "1" "2" "3"))
'("1" "3")
> (remove #\c (list #\a #\b #\c))
'(#\a #\b)

(remq v lst) Ñ list?
v : any/c
lst : list?

Returns (remove v lst eq?).

Examples:

> (remq 2 (list 1 2 3 4 5))
'(1 3 4 5)
> (remq '(2) (list '(1) '(2) '(3)))
'((1) (2) (3))

323

> (remq "2" (list "1" "2" "3"))
'("1" "3")
> (remq #\c (list #\a #\b #\c))
'(#\a #\b)

(remv v lst) Ñ list?
v : any/c
lst : list?

Returns (remove v lst eqv?).

Examples:

> (remv 2 (list 1 2 3 4 5))
'(1 3 4 5)
> (remv '(2) (list '(1) '(2) '(3)))
'((1) (2) (3))
> (remv "2" (list "1" "2" "3"))
'("1" "3")
> (remv #\c (list #\a #\b #\c))
'(#\a #\b)

(remove* v-lst lst [proc]) Ñ list?
v-lst : list?
lst : list?
proc : procedure? = equal?

Like remove, but removes from lst every instance of every element of v-lst .

Example:

> (remove* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

(remq* v-lst lst) Ñ list?
v-lst : list?
lst : list?

Returns (remove* v-lst lst eq?).

Example:

> (remq* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

324

(remv* v-lst lst) Ñ list?
v-lst : list?
lst : list?

Returns (remove* v-lst lst eqv?).

Example:

> (remv* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

(sort lst
less-than?

[#:key extract-key
#:cache-keys? cache-keys?]) Ñ list?

lst : list?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f

Returns a list sorted according to the less-than? procedure, which takes two elements of
lst and returns a true value if the first is less (i.e., should be sorted earlier) than the second.

The sort is stable; if two elements of lst are “equal” (i.e., less-than? does not return a
true value when given the pair in either order), then the elements preserve their relative order
from lst in the output list. To preserve this guarantee, use sort with a strict comparison
functions (e.g., < or string<?; not <= or string<=?). Because of the

peculiar fact that the
IEEE-754 number
system specifies
that +nan.0 is
neither greater nor
less than nor equal
to any other
number, sorting
lists containing this
value may produce
a surprising result.

The #:key argument extract-key is used to extract a key value for comparison from each
list element. That is, the full comparison procedure is essentially

(lambda (x y)
(less-than? (extract-key x) (extract-key y)))

By default, extract-key is applied to two list elements for every comparison, but if
cache-keys? is true, then the extract-key function is used exactly once for each list
item. Supply a true value for cache-keys? when extract-key is an expensive operation;
for example, if file-or-directory-modify-seconds is used to extract a timestamp for
every file in a list, then cache-keys? should be #t to minimize file-system calls, but if
extract-key is car, then cache-keys? should be #f. As another example, providing
extract-key as (lambda (x) (random)) and #t for cache-keys? effectively shuffles
the list.

Examples:

325

> (sort '(1 3 4 2) <)
'(1 2 3 4)
> (sort '("aardvark" "dingo" "cow" "bear") string<?)
'("aardvark" "bear" "cow" "dingo")
> (sort '(("aardvark") ("dingo") ("cow") ("bear"))

#:key car string<?)
'(("aardvark") ("bear") ("cow") ("dingo"))

4.9.5 List Searching

(member v lst [is-equal?]) Ñ (or/c list? #f)
v : any/c
lst : list?
is-equal? : (any/c any/c -> any/c) = equal?

Locates the first element of lst that is equal? to v . If such an element exists, the tail of
lst starting with that element is returned. Otherwise, the result is #f.

Examples:

> (member 2 (list 1 2 3 4))
'(2 3 4)
> (member 9 (list 1 2 3 4))
#f
> (member #'x (list #'x #'y) free-identifier=?)
'(#<syntax:eval:509:0 x> #<syntax:eval:509:0 y>)
> (member #'a (list #'x #'y) free-identifier=?)
#f

(memv v lst) Ñ (or/c list? #f)
v : any/c
lst : list?

Like member, but finds an element using eqv?.

Examples:

> (memv 2 (list 1 2 3 4))
'(2 3 4)
> (memv 9 (list 1 2 3 4))
#f

(memq v lst) Ñ (or/c list? #f)
v : any/c
lst : list?

326

Like member, but finds an element using eq?.

Examples:

> (memq 2 (list 1 2 3 4))
'(2 3 4)
> (memq 9 (list 1 2 3 4))
#f

(memf proc lst) Ñ (or/c list? #f)
proc : procedure?
lst : list?

Like member, but finds an element using the predicate proc ; an element is found when proc
applied to the element returns a true value.

Example:

> (memf (lambda (arg)
(> arg 9))

'(7 8 9 10 11))
'(10 11)

(findf proc lst) Ñ any/c
proc : procedure?
lst : list?

Like memf, but returns the element or #f instead of a tail of lst or #f.

Example:

> (findf (lambda (arg)
(> arg 9))

'(7 8 9 10 11))
10

(assoc v lst [is-equal?]) Ñ (or/c pair? #f)
v : any/c
lst : (listof pair?)
is-equal? : (any/c any/c -> any/c) = equal?

Locates the first element of lst whose car is equal to v according to is-equal?. If such
an element exists, the pair (i.e., an element of lst) is returned. Otherwise, the result is #f.

Examples:

327

> (assoc 3 (list (list 1 2) (list 3 4) (list 5 6)))
'(3 4)
> (assoc 9 (list (list 1 2) (list 3 4) (list 5 6)))
#f
> (assoc 3.5

(list (list 1 2) (list 3 4) (list 5 6))
(lambda (a b) (< (abs (- a b)) 1)))

'(3 4)

(assv v lst) Ñ (or/c pair? #f)
v : any/c
lst : (listof pair?)

Like assoc, but finds an element using eqv?.

Example:

> (assv 3 (list (list 1 2) (list 3 4) (list 5 6)))
'(3 4)

(assq v lst) Ñ (or/c pair? #f)
v : any/c
lst : (listof pair?)

Like assoc, but finds an element using eq?.

Example:

> (assq 'c (list (list 'a 'b) (list 'c 'd) (list 'e 'f)))
'(c d)

(assf proc lst) Ñ (or/c pair? #f)
proc : procedure?
lst : (listof pair?)

Like assoc, but finds an element using the predicate proc ; an element is found when proc
applied to the car of an lst element returns a true value.

Example:

> (assf (lambda (arg)
(> arg 2))

(list (list 1 2) (list 3 4) (list 5 6)))
'(3 4)

328

4.9.6 Pair Accessor Shorthands

(caar v) Ñ any/c
v : (cons/c pair? any/c)

Returns (car (car v)).

Example:

> (caar '((1 2) 3 4))
1

(cadr v) Ñ any/c
v : (cons/c any/c pair?)

Returns (car (cdr v)).

Example:

> (cadr '((1 2) 3 4))
3

(cdar v) Ñ any/c
v : (cons/c pair? any/c)

Returns (cdr (car v)).

Example:

> (cdar '((7 6 5 4 3 2 1) 8 9))
'(6 5 4 3 2 1)

(cddr v) Ñ any/c
v : (cons/c any/c pair?)

Returns (cdr (cdr v)).

Example:

> (cddr '(2 1))
'()

329

(caaar v) Ñ any/c
v : (cons/c (cons/c pair? any/c) any/c)

Returns (car (car (car v))).

Example:

> (caaar '(((6 5 4 3 2 1) 7) 8 9))
6

(caadr v) Ñ any/c
v : (cons/c any/c (cons/c pair? any/c))

Returns (car (car (cdr v))).

Example:

> (caadr '(9 (7 6 5 4 3 2 1) 8))
7

(cadar v) Ñ any/c
v : (cons/c (cons/c any/c pair?) any/c)

Returns (car (cdr (car v))).

Example:

> (cadar '((7 6 5 4 3 2 1) 8 9))
6

(caddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c pair?))

Returns (car (cdr (cdr v))).

Example:

> (caddr '(3 2 1))
1

330

(cdaar v) Ñ any/c
v : (cons/c (cons/c pair? any/c) any/c)

Returns (cdr (car (car v))).

Example:

> (cdaar '(((6 5 4 3 2 1) 7) 8 9))
'(5 4 3 2 1)

(cdadr v) Ñ any/c
v : (cons/c any/c (cons/c pair? any/c))

Returns (cdr (car (cdr v))).

Example:

> (cdadr '(9 (7 6 5 4 3 2 1) 8))
'(6 5 4 3 2 1)

(cddar v) Ñ any/c
v : (cons/c (cons/c any/c pair?) any/c)

Returns (cdr (cdr (car v))).

Example:

> (cddar '((7 6 5 4 3 2 1) 8 9))
'(5 4 3 2 1)

(cdddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c pair?))

Returns (cdr (cdr (cdr v))).

Example:

> (cdddr '(3 2 1))
'()

331

(caaaar v) Ñ any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)

Returns (car (car (car (car v)))).

Example:

> (caaaar '((((5 4 3 2 1) 6) 7) 8 9))
5

(caaadr v) Ñ any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))

Returns (car (car (car (cdr v)))).

Example:

> (caaadr '(9 ((6 5 4 3 2 1) 7) 8))
6

(caadar v) Ñ any/c
v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)

Returns (car (car (cdr (car v)))).

Example:

> (caadar '((7 (5 4 3 2 1) 6) 8 9))
5

(caaddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))

Returns (car (car (cdr (cdr v)))).

Example:

> (caaddr '(9 8 (6 5 4 3 2 1) 7))
6

332

(cadaar v) Ñ any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)

Returns (car (cdr (car (car v)))).

Example:

> (cadaar '(((6 5 4 3 2 1) 7) 8 9))
5

(cadadr v) Ñ any/c
v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))

Returns (car (cdr (car (cdr v)))).

Example:

> (cadadr '(9 (7 6 5 4 3 2 1) 8))
6

(caddar v) Ñ any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)

Returns (car (cdr (cdr (car v)))).

Example:

> (caddar '((7 6 5 4 3 2 1) 8 9))
5

(cadddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))

Returns (car (cdr (cdr (cdr v)))).

Example:

> (cadddr '(4 3 2 1))
1

333

(cdaaar v) Ñ any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)

Returns (cdr (car (car (car v)))).

Example:

> (cdaaar '((((5 4 3 2 1) 6) 7) 8 9))
'(4 3 2 1)

(cdaadr v) Ñ any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))

Returns (cdr (car (car (cdr v)))).

Example:

> (cdaadr '(9 ((6 5 4 3 2 1) 7) 8))
'(5 4 3 2 1)

(cdadar v) Ñ any/c
v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)

Returns (cdr (car (cdr (car v)))).

Example:

> (cdadar '((7 (5 4 3 2 1) 6) 8 9))
'(4 3 2 1)

(cdaddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))

Returns (cdr (car (cdr (cdr v)))).

Example:

> (cdaddr '(9 8 (6 5 4 3 2 1) 7))
'(5 4 3 2 1)

334

(cddaar v) Ñ any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)

Returns (cdr (cdr (car (car v)))).

Example:

> (cddaar '(((6 5 4 3 2 1) 7) 8 9))
'(4 3 2 1)

(cddadr v) Ñ any/c
v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))

Returns (cdr (cdr (car (cdr v)))).

Example:

> (cddadr '(9 (7 6 5 4 3 2 1) 8))
'(5 4 3 2 1)

(cdddar v) Ñ any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)

Returns (cdr (cdr (cdr (car v)))).

Example:

> (cdddar '((7 6 5 4 3 2 1) 8 9))
'(4 3 2 1)

(cddddr v) Ñ any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))

Returns (cdr (cdr (cdr (cdr v)))).

Example:

> (cddddr '(4 3 2 1))
'()

335

4.9.7 Additional List Functions and Synonyms

(require racket/list) package: base

The bindings documented in this section are provided by the racket/list and racket
libraries, but not racket/base.

empty : null?

The empty list.

Examples:

> empty
'()
> (eq? empty null)
#t

(cons? v) Ñ boolean?
v : any/c

The same as (pair? v).

Example:

> (cons? '(1 2))
#t

(empty? v) Ñ boolean?
v : any/c

The same as (null? v).

Examples:

> (empty? '(1 2))
#f
> (empty? '())
#t

(first lst) Ñ any/c
lst : list?

The same as (car lst), but only for lists (that are not empty).

Example:

336

https://pkgs.racket-lang.org/package/base

> (first '(1 2 3 4 5 6 7 8 9 10))
1

(rest lst) Ñ list?
lst : list?

The same as (cdr lst), but only for lists (that are not empty).

Example:

> (rest '(1 2 3 4 5 6 7 8 9 10))
'(2 3 4 5 6 7 8 9 10)

(second lst) Ñ any
lst : list?

Returns the second element of the list.

Example:

> (second '(1 2 3 4 5 6 7 8 9 10))
2

(third lst) Ñ any
lst : list?

Returns the third element of the list.

Example:

> (third '(1 2 3 4 5 6 7 8 9 10))
3

(fourth lst) Ñ any
lst : list?

Returns the fourth element of the list.

Example:

> (fourth '(1 2 3 4 5 6 7 8 9 10))
4

337

(fifth lst) Ñ any
lst : list?

Returns the fifth element of the list.

Example:

> (fifth '(1 2 3 4 5 6 7 8 9 10))
5

(sixth lst) Ñ any
lst : list?

Returns the sixth element of the list.

Example:

> (sixth '(1 2 3 4 5 6 7 8 9 10))
6

(seventh lst) Ñ any
lst : list?

Returns the seventh element of the list.

Example:

> (seventh '(1 2 3 4 5 6 7 8 9 10))
7

(eighth lst) Ñ any
lst : list?

Returns the eighth element of the list.

Example:

> (eighth '(1 2 3 4 5 6 7 8 9 10))
8

(ninth lst) Ñ any
lst : list?

338

Returns the ninth element of the list.

Example:

> (ninth '(1 2 3 4 5 6 7 8 9 10))
9

(tenth lst) Ñ any
lst : list?

Returns the tenth element of the list.

Example:

> (tenth '(1 2 3 4 5 6 7 8 9 10))
10

(last lst) Ñ any
lst : list?

Returns the last element of the list.

Example:

> (last '(1 2 3 4 5 6 7 8 9 10))
10

(last-pair p) Ñ pair?
p : pair?

Returns the last pair of a (possibly improper) list.

Example:

> (last-pair '(1 2 3 4))
'(4)

(make-list k v) Ñ list?
k : exact-nonnegative-integer?
v : any/c

Returns a newly constructed list of length k , holding v in all positions.

Example:

339

> (make-list 7 'foo)
'(foo foo foo foo foo foo foo)

(list-update lst pos updater) Ñ list?
lst : list?
pos : (and/c (>=/c 0) (</c (length lst)))
updater : (-> any/c any/c)

Returns a list that is the same as lst except at the specified index. The element at the
specified index is (updater (list-ref lst pos)).

Example:

> (list-update '(zero one two) 1 symbol->string)
'(zero "one" two)

Added in version 6.3 of package base.

(list-set lst pos value) Ñ list?
lst : list?
pos : (and/c (>=/c 0) (</c (length lst)))
value : any/c

Returns a list that is the same as lst except at the specified index. The element at the
specified index is value .

Example:

> (list-set '(zero one two) 2 "two")
'(zero one "two")

Added in version 6.3 of package base.

(index-of lst v [is-equal?]) Ñ (or/c exact-nonnegative-integer? #f)
lst : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?

Like member, but returns the index of the first element found instead of the tail of the list.

Example:

> (index-of '(1 2 3 4) 3)
2

340

Added in version 6.7.0.3 of package base.

(index-where lst proc) Ñ (or/c exact-nonnegative-integer? #f)
lst : list?
proc : (any/c . -> . any/c)

Like index-of but with the predicate-searching behavior of memf.

Example:

> (index-where '(1 2 3 4) even?)
1

Added in version 6.7.0.3 of package base.

(indexes-of lst v [is-equal?])
Ñ (listof exact-nonnegative-integer?)
lst : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?

Like index-of, but returns the a list of all the indexes where the element occurs in the list
instead of just the first one.

Example:

> (indexes-of '(1 2 1 2 1) 2)
'(1 3)

Added in version 6.7.0.3 of package base.

(indexes-where lst proc) Ñ (listof exact-nonnegative-integer?)
lst : list?
proc : (any/c . -> . any/c)

Like indexes-of but with the predicate-searching behavior of index-where.

Example:

> (indexes-where '(1 2 3 4) even?)
'(1 3)

Added in version 6.7.0.3 of package base.

341

(take lst pos) Ñ list?
lst : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the first pos elements of lst . If lst has fewer than
pos elements, the exn:fail:contract exception is raised.

The lst argument need not actually be a list; lst must merely start with a chain of at least
pos pairs.

Examples:

> (take '(1 2 3 4 5) 2)
'(1 2)
> (take 'non-list 0)
'()

(drop lst pos) Ñ any/c
lst : any/c
pos : exact-nonnegative-integer?

Just like list-tail.

(split-at lst pos) Ñ list? any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the same result as

(values (take lst pos) (drop lst pos))

except that it can be faster.

(takef lst pred) Ñ list?
lst : any/c
pred : procedure?

Returns a fresh list whose elements are taken successively from lst as long as they satisfy
pred . The returned list includes up to, but not including, the first element in lst for which
pred returns #f.

The lst argument need not actually be a list; the chain of pairs in lst will be traversed
until a non-pair is encountered.

Examples:

342

> (takef '(2 4 5 8) even?)
'(2 4)
> (takef '(2 4 6 8) odd?)
'()
> (takef '(2 4 . 6) even?)
'(2 4)

(dropf lst pred) Ñ any/c
lst : any/c
pred : procedure?

Drops elements from the front of lst as long as they satisfy pred .

Examples:

> (dropf '(2 4 5 8) even?)
'(5 8)
> (dropf '(2 4 6 8) odd?)
'(2 4 6 8)

(splitf-at lst pred) Ñ list? any/c
lst : any/c
pred : procedure?

Returns the same result as

(values (takef lst pred) (dropf lst pred))

except that it can be faster.

(take-right lst pos) Ñ any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the list’s pos -length tail. If lst has fewer than pos elements, then the
exn:fail:contract exception is raised.

The lst argument need not actually be a list; lst must merely end with a chain of at least
pos pairs.

Examples:

> (take-right '(1 2 3 4 5) 2)
'(4 5)
> (take-right 'non-list 0)
'non-list

343

(drop-right lst pos) Ñ list?
lst : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the prefix of lst , dropping its pos -length tail. If
lst has fewer than pos elements, then the exn:fail:contract exception is raised.

The lst argument need not actually be a list; lst must merely end with a chain of at least
pos pairs.

Examples:

> (drop-right '(1 2 3 4 5) 2)
'(1 2 3)
> (drop-right 'non-list 0)
'()

(split-at-right lst pos) Ñ list? any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the same result as

(values (drop-right lst pos) (take-right lst pos))

except that it can be faster.

Examples:

> (split-at-right '(1 2 3 4 5 6) 3)
'(1 2 3)
'(4 5 6)
> (split-at-right '(1 2 3 4 5 6) 4)
'(1 2)
'(3 4 5 6)

(takef-right lst pred) Ñ any/c
lst : any/c
pred : procedure?

(dropf-right lst pred) Ñ list?
lst : any/c
pred : procedure?

(splitf-at-right lst pred) Ñ list? any/c
lst : any/c
pred : procedure?

344

Like takef, dropf, and splitf-at, but combined with the from-right functionality of
take-right, drop-right, and split-at-right.

(list-prefix? l r [same?]) Ñ boolean?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

True if l is a prefix of r .

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))
#t

Added in version 6.3 of package base.

(take-common-prefix l r [same?]) Ñ list?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the longest common prefix of l and r .

Example:

> (take-common-prefix '(a b c d) '(a b x y z))
'(a b)

Added in version 6.3 of package base.

(drop-common-prefix l r [same?]) Ñ list? list?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the tails of l and r with the common prefix removed.

Example:

> (drop-common-prefix '(a b c d) '(a b x y z))
'(c d)
'(x y z)

Added in version 6.3 of package base.

345

(split-common-prefix l r [same?]) Ñ list? list? list?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the longest common prefix together with the tails of l and r with the common prefix
removed.

Example:

> (split-common-prefix '(a b c d) '(a b x y z))
'(a b)
'(c d)
'(x y z)

Added in version 6.3 of package base.

(add-between lst
v

[#:before-first before-first
#:before-last before-last
#:after-last after-last
#:splice? splice?]) Ñ list?

lst : list?
v : any/c
before-first : list? = '()
before-last : any/c = v
after-last : list? = '()
splice? : any/c = #f

Returns a list with the same elements as lst , but with v between each pair of elements
in lst ; the last pair of elements will have before-last between them, instead of v (but
before-last defaults to v).

If splice? is true, then v and before-last should be lists, and the list elements are spliced
into the result. In addition, when splice? is true, before-first and after-last are
inserted before the first element and after the last element respectively.

Examples:

> (add-between '(x y z) 'and)
'(x and y and z)
> (add-between '(x) 'and)
'(x)
> (add-between '("a" "b" "c" "d") "," #:before-last "and")
'("a" "," "b" "," "c" "and" "d")

346

> (add-between '(x y z) '(-) #:before-last '(- -)
#:before-first '(begin) #:after-last '(end LF)
#:splice? #t)

'(begin x - y - - z end LF)

(append* lst ... lsts) Ñ list?
lst : list?
lsts : (listof list?)

(append* lst ... lsts) Ñ any/c
lst : list?
lsts : list?

Like append, but the last argument is used as a list of arguments for append, so (append*
lst ... lsts) is the same as (apply append lst ... lsts). In other words, the
relationship between append and append* is similar to the one between list and list*.

Examples:

> (append* '(a) '(b) '((c) (d)))
'(a b c d)
> (cdr (append* (map (lambda (x) (list ", " x))

'("Alpha" "Beta" "Gamma"))))
'("Alpha" ", " "Beta" ", " "Gamma")

(flatten v) Ñ list?
v : any/c

Flattens an arbitrary S-expression structure of pairs into a list. More precisely, v is treated as
a binary tree where pairs are interior nodes, and the resulting list contains all of the non-null
leaves of the tree in the same order as an inorder traversal.

Examples:

> (flatten '((a) b (c (d) . e) ()))
'(a b c d e)
> (flatten 'a)
'(a)

(check-duplicates lst
[same?
#:key extract-key
#:default failure-result]) Ñ any

lst : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (-> any/c any/c) = (lambda (x) x)
failure-result : (failure-result/c any/c) = (lambda () #f)

347

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

If no duplicate is found, then failure-result determines the result:

• If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

• Otherwise, failure-result is returned as the result.

The same? argument should be an equivalence predicate such as equal? or eqv? or a dic-
tionary. The procedures equal?, eqv?, and eq? automatically use a dictionary for speed.

Examples:

> (check-duplicates '(1 2 3 4))
#f
> (check-duplicates '(1 2 3 2 1))
2
> (check-duplicates '((a 1) (b 2) (a 3)) #:key car)
'(a 3)
> (check-duplicates '(1 2 3 4 5 6)

(lambda (x y) (equal? (modulo x 3) (modulo y 3))))
4
> (check-duplicates '(1 2 3 4) #:default "no duplicates")
"no duplicates"

Added in version 6.3 of package base.
Changed in version 6.11.0.2: Added the #:default optional argument.

(remove-duplicates lst
[same?
#:key extract-key]) Ñ list?

lst : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (any/c . -> . any/c) = (lambda (x) x)

Returns a list that has all items in lst , but without duplicate items, where same? determines
whether two elements of the list are equivalent. The resulting list is in the same order as
lst , and for any item that occurs multiple times, the first one is kept.

The #:key argument extract-key is used to extract a key value from each list element,
so two items are considered equal if (same? (extract-key x) (extract-key y)) is
true.

Examples:

348

> (remove-duplicates '(a b b a))
'(a b)
> (remove-duplicates '(1 2 1.0 0))
'(1 2 1.0 0)
> (remove-duplicates '(1 2 1.0 0) =)
'(1 2 0)

(filter-map proc lst ...+) Ñ list?
proc : procedure?
lst : list?

Like (map proc lst ...), except that, if proc returns #false, that element is omitted
from the resulting list. In other words, filter-map is equivalent to (filter (lambda
(x) x) (map proc lst ...)), but more efficient, because filter-map avoids building
the intermediate list.

Example:

> (filter-map (lambda (x) (and (positive? x) x)) '(1 2 3 -2 8))
'(1 2 3 8)

(count proc lst ...+) Ñ exact-nonnegative-integer?
proc : procedure?
lst : list?

Returns (length (filter-map proc lst ...)), but without building the intermediate
list.

Example:

> (count positive? '(1 -1 2 3 -2 5))
4

(partition pred lst) Ñ list? list?
pred : procedure?
lst : list?

Similar to filter, except that two values are returned: the items for which pred returns a
true value, and the items for which pred returns #f.

The result is the same as

(values (filter pred lst) (filter (negate pred) lst))

349

but pred is applied to each item in lst only once.

Example:

> (partition even? '(1 2 3 4 5 6))
'(2 4 6)
'(1 3 5)

(range end) Ñ list?
end : real?

(range start end [step]) Ñ list?
start : real?
end : real?
step : real? = 1

Similar to in-range, but returns lists.

The resulting list holds numbers starting at start and whose successive elements are com-
puted by adding step to their predecessor until end (excluded) is reached. If no starting
point is provided, 0 is used. If no step argument is provided, 1 is used.

Like in-range, a range application can provide better performance when it appears directly
in a for clause.

Examples:

> (range 10)
'(0 1 2 3 4 5 6 7 8 9)
> (range 10 20)
'(10 11 12 13 14 15 16 17 18 19)
> (range 20 40 2)
'(20 22 24 26 28 30 32 34 36 38)
> (range 20 10 -1)
'(20 19 18 17 16 15 14 13 12 11)
> (range 10 15 1.5)
'(10 11.5 13.0 14.5)

Changed in version 6.7.0.4 of package base: Adjusted to cooperate with for in the same way that in-range does.

(append-map proc lst ...+) Ñ list?
proc : procedure?
lst : list?

Returns (append* (map proc lst ...)).

Example:

350

> (append-map vector->list '(#(1) #(2 3) #(4)))
'(1 2 3 4)

(filter-not pred lst) Ñ list?
pred : (any/c . -> . any/c)
lst : list?

Like filter, but the meaning of the pred predicate is reversed: the result is a list of all
items for which pred returns #f.

Example:

> (filter-not even? '(1 2 3 4 5 6))
'(1 3 5)

(shuffle lst) Ñ list?
lst : list?

Returns a list with all elements from lst , randomly shuffled.

Examples:

> (shuffle '(1 2 3 4 5 6))
'(5 1 2 3 4 6)
> (shuffle '(1 2 3 4 5 6))
'(5 1 3 2 6 4)
> (shuffle '(1 2 3 4 5 6))
'(1 3 2 6 5 4)

(combinations lst) Ñ list?
lst : list?

(combinations lst size) Ñ list?
lst : list?
size : exact-nonnegative-integer?

Wikipedia
combinations

Return a list of all combinations of elements in the input list (aka the powerset of lst). If
size is given, limit results to combinations of size elements.

Examples:

> (combinations '(1 2 3))
'(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))
> (combinations '(1 2 3) 2)
'((1 2) (1 3) (2 3))

351

https://en.wikipedia.org/wiki/Combination

(in-combinations lst) Ñ sequence?
lst : list?

(in-combinations lst size) Ñ sequence?
lst : list?
size : exact-nonnegative-integer?

Returns a sequence of all combinations of elements in the input list, or all combinations of
length size if size is given. Builds combinations one-by-one instead of all at once.

Examples:

> (time (begin (combinations (range 15)) (void)))
cpu time: 11 real time: 10 gc time: 0
> (time (begin (in-combinations (range 15)) (void)))
cpu time: 0 real time: 0 gc time: 0

(permutations lst) Ñ list?
lst : list?

Returns a list of all permutations of the input list. Note that this function works without
inspecting the elements, and therefore it ignores repeated elements (which will result in
repeated permutations). Raises an error if the input list contains more than 256 elements.

Examples:

> (permutations '(1 2 3))
'((1 2 3) (2 1 3) (1 3 2) (3 1 2) (2 3 1) (3 2 1))
> (permutations '(x x))
'((x x) (x x))

(in-permutations lst) Ñ sequence?
lst : list?

Returns a sequence of all permutations of the input list. It is equivalent to (in-list (per-
mutations l)) but much faster since it builds the permutations one-by-one on each itera-
tion Raises an error if the input list contains more than 256 elements.

(argmin proc lst) Ñ any/c
proc : (-> any/c real?)
lst : (and/c pair? list?)

Returns the first element in the list lst that minimizes the result of proc . Signals an error
on an empty list. See also min.

Examples:

352

> (argmin car '((3 pears) (1 banana) (2 apples)))
'(1 banana)
> (argmin car '((1 banana) (1 orange)))
'(1 banana)

(argmax proc lst) Ñ any/c
proc : (-> any/c real?)
lst : (and/c pair? list?)

Returns the first element in the list lst that maximizes the result of proc . Signals an error
on an empty list. See also max.

Examples:

> (argmax car '((3 pears) (1 banana) (2 apples)))
'(3 pears)
> (argmax car '((3 pears) (3 oranges)))
'(3 pears)

(group-by key lst [same?]) Ñ (listof list?)
key : (-> any/c any/c)
lst : list?
same? : (any/c any/c . -> . any/c) = equal?

Groups the given list into equivalence classes, with equivalence being determined by same?.
Within each equivalence class, group-by preserves the ordering of the original list. Equiv-
alence classes themselves are in order of first appearance in the input.

Example:

> (group-by (lambda (x) (modulo x 3)) '(1 2 1 2 54 2 5 43 7 2 643 1 2 0))
'((1 1 43 7 643 1) (2 2 2 5 2 2) (54 0))

Added in version 6.3 of package base.

(cartesian-product lst ...) Ñ (listof list?)
lst : list?

Computes the n-ary cartesian product of the given lists.

Examples:

> (cartesian-product '(1 2 3) '(a b c))
'((1 a) (1 b) (1 c) (2 a) (2 b) (2 c) (3 a) (3 b) (3 c))
> (cartesian-product '(4 5 6) '(d e f) '(#t #f))

353

'((4 d #t)
(4 d #f)
(4 e #t)
(4 e #f)
(4 f #t)
(4 f #f)
(5 d #t)
(5 d #f)
(5 e #t)
(5 e #f)
(5 f #t)
(5 f #f)
(6 d #t)
(6 d #f)
(6 e #t)
(6 e #f)
(6 f #t)
(6 f #f))

Added in version 6.3 of package base.

(remf pred lst) Ñ list?
pred : procedure?
lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))
'(1 3 4 -5)

Added in version 6.3 of package base.

(remf* pred lst) Ñ list?
pred : procedure?
lst : list?

Like remf, but removes all the elements for which pred produces a true value.

Example:

> (remf* negative? '(1 -2 3 4 -5))
'(1 3 4)

Added in version 6.3 of package base.

354

4.9.8 Immutable Cyclic Data

(make-reader-graph v) Ñ any/c
v : any/c

Returns a value like v , with placeholders created by make-placeholder replaced with the
values that they contain, and with placeholders created by make-hash-placeholder with
an immutable hash table. No part of v is mutated; instead, parts of v are copied as necessary
to construct the resulting graph, where at most one copy is created for any given value.

Since the copied values can be immutable, and since the copy is also immutable, make-
reader-graph can create cycles involving only immutable pairs, vectors, boxes, and hash
tables.

Only the following kinds of values are copied and traversed to detect placeholders:

• pairs

• vectors, both mutable and immutable

• boxes, both mutable and immutable

• hash tables, both mutable and immutable

• instances of a prefab structure type

• placeholders created by make-placeholder and make-hash-placeholder

Due to these restrictions, make-reader-graph creates exactly the same sort of cyclic values
as read.

Example:

> (let* ([ph (make-placeholder #f)]
[x (cons 1 ph)])

(placeholder-set! ph x)
(make-reader-graph x))

#0='(1 . #0#)

(placeholder? v) Ñ boolean?
v : any/c

Returns #t if v is a placeholder created by make-placeholder, #f otherwise.

(make-placeholder v) Ñ placeholder?
v : any/c

355

Returns a placeholder for use with placeholder-set! and make-reader-graph. The v
argument supplies the initial value for the placeholder.

(placeholder-set! ph datum) Ñ void?
ph : placeholder?
datum : any/c

Changes the value of ph to v.

(placeholder-get ph) Ñ any/c
ph : placeholder?

Returns the value of ph .

(hash-placeholder? v) Ñ boolean?
v : any/c

Returns #t if v is a placeholder created by make-hash-placeholder, #f otherwise.

(make-hash-placeholder assocs) Ñ hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hash, but produces a table placeholder for use with make-reader-
graph.

(make-hasheq-placeholder assocs) Ñ hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheq, but produces a table placeholder for use with make-
reader-graph.

(make-hasheqv-placeholder assocs) Ñ hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheqv, but produces a table placeholder for use with make-
reader-graph.

4.10 Mutable Pairs and Lists

A mutable pair is like a pair created by cons, but it supports set-mcar! and set-mcdr!
mutation operations to change the parts of the mutable pair (like traditional Lisp and Scheme
pairs).

356

A mutable list is analogous to a list created with pairs, but instead created with mutable pairs.

A mutable pair is not a pair; they are completely separate datatypes. Similarly, a mutable list
is not a list, except that the empty list is also the empty mutable list. Instead of programming
with mutable pairs and mutable lists, data structures such as pairs, lists, and hash tables are
practically always better choices.

A mutable list can be used as a single-valued sequence (see §4.14.1 “Sequences”). The
elements of the mutable list serve as elements of the sequence. See also in-mlist.

4.10.1 Mutable Pair Constructors and Selectors

(mpair? v) Ñ boolean?
v : any/c

Returns #t if v is a mutable pair, #f otherwise.

(mcons a d) Ñ mpair?
a : any/c
d : any/c

Returns a newly allocated mutable pair whose first element is a and second element is d .

(mcar p) Ñ any/c
p : mpair?

Returns the first element of the mutable pair p .

(mcdr p) Ñ any/c
p : mpair?

Returns the second element of the mutable pair p .

(set-mcar! p v) Ñ void?
p : mpair?
v : any/c

Changes the mutable pair p so that its first element is v .

(set-mcdr! p v) Ñ void?
p : mpair?
v : any/c

Changes the mutable pair p so that its second element is v .

357

4.11 Vectors
§3.9 “Vectors” in
The Racket Guide
introduces vectors.A vector is a fixed-length array with constant-time access and update of the vector slots,

which are numbered from 0 to one less than the number of slots in the vector.

Two vectors are equal? if they have the same length, and if the values in corresponding
slots of the vectors are equal?.

A vector can be mutable or immutable. When an immutable vector is provided to a procedure
like vector-set!, the exn:fail:contract exception is raised. Vectors generated by the
default reader (see §1.3.7 “Reading Strings”) are immutable.

A vector can be used as a single-valued sequence (see §4.14.1 “Sequences”). The elements
of the vector serve as elements of the sequence. See also in-vector.

A literal or printed vector starts with #(, optionally with a number between the # and (. See
§1.3.10 “Reading Vectors” for information on reading vectors and §1.4.7 “Printing Vectors”
for information on printing vectors.

(vector? v) Ñ boolean?
v : any/c

Returns #t if v is a vector, #f otherwise.

(make-vector size [v]) Ñ vector?
size : exact-nonnegative-integer?
v : any/c = 0

Returns a mutable vector with size slots, where all slots are initialized to contain v .

(vector v ...) Ñ vector?
v : any/c

Returns a newly allocated mutable vector with as many slots as provided vs, where the slots
are initialized to contain the given vs in order.

(vector-immutable v ...) Ñ (and/c vector?
immutable?)

v : any/c

Returns a newly allocated immutable vector with as many slots as provided vs, where the
slots are contain the given vs in order.

(vector-length vec) Ñ exact-nonnegative-integer?
vec : vector?

358

Returns the length of vec (i.e., the number of slots in the vector).

(vector-ref vec pos) Ñ any/c
vec : vector?
pos : exact-nonnegative-integer?

Returns the element in slot pos of vec . The first slot is position 0, and the last slot is one
less than (vector-length vec).

(vector-set! vec pos v) Ñ void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?
v : any/c

Updates the slot pos of vec to contain v .

(vector*-length vec) Ñ exact-nonnegative-integer?
vec : (and/c vector? (not/c impersonator?))

(vector*-ref vec pos) Ñ any/c
vec : (and/c vector? (not/c impersonator?))
pos : exact-nonnegative-integer?

(vector*-set! vec pos v) Ñ void?
vec : (and/c vector? (not/c immutable?) (not/c impersonator?))
pos : exact-nonnegative-integer?
v : any/c

Like vector-length, vector-ref, and vector-set!, but constrained to work on vectors
that are not impersonators.

Added in version 6.90.0.15 of package base.

(vector-cas! vec pos old-v new-v) Ñ boolean?
vec : (and/c vector? (not/c immutable?) (not/c impersonator?))
pos : exact-nonnegative-integer?
old-v : any/c
new-v : any/c

Compare and set operation for vectors. See box-cas!.

Added in version 6.11.0.2 of package base.

(vector->list vec) Ñ list?
vec : vector?

Returns a list with the same length and elements as vec .

359

(list->vector lst) Ñ vector?
lst : list?

Returns a mutable vector with the same length and elements as lst .

(vector->immutable-vector vec) Ñ (and/c vector? immutable?)
vec : vector?

Returns an immutable vector with the same length and elements as vec . If vec is itself
immutable, then it is returned as the result.

(vector-fill! vec v) Ñ void?
vec : (and/c vector? (not/c immutable?))
v : any/c

Changes all slots of vec to contain v .

(vector-copy! dest
dest-start
src

[src-start
src-end]) Ñ void?

dest : (and/c vector? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : vector?
src-start : exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (vector-length src)

Changes the elements of dest starting at position dest-start to match the elements in
src from src-start (inclusive) to src-end (exclusive). The vectors dest and src can
be the same vector, and in that case the destination region can overlap with the source region;
the destination elements after the copy match the source elements from before the copy. If
any of dest-start , src-start , or src-end are out of range (taking into account the sizes
of the vectors and the source and destination regions), the exn:fail:contract exception
is raised.

Examples:

> (define v (vector 'A 'p 'p 'l 'e))
> (vector-copy! v 4 #(y))
> (vector-copy! v 0 v 3 4)
> v
'#(l p p l y)

360

(vector->values vec [start-pos end-pos]) Ñ any
vec : vector?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (vector-length vec)

Returns end-pos - start-pos values, which are the elements of vec from start-pos
(inclusive) to end-pos (exclusive). If start-pos or end-pos are greater than (vector-
length vec), or if end-pos is less than start-pos , the exn:fail:contract exception
is raised.

(build-vector n proc) Ñ vector?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any/c)

Creates a vector of n elements by applying proc to the integers from 0 to (sub1 n) in
order. If vec is the resulting vector, then (vector-ref vec i) is the value produced by
(proc i).

Example:

> (build-vector 5 add1)
'#(1 2 3 4 5)

4.11.1 Additional Vector Functions

(require racket/vector) package: base

The bindings documented in this section are provided by the racket/vector and racket
libraries, but not racket/base.

(vector-set*! vec pos v) Ñ void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?
v : any/c

Updates each slot pos of vec to contain each v . The update takes place from the left so
later updates overwrite earlier updates.

(vector-map proc vec ...+) Ñ vector?
proc : procedure?
vec : vector?

Applies proc to the elements of the vecs from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied vecs, and

361

https://pkgs.racket-lang.org/package/base

all vecs must have the same number of elements. The result is a fresh vector containing
each result of proc in order.

Example:

> (vector-map + #(1 2) #(3 4))
'#(4 6)

(vector-map! proc vec ...+) Ñ vector?
proc : procedure?
vec : (and/c vector? (not/c immutable?))

Like vector-map, but result of proc is inserted into the first vec at the index that the
arguments to proc were taken from. The result is the first vec .

Examples:

> (define v (vector 1 2 3 4))
> (vector-map! add1 v)
'#(2 3 4 5)
> v
'#(2 3 4 5)

(vector-append vec ...) Ñ vector?
vec : vector?

Creates a fresh vector that contains all of the elements of the given vectors in order.

Example:

> (vector-append #(1 2) #(3 4))
'#(1 2 3 4)

(vector-take vec pos) Ñ vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the first pos elements of vec . If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-take #(1 2 3 4) 2)
'#(1 2)

362

(vector-take-right vec pos) Ñ vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the last pos elements of vec . If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-take-right #(1 2 3 4) 2)
'#(3 4)

(vector-drop vec pos) Ñ vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the elements of vec after the first pos elements.
If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-drop #(1 2 3 4) 2)
'#(3 4)

(vector-drop-right vec pos) Ñ vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the prefix of vec , dropping its pos -length tail. If
vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Examples:

> (vector-drop-right #(1 2 3 4) 1)
'#(1 2 3)
> (vector-drop-right #(1 2 3 4) 3)
'#(1)

(vector-split-at vec pos) Ñ vector? vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns the same result as

363

(values (vector-take vec pos) (vector-drop vec pos))

except that it can be faster.

Example:

> (vector-split-at #(1 2 3 4 5) 2)
'#(1 2)
'#(3 4 5)

(vector-split-at-right vec pos) Ñ vector? vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns the same result as

(values (vector-take-right vec pos) (vector-drop-right vec pos))

except that it can be faster.

Example:

> (vector-split-at-right #(1 2 3 4 5) 2)
'#(1 2 3)
'#(4 5)

(vector-copy vec [start end]) Ñ vector?
vec : vector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh vector of size (- end start), with all of the elements of vec from start
(inclusive) to end (exclusive).

Examples:

> (vector-copy #(1 2 3 4))
'#(1 2 3 4)
> (vector-copy #(1 2 3 4) 3)
'#(4)
> (vector-copy #(1 2 3 4) 2 3)
'#(3)

364

(vector-filter pred vec) Ñ vector?
pred : procedure?
vec : vector?

Returns a fresh vector with the elements of vec for which pred produces a true value. The
pred procedure is applied to each element from first to last.

Example:

> (vector-filter even? #(1 2 3 4 5 6))
'#(2 4 6)

(vector-filter-not pred vec) Ñ vector?
pred : procedure?
vec : vector?

Like vector-filter, but the meaning of the pred predicate is reversed: the result is a
vector of all items for which pred returns #f.

Example:

> (vector-filter-not even? #(1 2 3 4 5 6))
'#(1 3 5)

(vector-count proc vec ...+) Ñ exact-nonnegative-integer?
proc : procedure?
vec : vector?

Returns the number of elements of the vec ... (taken in parallel) on which proc does not
evaluate to #f.

Examples:

> (vector-count even? #(1 2 3 4 5))
2
> (vector-count = #(1 2 3 4 5) #(5 4 3 2 1))
1

(vector-argmin proc vec) Ñ any/c
proc : (-> any/c real?)
vec : vector?

This returns the first element in the non-empty vector vec that minimizes the result of proc .

Examples:

365

> (vector-argmin car #((3 pears) (1 banana) (2 apples)))
'(1 banana)
> (vector-argmin car #((1 banana) (1 orange)))
'(1 banana)

(vector-argmax proc vec) Ñ any/c
proc : (-> any/c real?)
vec : vector?

This returns the first element in the non-empty vector vec that maximizes the result of proc .

Examples:

> (vector-argmax car #((3 pears) (1 banana) (2 apples)))
'(3 pears)
> (vector-argmax car #((3 pears) (3 oranges)))
'(3 pears)

(vector-member v vec) Ñ (or/c natural-number/c #f)
v : any/c
vec : vector?

Locates the first element of vec that is equal? to v . If such an element exists, the index of
that element in vec is returned. Otherwise, the result is #f.

Examples:

> (vector-member 2 (vector 1 2 3 4))
1
> (vector-member 9 (vector 1 2 3 4))
#f

(vector-memv v vec) Ñ (or/c natural-number/c #f)
v : any/c
vec : vector?

Like vector-member, but finds an element using eqv?.

Examples:

> (vector-memv 2 (vector 1 2 3 4))
1
> (vector-memv 9 (vector 1 2 3 4))
#f

366

(vector-memq v vec) Ñ (or/c natural-number/c #f)
v : any/c
vec : vector?

Like vector-member, but finds an element using eq?.

Examples:

> (vector-memq 2 (vector 1 2 3 4))
1
> (vector-memq 9 (vector 1 2 3 4))
#f

(vector-sort vec
less-than?

[start
end
#:key key
#:cache-keys? cache-keys?]) Ñ vector?

vec : vector?
less-than? : (any/c any/c . -> . any/c)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length vec)
key : (any/c . -> . any/c) = (λ (x) x)
cache-keys? : boolean? = #f

Like sort, but operates on vectors; a fresh vector of length (- end start) is returned
containing the elements from indices start (inclusive) through end (exclusive) of vec ,
but in sorted order (i.e., vec is not modified). This sort is stable (i.e., the order of “equal”
elements is preserved).

Examples:

> (define v1 (vector 4 3 2 1))
> (vector-sort v1 <)
'#(1 2 3 4)
> v1
'#(4 3 2 1)
> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort v2 < 1 3 #:key car)
'#((2) (3))
> v2
'#((4) (3) (2) (1))

Added in version 6.6.0.5 of package base.

367

(vector-sort! vec
less-than?

[start
end
#:key key
#:cache-keys? cache-keys?]) Ñ void?

vec : (and/c vector? (not/c immutable?))
less-than? : (any/c any/c . -> . any/c)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length vec)
key : (any/c . -> . any/c) = (λ (x) x)
cache-keys? : boolean? = #f

Like vector-sort, but updates indices start (inclusive) through end (exclusive) of vec
by sorting them according to the less-than? procedure.

Examples:

> (define v1 (vector 4 3 2 1))
> (vector-sort! v1 <)
> v1
'#(1 2 3 4)
> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort! v2 < 1 3 #:key car)
> v2
'#((4) (2) (3) (1))

Added in version 6.6.0.5 of package base.

4.12 Boxes
§3.11 “Boxes” in
The Racket Guide
introduces boxes.A box is like a single-element vector, normally used as minimal mutable storage.

A literal or printed box starts with #&. See §1.3.13 “Reading Boxes” for information on
reading boxes and §1.4.10 “Printing Boxes” for information on printing boxes.

(box? v) Ñ boolean?
v : any/c

Returns #t if v is a box, #f otherwise.

(box v) Ñ box?
v : any/c

368

Returns a new mutable box that contains v .

(box-immutable v) Ñ (and/c box? immutable?)
v : any/c

Returns a new immutable box that contains v .

(unbox box) Ñ any/c
box : box?

Returns the content of box .

For any v, (unbox (box v)) returns v.

(set-box! box v) Ñ void?
box : (and/c box? (not/c immutable?))
v : any/c

Sets the content of box to v .

(unbox* box) Ñ any/c
box : (and box? (not/c impersonator?))

(set-box*! box v) Ñ void?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
v : any/c

Like unbox and set-box!, but constrained to work on boxes that are not impersonators.

Added in version 6.90.0.15 of package base.

(box-cas! box old new) Ñ boolean?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
old : any/c
new : any/c

Atomically updates the contents of box to new , provided that box currently contains a value
that is eq? to old , and returns #t in that case. If box does not contain old , then the result
is #f.

If no other threads or futures attempt to access box , the operation is equivalent to

(and (eq? old (unbox loc)) (set-box! loc new) #t)

When Racket is compiled with support for futures, box-cas! uses a hardware compare and
set operation. Uses of box-cas! be performed safely in a future (i.e., allowing the future
thunk to continue in parallel).

369

4.13 Hash Tables
§3.10 “Hash
Tables” in The
Racket Guide
introduces hash
tables.

A hash table (or simply hash) maps each of its keys to a single value. For a given hash
table, keys are equivalent via equal?, eqv?, or eq?, and keys are retained either strongly
or weakly (see §16.1 “Weak Boxes”). A hash table is also either mutable or immutable.
Immutable hash tables support effectively constant-time access and update, just like mutable
hash tables; the constant on immutable operations is usually larger, but the functional nature
of immutable hash tables can pay off in certain algorithms. Immutable hash

tables actually
provide O(log N)
access and update.
Since N is limited
by the address
space so that log N
is limited to less
than 30 or 62
(depending on the
platform), log N
can be treated
reasonably as a
constant.

For equal?-based hashing, the built-in hash functions on strings, pairs, lists, vectors, prefab
or transparent structures, etc., take time proportional to the size of the value. The hash code
for a compound data structure, such as a list or vector, depends on hashing each item of the
container, but the depth of such recursive hashing is limited (to avoid potential problems
with cyclic data). For a non-list pair, both car and cdr hashing is treated as a deeper hash,
but the cdr of a list is treated as having the same hashing depth as the list.

A hash table can be used as a two-valued sequence (see §4.14.1 “Sequences”). The keys
and values of the hash table serve as elements of the sequence (i.e., each element is a key
and its associated value). If a mapping is added to or removed from the hash table during
iteration, then an iteration step may fail with exn:fail:contract, or the iteration may
skip or duplicate keys and values. See also in-hash, in-hash-keys, in-hash-values,
and in-hash-pairs.

Two hash tables cannot be equal? unless they use the same key-comparison procedure
(equal?, eqv?, or eq?), both hold keys strongly or weakly, and have the same mutability.
Empty immutable hash tables are eq? when they are equal?.

Changed in version 7.2.0.9 of package base: Made empty immutable hash tables eq? when they are equal?.

Caveats concerning concurrent modification: A mutable hash table can be manipulated
with hash-ref, hash-set!, and hash-remove! concurrently by multiple threads, and the
operations are protected by a table-specific semaphore as needed. Three caveats apply, how-
ever:

• If a thread is terminated while applying hash-ref, hash-set!, hash-remove!,
hash-ref!, or hash-update! to a hash table that uses equal? or eqv? key com-
parisons, all current and future operations on the hash table may block indefinitely.

• The hash-map, hash-for-each, and hash-clear! procedures do not use the table’s
semaphore to guard the traversal as a whole. Changes by one thread to a hash table
can affect the keys and values seen by another thread part-way through its traversal of
the same hash table.

• The hash-update! and hash-ref! functions use a table’s semaphore independently
for the hash-ref and hash-set! parts of their functionality, which means that the
update as a whole is not “atomic.”

370

Caveat concerning mutable keys: If a key in an equal?-based hash table is mutated (e.g.,
a key string is modified with string-set!), then the hash table’s behavior for insertion and
lookup operations becomes unpredictable.

A literal or printed hash table starts with #hash, #hasheqv, or #hasheq. See §1.3.12 “Read-
ing Hash Tables” for information on reading hash tables and §1.4.9 “Printing Hash Tables”
for information on printing hash tables.

(hash? v) Ñ boolean?
v : any/c

Returns #t if v is a hash table, #f otherwise.

(hash-equal? hash) Ñ boolean?
hash : hash?

Returns #t if hash compares keys with equal?, #f if it compares with eq? or eqv?.

(hash-eqv? hash) Ñ boolean?
hash : hash?

Returns #t if hash compares keys with eqv?, #f if it compares with equal? or eq?.

(hash-eq? hash) Ñ boolean?
hash : hash?

Returns #t if hash compares keys with eq?, #f if it compares with equal? or eqv?.

(hash-weak? hash) Ñ boolean?
hash : hash?

Returns #t if hash retains its keys weakly, #f if it retains keys strongly.

(hash key val) Ñ (and/c hash? hash-equal? immutable?)
key : any/c
val : any/c

(hasheq key val) Ñ (and/c hash? hash-eq? immutable?)
key : any/c
val : any/c

(hasheqv key val) Ñ (and/c hash? hash-eqv? immutable?)
key : any/c
val : any/c

Creates an immutable hash table with each given key mapped to the following val ; each
key must have a val , so the total number of arguments to hash must be even.

371

The hash procedure creates a table where keys are compared with equal?, hasheq proce-
dure creates a table where keys are compared with eq?, and hasheqv procedure creates a
table where keys are compared with eqv?.

The key to val mappings are added to the table in the order that they appear in the argument
list, so later mappings can hide earlier mappings if the keys are equal.

(make-hash [assocs]) Ñ (and/c hash? hash-equal?)
assocs : (listof pair?) = null

(make-hasheqv [assocs]) Ñ (and/c hash? hash-eqv?)
assocs : (listof pair?) = null

(make-hasheq [assocs]) Ñ (and/c hash? hash-eq?)
assocs : (listof pair?) = null

Creates a mutable hash table that holds keys strongly.

The make-hash procedure creates a table where keys are compared with equal?, make-
hasheq procedure creates a table where keys are compared with eq?, and make-hasheqv
procedure creates a table where keys are compared with eqv?.

The table is initialized with the content of assocs . In each element of assocs , the car is
a key, and the cdr is the corresponding value. The mappings are added to the table in the
order that they appear in assocs , so later mappings can hide earlier mappings.

See also make-custom-hash.

(make-weak-hash [assocs]) Ñ (and/c hash? hash-equal? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheqv [assocs]) Ñ (and/c hash? hash-eqv? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheq [assocs]) Ñ (and/c hash? hash-eq? hash-weak?)
assocs : (listof pair?) = null

Like make-hash, make-hasheq, and make-hasheqv, but creates a mutable hash table that
holds keys weakly.

Beware that values in the table are retained normally. If a value in the table refers back to
its key, then the table will retain the value and therefore the key; the mapping will never
be removed from the table even if the key becomes otherwise inaccessible. To avoid that
problem, instead of mapping the key to the value, map the key to an ephemeron that pairs
the key and value. Beware further, however, that an ephemeron’s value might be cleared
between retrieving an ephemeron and extracting its value, depending on whether the key
is otherwise reachable. For eq?-based mappings, consider using the pattern (ephemeron-
value ephemeron #f key) to extract the value of ephemeron while ensuring that key
is retained until the value is extracted.

372

(make-immutable-hash [assocs])
Ñ (and/c hash? hash-equal? immutable?)
assocs : (listof pair?) = null

(make-immutable-hasheqv [assocs])
Ñ (and/c hash? hash-eqv? immutable?)
assocs : (listof pair?) = null

(make-immutable-hasheq [assocs])
Ñ (and/c hash? hash-eq? immutable?)
assocs : (listof pair?) = null

Like hash, hasheq, and hasheqv, but accepts the key–value mapping in association-list
form like make-hash, make-hasheq, and make-hasheqv.

(hash-set! hash key v) Ñ void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps key to v in hash , overwriting any existing mapping for key .

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set*! hash key v) Ñ void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps each key to each v in hash , overwriting any existing mapping for each key . Map-
pings are added from the left, so later mappings overwrite earlier mappings.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set hash key v) Ñ (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping key to v , overwriting any existing mapping for key ,
and returning the extended hash table.

See also the caveat concerning mutable keys above.

(hash-set* hash key v) Ñ (and/c hash? immutable?)

373

hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping each key to v , overwriting any existing mapping
for each key , and returning the extended hash table. Mappings are added from the left, so
later mappings overwrite earlier mappings.

See also the caveat concerning mutable keys above.

(hash-ref hash key [failure-result]) Ñ any
hash : hash?
key : any/c
failure-result : (failure-result/c any/c)

= (lambda ()
(raise (make-exn:fail:contract)))

Returns the value for key in hash . If no value is found for key , then failure-result
determines the result:

• If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

• Otherwise, failure-result is returned as the result.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-ref! hash key to-set) Ñ any
hash : hash?
key : any/c
to-set : (failure-result/c any/c)

Returns the value for key in hash . If no value is found for key , then to-set determines
the result as in hash-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in hash for the key . (Note that if to-set is a thunk, it is not invoked in
tail position.)

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-has-key? hash key) Ñ boolean?
hash : hash?
key : any/c

374

Returns #t if hash contains a value for the given key , #f otherwise.

(hash-update! hash
key
updater

[failure-result]) Ñ void?
hash : (and/c hash? (not/c immutable?))
key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)

= (lambda ()
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set! to update an existing mapping in hash , where the
optional failure-result argument is used as in hash-ref when no mapping exists for
key already. See the caveat above about concurrent updates.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-update hash key updater [failure-result])
Ñ (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)

= (lambda ()
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set to functionally update an existing mapping in hash ,
where the optional failure-result argument is used as in hash-ref when no mapping
exists for key already.

See also the caveat concerning mutable keys above.

(hash-remove! hash key) Ñ void?
hash : (and/c hash? (not/c immutable?))
key : any/c

Removes any existing mapping for key in hash .

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-remove hash key) Ñ (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c

375

Functionally removes any existing mapping for key in hash , returning the fresh hash table.

See also the caveat concerning mutable keys above.

(hash-clear! hash) Ñ void?
hash : (and/c hash? (not/c immutable?))

Removes all mappings from hash .

If hash is not an impersonator, then all mappings are removed in constant time. If hash is
an impersonator, then each key is removed one-by-one using hash-remove!.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-clear hash) Ñ (and/c hash? immutable?)
hash : (and/c hash? immutable?)

Functionally removes all mappings from hash .

If hash is not a chaperone, then clearing is equivalent to creating a new hash table, and the
operation is performed in constant time. If hash is a chaperone, then each key is removed
one-by-one using hash-remove.

(hash-copy-clear hash) Ñ hash?
hash : hash?

Produces an empty hash table with the same key-comparison procedure and mutability of
hash .

(hash-map hash proc [try-order?]) Ñ (listof any/c)
hash : hash?
proc : (any/c any/c . -> . any/c)
try-order? : any/c = #f

Applies the procedure proc to each element in hash in an unspecified order, accumulating
the results into a list. The procedure proc is called each time with a key and its value, and
the procedure’s individual results appear in order in the result list.

If a hash table is extended with new keys (either through proc or by another thread) while
a hash-map or hash-for-each traversal is in process, arbitrary key–value pairs can be
dropped or duplicated in the traversal. Key mappings can be deleted or remapped (by any
thread) with no adverse affects; the change does not affect a traversal if the key has been seen
already, otherwise the traversal skips a deleted key or uses the remapped key’s new value.

See also the caveats concerning concurrent modification above.

376

If try-order? is true, then the order of keys and values passed to proc is normalized
under certain circumstances—including when every key is one of the following and with the
following order (earlier bullets before later):

• booleans sorted #f before #t;

• characters sorted by char<?;

• real numbers sorted by <;

• symbols sorted with uninterned symbols before unreadable symbols before interned
symbols, then sorted by symbol<?;

• keywords sorted by keyword<?;

• strings sorted by string<?;

• byte strings sorted by bytes<?;

• null;

• #<void>; and

• eof.

Changed in version 6.3 of package base: Added the try-order? argument.
Changed in version 7.1.0.7: Added guarantees for try-order?.

(hash-keys hash) Ñ (listof any/c)
hash : hash?

Returns a list of the keys of hash in an unspecified order.

See hash-map for information about modifying hash during hash-keys.

See also the caveats concerning concurrent modification above.

(hash-values hash) Ñ (listof any/c)
hash : hash?

Returns a list of the values of hash in an unspecified order.

See hash-map for information about modifying hash during hash-values.

See also the caveats concerning concurrent modification above.

(hash->list hash) Ñ (listof (cons/c any/c any/c))
hash : hash?

377

Returns a list of the key–value pairs of hash in an unspecified order.

See hash-map for information about modifying hash during hash->list.

See also the caveats concerning concurrent modification above.

(hash-keys-subset? hash1 hash2) Ñ boolean?
hash1 : hash?
hash2 : hash?

Returns #t if the keys of hash1 are a subset of or the same as the keys of hash2 . The hash
tables must both use the same key-comparison function (equal?, eqv?, or eq?), otherwise
the exn:fail:contract exception is raised.

Using hash-keys-subset? on immutable hash tables can be much faster than iterating
through the keys of hash1 to make sure that each is in hash2 .

Added in version 6.5.0.8 of package base.

(hash-for-each hash proc [try-order?]) Ñ void?
hash : hash?
proc : (any/c any/c . -> . any)
try-order? : any/c = #f

Applies proc to each element in hash (for the side-effects of proc) in an unspecified order.
The procedure proc is called each time with a key and its value.

See hash-map for information about try-order? and about modifying hash within proc .

See also the caveats concerning concurrent modification above.

Changed in version 6.3 of package base: Added the try-order? argument.
Changed in version 7.1.0.7: Added guarantees for try-order?.

(hash-count hash) Ñ exact-nonnegative-integer?
hash : hash?

Returns the number of keys mapped by hash . Unless hash retains keys weakly, the result
is computed in constant time and atomically. If hash retains it keys weakly, a traversal is
required to count the keys.

(hash-empty? hash) Ñ boolean?
hash : hash?

Equivalent to (zero? (hash-count hash)).

378

(hash-iterate-first hash)
Ñ (or/c #f exact-nonnegative-integer?)
hash : hash?

Returns #f if hash contains no elements, otherwise it returns an integer that is an index
to the first element in the hash table; “first” refers to an unspecified ordering of the table
elements, and the index values are not necessarily consecutive integers.

For a mutable hash , this index is guaranteed to refer to the first item only as long as no
items are added to or removed from hash . More generally, an index is guaranteed to be a
valid hash index for a given hash table only as long it comes from hash-iterate-first
or hash-iterate-next, and only as long as the hash table is not modified. In the case of a
hash table with weakly held keys, the hash table can be implicitly modified by the garbage
collector (see §1.1.7 “Garbage Collection”) when it discovers that the key is not reachable.

(hash-iterate-next hash pos)
Ñ (or/c #f exact-nonnegative-integer?)
hash : hash?
pos : exact-nonnegative-integer?

Returns either an integer that is an index to the element in hash after the element indexed
by pos (which is not necessarily one more than pos) or #f if pos refers to the last element
in hash .

If pos is not a valid hash index of hash , then the result may be #f or it may be the next later
index that remains valid. The latter result is guaranteed if a hash table has been modified
only by the removal of keys.

Changed in version 7.0.0.10 of package base: Handle an invalid index by returning #f instead of raising
exn:fail:contract.

(hash-iterate-key hash pos) Ñ any/c
hash : hash?
pos : exact-nonnegative-integer?

(hash-iterate-key hash pos bad-index-v) Ñ any/c
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns the key for the element in hash at index pos .

If pos is not a valid hash index for hash , the result is bad-index-v if provided, otherwise
the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

379

(hash-iterate-value hash pos) Ñ any
hash : hash?
pos : exact-nonnegative-integer?

(hash-iterate-value hash pos bad-index-v) Ñ any
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns the value for the element in hash at index pos .

If pos is not a valid hash index for hash , the result is bad-index-v if provided, otherwise
the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(hash-iterate-pair hash pos) Ñ (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?

(hash-iterate-pair hash pos bad-index-v) Ñ (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns a pair containing the key and value for the element in hash at index pos .

If pos is not a valid hash index for hash , the result is (cons bad-index-v bad-index-
v) if bad-index-v is provided, otherwise the exn:fail:contract exception is raised.

Added in version 6.4.0.5 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(hash-iterate-key+value hash pos) Ñ any/c any/c
hash : hash?
pos : exact-nonnegative-integer?

(hash-iterate-key+value hash
pos
bad-index-v) Ñ any/c any/c

hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns the key and value for the element in hash at index pos .

If pos is not a valid hash index for hash , the result is (values bad-index-v bad-
index-v) if bad-index-v is provided, otherwise the exn:fail:contract exception is
raised.

380

Added in version 6.4.0.5 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(hash-copy hash) Ñ (and/c hash? (not/c immutable?))
hash : hash?

Returns a mutable hash table with the same mappings, same key-comparison mode, and
same key-holding strength as hash .

(eq-hash-code v) Ñ fixnum?
v : any/c

Returns a fixnum; for any two calls with eq? values, the returned number is the same. Equal fixnums are
always eq?.

(eqv-hash-code v) Ñ fixnum?
v : any/c

Returns a fixnum; for any two calls with eqv? values, the returned number is the same.

(equal-hash-code v) Ñ fixnum?
v : any/c

Returns a fixnum; for any two calls with equal? values, the returned number is the same. A
hash code is computed even when v contains a cycle through pairs, vectors, boxes, and/or
inspectable structure fields. See also gen:equal+hash.

For any v that could be produced by read, if v2 is produced by read for the same input
characters, the (equal-hash-code v) is the same as (equal-hash-code v2) — even
if v and v2 do not exist at the same time (and therefore could not be compared by calling
equal?).

Changed in version 6.4.0.12 of package base: Strengthened guarantee for readable values.

(equal-secondary-hash-code v) Ñ fixnum?
v : any/c

Like equal-hash-code, but computes a secondary value suitable for use in double hashing.

4.13.1 Additional Hash Table Functions

(require racket/hash) package: base

The bindings documented in this section are provided by the racket/hash library, not
racket/base or racket.

381

https://pkgs.racket-lang.org/package/base

(hash-union h0
h ...

[#:combine combine
#:combine/key combine/key])

Ñ (and/c hash? immutable?)
h0 : (and/c hash? immutable?)
h : hash?
combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union))
combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0
already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (hash-union (make-immutable-hash '([1 . one]))
(make-immutable-hash '([2 . two]))
(make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))
> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 eins un] [2 zwei deux]))
#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))

(hash-union! h0
h ...

[#:combine combine
#:combine/key combine/key]) Ñ void?

h0 : (and/c hash? (not/c immutable?))
h : hash?
combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union))
combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0
already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (define h (make-hash))

382

> h
'#hash()
> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))
> h
'#hash((1 . (one uno)) (2 . (two dos)))
> (hash-union! h

(make-immutable-hash '([1 eins un] [2 zwei deux]))
#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h
'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))

4.14 Sequences and Streams

Sequences and streams abstract over iteration of elements in a collection. Sequences allow
iteration with for macros or with sequence operations such as sequence-map. Streams
are functional sequences that can be used either in a generic way or a stream-specific way.
Generators are closely related stateful objects that can be converted to a sequence and vice-
versa.

4.14.1 Sequences
§11.1 “Sequence
Constructors” in
The Racket Guide
introduces
sequences.

A sequence encapsulates an ordered collection of values. The elements of a sequence can be
extracted with one of the for syntactic forms, with the procedures returned by sequence-
generate, or by converting the sequence into a stream.

The sequence datatype overlaps with many other datatypes. Among built-in datatypes, the
sequence datatype includes the following:

• exact nonnegative integers (see below)

• strings (see §4.3 “Strings”)

• byte strings (see §4.4 “Byte Strings”)

• lists (see §4.9 “Pairs and Lists”)

• mutable lists (see §4.10 “Mutable Pairs and Lists”)

• vectors (see §4.11 “Vectors”)

• flvectors (see §4.2.3.2 “Flonum Vectors”)

• fxvectors (see §4.2.4.2 “Fixnum Vectors”)

• hash tables (see §4.13 “Hash Tables”)

383

• dictionaries (see §4.15 “Dictionaries”)

• sets (see §4.16 “Sets”)

• input ports (see §13.1 “Ports”)

• streams (see §4.14.2 “Streams”)

An exact number k that is a non-negative integer acts as a sequence similar to (in-range
k), except that k by itself is not a stream.

Custom sequences can be defined using structure type properties. The easiest method to
define a custom sequence is to use the gen:stream generic interface. Streams are a suitable
abstraction for data structures that are directly iterable. For example, a list is directly iterable
with first and rest. On the other hand, vectors are not directly iterable: iteration has to
go through an index. For data structures that are not directly iterable, the iterator for the data
structure can be defined to be a stream (e.g., a structure containing the index of a vector).

For example, unrolled linked lists (represented as a list of vectors) themselves do not fit the
stream abstraction, but have index-based iterators that can be represented as streams:

Examples:

> (struct unrolled-list-iterator (idx lst)
#:methods gen:stream
[(define (stream-empty? iter)

(define lst (unrolled-list-iterator-lst iter))
(or (null? lst)

(and (>= (unrolled-list-iterator-idx iter)
(vector-length (first lst)))

(null? (rest lst)))))
(define (stream-first iter)
(vector-ref (first (unrolled-list-iterator-lst iter))

(unrolled-list-iterator-idx iter)))
(define (stream-rest iter)
(define idx (unrolled-list-iterator-idx iter))
(define lst (unrolled-list-iterator-lst iter))
(if (>= idx (sub1 (vector-length (first lst))))

(unrolled-list-iterator 0 (rest lst))
(unrolled-list-iterator (add1 idx) lst)))])

> (define (make-unrolled-list-iterator ul)
(unrolled-list-iterator 0 (unrolled-list-lov ul)))

> (struct unrolled-list (lov)
#:property prop:sequence
make-unrolled-list-iterator)

> (define ul1 (unrolled-list '(#(cracker biscuit) #(cookie scone))))
> (for/list ([x ul1]) x)
'(cracker biscuit cookie scone)

384

The prop:sequence property provides more flexibility in specifying iteration, such as when
a pre-processing step is needed to prepare the data for iteration. The make-do-sequence
function creates a sequence given a thunk that returns procedures to implement a sequence,
and the prop:sequence property can be associated with a structure type to implement its
implicit conversion to a sequence.

For most sequence types, extracting elements from a sequence has no side-effect on the
original sequence value; for example, extracting the sequence of elements from a list does
not change the list. For other sequence types, each extraction implies a side effect; for
example, extracting the sequence of bytes from a port causes the bytes to be read from the
port. A sequence’s state may either span all uses of the sequence, as for a port, or it may
be confined to each distinct time that a sequence is initiated by a for form, sequence-
>stream, sequence-generate, or sequence-generate*. Concretely, the thunk passed
to make-do-sequence is called to initiate the sequence each time the sequence is used.

Individual elements of a sequence typically correspond to single values, but an element may
also correspond to multiple values. For example, a hash table generates two values—a key
and its value—for each element in the sequence.

Sequence Predicate and Constructors

(sequence? v) Ñ boolean?
v : any/c

Returns #t if v can be used as a sequence, #f otherwise.

Examples:

> (sequence? 42)
#t
> (sequence? '(a b c))
#t
> (sequence? "word")
#t
> (sequence? #\x)
#f

(in-range end) Ñ stream?
end : real?

(in-range start end [step]) Ñ stream?
start : real?
end : real?
step : real? = 1

Returns a sequence (that is also a stream) whose elements are numbers. The single-argument
case (in-range end) is equivalent to (in-range 0 end 1). The first number in the

385

sequence is start , and each successive element is generated by adding step to the previous
element. The sequence stops before an element that would be greater or equal to end if step
is non-negative, or less or equal to end if step is negative.

An in-range application can provide better performance for number iteration when it ap-
pears directly in a for clause.

Example: gaussian sum

> (for/sum ([x (in-range 10)]) x)
45

Example: sum of even numbers

> (for/sum ([x (in-range 0 100 2)]) x)
2450

When given zero as step , in-range returns an infinite sequence. It may also return infinite
sequences when step is a very small number, and either step or the sequence elements are
floating-point numbers.

(in-naturals [start]) Ñ stream?
start : exact-nonnegative-integer? = 0

Returns an infinite sequence (that is also a stream) of exact integers starting with start ,
where each element is one more than the preceding element.

An in-naturals application can provide better performance for integer iteration when it
appears directly in a for clause.

Example:

> (for/list ([k (in-naturals)]
[x (in-range 10)])

(list k x))
'((0 0) (1 1) (2 2) (3 3) (4 4) (5 5) (6 6) (7 7) (8 8) (9 9))

(in-list lst) Ñ stream?
lst : list?

Returns a sequence (that is also a stream) that is equivalent to using lst directly as a se-
quence. See §4.9 “Pairs and

Lists” for
information on
using lists as
sequences.

An in-list application can provide better performance for list iteration when it appears
directly in a for clause.

386

See for for information on the reachability of list elements during an iteration.

Example:

> (for/list ([x (in-list '(3 1 4))])
`(,x ,(* x x)))

'((3 9) (1 1) (4 16))

Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for lists in for.

(in-mlist mlst) Ñ sequence?
mlst : mlist?

Returns a sequence equivalent to mlst . See §4.10 “Mutable
Pairs and Lists” for
information on
using mutable lists
as sequences.

An in-mlist application can provide better performance for mutable list iteration when it
appears directly in a for clause.

Example:

> (for/list ([x (in-mlist (mcons "RACKET" (mcons "LANG" '())))])
(string-length x))

'(6 4)

(in-vector vec [start stop step]) Ñ sequence?
vec : vector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to vec when no optional arguments are supplied. See §4.11 “Vectors”
for information on
using vectors as
sequences.

The optional arguments start , stop , and step are analogous to in-range, except that
a #f value for stop is equivalent to (vector-length vec). That is, the first element in
the sequence is (vector-ref vec start), and each successive element is generated by
adding step to index of the previous element. The sequence stops before an index that
would be greater or equal to end if step is non-negative, or less or equal to end if step is
negative.

If start is not a valid index, then the exn:fail:contract exception is raised, except
when start , stop , and (vector-length vec) are equal, in which case the result is an
empty sequence.

Examples:

> (for ([x (in-vector (vector 1) 1)]) x)

387

> (for ([x (in-vector (vector 1) 2)]) x)
in-vector: starting index is out of range

starting index: 2
valid range: [0, 0]
vector: '#(1)

> (for ([x (in-vector (vector) 0 0)]) x)
> (for ([x (in-vector (vector 1) 1 1)]) x)

If stop is not in [-1, (vector-length vec)], then the exn:fail:contract exception is
raised.

If start is less than stop and step is negative, then the exn:fail:contract excep-
tion is raised. Similarly, if start is more than stop and step is positive, then the
exn:fail:contract exception is raised.

An in-vector application can provide better performance for vector iteration when it ap-
pears directly in a for clause.

Examples:

> (define (histogram vector-of-words)
(define a-hash (make-hash))
(for ([word (in-vector vector-of-words)])
(hash-set! a-hash word (add1 (hash-ref a-hash word 0))))

a-hash)
> (histogram #("hello" "world" "hello" "sunshine"))
'#hash(("hello" . 2) ("sunshine" . 1) ("world" . 1))

(in-string str [start stop step]) Ñ sequence?
str : string?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to str when no optional arguments are supplied. See §4.3 “Strings”
for information on
using strings as
sequences.

The optional arguments start , stop , and step are as in in-vector.

An in-string application can provide better performance for string iteration when it ap-
pears directly in a for clause.

Examples:

> (define (line-count str)
(for/sum ([ch (in-string str)])
(if (char=? #\newline ch) 1 0)))

388

> (line-count "this string\nhas\nthree \nnewlines")
3

(in-bytes bstr [start stop step]) Ñ sequence?
bstr : bytes?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to bstr when no optional arguments are supplied. See §4.4 “Byte
Strings” for
information on
using byte strings as
sequences.

The optional arguments start , stop , and step are as in in-vector.

An in-bytes application can provide better performance for byte string iteration when it
appears directly in a for clause.

Examples:

> (define (has-eof? bs)
(for/or ([ch (in-bytes bs)])
(= ch 0)))

> (has-eof? #"this byte string has an \0embedded zero byte")
#t
> (has-eof? #"this byte string does not")
#f

(in-port [r in]) Ñ sequence?
r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)

Returns a sequence whose elements are produced by calling r on in until it produces eof.

(in-input-port-bytes in) Ñ sequence?
in : input-port?

Returns a sequence equivalent to (in-port read-byte in).

(in-input-port-chars in) Ñ sequence?
in : input-port?

Returns a sequence whose elements are read as characters from in (equivalent to (in-port
read-char in)).

(in-lines [in mode]) Ñ sequence?
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any

389

Returns a sequence equivalent to (in-port (lambda (p) (read-line p mode)) in).
Note that the default mode is 'any, whereas the default mode of read-line is 'linefeed.

(in-bytes-lines [in mode]) Ñ sequence?
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any

Returns a sequence equivalent to (in-port (lambda (p) (read-bytes-line p
mode)) in). Note that the default mode is 'any, whereas the default mode of read-
bytes-line is 'linefeed.

(in-hash hash) Ñ sequence?
hash : hash?

(in-hash hash bad-index-v) Ñ sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence equivalent to hash , except when bad-index-v is supplied.

If bad-index-v is supplied, then bad-index-v is returned as both the key and the value in
the case that the hash is modified concurrently so that iteration does not have a valid hash
index. Providing bad-index-v is particularly useful when iterating through a hash table
with weakly held keys, since entries can be removed asynchronously (i.e., after in-hash
has committed to another iteration, but before it can access the entry for the next iteration).

Examples:

> (define table (hash 'a 1 'b 2))
> (for ([(key value) (in-hash table)])

(printf "key: „a value: „a\n" key value))
key: a value: 1
key: b value: 2

See §4.13 “Hash
Tables” for
information on
using hash tables as
sequences.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-hash-keys hash) Ñ sequence?
hash : hash?

(in-hash-keys hash bad-index-v) Ñ sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are the keys of hash , using bad-index-v in the same
way as in-hash.

Examples:

390

> (define table (hash 'a 1 'b 2))
> (for ([key (in-hash-keys table)])

(printf "key: „a\n" key))
key: a
key: b

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-hash-values hash) Ñ sequence?
hash : hash?

(in-hash-values hash bad-index-v) Ñ sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are the values of hash , using bad-index-v in the same
way as in-hash.

Examples:

> (define table (hash 'a 1 'b 2))
> (for ([value (in-hash-values table)])

(printf "value: „a\n" value))
value: 1
value: 2

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-hash-pairs hash) Ñ sequence?
hash : hash?

(in-hash-pairs hash bad-index-v) Ñ sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are pairs, each containing a key and its value from hash
(as opposed to using hash directly as a sequence to get the key and value as separate values
for each element).

The bad-index-v argument, if supplied, is used in the same way as by in-hash. When an
invalid index is encountered, the pair in the sequence with have bad-index-v as both its
car and cdr.

Examples:

> (define table (hash 'a 1 'b 2))
> (for ([key+value (in-hash-pairs table)])

(printf "key and value: „a\n" key+value))

391

key and value: (a . 1)
key and value: (b . 2)

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-mutable-hash hash) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))

(in-mutable-hash hash bad-index-v) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c

(in-mutable-hash-keys hash) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))

(in-mutable-hash-keys hash bad-index-v) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c

(in-mutable-hash-values hash) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))

(in-mutable-hash-values hash bad-index-v) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c

(in-mutable-hash-pairs hash) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))

(in-mutable-hash-pairs hash bad-index-v) Ñ sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c

(in-immutable-hash hash) Ñ sequence?
hash : (and/c hash? immutable?)

(in-immutable-hash hash bad-index-v) Ñ sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c

(in-immutable-hash-keys hash) Ñ sequence?
hash : (and/c hash? immutable?)

(in-immutable-hash-keys hash bad-index-v) Ñ sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c

(in-immutable-hash-values hash) Ñ sequence?
hash : (and/c hash? immutable?)

(in-immutable-hash-values hash bad-index-v) Ñ sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c

(in-immutable-hash-pairs hash) Ñ sequence?
hash : (and/c hash? immutable?)

(in-immutable-hash-pairs hash bad-index-v) Ñ sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c

392

(in-weak-hash hash) Ñ sequence?
hash : (and/c hash? hash-weak?)

(in-weak-hash hash bad-index-v) Ñ sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c

(in-weak-hash-keys hash) Ñ sequence?
hash : (and/c hash? hash-weak?)

(in-weak-hash-keys hash bad-index-v) Ñ sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c

(in-weak-hash-values hash) Ñ sequence?
hash : (and/c hash? hash-weak?)

(in-weak-hash-keys hash bad-index-v) Ñ sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c

(in-weak-hash-pairs hash) Ñ sequence?
hash : (and/c hash? hash-weak?)

(in-weak-hash-pairs hash bad-index-v) Ñ sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c

Sequence constructors for specific kinds of hash tables. These may perform better than the
analogous in-hash forms.

Added in version 6.4.0.6 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(in-directory [dir use-dir?]) Ñ sequence?
dir : (or/c #f path-string?) = #f
use-dir? : ((and/c path? complete-path?) . -> . any/c)

= (lambda (dir-path) #t)

Returns a sequence that produces all of the paths for files, directories, and links within dir ,
except for the contents of any directory for which use-dir? returns #f. If dir is not #f,
then every produced path starts with dir as its prefix. If dir is #f, then paths in and relative
to the current directory are produced.

An in-directory sequence traverses nested subdirectories recursively (filtered by use-
dir?). To generate a sequence that includes only the immediate content of a directory, use
the result of directory-list as a sequence.

The immediate content of each directory is reported as sorted by path<?, and the content of
a subdirectory is reported before subsequent paths within the directory.

Examples:

; Given a directory tree:

393

;
; /example
; a
; alpha
; apple
; b
; beta
; c
;
> (parameterize ([current-directory "/example"])

(for ([p (in-directory)])
(printf "„a\n" p)))

a
a/alpha
a/apple
b
b/beta
c
> (for ([p (in-directory "/example")])

(printf "„a\n" p))
/example/a
/example/a/alpha
/example/a/apple
/example/b
/example/b/beta
/example/c
> (let ([f (lambda (path) (regexp-match? #rx"/example/b.*" path))])

(for ([p (in-directory "/example" f)])
(printf "„a\n" p)))

/example/a
/example/b
/example/b/beta
/example/c

Changed in version 6.0.0.1 of package base: Added use-dir? argument.
Changed in version 6.6.0.4: Added guarantee of sorted results.

(in-producer producer) Ñ sequence?
producer : procedure?

(in-producer producer stop arg ...) Ñ sequence?
producer : procedure?
stop : any/c
arg : any/c

Returns a sequence that contains values from sequential calls to producer , which would
usually use some state to do its work.

394

If a stop value is not given, the sequence goes on infinitely, and therefore it common to
use it with a finite sequence or using #:break etc. If a stop value is given, it is used to
identify a value that marks the end of the sequence (and the stop value is not included in the
sequence); stop can be a predicate that is applied to the results of producer , or it can be a
value that is tested against the result of with eq?. (The stop argument must be a predicate
if the stop value is itself a function or if producer returns multiple values.)

If additional args are specified, they are passed to every call to producer .

Examples:

> (define (counter)
(define n 0)
(lambda ([d 1]) (set! n (+ d n)) n))

> (for/list ([x (in-producer (counter))] [y (in-range 4)]) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter))] #:break (= x 5)) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter) 5)]) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter) 5 1/2)]) x)
'(1/2 1 3/2 2 5/2 3 7/2 4 9/2)
> (for/list ([x (in-producer read eof (open-input-string "1 2
3"))]) x)
'(1 2 3)

(in-value v) Ñ sequence?
v : any/c

Returns a sequence that produces a single value: v . This form is mostly useful for let-like
bindings in forms such as for*/list.

(in-indexed seq) Ñ sequence?
seq : sequence?

Returns a sequence where each element has two values: the value produced by seq , and a
non-negative exact integer starting with 0. The elements of seq must be single-valued.

(in-sequences seq ...) Ñ sequence?
seq : sequence?

Returns a sequence that is made of all input sequences, one after the other. Each seq is
initiated only after the preceding seq is exhausted. If a single seq is provided, then seq is
returned; otherwise, the elements of each seq must all have the same number of values.

395

(in-cycle seq ...) Ñ sequence?
seq : sequence?

Similar to in-sequences, but the sequences are repeated in an infinite cycle, where each
seq is initiated afresh in each iteration. Beware that if no seqs are provided or if all seqs
become empty, then the sequence produced by in-cycle never returns when an element is
demanded—or even when the sequence is initiated, if all seqs are initially empty.

(in-parallel seq ...) Ñ sequence?
seq : sequence?

Returns a sequence where each element has as many values as the number of supplied seqs;
the values, in order, are the values of each seq . The elements of each seq must be single-
valued.

(in-values-sequence seq) Ñ sequence?
seq : sequence?

Returns a sequence that is like seq , but it combines multiple values for each element from
seq as a list of elements.

(in-values*-sequence seq) Ñ sequence?
seq : sequence?

Returns a sequence that is like seq , but when an element of seq has multiple values or
a single list value, then the values are combined in a list. In other words, in-values*-
sequence is like in-values-sequence, except that non-list, single-valued elements are
not wrapped in a list.

(stop-before seq pred) Ñ sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the last element for which applying pred to the element produces #t, after which
the sequence ends.

(stop-after seq pred) Ñ sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the element (inclusive) for which applying pred to the element produces #t, after
which the sequence ends.

396

(make-do-sequence thunk) Ñ sequence?
thunk : (or/c (-> (values (any/c . -> . any)

(any/c . -> . any/c)
any/c
(or/c (any/c . -> . any/c) #f)
(or/c (() () #:rest list? . ->* . any/c) #f)
(or/c ((any/c) () #:rest list? . ->* . any/c) #f)))

(-> (values (any/c . -> . any)
(or/c (any/c . -> . any/c) #f)
(any/c . -> . any/c)
any/c
(or/c (any/c . -> . any/c) #f)
(or/c (() () #:rest list? . ->* . any/c) #f)
(or/c ((any/c) () #:rest list? . ->* . any/c) #f))))

Returns a sequence whose elements are generated by the procedures and initial value re-
turned by the thunk, which is called to initiate the sequence. The initiated sequence is defined
in terms of a position, which is initialized to the third result of the thunk, and the element,
which may consist of multiple values.

The thunk results define the generated elements as follows:

• The first result is a pos->element procedure that takes the current position and re-
turns the value(s) for the current element.

• The optional second result is an early-next-pos procedure that is described further
below. Alternatively, the optional second result can be #f, which is equivalent to the
identity function.

• The third (or second) result is a next-pos procedure that takes the current position
and returns the next position.

• The fourth (or third) result is the initial position.

• The fifth (or fourth) result is a continue-with-pos? function that takes the current
position and returns a true result if the sequence includes the value(s) for the current
position, and false if the sequence should end instead of including the value(s). Al-
ternatively, the fifth (or fourth) result can be #f to indicate that the sequence should
always include the current value(s). This function is checked on each position before
pos->element is used.

• The sixth (or fifth) result is a continue-with-val? function that is like the fourth
result, but it takes the current element value(s) instead of the current position. Alterna-
tively, the sixth (or fifth) result can be #f to indicate that the sequence should always
include the value(s) at the current position.

397

• The seventh (or sixth) result is a continue-after-pos+val? procedure that takes
both the current position and the current element value(s) and determines whether the
sequence ends after the current element is already included in the sequence. Alterna-
tively, the seventh (or sixth) result can be #f to indicate that the sequence can always
continue after the current value(s).

The early-next-pos procedure, which is the optional second result, takes the current po-
sition and returns an updated position. This updated position is used for next-pos and
continue-after-pos+val?, but not with continue-with-pos? (which uses the origi-
nal current position). The intent of early-next-pos is to support a sequence where the
position must be incremented to avoid keeping a value reachable while a loop processes the
sequence value, so early-next-pos is applied just after pos->element .

Each of the procedures listed above is called only once per position. Among the last three
procedures, as soon as one of the procedures returns #f, the sequence ends, and none are
called again. Typically, one of the functions determines the end condition, and #f is used in
place of the other two functions.

Changed in version 6.7.0.4 of package base: Added support for the optional second result.

prop:sequence : struct-type-property?

Associates a procedure to a structure type that takes an instance of the structure and returns
a sequence. If v is an instance of a structure type with this property, then (sequence? v)
produces #t.

Using a pre-existing sequence:

Examples:

> (struct my-set (table)
#:property prop:sequence
(lambda (s)
(in-hash-keys (my-set-table s))))

> (define (make-set . xs)
(my-set (for/hash ([x (in-list xs)])

(values x #t))))
> (for/list ([c (make-set 'celeriac 'carrot 'potato)])

c)
'(celeriac potato carrot)

Using make-do-sequence:

Examples:

> (define-struct train (car next)

398

#:property prop:sequence
(lambda (t)
(make-do-sequence
(lambda ()
(values train-car train-next t

(lambda (t) t)
(lambda (v) #t)
(lambda (t v) #t))))))

> (for/list ([c (make-train 'engine
(make-train 'boxcar

(make-train 'caboose
#f)))])

c)
'(engine boxcar caboose)

Sequence Conversion

(sequence->stream seq) Ñ stream?
seq : sequence?

Coverts a sequence to a stream, which supports the stream-first and stream-rest op-
erations. Creation of the stream eagerly initiates the sequence, but the stream lazily draws
elements from the sequence, caching each element so that stream-first produces the same
result each time is applied to a stream.

If extracting an element from seq involves a side-effect, then the effect is performed each
time that either stream-first or stream-rest is first used to access or skip an element.

(sequence-generate seq) Ñ (-> boolean?) (-> any)
seq : sequence?

Initiates a sequence and returns two thunks to extract elements from the sequence. The first
returns #t if more values are available for the sequence. The second returns the next element
(which may be multiple values) from the sequence; if no more elements are available, the
exn:fail:contract exception is raised.

(sequence-generate* seq)
Ñ (or/c list? #f)

(-> (values (or/c list? #f) procedure?))
seq : sequence?

Like sequence-generate, but avoids state (aside from any inherent in the sequence) by
returning a list of values for the sequence’s first element—or #f if the sequence is empty—
and a thunk to continue with the sequence; the result of the thunk is the same as the result of
sequence-generate*, but for the second element of the sequence, and so on. If the thunk

399

is called when the element result is #f (indicating no further values in the sequence), the
exn:fail:contract exception is raised.

Additional Sequence Operations

(require racket/sequence) package: base

The bindings documented in this section are provided by the racket/sequence and
racket libraries, but not racket/base.

empty-sequence : sequence?

A sequence with no elements.

(sequence->list s) Ñ list?
s : sequence?

Returns a list whose elements are the elements of s , each of which must be a single value.
If s is infinite, this function does not terminate.

(sequence-length s) Ñ exact-nonnegative-integer?
s : sequence?

Returns the number of elements of s by extracting and discarding all of them. If s is infinite,
this function does not terminate.

(sequence-ref s i) Ñ any
s : sequence?
i : exact-nonnegative-integer?

Returns the i th element of s (which may be multiple values).

(sequence-tail s i) Ñ sequence?
s : sequence?
i : exact-nonnegative-integer?

Returns a sequence equivalent to s , except that the first i elements are omitted.

In case initiating s involves a side effect, the sequence s is not initiated until the resulting
sequence is initiated, at which point the first i elements are extracted from the sequence.

(sequence-append s ...) Ñ sequence?
s : sequence?

Returns a sequence that contains all elements of each sequence in the order they appear in
the original sequences. The new sequence is constructed lazily.

If all given ss are streams, the result is also a stream.

400

https://pkgs.racket-lang.org/package/base

(sequence-map f s) Ñ sequence?
f : procedure?
s : sequence?

Returns a sequence that contains f applied to each element of s . The new sequence is
constructed lazily.

If s is a stream, then the result is also a stream.

(sequence-andmap f s) Ñ boolean?
f : (-> any/c ... boolean?)
s : sequence?

Returns #t if f returns a true result on every element of s . If s is infinite and f never returns
a false result, this function does not terminate.

(sequence-ormap f s) Ñ boolean?
f : (-> any/c ... boolean?)
s : sequence?

Returns #t if f returns a true result on some element of s . If s is infinite and f never returns
a true result, this function does not terminate.

(sequence-for-each f s) Ñ void?
f : (-> any/c ... any)
s : sequence?

Applies f to each element of s . If s is infinite, this function does not terminate.

(sequence-fold f i s) Ñ any/c
f : (-> any/c any/c ... any/c)
i : any/c
s : sequence?

Folds f over each element of s with i as the initial accumulator. If s is infinite, this function
does not terminate. The f function takes the accumulator as its first argument and the next
sequence element as its second.

(sequence-count f s) Ñ exact-nonnegative-integer?
f : procedure?
s : sequence?

Returns the number of elements in s for which f returns a true result. If s is infinite, this
function does not terminate.

401

(sequence-filter f s) Ñ sequence?
f : (-> any/c ... boolean?)
s : sequence?

Returns a sequence whose elements are the elements of s for which f returns a true result.
Although the new sequence is constructed lazily, if s has an infinite number of elements
where f returns a false result in between two elements where f returns a true result, then
operations on this sequence will not terminate during the infinite sub-sequence.

If s is a stream, then the result is also a stream.

(sequence-add-between s e) Ñ sequence?
s : sequence?
e : any/c

Returns a sequence whose elements are the elements of s , but with e between each pair of
elements in s . The new sequence is constructed lazily.

If s is a stream, then the result is also a stream.

Examples:

> (let* ([all-reds (in-cycle '("red"))]
[red-and-blues (sequence-add-between all-reds "blue")])

(for/list ([n (in-range 10)]
[elt red-and-blues])

elt))
'("red" "blue" "red" "blue" "red" "blue" "red" "blue" "red"
"blue")
> (for ([text (sequence-add-between '("veni" "vidi" "duci") ",
")])

(display text))
veni, vidi, duci

(sequence/c [#:min-count min-count]
elem/c ...) Ñ contract?

min-count : (or/c #f exact-nonnegative-integer?) = #f
elem/c : contract?

Wraps a sequence, obligating it to produce elements with as many values as there are elem/c
contracts, and obligating each value to satisfy the corresponding elem/c . The result is not
guaranteed to be the same kind of sequence as the original value; for instance, a wrapped list
is not guaranteed to satisfy list?.

If min-count is a number, the stream is required to have at least that many elements in it.

402

Examples:

> (define/contract predicates
(sequence/c (-> any/c boolean?))
(in-list (list integer?

string->symbol)))
> (for ([P predicates])

(printf "„s\n" (P "cat")))
#f
predicates: broke its own contract

promised: boolean?
produced: 'cat
in: an element of

(sequence/c (-ą any/c boolean?))
contract from: (definition predicates)
blaming: (definition predicates)

(assuming the contract is correct)
at: eval:29.0

> (define/contract numbers&strings
(sequence/c number? string?)
(in-dict (list (cons 1 "one")

(cons 2 "two")
(cons 3 'three))))

> (for ([(N S) numbers&strings])
(printf "„s: „a\n" N S))

1: one
2: two
numbers&strings: broke its own contract

promised: string?
produced: 'three
in: an element of

(sequence/c number? string?)
contract from: (definition numbers&strings)
blaming: (definition numbers&strings)

(assuming the contract is correct)
at: eval:31.0

> (define/contract a-sequence
(sequence/c #:min-count 2 char?)
"x")

> (for ([x a-sequence]
[i (in-naturals)])

(printf "„a is „a\n" i x))
0 is x
a-sequence: broke its own contract

promised: a sequence that contains at least 2 values
produced: "x"

403

in: (sequence/c #:min-count 2 char?)
contract from: (definition a-sequence)
blaming: (definition a-sequence)

(assuming the contract is correct)
at: eval:33.0

Additional Sequence Constructors

(in-syntax stx) Ñ sequence?
stx : syntax?

Produces a sequence whose elements are the successive subparts of stx . Equivalent to
(stx->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))])
x)

'(#<syntax:eval:35:0 1> #<syntax:eval:35:0 2> #<syntax:eval:35:0
3>)

Added in version 6.3 of package base.

(in-slice length seq) Ñ sequence?
length : exact-positive-integer?
seq : sequence?

Returns a sequence whose elements are lists with the first length elements of seq , then the
next length and so on.

Example:

> (for/list ([e (in-slice 3 (in-range 8))]) e)
'((0 1 2) (3 4 5) (6 7))

Added in version 6.3 of package base.

4.14.2 Streams

A stream is a kind of sequence that supports functional iteration via stream-first and
stream-rest. The stream-cons form constructs a lazy stream, but plain lists can be used
as streams, and functions such as in-range and in-naturals also create streams.

404

(require racket/stream) package: base

The bindings documented in this section are provided by the racket/stream and racket
libraries, but not racket/base.

(stream? v) Ñ boolean?
v : any/c

Returns #t if v can be used as a stream, #f otherwise.

(stream-empty? s) Ñ boolean?
s : stream?

Returns #t if s has no elements, #f otherwise.

(stream-first s) Ñ any
s : (and/c stream? (not/c stream-empty?))

Returns the value(s) of the first element in s .

(stream-rest s) Ñ stream?
s : (and/c stream? (not/c stream-empty?))

Returns a stream that is equivalent to s without its first element.

(stream-cons first-expr rest-expr)

Produces a lazy stream for which stream-first forces the evaluation of first-expr to
produce the first element of the stream, and stream-rest forces the evaluation of rest-
expr to produce a stream for the rest of the returned stream.

The first element of the stream as produced by first-expr must be a single
value. The rest-expr must produce a stream when it is evaluated, otherwise the
exn:fail:contract? exception is raised.

(stream expr ...)

A shorthand for nested stream-conses ending with empty-stream.

(stream* expr ... rest-expr)

A shorthand for nested stream-conses, but the rest-expr must be a stream, and it is used
as the rest of the stream instead of empty-stream. Similar to list* but for streams.

Added in version 6.3 of package base.

405

https://pkgs.racket-lang.org/package/base

(in-stream s) Ñ sequence?
s : stream?

Returns a sequence that is equivalent to s .

An in-stream application can provide better performance for streams iteration when it
appears directly in a for clause.

See for for information on the reachability of stream elements during an iteration.

Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for streams in for.

empty-stream : stream?

A stream with no elements.

(stream->list s) Ñ list?
s : stream?

Returns a list whose elements are the elements of s , each of which must be a single value.
If s is infinite, this function does not terminate.

(stream-length s) Ñ exact-nonnegative-integer?
s : stream?

Returns the number of elements of s . If s is infinite, this function does not terminate.

In the case of lazy streams, this function forces evaluation only of the sub-streams, and not
the stream’s elements.

(stream-ref s i) Ñ any
s : stream?
i : exact-nonnegative-integer?

Returns the i th element of s (which may be multiple values).

(stream-tail s i) Ñ stream?
s : stream?
i : exact-nonnegative-integer?

Returns a stream equivalent to s , except that the first i elements are omitted.

In case extracting elements from s involves a side effect, they will not be extracted until the
first element is extracted from the resulting stream.

406

(stream-take s i) Ñ stream?
s : stream?
i : exact-nonnegative-integer?

Returns a stream of the first i elements of s .

(stream-append s ...) Ñ stream?
s : stream?

Returns a stream that contains all elements of each stream in the order they appear in the
original streams. The new stream is constructed lazily, while the last given stream is used in
the tail of the result.

(stream-map f s) Ñ stream?
f : procedure?
s : stream?

Returns a stream that contains f applied to each element of s . The new stream is constructed
lazily.

(stream-andmap f s) Ñ boolean?
f : (-> any/c ... boolean?)
s : stream?

Returns #t if f returns a true result on every element of s . If s is infinite and f never returns
a false result, this function does not terminate.

(stream-ormap f s) Ñ boolean?
f : (-> any/c ... boolean?)
s : stream?

Returns #t if f returns a true result on some element of s . If s is infinite and f never returns
a true result, this function does not terminate.

(stream-for-each f s) Ñ void?
f : (-> any/c ... any)
s : stream?

Applies f to each element of s . If s is infinite, this function does not terminate.

(stream-fold f i s) Ñ any/c
f : (-> any/c any/c ... any/c)
i : any/c
s : stream?

407

Folds f over each element of s with i as the initial accumulator. If s is infinite, this function
does not terminate. The f function takes the accumulator as its first argument and the next
stream element as its second.
(stream-count f s) Ñ exact-nonnegative-integer?

f : procedure?
s : stream?

Returns the number of elements in s for which f returns a true result. If s is infinite, this
function does not terminate.

(stream-filter f s) Ñ stream?
f : (-> any/c ... boolean?)
s : stream?

Returns a stream whose elements are the elements of s for which f returns a true result.
Although the new stream is constructed lazily, if s has an infinite number of elements where
f returns a false result in between two elements where f returns a true result, then operations
on this stream will not terminate during the infinite sub-stream.

(stream-add-between s e) Ñ stream?
s : stream?
e : any/c

Returns a stream whose elements are the elements of s , but with e between each pair of
elements in s . The new stream is constructed lazily.

(for/stream (for-clause ...) body-or-break ... body)
(for*/stream (for-clause ...) body-or-break ... body)

Iterates like for/list and for*/list, respectively, but the results are lazily collected into
a stream instead of a list.

Unlike most for forms, these forms are evaluated lazily, so each body will not be evaluated
until the resulting stream is forced. This allows for/stream and for*/stream to iterate
over infinite sequences, unlike their finite counterparts.

Examples:

> (for/stream ([i '(1 2 3)]) (* i i))
#<stream>
> (stream->list (for/stream ([i '(1 2 3)]) (* i i)))
'(1 4 9)
> (stream-ref (for/stream ([i '(1 2 3)]) (displayln i) (* i i)) 1)
2
4
> (stream-ref (for/stream ([i (in-naturals)]) (* i i)) 25)
625

408

Added in version 6.3.0.9 of package base.

gen:stream : any/c

Associates three methods to a structure type to implement the generic interface (see §5.4
“Generic Interfaces”) for streams.

To supply method implementations, the #:methods keyword should be used in a structure
type definition. The following three methods should be implemented:

• stream-empty? : accepts one argument

• stream-first : accepts one argument

• stream-rest : accepts one argument

Examples:

> (define-struct list-stream (v)
#:methods gen:stream
[(define (stream-empty? stream)

(empty? (list-stream-v stream)))
(define (stream-first stream)
(first (list-stream-v stream)))

(define (stream-rest stream)
(rest (list-stream-v stream)))])

> (define l1 (list-stream '(1 2)))
> (stream? l1)
#t
> (stream-first l1)
1

prop:stream : struct-type-property?

A deprecated structure type property used to define custom extensions to the stream API.
Use gen:stream instead. Accepts a vector of three procedures taking the same arguments
as the methods in gen:stream.

(stream/c c) Ñ contract?
c : contract?

Returns a contract that recognizes streams. All elements of the stream must match c .

If the c argument is a flat contract or a chaperone contract, then the result will be a chaperone
contract. Otherwise, the result will be an impersonator contract.

409

When an stream/c contract is applied to a stream, the result is not eq? to the input. The
result will be either a chaperone or impersonator of the input depending on the type of
contract.

Contracts on streams are evaluated lazily by necessity (since streams may be infinite). Con-
tract violations will not be raised until the value in violation is retrieved from the stream. As
an exception to this rule, streams that are lists are checked immediately, as if c had been
used with listof.

If a contract is applied to a stream, and that stream is subsequently used as the tail of another
stream (as the second parameter to stream-cons), the new elements will not be checked
with the contract, but the tail’s elements will still be enforced.

Added in version 6.1.1.8 of package base.

4.14.3 Generators

A generator is a procedure that returns a sequence of values, incrementing the sequence each
time that the generator is called. In particular, the generator form implements a generator
by evaluating a body that calls yield to return values from the generator.

(require racket/generator) package: base

(generator? v) Ñ boolean?
v : any/c

Return #t if v is a generator, #f otherwise.

(generator formals body ...+)

Creates a generator, where formals is like the formals of case-lambda (i.e., the kw-
formals of lambda restricted to non-optional and non-keyword arguments).

For the first call to a generator, the arguments are bound to the formals and evaluation of
body starts. During the dynamic extent of body , the generator can return immediately using
the yield function. A second call to the generator resumes at the yield call, producing the
arguments of the second call as the results of the yield, and so on. The eventual results of
body are supplied to an implicit final yield; after that final yield, calling the generator
again returns the same values, but all such calls must provide 0 arguments to the generator.

Examples:

> (define g (generator ()
(let loop ([x '(a b c)])
(if (null? x)

410

https://pkgs.racket-lang.org/package/base

0
(begin
(yield (car x))
(loop (cdr x)))))))

> (g)
'a
> (g)
'b
> (g)
'c
> (g)
0
> (g)
0

(yield v ...) Ñ any
v : any/c

Returns vs from a generator, saving the point of execution inside a generator (i.e., within the
dynamic extent of a generator body) to be resumed by the next call to the generator. The
results of yield are the arguments that are provided to the next call of the generator.

When not in the dynamic extent of a generator, infinite-generator, or in-
generator body, yield raises exn:fail after evaluating its exprs.

Examples:

> (define my-generator (generator () (yield 1) (yield 2 3 4)))
> (my-generator)
1
> (my-generator)
2
3
4

Examples:

> (define pass-values-generator
(generator ()
(let* ([from-user (yield 2)]

[from-user-again (yield (add1 from-user))])
(yield from-user-again))))

> (pass-values-generator)
2
> (pass-values-generator 5)

411

6
> (pass-values-generator 12)
12

(infinite-generator body ...+)

Like generator, but repeats evaluation of the bodys when the last body completes without
implicitly yielding.

Examples:

> (define welcome
(infinite-generator
(yield 'hello)
(yield 'goodbye)))

> (welcome)
'hello
> (welcome)
'goodbye
> (welcome)
'hello
> (welcome)
'goodbye

(in-generator maybe-arity body ...+)

maybe-arity =
| #:arity arity-k

Produces a sequence that encapsulates the generator formed by (generator () body
...+). The values produced by the generator form the elements of the sequence, except
for the last value produced by the generator (i.e., the values produced by returning).

Example:

> (for/list ([i (in-generator
(let loop ([x '(a b c)])
(when (not (null? x))
(yield (car x))
(loop (cdr x)))))])

i)
'(a b c)

If in-generator is used immediately with a for (or for/list, etc.) binding’s right-hand
side, then its result arity (i.e., the number of values in each element of the sequence) can

412

be inferred. Otherwise, if the generator produces multiple values for each element, its arity
should be declared with an #:arity arity-k clause; the arity-k must be a literal, exact,
non-negative integer.

Examples:

> (let ([g (in-generator
(let loop ([n 3])
(unless (zero? n) (yield n (add1 n)) (loop (sub1 n)))))])

(let-values ([(not-empty? next) (sequence-generate g)])
(let loop () (when (not-empty?) (next) (loop))) 'done))

stop?: arity mismatch;
the expected number of arguments does not match the given

number
expected: 1
given: 2
arguments...:

3
4

> (let ([g (in-generator #:arity 2
(let loop ([n 3])
(unless (zero? n) (yield n (add1 n)) (loop (sub1 n)))))])

(let-values ([(not-empty? next) (sequence-generate g)])
(let loop () (when (not-empty?) (next) (loop))) 'done))

'done

To use an existing generator as a sequence, use in-producer with a stop-value known for
the generator:

> (define abc-generator (generator ()
(for ([x '(a b c)])

(yield x))))
> (for/list ([i (in-producer abc-generator (void))])

i)
'(a b c)
> (define my-stop-value (gensym))
> (define my-generator (generator ()

(let loop ([x (list 'a (void) 'c)])
(if (null? x)

my-stop-value
(begin
(yield (car x))
(loop (cdr x)))))))

> (for/list ([i (in-producer my-generator my-stop-value)])
i)

'(a #<void> c)

413

(generator-state g) Ñ symbol?
g : generator?

Returns a symbol that describes the state of the generator.

• 'fresh — The generator has been freshly created and has not been called yet.

• 'suspended — Control within the generator has been suspended due to a call to
yield. The generator can be called.

• 'running — The generator is currently executing.

• 'done — The generator has executed its entire body and will continue to produce the
same result as from the last call.

Examples:

> (define my-generator (generator () (yield 1) (yield 2)))
> (generator-state my-generator)
'fresh
> (my-generator)
1
> (generator-state my-generator)
'suspended
> (my-generator)
2
> (generator-state my-generator)
'suspended
> (my-generator)
> (generator-state my-generator)
'done
> (define introspective-generator (generator () ((yield 1))))
> (introspective-generator)
1
> (introspective-generator

(lambda () (generator-state introspective-generator)))
'running
> (generator-state introspective-generator)
'done
> (introspective-generator)
'running

(sequence->generator s) Ñ (-> any)
s : sequence?

414

Converts a sequence to a generator. The generator returns the next element of the sequence
each time the generator is invoked, where each element of the sequence must be a single
value. When the sequence ends, the generator returns #<void> as its final result.

(sequence->repeated-generator s) Ñ (-> any)
s : sequence?

Like sequence->generator, but when s has no further values, the generator starts the
sequence again (so that the generator never stops producing values).

4.15 Dictionaries

A dictionary is an instance of a datatype that maps keys to values. The following datatypes
are all dictionaries:

• hash tables;

• vectors (using only exact integers as keys);

• lists of pairs (an association list using equal? to compare keys); and

• structures whose types implement the gen:dict generic interface.

(require racket/dict) package: base

The bindings documented in this section are provided by the racket/dict and racket
libraries, but not racket/base.

4.15.1 Dictionary Predicates and Contracts

(dict? v) Ñ boolean?
v : any/c

Returns #t if v is a dictionary, #f otherwise.

Beware that dict? is not a constant-time test on pairs, since checking that v is an association
list may require traversing the list.

Examples:

> (dict? #hash((a . "apple")))
#t
> (dict? '#("apple" "banana"))

415

https://pkgs.racket-lang.org/package/base

#t
> (dict? '("apple" "banana"))
#f
> (dict? '((a . "apple") (b . "banana")))
#t

(dict-implements? d sym ...) Ñ boolean?
d : dict?
sym : symbol?

Returns #t if d implements all of the methods from gen:dict named by the syms; returns
#f otherwise. Fallback implementations do not affect the result; d may support the given
methods via fallback implementations yet produce #f.

Examples:

> (dict-implements? (hash 'a "apple") 'dict-set!)
#f
> (dict-implements? (make-hash '((a . "apple") (b . "ba-
nana"))) 'dict-set!)
#t
> (dict-implements? (make-hash '((b . "banana") (a . "ap-
ple"))) 'dict-remove!)
#t
> (dict-implements? (vector "apple" "banana") 'dict-set!)
#t
> (dict-implements? (vector 'a 'b) 'dict-remove!)
#f
> (dict-implements? (vector 'a "apple") 'dict-set! 'dict-remove!)
#f

(dict-implements/c sym ...) Ñ flat-contract?
sym : symbol?

Recognizes dictionaries that support all of the methods from gen:dict named by the syms.
Note that the generated contract is not similar to hash/c, but closer to dict-implements?.

Examples:

> (struct deformed-dict ()
#:methods gen:dict [])

> (define/contract good-dict
(dict-implements/c)
(deformed-dict))

416

> (define/contract bad-dict
(dict-implements/c 'dict-ref)
(deformed-dict))

bad-dict: broke its own contract
promised: (dict-implements/c dict-ref)
produced: #ădeformed-dictą
in: (dict-implements/c dict-ref)
contract from: (definition bad-dict)
blaming: (definition bad-dict)

(assuming the contract is correct)
at: eval:14.0

(dict-mutable? d) Ñ boolean?
d : dict?

Returns #t if d is mutable via dict-set!, #f otherwise.

Equivalent to (dict-implements? d 'dict-set!).

Examples:

> (dict-mutable? #hash((a . "apple")))
#f
> (dict-mutable? (make-hash))
#t
> (dict-mutable? '#("apple" "banana"))
#f
> (dict-mutable? (vector "apple" "banana"))
#t
> (dict-mutable? '((a . "apple") (b . "banana")))
#f

(dict-can-remove-keys? d) Ñ boolean?
d : dict?

Returns #t if d supports removing mappings via dict-remove! and/or dict-remove, #f
otherwise.

Equivalent to (or (dict-implements? d 'dict-remove!) (dict-implements? d
'dict-remove)).

Examples:

> (dict-can-remove-keys? #hash((a . "apple")))
#t

417

> (dict-can-remove-keys? '#("apple" "banana"))
#f
> (dict-can-remove-keys? '((a . "apple") (b . "banana")))
#t

(dict-can-functional-set? d) Ñ boolean?
d : dict?

Returns #t if d supports functional update via dict-set, #f otherwise.

Equivalent to (dict-implements? d 'dict-set).

Examples:

> (dict-can-functional-set? #hash((a . "apple")))
#t
> (dict-can-functional-set? (make-hash))
#f
> (dict-can-functional-set? '#("apple" "banana"))
#f
> (dict-can-functional-set? '((a . "apple") (b . "banana")))
#t

4.15.2 Generic Dictionary Interface

gen:dict

A generic interface (see §5.4 “Generic Interfaces”) that supplies dictionary method imple-
mentations for a structure type via the #:methods option of struct definitions. This in-
terface can be used to implement any of the methods documented as §4.15.2.1 “Primitive
Dictionary Methods” and §4.15.2.2 “Derived Dictionary Methods”.

Examples:

> (struct alist (v)
#:methods gen:dict
[(define (dict-ref dict key

[default (lambda () (error "key not
found" key))])

(cond [(assoc key (alist-v dict)) => cdr]
[else (if (procedure? default) (default) default)]))

(define (dict-set dict key val)
(alist (cons (cons key val) (alist-v dict))))

(define (dict-remove dict key)

418

(define al (alist-v dict))
(alist (remove* (filter (λ (p) (equal? (car p) key)) al) al)))

(define (dict-count dict)
(length (remove-duplicates (alist-v dict) #:key car)))])

; etc. other methods
> (define d1 (alist '((1 . a) (2 . b))))
> (dict? d1)
#t
> (dict-ref d1 1)
'a
> (dict-remove d1 1)
#<alist>

prop:dict : struct-type-property?

A deprecated structure type property used to define custom extensions to the dictionary API.
Use gen:dict instead. Accepts a vector of 10 method implementations:

• dict-ref

• dict-set!, or #f if unsupported

• dict-set, or #f if unsupported

• dict-remove!, or #f if unsupported

• dict-remove, or #f if unsupported

• dict-count

• dict-iterate-first

• dict-iterate-next

• dict-iterate-key

• dict-iterate-value

Primitive Dictionary Methods

These methods of gen:dict have no fallback implementations; they are only supported for
dictionary types that directly implement them.

(dict-ref dict key [failure-result]) Ñ any
dict : dict?
key : any/c
failure-result : (failure-result/c any/c)

= (lambda () (raise (make-exn:fail)))

419

Returns the value for key in dict . If no value is found for key , then failure-result
determines the result:

• If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

• Otherwise, failure-result is returned as the result.

Examples:

> (dict-ref #hash((a . "apple") (b . "beer")) 'a)
"apple"
> (dict-ref #hash((a . "apple") (b . "beer")) 'c)
hash-ref: no value found for key

key: 'c
> (dict-ref #hash((a . "apple") (b . "beer")) 'c #f)
#f
> (dict-ref '((a . "apple") (b . "banana")) 'b)
"banana"
> (dict-ref #("apple" "banana") 1)
"banana"
> (dict-ref #("apple" "banana") 3 #f)
#f
> (dict-ref #("apple" "banana") -3 #f)
dict-ref: contract violation

expected: natural?
given: -3
in: the k argument of

(-ąi
((d dict?) (k (d) (dict-key-contract d)))
((default any/c))
any)

contract from: ăcollectsą/racket/dict.rkt
blaming: top-level

(assuming the contract is correct)
at: ăcollectsą/racket/dict.rkt:181.2

(dict-set! dict key v) Ñ void?
dict : (and/c dict? (not/c immutable?))
key : any/c
v : any/c

Maps key to v in dict , overwriting any existing mapping for key . The update can fail with
a exn:fail:contract exception if dict is not mutable or if key is not an allowed key for
the dictionary (e.g., not an exact integer in the appropriate range when dict is a vector).

420

Examples:

> (define h (make-hash))
> (dict-set! h 'a "apple")
> h
'#hash((a . "apple"))
> (define v (vector #f #f #f))
> (dict-set! v 0 "apple")
> v
'#("apple" #f #f)

(dict-set dict key v) Ñ (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

Functionally extends dict by mapping key to v , overwriting any existing mapping for
key , and returning an extended dictionary. The update can fail with a exn:fail:contract
exception if dict does not support functional extension or if key is not an allowed key for
the dictionary.

Examples:

> (dict-set #hash() 'a "apple")
'#hash((a . "apple"))
> (dict-set #hash((a . "apple") (b . "beer")) 'b "banana")
'#hash((a . "apple") (b . "banana"))
> (dict-set '() 'a "apple")
'((a . "apple"))
> (dict-set '((a . "apple") (b . "beer")) 'b "banana")
'((a . "apple") (b . "banana"))

(dict-remove! dict key) Ñ void?
dict : (and/c dict? (not/c immutable?))
key : any/c

Removes any existing mapping for key in dict . The update can fail if dict is not mutable
or does not support removing keys (as is the case for vectors, for example).

Examples:

> (define h (make-hash))
> (dict-set! h 'a "apple")
> h
'#hash((a . "apple"))

421

> (dict-remove! h 'a)
> h
'#hash()

(dict-remove dict key) Ñ (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c

Functionally removes any existing mapping for key in dict , returning the fresh dictionary.
The update can fail if dict does not support functional update or does not support removing
keys.

Examples:

> (define h #hash())
> (define h (dict-set h 'a "apple"))
> h
'#hash((a . "apple"))
> (dict-remove h 'a)
'#hash()
> h
'#hash((a . "apple"))
> (dict-remove h 'z)
'#hash((a . "apple"))
> (dict-remove '((a . "apple") (b . "banana")) 'a)
'((b . "banana"))

(dict-iterate-first dict) Ñ any/c
dict : dict?

Returns #f if dict contains no elements, otherwise it returns a non-#f value that is an index
to the first element in the dict table; “first” refers to an unspecified ordering of the dictionary
elements. For a mutable dict , this index is guaranteed to refer to the first item only as long
as no mappings are added to or removed from dict .

Examples:

> (dict-iterate-first #hash((a . "apple") (b . "banana")))
0
> (dict-iterate-first #hash())
#f
> (dict-iterate-first #("apple" "banana"))
0
> (dict-iterate-first '((a . "apple") (b . "banana")))
#<assoc-iter>

422

(dict-iterate-next dict pos) Ñ any/c
dict : dict?
pos : any/c

Returns either a non-#f that is an index to the element in dict after the element indexed by
pos or #f if pos refers to the last element in dict . If pos is not a valid index, then the
exn:fail:contract exception is raised. For a mutable dict , the result index is guaran-
teed to refer to its item only as long as no items are added to or removed from dict . The
dict-iterate-next operation should take constant time.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> i
0
> (dict-iterate-next h i)
1
> (dict-iterate-next h (dict-iterate-next h i))
#f

(dict-iterate-key dict pos) Ñ any
dict : dict?
pos : any/c

Returns the key for the element in dict at index pos . If pos is not a valid index for dict ,
the exn:fail:contract exception is raised. The dict-iterate-key operation should
take constant time.

Examples:

> (define h '((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> (dict-iterate-key h i)
'a
> (dict-iterate-key h (dict-iterate-next h i))
'b

(dict-iterate-value dict pos) Ñ any
dict : dict?
pos : any/c

Returns the value for the element in dict at index pos . If pos is not a valid index for
dict , the exn:fail:contract exception is raised. The dict-iterate-key operation
should take constant time.

423

Examples:

> (define h '((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> (dict-iterate-value h i)
"apple"
> (dict-iterate-value h (dict-iterate-next h i))
"banana"

Derived Dictionary Methods

These methods of gen:dict have fallback implementations in terms of the other methods;
they may be supported even by dictionary types that do not directly implement them.

(dict-has-key? dict key) Ñ boolean?
dict : dict?
key : any/c

Returns #t if dict contains a value for the given key , #f otherwise.

Supported for any dict that implements dict-ref.

Examples:

> (dict-has-key? #hash((a . "apple") (b . "beer")) 'a)
#t
> (dict-has-key? #hash((a . "apple") (b . "beer")) 'c)
#f
> (dict-has-key? '((a . "apple") (b . "banana")) 'b)
#t
> (dict-has-key? #("apple" "banana") 1)
#t
> (dict-has-key? #("apple" "banana") 3)
#f
> (dict-has-key? #("apple" "banana") -3)
#f

(dict-set*! dict key v) Ñ void?
dict : (and/c dict? (not/c immutable?))
key : any/c
v : any/c

Maps each key to each v in dict , overwriting any existing mapping for each key . The
update can fail with a exn:fail:contract exception if dict is not mutable or if any key
is not an allowed key for the dictionary (e.g., not an exact integer in the appropriate range

424

when dict is a vector). The update takes place from the left, so later mappings overwrite
earlier mappings.

Supported for any dict that implements dict-set!.

Examples:

> (define h (make-hash))
> (dict-set*! h 'a "apple" 'b "banana")
> h
'#hash((a . "apple") (b . "banana"))
> (define v1 (vector #f #f #f))
> (dict-set*! v1 0 "apple" 1 "banana")
> v1
'#("apple" "banana" #f)
> (define v2 (vector #f #f #f))
> (dict-set*! v2 0 "apple" 0 "banana")
> v2
'#("banana" #f #f)

(dict-set* dict key v) Ñ (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

Functionally extends dict by mapping each key to each v , overwriting any existing map-
ping for each key , and returning an extended dictionary. The update can fail with a
exn:fail:contract exception if dict does not support functional extension or if any
key is not an allowed key for the dictionary. The update takes place from the left, so later
mappings overwrite earlier mappings.

Supported for any dict that implements dict-set.

Examples:

> (dict-set* #hash() 'a "apple" 'b "beer")
'#hash((a . "apple") (b . "beer"))
> (dict-set* #hash((a . "apple") (b . "beer")) 'b "banana" 'a "anchor")
'#hash((a . "anchor") (b . "banana"))
> (dict-set* '() 'a "apple" 'b "beer")
'((a . "apple") (b . "beer"))
> (dict-set* '((a . "apple") (b . "beer")) 'b "banana" 'a "anchor")
'((a . "anchor") (b . "banana"))
> (dict-set* '((a . "apple") (b . "beer")) 'b "banana" 'b "ballistic")
'((a . "apple") (b . "ballistic"))

425

(dict-ref! dict key to-set) Ñ any
dict : dict?
key : any/c
to-set : any/c

Returns the value for key in dict . If no value is found for key , then to-set determines
the result as in dict-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in dict for the key . (Note that if to-set is a thunk, it is not invoked in
tail position.)

Supported for any dict that implements dict-ref and dict-set!.

Examples:

> (dict-ref! (make-hasheq '((a . "apple") (b . "beer"))) 'a #f)
"apple"
> (dict-ref! (make-hasheq '((a . "apple") (b .
"beer"))) 'c 'cabbage)
'cabbage
> (define h (make-hasheq '((a . "apple") (b . "beer"))))
> (dict-ref h 'c)
hash-ref: no value found for key

key: 'c
> (dict-ref! h 'c (λ () 'cabbage))
'cabbage
> (dict-ref h 'c)
'cabbage

(dict-update! dict
key
updater

[failure-result]) Ñ void?
dict : (and/c dict? (not/c immutable?))
key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)

= (lambda () (raise (make-exn:fail)))

Composes dict-ref and dict-set! to update an existing mapping in dict , where the
optional failure-result argument is used as in dict-ref when no mapping exists for
key already.

Supported for any dict that implements dict-ref and dict-set!.

Examples:

426

> (define h (make-hash))
> (dict-update! h 'a add1)
hash-update!: no value found for key: 'a
> (dict-update! h 'a add1 0)
> h
'#hash((a . 1))
> (define v (vector #f #f #f))
> (dict-update! v 0 not)
> v
'#(#t #f #f)

(dict-update dict key updater [failure-result])
Ñ (and/c dict? immutable?)
dict : dict?
key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)

= (lambda () (raise (make-exn:fail)))

Composes dict-ref and dict-set to functionally update an existing mapping in dict ,
where the optional failure-result argument is used as in dict-ref when no mapping
exists for key already.

Supported for any dict that implements dict-ref and dict-set.

Examples:

> (dict-update #hash() 'a add1)
hash-update: no value found for key: 'a
> (dict-update #hash() 'a add1 0)
'#hash((a . 1))
> (dict-update #hash((a . "apple") (b . "beer")) 'b string-length)
'#hash((a . "apple") (b . 4))

(dict-map dict proc) Ñ (listof any/c)
dict : dict?
proc : (any/c any/c . -> . any/c)

Applies the procedure proc to each element in dict in an unspecified order, accumulating
the results into a list. The procedure proc is called each time with a key and its value.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Example:

427

> (dict-map #hash((a . "apple") (b . "banana")) vector)
'(#(a "apple") #(b "banana"))

(dict-for-each dict proc) Ñ void?
dict : dict?
proc : (any/c any/c . -> . any)

Applies proc to each element in dict (for the side-effects of proc) in an unspecified order.
The procedure proc is called each time with a key and its value.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Example:

> (dict-for-each #hash((a . "apple") (b . "banana"))
(lambda (k v)
(printf "„a = „s\n" k v)))

a = "apple"
b = "banana"

(dict-empty? dict) Ñ boolean?
dict : dict?

Reports whether dict is empty.

Supported for any dict that implements dict-iterate-first.

Examples:

> (dict-empty? #hash((a . "apple") (b . "banana")))
#f
> (dict-empty? (vector))
#t

(dict-count dict) Ñ exact-nonnegative-integer?
dict : dict?

Returns the number of keys mapped by dict , usually in constant time.

Supported for any dict that implements dict-iterate-first and dict-iterate-
next.

Examples:

428

> (dict-count #hash((a . "apple") (b . "banana")))
2
> (dict-count #("apple" "banana"))
2

(dict-copy dict) Ñ dict?
dict : dict?

Produces a new, mutable dictionary of the same type as dict and with the same key/value
associations.

Supported for any dict that implements dict-clear, dict-set!, dict-iterate-
first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Examples:

> (define original (vector "apple" "banana"))
> (define copy (dict-copy original))
> original
'#("apple" "banana")
> copy
'#("apple" "banana")
> (dict-set! copy 1 "carrot")
> original
'#("apple" "banana")
> copy
'#("apple" "carrot")

(dict-clear dict) Ñ dict?
dict : dict?

Produces an empty dictionary of the same type as dict . If dict is mutable, the result must
be a new dictionary.

Supported for any dict that supports dict-remove, dict-iterate-first, dict-
iterate-next, and dict-iterate-key.

Examples:

> (dict-clear #hash((a . "apple") ("banana" . b)))
'#hash()
> (dict-clear '((1 . two) (three . "four")))
'()

(dict-clear! dict) Ñ void?
dict : dict?

429

Removes all of the key/value associations in dict .

Supported for any dict that supports dict-remove!, dict-iterate-first, and dict-
iterate-key.

Examples:

> (define table (make-hash))
> (dict-set! table 'a "apple")
> (dict-set! table "banana" 'b)
> table
'#hash((a . "apple") ("banana" . b))
> (dict-clear! table)
> table
'#hash()

(dict-keys dict) Ñ list?
dict : dict?

Returns a list of the keys from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-key.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (dict-keys h)
'(a b)

(dict-values dict) Ñ list?
dict : dict?

Returns a list of the values from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (dict-values h)
'("apple" "banana")

(dict->list dict) Ñ list?
dict : dict?

430

Returns a list of the associations from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (dict->list h)
'((a . "apple") (b . "banana"))

4.15.3 Dictionary Sequences

(in-dict dict) Ñ sequence?
dict : dict?

Returns a sequence whose each element is two values: a key and corresponding value from
dict .

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([(k v) (in-dict h)])

(format "„a = „s" k v))
'("a = \"apple\"" "b = \"banana\"")

(in-dict-keys dict) Ñ sequence?
dict : dict?

Returns a sequence whose elements are the keys of dict .

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-key.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([k (in-dict-keys h)])

k)
'(a b)

431

(in-dict-values dict) Ñ sequence?
dict : dict?

Returns a sequence whose elements are the values of dict .

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([v (in-dict-values h)])

v)
'("apple" "banana")

(in-dict-pairs dict) Ñ sequence?
dict : dict?

Returns a sequence whose elements are pairs, each containing a key and its value from dict
(as opposed to using in-dict, which gets the key and value as separate values for each
element).

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([p (in-dict-pairs h)])

p)
'((a . "apple") (b . "banana"))

4.15.4 Contracted Dictionaries

prop:dict/contract : struct-type-property?

A structure type property for defining dictionaries with contracts. The value associated with
prop:dict/contract must be a list of two immutable vectors:

(list dict-vector
(vector type-key-contract

type-value-contract
type-iter-contract

432

instance-key-contract
instance-value-contract
instance-iter-contract))

The first vector must be a vector of 10 procedures which match the gen:dict generic in-
terface (in addition, it must be an immutable vector). The second vector must contain six
elements; each of the first three is a contract for the dictionary type’s keys, values, and po-
sitions, respectively. Each of the second three is either #f or a procedure used to extract the
contract from a dictionary instance.

(dict-key-contract d) Ñ contract?
d : dict?

(dict-value-contract d) Ñ contract?
d : dict?

(dict-iter-contract d) Ñ contract?
d : dict?

Returns the contract that d imposes on its keys, values, or iterators, respectively, if d imple-
ments the prop:dict/contract interface.

4.15.5 Custom Hash Tables

(define-custom-hash-types name
optional-predicate
comparison-expr
optional-hash-functions)

optional-predicate =
| #:key? predicate-expr

optional-hash-functions =
| hash1-expr
| hash1-expr hash2-expr

Creates a new dictionary type based on the given comparison comparison-expr , hash
functions hash1-expr and hash2-expr , and key predicate predicate-expr ; the inter-
faces for these functions are the same as in make-custom-hash-types. The new dictio-
nary type has three variants: immutable, mutable with strongly-held keys, and mutable with
weakly-held keys.

Defines seven names:

• name? recognizes instances of the new type,

433

• immutable-name? recognizes immutable instances of the new type,

• mutable-name? recognizes mutable instances of the new type with strongly-held
keys,

• weak-name? recognizes mutable instances of the new type with weakly-held keys,

• make-immutable-name constructs immutable instances of the new type,

• make-mutable-name constructs mutable instances of the new type with strongly-
held keys, and

• make-weak-name constructs mutable instances of the new type with weakly-held
keys.

The constructors all accept a dictionary as an optional argument, providing initial key/value
pairs.

Examples:

> (define-custom-hash-types string-hash
#:key? string?
string=?
string-length)

> (define imm
(make-immutable-string-hash
'(("apple" . a) ("banana" . b))))

> (define mut
(make-mutable-string-hash
'(("apple" . a) ("banana" . b))))

> (dict? imm)
#t
> (dict? mut)
#t
> (string-hash? imm)
#t
> (string-hash? mut)
#t
> (immutable-string-hash? imm)
#t
> (immutable-string-hash? mut)
#f
> (dict-ref imm "apple")
'a
> (dict-ref mut "banana")
'b
> (dict-set! mut "banana" 'berry)

434

> (dict-ref mut "banana")
'berry
> (equal? imm mut)
#f
> (equal? (dict-remove (dict-remove imm "apple") "banana")

(make-immutable-string-hash))
#t

(make-custom-hash-types eql?
[hash1
hash2
#:key? key?
#:name name
#:for who]) Ñ (any/c . -> . boolean?)

(any/c . -> . boolean?)
(any/c . -> . boolean?)
(any/c . -> . boolean?)
(->* [] [dict?] dict?)
(->* [] [dict?] dict?)
(->* [] [dict?] dict?)

eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hash1 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))

= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

key? : (any/c . -> . boolean?) = (const #true)
name : symbol? = 'custom-hash
who : symbol? = 'make-custom-hash-types

Creates a new dictionary type based on the given comparison function eql?, hash functions
hash1 and hash2 , and predicate key?. The new dictionary type has variants that are im-
mutable, mutable with strongly-held keys, and mutable with weakly-held keys. The given
name is used when printing instances of the new dictionary type, and the symbol who is used
for reporting errors.

The comparison function eql? may accept 2 or 3 arguments. If it accepts 2 arguments, it
given two keys to compare them. If it accepts 3 arguments and does not accept 2 arguments,
it is also given a recursive comparison function that handles data cycles when comparing
sub-parts of the keys.

The hash functions hash1 and hash2 may accept 1 or 2 arguments. If either hash function
accepts 1 argument, it is applied to a key to compute the corresponding hash value. If either

435

hash function accepts 2 arguments and does not accept 1 argument, it is also given a recursive
hash function that handles data cycles when computing hash values of sub-parts of the keys.

The predicate key? must accept 1 argument and is used to recognize valid keys for the new
dictionary type.

Produces seven values:

• a predicate recognizing all instances of the new dictionary type,

• a predicate recognizing immutable instances,

• a predicate recognizing mutable instances,

• a predicate recognizing weak instances,

• a constructor for immutable instances,

• a constructor for mutable instances, and

• a constructor for weak instances.

See define-custom-hash-types for an example.

(make-custom-hash eql?
[hash1
hash2
#:key? key?]) Ñ dict?

eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hash1 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))

= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

key? : (any/c . -> . boolean?) = (λ (x) #true)

436

(make-weak-custom-hash eql?
[hash1
hash2
#:key? key?]) Ñ dict?

eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hash1 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))

= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

key? : (any/c . -> . boolean?) = (λ (x) #true)
(make-immutable-custom-hash eql?

[hash1
hash2
#:key? key?]) Ñ dict?

eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hash1 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))

= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

key? : (any/c . -> . boolean?) = (λ (x) #true)

Creates an instance of a new dictionary type, implemented in terms of a hash table where
keys are compared with eql?, hashed with hash1 and hash2 , and where the key predicate
is key?. See gen:equal+hash for information on suitable equality and hashing functions.

The make-custom-hash and make-weak-custom-hash functions create a mutable dictio-
nary that does not support functional update, while make-immutable-custom-hash cre-
ates an immutable dictionary that supports functional update. The dictionary created by
make-weak-custom-hash retains its keys weakly, like the result of make-weak-hash.

Dictionaries created by make-custom-hash and company are equal? when they have the
same mutability and key strength, the associated procedures are equal?, and the key–value
mappings are the same when keys and values are compared with equal?.

See also define-custom-hash-types.

Examples:

> (define h (make-custom-hash (lambda (a b)
(string=? (format "„a" a)

(format "„a" b)))

437

(lambda (a)
(equal-hash-code
(format "„a" a)))))

> (dict-set! h 1 'one)
> (dict-ref h "1")
'one

4.16 Sets

A set represents a collection of distinct elements. The following datatypes are all sets:

• hash sets;

• lists using equal? to compare elements; and

• structures whose types implement the gen:set generic interface.

(require racket/set) package: base

The bindings documented in this section are provided by the racket/set and racket li-
braries, but not racket/base.

4.16.1 Hash Sets

A hash set is a set whose elements are compared via equal?, eqv?, or eq? and parti-
tioned via equal-hash-code, eqv-hash-code, or eq-hash-code. A hash set is either
immutable or mutable; mutable hash sets retain their elements either strongly or weakly. Like operations on

immutable hash
tables, “constant
time” hash set
operations actually
require O(log N)
time for a set of size
N.

A hash set can be used as a stream (see §4.14.2 “Streams”) and thus as a single-valued
sequence (see §4.14.1 “Sequences”). The elements of the set serve as elements of the stream
or sequence. If an element is added to or removed from the hash set during iteration, then
an iteration step may fail with exn:fail:contract, or the iteration may skip or duplicate
elements. See also in-set.

Two hash sets are equal? when they use the same element-comparison procedure (equal?,
eqv?, or eq?), both hold elements strongly or weakly, have the same mutability, and have
equivalent elements. Immutable hash sets support effectively constant-time access and up-
date, just like mutable hash sets; the constant on immutable operations is usually larger, but
the functional nature of immutable hash sets can pay off in certain algorithms.

All hash sets implement set->stream, set-empty?, set-member?, set-count,
subset?, proper-subset?, set-map, set-for-each, set-copy, set-copy-clear,
set->list, and set-first. Immutable hash sets in addition implement set-add,

438

https://pkgs.racket-lang.org/package/base

set-remove, set-clear, set-union, set-intersect, set-subtract, and set-
symmetric-difference. Mutable hash sets in addition implement set-add!, set-
remove!, set-clear!, set-union!, set-intersect!, set-subtract!, and set-
symmetric-difference!.

Operations on sets that contain elements that are mutated are unpredictable in much the same
way that hash table operations are unpredictable when keys are mutated.

(set-equal? x) Ñ boolean?
x : any/c

(set-eqv? x) Ñ boolean?
x : any/c

(set-eq? x) Ñ boolean?
x : any/c

Returns #t if x is a hash set that compares elements with equal?, eqv?, or eq?, respec-
tively; returns #f otherwise.

(set? x) Ñ boolean?
x : any/c

(set-mutable? x) Ñ boolean?
x : any/c

(set-weak? x) Ñ boolean?
x : any/c

Returns #t if x is a hash set that is respectively immutable, mutable with strongly-held keys,
or mutable with weakly-held keys; returns #f otherwise.

(set v ...) Ñ (and/c generic-set? set-equal? set?)
v : any/c

(seteqv v ...) Ñ (and/c generic-set? set-eqv? set?)
v : any/c

(seteq v ...) Ñ (and/c generic-set? set-eq? set?)
v : any/c

(mutable-set v ...)
Ñ (and/c generic-set? set-equal? set-mutable?)
v : any/c

(mutable-seteqv v ...)
Ñ (and/c generic-set? set-eqv? set-mutable?)
v : any/c

(mutable-seteq v ...)
Ñ (and/c generic-set? set-eq? set-mutable?)
v : any/c

(weak-set v ...) Ñ (and/c generic-set? set-equal? set-weak?)
v : any/c

(weak-seteqv v ...) Ñ (and/c generic-set? set-eqv? set-weak?)
v : any/c

439

(weak-seteq v ...) Ñ (and/c generic-set? set-eq? set-weak?)
v : any/c

Creates a hash set with the given vs as elements. The elements are added in the order that
they appear as arguments, so in the case of sets that use equal? or eqv?, an earlier element
may be replaced by a later element that is equal? or eqv? but not eq?.

(list->set lst) Ñ (and/c generic-set? set-equal? set?)
lst : list?

(list->seteqv lst) Ñ (and/c generic-set? set-eqv? set?)
lst : list?

(list->seteq lst) Ñ (and/c generic-set? set-eq? set?)
lst : list?

(list->mutable-set lst)
Ñ (and/c generic-set? set-equal? set-mutable?)
lst : list?

(list->mutable-seteqv lst)
Ñ (and/c generic-set? set-eqv? set-mutable?)
lst : list?

(list->mutable-seteq lst)
Ñ (and/c generic-set? set-eq? set-mutable?)
lst : list?

(list->weak-set lst)
Ñ (and/c generic-set? set-equal? set-weak?)
lst : list?

(list->weak-seteqv lst)
Ñ (and/c generic-set? set-eqv? set-weak?)
lst : list?

(list->weak-seteq lst) Ñ (and/c generic-set? set-eq? set-weak?)
lst : list?

Creates a hash set with the elements of the given lst as the elements of the set. Equivalent
to (apply set lst), (apply seteqv lst), (apply seteq lst), and so on, respec-
tively.

(for/set (for-clause ...) body ...+)
(for/seteq (for-clause ...) body ...+)
(for/seteqv (for-clause ...) body ...+)
(for*/set (for-clause ...) body ...+)
(for*/seteq (for-clause ...) body ...+)
(for*/seteqv (for-clause ...) body ...+)
(for/mutable-set (for-clause ...) body ...+)
(for/mutable-seteq (for-clause ...) body ...+)
(for/mutable-seteqv (for-clause ...) body ...+)
(for*/mutable-set (for-clause ...) body ...+)
(for*/mutable-seteq (for-clause ...) body ...+)

440

(for*/mutable-seteqv (for-clause ...) body ...+)
(for/weak-set (for-clause ...) body ...+)
(for/weak-seteq (for-clause ...) body ...+)
(for/weak-seteqv (for-clause ...) body ...+)
(for*/weak-set (for-clause ...) body ...+)
(for*/weak-seteq (for-clause ...) body ...+)
(for*/weak-seteqv (for-clause ...) body ...+)

Analogous to for/list and for*/list, but to construct a hash set instead of a list.

(in-immutable-set st) Ñ sequence?
st : set?

(in-mutable-set st) Ñ sequence?
st : set-mutable?

(in-weak-set st) Ñ sequence?
st : set-weak?

Explicitly converts a specific kind of hash set to a sequence for use with for forms.

As with in-list and some other sequence constructors, in-immutable-set performs bet-
ter when it appears directly in a for clause.

These sequence constructors are compatible with §4.16.4 “Custom Hash Sets”.

4.16.2 Set Predicates and Contracts

(generic-set? v) Ñ boolean?
v : any/c

Returns #t if v is a set; returns #f otherwise.

Examples:

> (generic-set? (list 1 2 3))
#t
> (generic-set? (set 1 2 3))
#t
> (generic-set? (mutable-seteq 1 2 3))
#t
> (generic-set? (vector 1 2 3))
#f

(set-implements? st sym ...) Ñ boolean?
st : generic-set?
sym : symbol?

441

Returns #t if st implements all of the methods from gen:set named by the syms; returns
#f otherwise. Fallback implementations do not affect the result; st may support the given
methods via fallback implementations yet produce #f.

Examples:

> (set-implements? (list 1 2 3) 'set-add)
#t
> (set-implements? (list 1 2 3) 'set-add!)
#f
> (set-implements? (set 1 2 3) 'set-add)
#t
> (set-implements? (set 1 2 3) 'set-add!)
#t
> (set-implements? (mutable-seteq 1 2 3) 'set-add)
#t
> (set-implements? (mutable-seteq 1 2 3) 'set-add!)
#t
> (set-implements? (weak-seteqv 1 2 3) 'set-remove 'set-remove!)
#t

(set-implements/c sym ...) Ñ flat-contract?
sym : symbol?

Recognizes sets that support all of the methods from gen:set named by the syms.

(set/c elem/c
[#:cmp cmp
#:kind kind
#:lazy? lazy?
#:equal-key/c equal-key/c]) Ñ contract?

elem/c : chaperone-contract?
cmp : (or/c 'dont-care 'equal 'eqv 'eq) = 'dont-care
kind : (or/c 'dont-care 'immutable 'mutable 'weak 'mutable-or-weak)

= 'immutable
lazy? : any/c = (not (and (equal? kind 'immutable)

(flat-contract? elem/c)))
equal-key/c : contract? = any/c

Constructs a contract that recognizes sets whose elements match elem/c .

If kind is 'immutable, 'mutable, or 'weak, the resulting contract accepts only hash sets
that are respectively immutable, mutable with strongly-held keys, or mutable with weakly-
held keys. If kind is 'mutable-or-weak, the resulting contract accepts any mutable hash
sets, regardless of key-holding strength.

442

If cmp is 'equal, 'eqv, or 'eq, the resulting contract accepts only hash sets that compare
elements using equal?, eqv?, or eq?, respectively.

If cmp is 'eqv or 'eq, then elem/c must be a flat contract.

If cmp and kind are both 'dont-care, then the resulting contract will accept any kind of
set, not just hash sets.

If lazy? is not #f, then the elements of the set are not checked immediately by the contract
and only the set itself is checked (according to the cmp and kind arguments). If lazy? is #f,
then the elements are checked immediately by the contract. The lazy? argument is ignored
when the set contract accepts generic sets (i.e., when cmp and kind are both 'dont-care);
in that case, the value being checked in that case is a list?, then the contract is not lazy
otherwise the contract is lazy.

If kind allows mutable sets (i.e., is 'dont-care, 'mutable, 'weak, or 'mutable-or-
weak) and lazy? is #f, then the elements are checked both immediately and when they are
accessed from the set.

The equal-key/c contract is used when values are passed to the comparison and hashing
functions used internally.

The result contract will be a flat contract when elem/c and equal-key/c are both flat
contracts, lazy? is #f, and kind is 'immutable. The result will be a chaperone contract
when elem/c is a chaperone contract.

4.16.3 Generic Set Interface

gen:set

A generic interface (see §5.4 “Generic Interfaces”) that supplies set method implementations
for a structure type via the #:methods option of struct definitions. This interface can be
used to implement any of the methods documented as §4.16.3.1 “Set Methods”.

Examples:

> (struct binary-set [integer]
#:transparent
#:methods gen:set
[(define (set-member? st i)

(bitwise-bit-set? (binary-set-integer st) i))
(define (set-add st i)
(binary-set (bitwise-ior (binary-set-integer st)

(arithmetic-shift 1 i))))
(define (set-remove st i)
(binary-set (bitwise-and (binary-set-integer st)

443

(bitwise-not (arithmetic-
shift 1 i)))))])
> (define bset (binary-set 5))
> bset
(binary-set 5)
> (generic-set? bset)
#t
> (set-member? bset 0)
#t
> (set-member? bset 1)
#f
> (set-member? bset 2)
#t
> (set-add bset 4)
(binary-set 21)
> (set-remove bset 2)
(binary-set 1)

Set Methods

The methods of gen:set can be classified into three categories, as determined by their
fallback implementations:

1. methods with no fallbacks,

2. methods whose fallbacks depend on other, non-fallback methods,

3. and methods whose fallbacks can depend on either fallback or non-fallback methods.

As an example, implementing the following methods would guarantee that all the methods
in gen:set would at least have a fallback method:

• set-member?

• set-add

• set-add!

• set-remove

• set-remove!

• set-first

• set-empty?

• set-copy-clear

444

There may be other such subsets of methods that would guarantee at least a fallback for
every method.

(set-member? st v) Ñ boolean?
st : generic-set?
v : any/c

Returns #t if v is in st , #f otherwise. Has no fallback.

(set-add st v) Ñ generic-set?
st : generic-set?
v : any/c

Produces a set that includes v plus all elements of st . This operation runs in constant time
for hash sets. Has no fallback.

(set-add! st v) Ñ void?
st : generic-set?
v : any/c

Adds the element v to st . This operation runs in constant time for hash sets. Has no
fallback.

(set-remove st v) Ñ generic-set?
st : generic-set?
v : any/c

Produces a set that includes all elements of st except v . This operation runs in constant
time for hash sets. Has no fallback.

(set-remove! st v) Ñ void?
st : generic-set?
v : any/c

Removes the element v from st . This operation runs in constant time for hash sets. Has no
fallback.

(set-empty? st) Ñ boolean?
st : generic-set?

Returns #t if st has no members; returns #f otherwise.

Supported for any st that implements set->stream or set-count.

(set-count st) Ñ exact-nonnegative-integer?
st : generic-set?

445

Returns the number of elements in st .

Supported for any st that supports set->stream.

(set-first st) Ñ any/c
st : (and/c generic-set? (not/c set-empty?))

Produces an unspecified element of st . Multiple uses of set-first on st produce the
same result.

Supported for any st that implements set->stream.

(set-rest st) Ñ generic-set?
st : (and/c generic-set? (not/c set-empty?))

Produces a set that includes all elements of st except (set-first st).

Supported for any st that implements set-remove and either set-first or set-
>stream.

(set->stream st) Ñ stream?
st : generic-set?

Produces a stream containing the elements of st .

Supported for any st that implements:

• set->list

• in-set

• set-empty?, set-first, set-rest

• set-empty?, set-first, set-remove

• set-count, set-first, set-rest

• set-count, set-first, set-remove

(set-copy st) Ñ generic-set?
st : generic-set?

Produces a new, mutable set of the same type and with the same elements as st .

Supported for any st that supports set->stream and implements set-copy-clear and
set-add!.

446

(set-copy-clear st) Ñ (and/c generic-set? set-empty?)
st : generic-set?

Produces a new, empty set of the same type, mutability, and key strength as st .

A difference between set-copy-clear and set-clear is that the latter conceptually iter-
ates set-remove on the given set, and so it preserves any contract on the given set. The
set-copy-clear function produces a new set without any contracts.

The set-copy-clear function must call concrete set constructors and thus has no generic
fallback.

(set-clear st) Ñ (and/c generic-set? set-empty?)
st : generic-set?

Produces a set like st but with all elements removed.

Supported for any st that implements set-remove and supports set->stream.

(set-clear! st) Ñ void?
st : generic-set?

Removes all elements from st .

Supported for any st that implements set-remove! and either supports set->stream or
implements set-first and either set-count or set-empty?.

(set-union st0 st ...) Ñ generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as st0 that includes the elements from st0 and all of the
sts.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of the result.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of all of the sets except the
largest immutable set.

At least one set must be provided to set-union to determine the type of the resulting set
(list, hash set, etc.). If there is a case where set-union may be applied to zero arguments,
instead pass an empty set of the intended type as the first argument.

447

Supported for any st that implements set-add and supports set->stream.

Examples:

> (set-union (set))
(set)
> (set-union (seteq))
(seteq)
> (set-union (set 1 2) (set 2 3))
(set 1 3 2)
> (set-union (list 1 2) (list 2 3))
'(3 1 2)
> (set-union (set 1 2) (seteq 2 3))
set-union: set arguments have incompatible equivalence
predicates

first set: (set 1 2)
incompatible set: (seteq 2 3)

; Sets of different types cannot be unioned

(set-union! st0 st ...) Ñ void?
st0 : generic-set?
st : generic-set?

Adds the elements from all of the sts to st0 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of the sts.

Supported for any st that implements set-add! and supports set->stream.

(set-intersect st0 st ...) Ñ generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as st0 that includes the elements from st0 that are also
contained by all of the sts.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of st0 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of the smallest immutable set.

Supported for any st that implements either set-remove or both set-clear and set-add,
and supports set->stream.

448

(set-intersect! st0 st ...) Ñ void?
st0 : generic-set?
st : generic-set?

Removes every element from st0 that is not contained by all of the sts.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0 .

Supported for any st that implements set-remove! and supports set->stream.

(set-subtract st0 st ...) Ñ generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as st0 that includes the elements from st0 that are not
contained by any of the sts.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of st0 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0 .

Supported for any st that implements either set-remove or both set-clear and set-add,
and supports set->stream.

(set-subtract! st0 st ...) Ñ void?
st0 : generic-set?
st : generic-set?

Removes every element from st0 that is contained by any of the sts.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0 .

Supported for any st that implements set-remove! and supports set->stream.

(set-symmetric-difference st0 st ...) Ñ generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as st0 that includes all of the elements contained an odd
number of times in st0 and the sts.

449

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of st0 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of all of the sets except the
largest immutable set.

Supported for any st that implements set-remove or both set-clear and set-add, and
supports set->stream.

Example:

> (set-symmetric-difference (set 1) (set 1 2) (set 1 2 3))
(set 1 3)

(set-symmetric-difference! st0 st ...) Ñ void?
st0 : generic-set?
st : generic-set?

Adds and removes elements of st0 so that it includes all of the elements contained an odd
number of times in the sts and the original contents of st0 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of the sts.

Supported for any st that implements set-remove! and supports set->stream.

(set=? st st2) Ñ boolean?
st : generic-set?
st2 : generic-set?

Returns #t if st and st2 contain the same members; returns #f otherwise.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2 .

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st plus the size of st2 .

Supported for any st and st2 that both support subset?; also supported for any if st2
that implements set=? regardless of st .

Examples:

450

> (set=? (list 1 2) (list 2 1))
#t
> (set=? (set 1) (set 1 2 3))
#f
> (set=? (set 1 2 3) (set 1))
#f
> (set=? (set 1 2 3) (set 1 2 3))
#t
> (set=? (seteq 1 2) (mutable-seteq 2 1))
#t
> (set=? (seteq 1 2) (seteqv 1 2))
set=?: set arguments have incompatible equivalence
predicates

first set: (seteq 1 2)
incompatible set: (seteqv 1 2)

; Sets of different types cannot be compared

(subset? st st2) Ñ boolean?
st : generic-set?
st2 : generic-set?

Returns #t if st2 contains every member of st ; returns #f otherwise.

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2 .

If st is a hash set, then st2 must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st .

Supported for any st that supports set->stream.

Examples:

> (subset? (set 1) (set 1 2 3))
#t
> (subset? (set 1 2 3) (set 1))
#f
> (subset? (set 1 2 3) (set 1 2 3))
#t

(proper-subset? st st2) Ñ boolean?
st : generic-set?
st2 : generic-set?

Returns #t if st2 contains every member of st and at least one additional element; returns
#f otherwise.

451

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2 .

If st is a hash set, then st2 must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st plus the size of st2 .

Supported for any st and st2 that both support subset?.

Examples:

> (proper-subset? (set 1) (set 1 2 3))
#t
> (proper-subset? (set 1 2 3) (set 1))
#f
> (proper-subset? (set 1 2 3) (set 1 2 3))
#f

(set->list st) Ñ list?
st : generic-set?

Produces a list containing the elements of st .

Supported for any st that supports set->stream.

(set-map st proc) Ñ (listof any/c)
st : generic-set?
proc : (any/c . -> . any/c)

Applies the procedure proc to each element in st in an unspecified order, accumulating the
results into a list.

Supported for any st that supports set->stream.

(set-for-each st proc) Ñ void?
st : generic-set?
proc : (any/c . -> . any)

Applies proc to each element in st (for the side-effects of proc) in an unspecified order.

Supported for any st that supports set->stream.

(in-set st) Ñ sequence?
st : generic-set?

Explicitly converts a set to a sequence for use with for and other forms.

Supported for any st that supports set->stream.

452

(impersonate-hash-set st
inject-proc
add-proc
shrink-proc
extract-proc

[clear-proc
equal-key-proc]
prop
prop-val ...
...)

Ñ (and/c (or/c set-mutable? set-weak?) impersonator?)
st : (or/c set-mutable? set-weak?)
inject-proc : (or/c #f (-> set? any/c any/c))
add-proc : (or/c #f (-> set? any/c any/c))
shrink-proc : (or/c #f (-> set? any/c any/c))
extract-proc : (or/c #f (-> set? any/c any/c))
clear-proc : (or/c #f (-> set? any)) = #f
equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
prop : impersonator-property?
prop-val : any/c

Impersonates st , redirecting various set operations via the given procedures.

The inject-proc procedure is called whenever an element is temporarily put into the set
for the purposes of comparing it with other elements that may already be in the set. For
example, when evaluating (set-member? s e), e will be passed to the inject-proc
before comparing it with other elements of s.

The add-proc procedure is called when adding an element to a set, e.g., via set-add or
set-add!. The result of the add-proc is stored in the set.

The shrink-proc procedure is called when building a new set with one fewer element.
For example, when evaluating (set-remove s e) or (set-remove! s e), an element is
removed from a set, e.g., via set-remove or set-remove!. The result of the shrink-proc
is the element actually removed from the set.

The extract-proc procedure is called when an element is pulled out of a set, e.g., by
set-first. The result of the extract-proc is the element actually produced by from the
set.

The clear-proc is called by set-clear and set-clear! and if it returns (as opposed to
escaping, perhaps via raising an exception), the clearing operation is permitted. Its result is
ignored. If clear-proc is #f, then clearing is done element by element (via calls into the
other supplied procedures).

The equal-key-proc is called when an element’s hash code is needed of when an element

453

is supplied to the underlying equality in the set. The result of equal-key-proc is used
when computing the hash or comparing for equality.

If any of the inject-proc , add-proc , shrink-proc , or extract-proc arguments are
#f, then they all must be #f, the clear-proc and equal-key-proc must also be #f, and
there must be at least one property supplied.

Pairs of prop and prop-val (the number of arguments to impersonate-hash-set must
be odd) add impersonator properties or override impersonator property values of st .

(chaperone-hash-set st
inject-proc
add-proc
shrink-proc
extract-proc

[clear-proc
equal-key-proc]
prop
prop-val ...
...)

Ñ (and/c (or/c set? set-mutable? set-weak?) chaperone?)
st : (or/c set? set-mutable? set-weak?)
inject-proc : (or/c #f (-> set? any/c any/c))
add-proc : (or/c #f (-> set? any/c any/c))
shrink-proc : (or/c #f (-> set? any/c any/c))
extract-proc : (or/c #f (-> set? any/c any/c))
clear-proc : (or/c #f (-> set? any)) = #f
equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
prop : impersonator-property?
prop-val : any/c

Chaperones st . Like impersonate-hash-set but with the constraints that the results
of the inject-proc , add-proc , shrink-proc , extract-proc , and equal-key-proc
must be chaperone-of? their second arguments. Also, the input may be an immutable?
set.

4.16.4 Custom Hash Sets

(define-custom-set-types name
optional-predicate
comparison-expr
optional-hash-functions)

454

optional-predicate =
| #:elem? predicate-expr

optional-hash-functions =
| hash1-expr
| hash1-expr hash2-expr

Creates a new hash set type based on the given comparison comparison-expr , hash func-
tions hash1-expr and hash2-expr , and element predicate predicate-expr ; the inter-
faces for these functions are the same as in make-custom-set-types. The new set type has
three variants: immutable, mutable with strongly-held elements, and mutable with weakly-
held elements.

Defines seven names:

• name? recognizes instances of the new type,

• immutable-name? recognizes immutable instances of the new type,

• mutable-name? recognizes mutable instances of the new type with strongly-held
elements,

• weak-name? recognizes mutable instances of the new type with weakly-held ele-
ments,

• make-immutable-name constructs immutable instances of the new type,

• make-mutable-name constructs mutable instances of the new type with strongly-
held elements, and

• make-weak-name constructs mutable instances of the new type with weakly-held el-
ements.

The constructors all accept a stream as an optional argument, providing initial elements.

Examples:

> (define-custom-set-types string-set
#:elem? string?
string=?
string-length)

> (define imm
(make-immutable-string-set '("apple" "banana")))

> (define mut
(make-mutable-string-set '("apple" "banana")))

455

> (generic-set? imm)
#t
> (generic-set? mut)
#t
> (set? imm)
#t
> (generic-set? imm)
#t
> (string-set? imm)
#t
> (string-set? mut)
#t
> (immutable-string-set? imm)
#t
> (immutable-string-set? mut)
#f
> (set-member? imm "apple")
#t
> (set-member? mut "banana")
#t
> (equal? imm mut)
#f
> (set=? imm mut)
#t
> (set-remove! mut "banana")
> (set-member? mut "banana")
#f
> (equal? (set-remove (set-remove imm "apple") "banana")

(make-immutable-string-set))
#t

(make-custom-set-types eql?
[hash1
hash2
#:elem? elem?
#:name name
#:for who])

Ñ (any/c . -> . boolean?)
(any/c . -> . boolean?)
(any/c . -> . boolean?)
(any/c . -> . boolean?)
(->* [] [stream?] generic-set?)
(->* [] [stream?] generic-set?)
(->* [] [stream?] generic-set?)

eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

456

hash1 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))

= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

elem? : (any/c . -> . boolean?) = (const #true)
name : symbol? = 'custom-set
who : symbol? = 'make-custom-set-types

Creates a new set type based on the given comparison function eql?, hash functions hash1
and hash2 , and predicate elem?. The new set type has variants that are immutable, mutable
with strongly-held elements, and mutable with weakly-held elements. The given name is
used when printing instances of the new set type, and the symbol who is used for reporting
errors.

The comparison function eql? may accept 2 or 3 arguments. If it accepts 2 arguments,
it given two elements to compare them. If it accepts 3 arguments and does not accept 2
arguments, it is also given a recursive comparison function that handles data cycles when
comparing sub-parts of the elements.

The hash functions hash1 and hash2 may accept 1 or 2 arguments. If either hash function
accepts 1 argument, it is applied to a element to compute the corresponding hash value. If
either hash function accepts 2 arguments and does not accept 1 argument, it is also given a
recursive hash function that handles data cycles when computing hash values of sub-parts of
the elements.

The predicate elem? must accept 1 argument and is used to recognize valid elements for the
new set type.

Produces seven values:

• a predicate recognizing all instances of the new set type,

• a predicate recognizing weak instances,

• a predicate recognizing mutable instances,

• a predicate recognizing immutable instances,

• a constructor for weak instances,

• a constructor for mutable instances, and

• a constructor for immutable instances.

See define-custom-set-types for an example.

457

4.17 Procedures

(procedure? v) Ñ boolean?
v : any/c

Returns #t if v is a procedure, #f otherwise.

(apply proc v ... lst #:<kw> kw-arg ...) Ñ any
proc : procedure?
v : any/c
lst : list?
kw-arg : any/c

§4.3.3 “The apply
Function” in The
Racket Guide
introduces apply.

Applies proc using the content of (list* v ... lst) as the (by-position) arguments.
The #:<kw> kw-arg sequence is also supplied as keyword arguments to proc , where
#:<kw> stands for any keyword.

The given proc must accept as many arguments as the number of vs plus length of lst ,
it must accept the supplied keyword arguments, and it must not require any other keyword
arguments; otherwise, the exn:fail:contract exception is raised. The given proc is
called in tail position with respect to the apply call.

Examples:

> (apply + '(1 2 3))
6
> (apply + 1 2 '(3))
6
> (apply + '())
0
> (apply sort (list (list '(2) '(1)) <) #:key car)
'((1) (2))

(compose proc ...) Ñ procedure?
proc : procedure?

(compose1 proc ...) Ñ procedure?
proc : procedure?

Returns a procedure that composes the given functions, applying the last proc first and the
first proc last. The compose function allows the given functions to consume and produce
any number of values, as long as each function produces as many values as the preceding
function consumes, while compose1 restricts the internal value passing to a single value. In
both cases, the input arity of the last function and the output arity of the first are unrestricted,
and they become the corresponding arity of the resulting composition (including keyword
arguments for the input side).

458

When no proc arguments are given, the result is values. When exactly one is given, it is
returned.

Examples:

> ((compose1 - sqrt) 10)
-3.1622776601683795
> ((compose1 sqrt -) 10)
0+3.1622776601683795i
> ((compose list split-path) (bytes->path #"/a" 'unix))
'(#<path:/> #<path:a> #f)

Note that in many cases, compose1 is preferred. For example, using compose with two
library functions may lead to problems when one function is extended to return two values,
and the preceding one has an optional input with different semantics. In addition, compose1
may create faster compositions.

(procedure-rename proc name) Ñ procedure?
proc : procedure?
name : symbol?

Returns a procedure that is like proc , except that its name as returned by object-name
(and as printed for debugging) is name .

The given name is used for printing an error message if the resulting procedure is applied to
the wrong number of arguments. In addition, if proc is an accessor or mutator produced by
struct, make-struct-field-accessor, or make-struct-field-mutator, the result-
ing procedure also uses name when its (first) argument has the wrong type. More typically,
however, name is not used for reporting errors, since the procedure name is typically hard-
wired into an internal check.

(procedure->method proc) Ñ procedure?
proc : procedure?

Returns a procedure that is like proc except that, when applied to the wrong number of
arguments, the resulting error hides the first argument as if the procedure had been compiled
with the 'method-arity-error syntax property.

(procedure-closure-contents-eq? proc1
proc2) Ñ boolean?

proc1 : procedure?
proc2 : procedure?

Compares the contents of the closures of proc1 and proc2 for equality by comparing clo-
sure elements pointwise using eq?

459

4.17.1 Keywords and Arity

(keyword-apply proc
kw-lst
kw-val-lst
v ...
lst
#:<kw> kw-arg ...) Ñ any

proc : procedure?
kw-lst : (listof keyword?)
kw-val-lst : list?
v : any/c
lst : list?
kw-arg : any/c

§4.3.3 “The apply
Function” in The
Racket Guide
introduces
keyword-apply.

Like apply, but kw-lst and kw-val-lst supply by-keyword arguments in addition to the
by-position arguments of the vs and lst , and in addition to the directly supplied keyword
arguments in the #:<kw> kw-arg sequence, where #:<kw> stands for any keyword.

The given kw-lst must be sorted using keyword<?. No keyword can appear twice in
kw-lst or in both kw-list and as a #:<kw>, otherwise, the exn:fail:contract ex-
ception is raised. The given kw-val-lst must have the same length as kw-lst , other-
wise, the exn:fail:contract exception is raised. The given proc must accept all of
the keywords in kw-lst plus the #:<kw>s, it must not require any other keywords, and it
must accept as many by-position arguments as supplied via the vs and lst ; otherwise, the
exn:fail:contract exception is raised.

Examples:

(define (f x #:y y #:z [z 10])
(list x y z))

> (keyword-apply f '(#:y) '(2) '(1))
'(1 2 10)
> (keyword-apply f '(#:y #:z) '(2 3) '(1))
'(1 2 3)
> (keyword-apply f #:z 7 '(#:y) '(2) '(1))
'(1 2 7)

(procedure-arity proc) Ñ normalized-arity?
proc : procedure?

Returns information about the number of by-position arguments accepted by proc . See also
procedure-arity?, normalized-arity?, and procedure-arity-mask.

460

(procedure-arity? v) Ñ boolean?
v : any/c

A valid arity a is one of the following:

• An exact non-negative integer, which means that the procedure accepts a arguments,
only.

• A arity-at-least instance, which means that the procedure accepts (arity-at-
least-value a) or more arguments.

• A list containing integers and arity-at-least instances, which means that the pro-
cedure accepts any number of arguments that can match one of the elements of a .

The result of procedure-arity is always normalized in the sense of normalized-arity?.

Examples:

> (procedure-arity cons)
2
> (procedure-arity list)
(arity-at-least 0)
> (arity-at-least? (procedure-arity list))
#t
> (arity-at-least-value (procedure-arity list))
0
> (arity-at-least-value (procedure-arity (lambda (x . y) x)))
1
> (procedure-arity (case-lambda [(x) 0] [(x y) 1]))
'(1 2)

(procedure-arity-mask proc) Ñ exact-integer?
proc : procedure?

Returns the same information as procedure-arity, but encoded differently. The arity is
encoded as an exact integer mask where (bitwise-bit-set? mask n) returns true if
proc accepts n arguments.

The mask encoding of an arity is often easier to test and manipulate, and procedure-
arity-mask is sometimes faster than procedure-arity while always being at least as
fast.

Added in version 7.0.0.11 of package base.

461

(procedure-arity-includes? proc k [kws-ok?]) Ñ boolean?
proc : procedure?
k : exact-nonnegative-integer?
kws-ok? : any/c = #f

Returns #t if the procedure can accept k by-position arguments, #f otherwise. If kws-ok?
is #f, the result is #t only if proc has no required keyword arguments.

Examples:

> (procedure-arity-includes? cons 2)
#t
> (procedure-arity-includes? display 3)
#f
> (procedure-arity-includes? (lambda (x #:y y) x) 1)
#f
> (procedure-arity-includes? (lambda (x #:y y) x) 1 #t)
#t

(procedure-reduce-arity proc arity [name]) Ñ procedure?
proc : procedure?
arity : procedure-arity?
name : (or/c symbol? #f) = #f

Returns a procedure that is the same as proc (including the same name returned by
object-name), but that accepts only arguments consistent with arity . In particular, when
procedure-arity is applied to the generated procedure, it returns a value that is equal?
to the normalized form of arity .

If the arity specification allows arguments that are not in (procedure-arity proc),
the exn:fail:contract exception is raised. If proc accepts keyword argument, either the
keyword arguments must be all optional (and they are not accepted in by the arity-reduced
procedure) or arity must be the empty list (which makes a procedure that cannot be called);
otherwise, the exn:fail:contract exception is raised.

If name is not #f, then object-name of the result procedure produces name . Otherwise,
object-name of the result procedure produces the same result as for proc .

Examples:

> (define my+ (procedure-reduce-arity + 2))
> (my+ 1 2)
3
> (my+ 1 2 3)
+: arity mismatch;

462

the expected number of arguments does not match the given
number

expected: 2
given: 3
arguments...:

1
2
3

> (define also-my+ (procedure-reduce-arity + 2 'also-my+))
> (also-my+ 1 2 3)
also-my+: arity mismatch;

the expected number of arguments does not match the given
number

expected: 2
given: 3
arguments...:

1
2
3

Changed in version 7.0.0.11 of package base: Added the optional name argument.

(procedure-reduce-arity-mask proc mask [name]) Ñ procedure?
proc : procedure?
mask : exact-integer?
name : (or/c symbol? #f) = #f

The same as procedure-reduce-arity, but using the representation of arity described
with procedure-arity-mask.

The mask encoding of an arity is often easier to test and manipulate, and procedure-
reduce-arity-mask is sometimes faster than procedure-reduce-arity while always
being at least as fast.

Added in version 7.0.0.11 of package base.

(procedure-keywords proc) Ñ (listof keyword?)
(or/c (listof keyword?) #f)

proc : procedure?

Returns information about the keyword arguments required and accepted by a procedure.
The first result is a list of distinct keywords (sorted by keyword<?) that are required
when applying proc . The second result is a list of distinct accepted keywords (sorted by
keyword<?), or #f to mean that any keyword is accepted. When the second result is a list,
every element in the first list is also in the second list.

463

Examples:

> (procedure-keywords +)
'()
'()
> (procedure-keywords (lambda (#:tag t #:mode m) t))
'(#:mode #:tag)
'(#:mode #:tag)
> (procedure-keywords (lambda (#:tag t #:mode [m #f]) t))
'(#:tag)
'(#:mode #:tag)

(procedure-result-arity proc) Ñ (or/c #f procedure-arity?)
proc : procedure?

Returns the arity of the result of the procedure proc or #f if the number of results are not
known, perhaps due to shortcomings in the implementation of procedure-result-arity
or because proc ’s behavior is not sufficiently simple.

Examples:

> (procedure-result-arity car)
1
> (procedure-result-arity values)
(arity-at-least 0)
> (procedure-result-arity

(λ (x)
(apply
values
(let loop ()
(cond
[(zero? (random 10)) '()]
[else (cons 1 (loop))])))))

#f

Added in version 6.4.0.3 of package base.

(make-keyword-procedure proc [plain-proc]) Ñ procedure?
proc : (((listof keyword?) list?) () #:rest list? . ->* . any)
plain-proc : procedure?

= (lambda args (apply proc null null args))

Returns a procedure that accepts all keyword arguments (without requiring any keyword
arguments).

464

When the procedure returned by make-keyword-procedure is called with keyword ar-
guments, then proc is called; the first argument is a list of distinct keywords sorted by
keyword<?, the second argument is a parallel list containing a value for each keyword, and
the remaining arguments are the by-position arguments.

When the procedure returned by make-keyword-procedure is called without keyword ar-
guments, then plain-proc is called—possibly more efficiently than dispatching through
proc . Normally, plain-proc should have the same behavior as calling proc with empty
lists as the first two arguments, but that correspondence is in no way enforced.

The result of procedure-arity and object-name on the new procedure is the same as for
plain-proc . See also procedure-reduce-keyword-arity and procedure-rename.

Examples:

(define show
(make-keyword-procedure (lambda (kws kw-args . rest)

(list kws kw-args rest))))

> (show 1)
'(() () (1))
> (show #:init 0 1 2 3 #:extra 4)
'((#:extra #:init) (4 0) (1 2 3))

(define show2
(make-keyword-procedure (lambda (kws kw-args . rest)

(list kws kw-args rest))
(lambda args
(list->vector args))))

> (show2 1)
'#(1)
> (show2 #:init 0 1 2 3 #:extra 4)
'((#:extra #:init) (4 0) (1 2 3))

(procedure-reduce-keyword-arity proc
arity
required-kws
allowed-kws) Ñ procedure?

proc : procedure?
arity : procedure-arity?
required-kws : (listof keyword?)
allowed-kws : (or/c (listof keyword?)

#f)

Like procedure-reduce-arity, but constrains the keyword arguments according to
required-kws and allowed-kws , which must be sorted using keyword<? and contain

465

no duplicates. If allowed-kws is #f, then the resulting procedure still accepts any key-
word, otherwise the keywords in required-kws must be a subset of those in allowed-kws .
The original proc must require no more keywords than the ones listed in required-kws ,
and it must allow at least the keywords in allowed-kws (or it must allow all keywords if
allowed-kws is #f).

Examples:

(define orig-show
(make-keyword-procedure (lambda (kws kw-args . rest)

(list kws kw-args rest))))
(define show (procedure-reduce-keyword-arity

orig-show 3 '(#:init) '(#:extra #:init)))

> (show #:init 0 1 2 3 #:extra 4)
'((#:extra #:init) (4 0) (1 2 3))
> (show 1)
unknown: arity mismatch;

the expected number of arguments does not match the given
number

expected: 3 plus an argument with keyword #:init plus an
optional argument with keyword #:extra

given: 1
arguments...:

1
> (show #:init 0 1 2 3 #:extra 4 #:more 7)
application: procedure does not expect an argument with
given keyword

procedure: unknown
given keyword: #:more
arguments...:

1
2
3
#:extra 4
#:init 0
#:more 7

(procedure-reduce-keyword-arity-mask proc
mask
required-kws
allowed-kws) Ñ procedure?

proc : procedure?
mask : exact-integer?
required-kws : (listof keyword?)
allowed-kws : (or/c (listof keyword?)

#f)

466

The same as procedure-reduce-keyword-arity, but using the representation of arity
described with procedure-arity-mask.

Added in version 7.0.0.11 of package base.

(struct arity-at-least (value)
#:extra-constructor-name make-arity-at-least)

value : exact-nonnegative-integer?

A structure type used for the result of procedure-arity. See also procedure-arity?.

prop:procedure : struct-type-property?

A structure type property to identify structure types whose instances can be applied as proce-
dures. In particular, when procedure? is applied to the instance, the result will be #t, and
when an instance is used in the function position of an application expression, a procedure
is extracted from the instance and used to complete the procedure call.

If the prop:procedure property value is an exact non-negative integer, it designates a field
within the structure that should contain a procedure. The integer must be between 0 (inclu-
sive) and the number of non-automatic fields in the structure type (exclusive, not counting
supertype fields). The designated field must also be specified as immutable, so that after an
instance of the structure is created, its procedure cannot be changed. (Otherwise, the arity
and name of the instance could change, and such mutations are generally not allowed for pro-
cedures.) When the instance is used as the procedure in an application expression, the value
of the designated field in the instance is used to complete the procedure call. (This procedure
can be another structure that acts as a procedure; the immutability of procedure fields disal-
lows cycles in the procedure graph, so that the procedure call will eventually continue with a
non-structure procedure.) That procedure receives all of the arguments from the application
expression. The procedure’s name (see object-name), arity (see procedure-arity), and
keyword protocol (see procedure-keywords) are also used for the name, arity, and key-
word protocol of the structure. If the value in the designated field is not a procedure, then the
instance behaves like (case-lambda) (i.e., a procedure which does not accept any number
of arguments). See also procedure-extract-target.

Providing an integer proc-spec argument to make-struct-type is the same as both sup-
plying the value with the prop:procedure property and designating the field as immutable
(so that a property binding or immutable designation is redundant and disallowed).

Examples:

> (struct annotated-proc (base note)
#:property prop:procedure

(struct-field-index base))
> (define plus1 (annotated-proc

(lambda (x) (+ x 1))
"adds 1 to its argument"))

467

> (procedure? plus1)
#t
> (annotated-proc? plus1)
#t
> (plus1 10)
11
> (annotated-proc-note plus1)
"adds 1 to its argument"

When the prop:procedure value is a procedure, it should accept at least one non-keyword
argument. When an instance of the structure is used in an application expression, the
property-value procedure is called with the instance as the first argument. The remaining
arguments to the property-value procedure are the arguments from the application expres-
sion (including keyword arguments). Thus, if the application expression provides five non-
keyword arguments, the property-value procedure is called with six non-keyword arguments.
The name of the instance (see object-name) and its keyword protocol (see procedure-
keywords) are unaffected by the property-value procedure, but the instance’s arity is deter-
mined by subtracting one from every possible non-keyword argument count of the property-
value procedure. If the property-value procedure cannot accept at least one argument, then
the instance behaves like (case-lambda).

Providing a procedure proc-spec argument to make-struct-type is the same as sup-
plying the value with the prop:procedure property (so that a specific property binding is
disallowed).

Examples:

> (struct fish (weight color)
#:mutable
#:property
prop:procedure
(lambda (f n)
(let ([w (fish-weight f)])
(set-fish-weight! f (+ n w)))))

> (define wanda (fish 12 'red))
> (fish? wanda)
#t
> (procedure? wanda)
#t
> (fish-weight wanda)
12
> (for-each wanda '(1 2 3))
> (fish-weight wanda)
18

If the value supplied for the prop:procedure property is not an exact non-negative integer

468

or a procedure, the exn:fail:contract exception is raised.

(procedure-struct-type? type) Ñ boolean?
type : struct-type?

Returns #t if instances of the structure type represented by type are procedures (according
to procedure?), #f otherwise.

(procedure-extract-target proc) Ñ (or/c #f procedure?)
proc : procedure?

If proc is an instance of a structure type with property prop:procedure, and if the property
value indicates a field of the structure, and if the field value is a procedure, then procedure-
extract-target returns the field value. Otherwise, the result is #f.

When a prop:procedure property value is a procedure, the procedure is not returned by
procedure-extract-target. Such a procedure is different from one accessed through a
structure field, because it consumes an extra argument, which is always the structure that
was applied as a procedure. Keeping the procedure private ensures that is it always called
with a suitable first argument.

prop:arity-string : struct-type-property?

A structure type property that is used for reporting arity-mismatch errors when a structure
type with the prop:procedure property is applied to the wrong number of arguments.
The value of the prop:arity-string property must be a procedure that takes a single
argument, which is the misapplied structure, and returns a string. The result string is used
after the word “expects,” and it is followed in the error message by the number of actual
arguments.

Arity-mismatch reporting automatically uses procedure-extract-target when the
prop:arity-string property is not associated with a procedure structure type.

Examples:

> (struct evens (proc)
#:property prop:procedure (struct-field-index proc)
#:property prop:arity-string
(lambda (p)
"an even number of arguments"))

> (define pairs
(evens
(case-lambda
[() null]
[(a b . more)
(cons (cons a b)

(apply pairs more))])))

469

> (pairs 1 2 3 4)
'((1 . 2) (3 . 4))
> (pairs 5)
#ăprocedureą: arity mismatch;

the expected number of arguments does not match the given
number

expected: an even number of arguments
given: 1
arguments...:

5

prop:checked-procedure : struct-type-property?

A structure type property that is used with checked-procedure-check-and-extract,
which is a hook to allow the compiler to improve the performance of keyword arguments.
The property can only be attached to a structure type without a supertype and with at least
two fields.
(checked-procedure-check-and-extract type

v
proc
v1
v2) Ñ any/c

type : struct-type?
v : any/c
proc : (any/c any/c any/c . -> . any/c)
v1 : any/c
v2 : any/c

Extracts a value from v if it is an instance of type , which must have the property
prop:checked-procedure. If v is such an instance, then the first field of v is extracted
and applied to v1 and v2 ; if the result is a true value, the result is the value of the second
field of v .

If v is not an instance of type , or if the first field of v applied to v1 and v2 produces #f,
then proc is applied to v , v1 , and v2 , and its result is returned by checked-procedure-
check-and-extract.
(procedure-specialize proc) Ñ procedure?

proc : procedure?

Returns proc or its equivalent, but provides a hint to the run-time system that it should
spend extra time and memory to specialize the implementation of proc .

The hint is currently used when proc is the value of a lambda or case-lambda form that
references variables bound outside of the lambda or case-lambda, and when proc has not
been previously applied.

470

Added in version 6.3.0.10 of package base.

4.17.2 Reflecting on Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language.
Not all procedures of racket/base are primitives, but many are. The distinction is mainly
useful to other low-level code.
(primitive? v) Ñ boolean?

v : any/c

Returns #t if v is a primitive procedure, #f otherwise.

(primitive-closure? v) Ñ boolean
v : any/c

Returns #t if v is internally implemented as a primitive closure rather than a simple primitive
procedure, #f otherwise.

(primitive-result-arity prim) Ñ procedure-arity?
prim : primitive?

Returns the arity of the result of the primitive procedure prim (as opposed to the procedure’s
input arity as returned by procedure-arity). For most primitives, this procedure returns
1, since most primitives return a single value when applied.

4.17.3 Additional Higher-Order Functions

(require racket/function) package: base

The bindings documented in this section are provided by the racket/function and
racket libraries, but not racket/base.

(identity v) Ñ any/c
v : any/c

Returns v .
(const v) Ñ procedure?

v : any

Returns a procedure that accepts any arguments (including keyword arguments) and returns
v .

Examples:

471

https://pkgs.racket-lang.org/package/base

> ((const 'foo) 1 2 3)
'foo
> ((const 'foo))
'foo

(thunk body ...+)
(thunk* body ...+)

The thunk form creates a nullary function that evaluates the given body. The thunk* form
is similar, except that the resulting function accepts any arguments (including keyword ar-
guments).

Examples:

(define th1 (thunk (define x 1) (printf "„a\n" x)))

> (th1)
1
> (th1 'x)
th1: arity mismatch;

the expected number of arguments does not match the given
number

expected: 0
given: 1
arguments...:

'x
> (th1 #:y 'z)
application: procedure does not accept keyword arguments

procedure: th1
arguments...:

#:y 'z

(define th2 (thunk* (define x 1) (printf "„a\n" x)))

> (th2)
1
> (th2 'x)
1
> (th2 #:y 'z)
1

(negate proc) Ñ procedure?
proc : procedure?

Returns a procedure that is just like proc , except that it returns the not of proc ’s result.

472

Examples:

> (filter (negate symbol?) '(1 a 2 b 3 c))
'(1 2 3)
> (map (negate =) '(1 2 3) '(1 1 1))
'(#f #t #t)

((conjoin f ...) x ...) Ñ boolean?
f : (-> A ... boolean?)
x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:

(define f (conjoin exact? integer?))

> (f 1)
#t
> (f 1.0)
#f
> (f 1/2)
#f
> (f 0.5)
#f

((disjoin f ...) x ...) Ñ boolean?
f : (-> A ... boolean?)
x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)
#t
> (f 1.0)
#t
> (f 1/2)
#t
> (f 0.5)
#f

473

(curry proc) Ñ procedure?
proc : procedure?

(curry proc v ...+) Ñ any/c
proc : procedure?
v : any/c

Returns a procedure that is a curried version of proc . When the resulting procedure is first
applied, unless it is given the maximum number of arguments that it can accept, the result is
a procedure to accept additional arguments.

Examples:

> ((curry list) 1 2)
#<procedure:curried:list>
> ((curry cons) 1)
#<procedure:curried:cons>
> ((curry cons) 1 2)
'(1 . 2)

After the first application of the result of curry, each further application accumulates argu-
ments until an acceptable number of arguments have been accumulated, at which point the
original proc is called.

Examples:

> (((curry list) 1 2) 3)
'(1 2 3)
> (((curry list) 1) 3)
'(1 3)
> ((((curry foldl) +) 0) '(1 2 3))
6
> (define foo (curry (lambda (x y z) (list x y z))))
> (foo 1 2 3)
'(1 2 3)
> (((((foo) 1) 2)) 3)
'(1 2 3)

A function call (curry proc v ...) is equivalent to ((curry proc) v ...). In other
words, curry itself is curried.

Examples:

> (map ((curry +) 10) '(1 2 3))
'(11 12 13)
> (map (curry + 10) '(1 2 3))

474

'(11 12 13)
> (map (compose (curry * 2) (curry + 10)) '(1 2 3))
'(22 24 26)

The curry function also supports functions with keyword arguments: keyword arguments
will be accumulated in the same way as positional arguments until all required keyword
arguments have been supplied.

Examples:

(define (f #:a a #:b b #:c c)
(list a b c))

> ((((curry f) #:a 1) #:b 2) #:c 3)
'(1 2 3)
> ((((curry f) #:b 1) #:c 2) #:a 3)
'(3 1 2)
> ((curry f #:a 1 #:c 2) #:b 3)
'(1 3 2)

Changed in version 7.0.0.7 of package base: Added support for keyword arguments.

(curryr proc) Ñ procedure?
proc : procedure?

(curryr proc v ...+) Ñ any/c
proc : procedure?
v : any/c

Like curry, except that the arguments are collected in the opposite direction: the first step
collects the rightmost group of arguments, and following steps add arguments to the left of
these.

Example:

> (map (curryr list 'foo) '(1 2 3))
'((1 foo) (2 foo) (3 foo))

(normalized-arity? arity) Ñ boolean?
arity : any/c

A normalized arity has one of the following forms:

• the empty list;

475

• an exact non-negative integer;

• an arity-at-least instance;

• a list of two or more strictly increasing, exact non-negative integers; or

• a list of one or more strictly increasing, exact non-negative integers followed by a
single arity-at-least instance whose value is greater than the preceding integer
by at least 2.

Every normalized arity is a valid procedure arity and satisfies procedure-arity?. Any
two normalized arity values that are arity=? must also be equal?.

Examples:

> (normalized-arity? (arity-at-least 1))
#t
> (normalized-arity? (list (arity-at-least 1)))
#f
> (normalized-arity? (list 0 (arity-at-least 2)))
#t
> (normalized-arity? (list (arity-at-least 2) 0))
#f
> (normalized-arity? (list 0 2 (arity-at-least 3)))
#f

(normalize-arity arity)
Ñ (and/c normalized-arity? (lambda (x) (arity=? x arity)))
arity : procedure-arity?

Produces a normalized form of arity . See also normalized-arity? and arity=?.

Examples:

> (normalize-arity 1)
1
> (normalize-arity (list 1))
1
> (normalize-arity (arity-at-least 2))
(arity-at-least 2)
> (normalize-arity (list (arity-at-least 2)))
(arity-at-least 2)
> (normalize-arity (list 1 (arity-at-least 2)))
(arity-at-least 1)
> (normalize-arity (list (arity-at-least 2) 1))
(arity-at-least 1)

476

> (normalize-arity (list (arity-at-least 2) 3))
(arity-at-least 2)
> (normalize-arity (list 3 (arity-at-least 2)))
(arity-at-least 2)
> (normalize-arity (list (arity-at-least 6) 0 2 (arity-at-
least 4)))
(list 0 2 (arity-at-least 4))

(arity=? a b) Ñ boolean?
a : procedure-arity?
b : procedure-arity?

Returns #true if procedures with arity a and b accept the same numbers of arguments,
and #false otherwise. Equivalent to both (and (arity-includes? a b) (arity-
includes? b a)) and (equal? (normalize-arity a) (normalize-arity b)).

Examples:

> (arity=? 1 1)
#t
> (arity=? (list 1) 1)
#t
> (arity=? 1 (list 1))
#t
> (arity=? 1 (arity-at-least 1))
#f
> (arity=? (arity-at-least 1) 1)
#f
> (arity=? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t
> (arity=? (list 1 (arity-at-least 2)) (arity-at-least 1))
#t
> (arity=? (arity-at-least 1) (list 1 (arity-at-least 3)))
#f
> (arity=? (list 1 (arity-at-least 3)) (arity-at-least 1))
#f
> (arity=? (list 0 1 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#t
> (arity=? (list (arity-at-least 0)) (list 0 1 2 (arity-at-
least 3)))
#t
> (arity=? (list 0 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#f

477

> (arity=? (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))
#f

(arity-includes? a b) Ñ boolean?
a : procedure-arity?
b : procedure-arity?

Returns #true if procedures with arity a accept any number of arguments that procedures
with arity b accept.

Examples:

> (arity-includes? 1 1)
#t
> (arity-includes? (list 1) 1)
#t
> (arity-includes? 1 (list 1))
#t
> (arity-includes? 1 (arity-at-least 1))
#f
> (arity-includes? (arity-at-least 1) 1)
#t
> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t
> (arity-includes? (list 1 (arity-at-least 2)) (arity-at-least 1))
#t
> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 3)))
#t
> (arity-includes? (list 1 (arity-at-least 3)) (arity-at-least 1))
#f
> (arity-includes? (list 0 1 2 (arity-at-least 3)) (list (arity-
at-least 0)))
#t
> (arity-includes? (list (arity-at-least 0)) (list 0 1 2 (arity-
at-least 3)))
#t
> (arity-includes? (list 0 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#f
> (arity-includes? (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))
#t

478

4.18 Void

The constant #<void> is returned by most forms and procedures that have a side-effect and
no useful result.

The #<void> value is always eq? to itself.

(void? v) Ñ boolean?
v : any/c

Returns #t if v is the constant #<void>, #f otherwise.

(void v ...) Ñ void?
v : any/c

Returns the constant #<void>. Each v argument is ignored.

4.19 Undefined

(require racket/undefined) package: base

The bindings documented in this section are provided by the racket/undefined library,
not racket/base or racket.

The constant undefined can be used as a placeholder value for a value to be installed later,
especially for cases where premature access of the value is either difficult or impossible to
detect or prevent.

The undefined value is always eq? to itself.

Added in version 6.0.0.6 of package base.

undefined : any/c

The “undefined” constant.

479

https://pkgs.racket-lang.org/package/base

5 Structures
§5 “Programmer-
Defined Datatypes”
in The Racket Guide
introduces structure
types via struct.

A structure type is a record datatype composing a number of fields. A structure, an instance
of a structure type, is a first-class value that contains a value for each field of the structure
type. A structure instance is created with a type-specific constructor procedure, and its field
values are accessed and changed with type-specific accessor and mutator procedures. In
addition, each structure type has a predicate procedure that answers #t for instances of the
structure type and #f for any other value.

A structure type’s fields are essentially unnamed, though names are supported for error-
reporting purposes. The constructor procedure takes one value for each field of the structure
type, except that some of the fields of a structure type can be automatic fields; the automatic
fields are initialized to a constant that is associated with the structure type, and the corre-
sponding arguments are omitted from the constructor procedure. All automatic fields in a
structure type follow the non-automatic fields.

A structure type can be created as a structure subtype of an existing base structure type. An
instance of a structure subtype can always be used as an instance of the base structure type,
but the subtype gets its own predicate procedure, and it may have its own fields in addition
to the fields of the base type.

A structure subtype “inherits” the fields of its base type. If the base type has m fields, and if
n fields are specified for the new structure subtype, then the resulting structure type has m+n
fields. The value for automatic fields can be different in a subtype than in its base type.

If m1 of the original m fields are non-automatic (where m1ăm), and n1 of the new fields
are non-automatic (where n1ăn), then m1+n1 field values must be provided to the subtype’s
constructor procedure. Values for the first m fields of a subtype instance are accessed with
selector procedures for the original base type (or its supertypes), and the last n are accessed
with subtype-specific selectors. Subtype-specific accessors and mutators for the first m fields
do not exist.

The struct form and make-struct-type procedure typically create a new structure type,
but they can also access prefab (i.e., previously fabricated) structure types that are glob-
ally shared, and whose instances can be parsed and written by the default reader (see §1.3
“The Reader”) and printer (see §1.4 “The Printer”). Prefab structure types can inherit only
from other prefab structure types, and they cannot have guards (see §5.2 “Creating Structure
Types”) or properties (see §5.3 “Structure Type Properties”). Exactly one prefab structure
type exists for each combination of name, supertype, field count, automatic field count, au-
tomatic field value (when there is at least one automatic field), and field mutability. §13.9

“Serialization” also
provides
information on
reading and writing
structures.

Two structure values are eqv? if and only if they are eq?. Two structure values are equal?
if they are eq?. By default, two structure values are also equal? if they are instances of
the same structure type, no fields are opaque, and the results of applying struct->vector
to the structs are equal?. (Consequently, equal? testing for structures may depend on the
current inspector.) A structure type can override the default equal? definition through the

480

gen:equal+hash generic interface.

5.1 Defining Structure Types: struct
§5 “Programmer-
Defined Datatypes”
in The Racket Guide
introduces struct.

(struct id maybe-super (field ...)
struct-option ...)

maybe-super =
| super-id

field = field-id
| [field-id field-option ...]

struct-option = #:mutable
| #:super super-expr
| #:inspector inspector-expr
| #:auto-value auto-expr
| #:guard guard-expr
| #:property prop-expr val-expr
| #:transparent
| #:prefab
| #:authentic
| #:name name-id
| #:extra-name name-id
| #:constructor-name constructor-id
| #:extra-constructor-name constructor-id
| #:reflection-name symbol-expr
| #:methods gen:name method-defs
| #:omit-define-syntaxes
| #:omit-define-values

field-option = #:mutable
| #:auto

method-defs = (definition ...)

gen:name : identifier?

Creates a new structure type (or uses a pre-existing structure type if #:prefab is specified),
and binds transformers and variables related to the structure type.

A struct form with n fields defines up to 4+2n names:

• struct:id , a structure type descriptor value that represents the structure type.

481

• constructor-id (which defaults to id), a constructor procedure that takes m ar-
guments and returns a new instance of the structure type, where m is the number of
fields that do not include an #:auto option.

• name-id (which defaults to id), a transformer binding that encapsulates information
about the structure type declaration. This binding is used to define subtypes, and it
also works with the shared and match forms. For detailed information about the
binding of name-id , see §5.7 “Structure Type Transformer Binding”.

The constructor-id and name-id can be the same, in which case name-id per-
forms both roles. In that case, the expansion of name-id as an expression pro-
duces an otherwise inaccessible identifier that is bound to the constructor proce-
dure; the expanded identifier has a 'constructor-for property whose value is an
identifier that is free-identifier=? to name-id as well as a syntax property ac-
cessible via syntax-procedure-alias-property with an identifier that is free-
identifier=? to name-id .

• id?, a predicate procedure that returns #t for instances of the structure type (con-
structed by constructor-id or the constructor for a subtype) and #f for any other
value.

• id-field-id , for each field ; an accessor procedure that takes an instance of the
structure type and extracts the value for the corresponding field.

• set-id-field-id!, for each field that includes a #:mutable option, or when the
#:mutable option is specified as a struct-option ; a mutator procedure that takes
an instance of the structure type and a new field value. The structure is destructively
updated with the new value, and #<void> is returned.

If super-id is provided, it must have a transformer binding of the same sort bound to
name-id (see §5.7 “Structure Type Transformer Binding”), and it specifies a supertype for
the structure type. Alternately, the #:super option can be used to specify an expression
that must produce a structure type descriptor. See §5 “Structures” for more information on
structure subtypes and supertypes. If both super-id and #:super are provided, a syntax
error is reported.

Examples:

> (struct document (author title content))
> (struct book document (publisher))
> (struct paper (journal) #:super struct:document)

If the #:mutable option is specified for an individual field, then the field can be mutated in
instances of the structure type, and a mutator procedure is bound. Supplying #:mutable as
a struct-option is the same as supplying it for all fields. If #:mutable is specified as
both a field-option and struct-option , a syntax error is reported.

Examples:

482

> (struct cell ([content #:mutable]) #:transparent)
> (define a-cell (cell 0))
> (set-cell-content! a-cell 1)

The #:inspector, #:auto-value, and #:guard options specify an inspector, value for
automatic fields, and guard procedure, respectively. See make-struct-type for more in-
formation on these attributes of a structure type. The #:property option, which is the only
one that can be supplied multiple times, attaches a property value to the structure type; see
§5.3 “Structure Type Properties” for more information on properties. The #:transparent
option is a shorthand for #:inspector #f.

Examples:

> (struct point (x y) #:inspector #f)
> (point 3 5)
(point 3 5)
> (struct celsius (temp)

#:guard (λ (temp name)
(unless (and (real? temp) (>= temp -273.15))
(error "not a valid temperature"))

temp))
> (celsius -275)
not a valid temperature

Use the
prop:procedure
property to
implement an
applicable structure,
use prop:evt to
create a structure
type whose
instances are
synchronizable
events, and so on.
By convention,
property names
start with prop:.

The #:prefab option obtains a prefab (pre-defined, globally shared) structure type, as op-
posed to creating a new structure type. Such a structure type is inherently transparent and
cannot have a guard or properties, so using #:prefab with #:transparent, #:inspector,
#:guard, #:property, #:authentic, or #:methods is a syntax error. If a supertype is
specified, it must also be a prefab structure type.

Examples:

> (struct prefab-point (x y) #:prefab)
> (prefab-point 1 2)
'#s(prefab-point 1 2)
> (prefab-point? #s(prefab-point 1 2))
#t

The #:authentic option is a shorthand for #:property prop:authentic #t, which
prevents instances of the structure type from being impersonated (see impersonate-
struct), chaperoned (see chaperone-struct), or acquiring a non-flat contract (see
struct/c). See prop:authentic for more information. If a supertype is specified, it
must also have the prop:authentic property.

If name-id is supplied via #:extra-name and it is not id , then both name-id and id are
bound to information about the structure type. Only one of #:extra-name and #:name can

483

be provided within a struct form, and #:extra-name cannot be combined with #:omit-
define-syntaxes.

Examples:

> (struct ghost (color name) #:prefab #:extra-name GHOST)
> (match (ghost 'red 'blinky)

[(GHOST c n) c])
'red

If constructor-id is supplied, then the transformer binding of name-id records
constructor-id as the constructor binding; as a result, for example, struct-out in-
cludes constructor-id as an export. If constructor-id is supplied via #:extra-
constructor-name and it is not id , applying object-name on the constructor produces
the symbolic form of id rather than constructor-id . If constructor-id is supplied
via #:constructor-name and it is not the same as name-id , then name-id does not
serve as a constructor, and object-name on the constructor produces the symbolic form
of constructor-id . Only one of #:extra-constructor-name and #:constructor-
name can be provided within a struct form.

Examples:

> (struct color (r g b) #:constructor-name -color)
> (struct rectangle (w h color) #:extra-constructor-name rect)
> (rectangle 13 50 (-color 192 157 235))
#<rectangle>
> (rect 50 37 (-color 35 183 252))
#<rectangle>

If #:reflection-name symbol-expr is provided, then symbol-expr must produce a
symbol that is used to identify the structure type in reflective operations such as struct-
type-info. It corresponds to the first argument of make-struct-type. Structure printing
uses the reflective name, as do the various procedures that are bound by struct.

Examples:

> (struct circle (radius) #:reflection-name '<circle>)
> (circle 15)
#<<circle>>
> (circle-radius "bad")
ăcircleą-radius: contract violation

expected: ăcircleą?
given: "bad"

If #:methods gen:name method-defs is provided, then gen:name must be a trans-
former binding for the static information about a generic interface produced by define-

484

generics. The method-defs define the methods of the gen:name interface. A de-
fine/generic form or auxiliary definitions and expressions may also appear in method-
defs .

Examples:

> (struct constant-stream (val)
#:methods gen:stream
[(define (stream-empty? stream) #f)
(define (stream-first stream)
(constant-stream-val stream))

(define (stream-rest stream) stream)])
> (stream-ref (constant-stream 'forever) 0)
'forever
> (stream-ref (constant-stream 'forever) 50)
'forever

If the #:omit-define-syntaxes option is supplied, then name-id (and id , if #:extra-
name is specified) is not bound as a transformer. If the #:omit-define-values option is
supplied, then none of the usual variables are bound, but id is bound. If both are supplied,
then the struct form is equivalent to (begin).

Examples:

> (struct square (side) #:omit-define-syntaxes)
> (match (square 5)

; fails to match because syntax is omitted
[(struct square x) x])

eval:28:0: match: square does not refer to a structure
definition

at: square
in: (struct square x)

> (struct ellipse (width height) #:omit-define-values)
> ellipse-width
ellipse-width: undefined;

cannot reference an identifier before its definition
in module: top-level

Expressions
supplied to
#:auto-value are
evaluated once and
shared between
every instance of
the structure type.
In particular,
updates to a
mutable
#:auto-value
affect all current
and future
instances.

If #:auto is supplied as a field-option , then the constructor procedure for the structure
type does not accept an argument corresponding to the field. Instead, the structure type’s
automatic value is used for the field, as specified by the #:auto-value option, or as defaults
to #f when #:auto-value is not supplied. The field is mutable (e.g., through reflective
operations), but a mutator procedure is bound only if #:mutable is specified.

If a field includes the #:auto option, then all fields after it must also include #:auto,
otherwise a syntax error is reported. If any field-option or struct-option keyword is
repeated, other than #:property, a syntax error is reported.

485

Examples:

(struct posn (x y [z #:auto #:mutable])
#:auto-value 0
#:transparent)

> (posn 1 2)
(posn 1 2 0)
> (posn? (posn 1 2))
#t
> (posn-y (posn 1 2))
2
> (posn-z (posn 1 2))
0

(struct color-posn posn (hue) #:mutable)
(define cp (color-posn 1 2 "blue"))

> (color-posn-hue cp)
"blue"
> cp
(color-posn 1 2 0 ...)
> (set-posn-z! cp 3)

For serialization, see define-serializable-struct.

Changed in version 6.9.0.4 of package base: Added #:authentic.

(struct-field-index field-id)

This form can only appear as an expression within a struct form; normally, it is used with
#:property, especially for a property like prop:procedure. The result of a struct-
field-index expression is an exact, non-negative integer that corresponds to the position
within the structure declaration of the field named by field-id .

Examples:

(struct mood-procedure (base rating)
#:property prop:procedure (struct-field-index base))

(define happy+ (mood-procedure add1 10))

> (happy+ 2)
3
> (mood-procedure-rating happy+)
10

486

(define-struct id-maybe-super (field ...)
struct-option ...)

id-maybe-super = id
| (id super-id)

Like struct, except that the syntax for supplying a super-id is different, and a
constructor-id that has a make- prefix on id is implicitly supplied via #:extra-
constructor-name if neither #:extra-constructor-name nor #:constructor-name
is provided.

This form is provided for backwards compatibility; struct is preferred.

Examples:

(define-struct posn (x y [z #:auto])
#:auto-value 0
#:transparent)

> (make-posn 1 2)
(posn 1 2 0)
> (posn? (make-posn 1 2))
#t
> (posn-y (make-posn 1 2))
2

(define-struct/derived (id . rest-form)
id-maybe-super (field ...) struct-option ...)

The same as define-struct, but with an extra (id . rest-form) sub-form that is
treated as the overall form for syntax-error reporting and otherwise ignored. The only
constraint on the sub-form for error reporting is that it starts with id . The define-
struct/derived form is intended for use by macros that expand to define-struct.

Examples:

(define-syntax (define-xy-struct stx)
(syntax-case stx ()
[(ds name . rest)
(with-syntax ([orig stx])
#'(define-struct/derived orig name (x y) . rest))]))

> (define-xy-struct posn)
> (posn-x (make-posn 1 2))
1

487

> (define-xy-struct posn #:mutable)
> (set-posn-x! (make-posn 1 2) 0)
; this next line will cause an error due to a bad keyword
> (define-xy-struct posn #:bad-option)
eval:54:0: define-xy-struct: unrecognized
struct-specification keyword

at: #:bad-option
in: (define-xy-struct posn #:bad-option)

5.2 Creating Structure Types

(make-struct-type name
super-type
init-field-cnt
auto-field-cnt

[auto-v
props
inspector
proc-spec
immutables
guard
constructor-name])

Ñ struct-type?
struct-constructor-procedure?
struct-predicate-procedure?
struct-accessor-procedure?
struct-mutator-procedure?

name : symbol?
super-type : (or/c struct-type? #f)
init-field-cnt : exact-nonnegative-integer?
auto-field-cnt : exact-nonnegative-integer?
auto-v : any/c = #f
props : (listof (cons/c struct-type-property?

any/c))
= null

inspector : (or/c inspector? #f 'prefab) = (current-inspector)
proc-spec : (or/c procedure?

exact-nonnegative-integer?
#f)

= #f

immutables : (listof exact-nonnegative-integer?) = null
guard : (or/c procedure? #f) = #f
constructor-name : (or/c symbol? #f) = #f

Creates a new structure type, unless inspector is 'prefab, in which case make-struct-
type accesses a prefab structure type. The name argument is used as the type name. If

488

super-type is not #f, the resulting type is a subtype of the corresponding structure type.

The resulting structure type has init-field-cnt+auto-field-cnt fields (in addition to
any fields from super-type), but only init-field-cnt constructor arguments (in addi-
tion to any constructor arguments from super-type). The remaining fields are initialized
with auto-v . The total field count (including super-type fields) must be no more than
32768.

The props argument is a list of pairs, where the car of each pair is a structure type property
descriptor, and the cdr is an arbitrary value. A property can be specified multiple times in
props (including properties that are automatically added by properties that are directly in-
cluded in props) only if the associated values are eq?, otherwise the exn:fail:contract
exception is raised. See §5.3 “Structure Type Properties” for more information about prop-
erties. When inspector is 'prefab, then props must be null.

The inspector argument normally controls access to reflective information about the struc-
ture type and its instances; see §14.9 “Structure Inspectors” for more information. If in-
spector is 'prefab, then the resulting prefab structure type and its instances are always
transparent. If inspector is #f, then the structure type’s instances are transparent.

If proc-spec is an integer or procedure, instances of the structure type act as procedures.
See prop:procedure for further information. Providing a non-#f value for proc-spec is
the same as pairing the value with prop:procedure at the end of props , plus including
proc-spec in immutables when proc-spec is an integer.

The immutables argument provides a list of field positions. Each element in the list must
be unique, otherwise exn:fail:contract exception is raised. Each element must also fall
in the range 0 (inclusive) to init-field-cnt (exclusive), otherwise exn:fail:contract
exception is raised.

The guard argument is either a procedure of n+1 arguments or #f, where n is the number of
arguments for the new structure type’s constructor (i.e., init-field-cnt plus constructor
arguments implied by super-type , if any). If guard is a procedure, then the procedure is
called whenever an instance of the type is constructed, or whenever an instance of a subtype
is created. The arguments to guard are the values provided for the structure’s first n fields,
followed by the name of the instantiated structure type (which is name , unless a subtype is
instantiated). The guard result must be n values, which become the actual values for the
structure’s fields. The guard can raise an exception to prevent creation of a structure with
the given field values. If a structure subtype has its own guard, the subtype guard is applied
first, and the first n values produced by the subtype’s guard procedure become the first n
arguments to guard . When inspector is 'prefab, then guard must be #f.

If constructor-name is not #f, it is used as the name of the generated constructor proce-
dure as returned by object-name or in the printed form of the constructor value.

The result of make-struct-type is five values:

489

• a structure type descriptor,

• a constructor procedure,

• a predicate procedure,

• an accessor procedure, which consumes a structure and a field index between 0 (in-
clusive) and init-field-cnt+auto-field-cnt (exclusive), and

• a mutator procedure, which consumes a structure, a field index, and a field value.

Examples:

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type 'a #f 2 1 'uninitialized))

(define an-a (make-a 'x 'y))

> (a-ref an-a 1)
'y
> (a-ref an-a 2)
'uninitialized
> (define a-first (make-struct-field-accessor a-ref 0))
> (a-first an-a)
'x

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type 'b struct:a 1 2 'b-uninitialized))

(define a-b (make-b 'x 'y 'z))

> (a-ref a-b 1)
'y
> (a-ref a-b 2)
'uninitialized
> (b-ref a-b 0)
'z
> (b-ref a-b 1)
'b-uninitialized
> (b-ref a-b 2)
'b-uninitialized

(define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type
'c struct:b 0 0 #f null (make-inspector) #f null
; guard checks for a number, and makes it inexact
(lambda (a1 a2 b1 name)
(unless (number? a2)
(error (string->symbol (format "make-„a" name))

490

"second field must be a number"))
(values a1 (exact->inexact a2) b1))))

> (make-c 'x 'y 'z)
make-c: second field must be a number
> (define a-c (make-c 'x 2 'z))
> (a-ref a-c 1)
2.0

(define p1 #s(p a b c))
(define-values (struct:p make-p p? p-ref p-set!)
(make-struct-type 'p #f 3 0 #f null 'prefab #f '(0 1 2)))

> (p? p1)
#t
> (p-ref p1 0)
'a
> (make-p 'x 'y 'z)
'#s(p x y z)

(make-struct-field-accessor accessor-proc
field-pos

[field-name]) Ñ procedure?
accessor-proc : struct-accessor-procedure?
field-pos : exact-nonnegative-integer?
field-name : (or/c symbol? #f)

= (symbol->string (format "field„a" field-pos))

Returns a field accessor that is equivalent to (lambda (s) (accessor-proc s field-
pos)). The accessor-proc must be an accessor returned by make-struct-type. The
name of the resulting procedure for debugging purposes is derived from field-name and
the name of accessor-proc ’s structure type if field-name is a symbol.

For examples, see make-struct-type.

(make-struct-field-mutator mutator-proc
field-pos

[field-name]) Ñ procedure?
mutator-proc : struct-mutator-procedure?
field-pos : exact-nonnegative-integer?
field-name : (or/c symbol? #f)

= (symbol->string (format "field„a" field-pos))

Returns a field mutator that is equivalent to (lambda (s v) (mutator-proc s field-
pos v)). The mutator-proc must be a mutator returned by make-struct-type. The

491

name of the resulting procedure for debugging purposes is derived from field-name and
the name of mutator-proc ’s structure type if field-name is a symbol.

For examples, see make-struct-type.

5.3 Structure Type Properties
§5.4 “Generic
Interfaces” provide
a high-level API on
top of structure type
properties.

A structure type property allows per-type information to be associated with a structure type
(as opposed to per-instance information associated with a structure value). A property value
is associated with a structure type through the make-struct-type procedure (see §5.2
“Creating Structure Types”) or through the #:property option of struct. Subtypes inherit
the property values of their parent types, and subtypes can override an inherited property
value with a new value.

(make-struct-type-property name
[guard
supers
can-impersonate?])

Ñ struct-type-property?
procedure?
procedure?

name : symbol?
guard : (or/c procedure? #f 'can-impersonate) = #f
supers : (listof (cons/c struct-type-property?

(any/c . -> . any/c)))
= null

can-impersonate? : any/c = #f

Creates a new structure type property and returns three values:

• a structure type property descriptor, for use with make-struct-type and struct;

• a property predicate procedure, which takes an arbitrary value and returns #t if the
value is a descriptor or instance of a structure type that has a value for the property, #f
otherwise;

• a property accessor procedure, which returns the value associated with the struc-
ture type given its descriptor or one of its instances; if the structure type does
not have a value for the property, or if any other kind of value is provided, the
exn:fail:contract exception is raised unless a second argument, failure-
result , is supplied to the procedure. In that case, if failure-result is a pro-
cedure, it is called (through a tail call) with no arguments to produce the result of
the property accessor procedure; otherwise, failure-result is itself returned as the
result.

492

If the optional guard is supplied as a procedure, it is called by make-struct-type before
attaching the property to a new structure type. The guard must accept two arguments: a
value for the property supplied to make-struct-type, and a list containing information
about the new structure type. The list contains the values that struct-type-info would
return for the new structure type if it skipped the immediate current-inspector control check
(but not the check for exposing an ancestor structure type, if any; see §14.9 “Structure In-
spectors”).

The result of calling guard is associated with the property in the target structure type, instead
of the value supplied to make-struct-type. To reject a property association (e.g., because
the value supplied to make-struct-type is inappropriate for the property), the guard
can raise an exception. Such an exception prevents make-struct-type from returning a
structure type descriptor.

If guard is 'can-impersonate, then the property’s accessor can be redirected through
impersonate-struct. This option is identical to supplying #t as the can-impersonate?
argument and is provided for backwards compatibility.

The optional supers argument is a list of properties that are automatically associated with
some structure type when the newly created property is associated to the structure type. Each
property in supers is paired with a procedure that receives the value supplied for the new
property (after it is processed by guard) and returns a value for the associated property
(which is then sent to that property’s guard, of any).

The optional can-impersonate? argument determines if the structure type property can
be redirected through impersonate-struct. If the argument is #f, then redirection is not
allowed. Otherwise, the property accessor may be redirected by a struct impersonator.

Examples:

> (define-values (prop:p p? p-ref) (make-struct-type-property 'p))
> (define-values (struct:a make-a a? a-ref a-set!)

(make-struct-type 'a #f 2 1 'uninitialized
(list (cons prop:p 8))))

> (p? struct:a)
#t
> (p? 13)
#f
> (define an-a (make-a 'x 'y))
> (p? an-a)
#t
> (p-ref an-a)
8
> (define-values (struct:b make-b b? b-ref b-set!)

(make-struct-type 'b #f 0 0 #f))
> (p? struct:b)
#f

493

> (define-values (prop:q q? q-ref) (make-struct-type-property
'q (lambda (v si) (add1 v))
(list (cons prop:p sqrt))))

> (define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type 'c #f 0 0 'uninit

(list (cons prop:q 8))))
> (q-ref struct:c)
9
> (p-ref struct:c)
3

(struct-type-property? v) Ñ boolean?
v : any/c

Returns #t if v is a structure type property descriptor value, #f otherwise.

(struct-type-property-accessor-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is an accessor procedure produced by make-struct-type-property, #f
otherwise.

5.4 Generic Interfaces

(require racket/generic) package: base

A generic interface allows per-type methods to be associated with generic functions. Generic
functions are defined using a define-generics form. Method implementations for a struc-
ture type are defined using the #:methods keyword (see §5.1 “Defining Structure Types:
struct”).

(define-generics id
generics-opt ...
[method-id . kw-formals*] ...
generics-opt ...)

494

https://pkgs.racket-lang.org/package/base

generics-opt = #:defaults ([default-pred? default-impl ...] ...)
| #:fast-defaults ([fast-pred? fast-impl ...] ...)
| #:fallbacks [fallback-impl ...]
| #:defined-predicate defined-pred-id
| #:defined-table defined-table-id
| #:derive-property prop-expr prop-value-expr

kw-formals* = (arg* ...)
| (arg* ...+ . rest-id)
| rest-id

arg* = arg-id
| [arg-id]
| keyword arg-id
| keyword [arg-id]

Defines the following names, plus any specified by keyword options.

• gen:id as a transformer binding for the static information about a new generic inter-
face;

• id? as a predicate identifying instances of structure types that implement this generic
group; and

• each method-id as a generic method that calls the corresponding method on values
where id? is true. Each method-id ’s kw-formals* must include a required by-
position argument that is free-identifier=? to id . That argument is used in the
generic definition to locate the specialization.

• id/c as a contract combinator that recognizes instances of structure types which im-
plement the gen:id generic interface. The combinator takes pairs of method-ids
and contracts. The contracts will be applied to each of the corresponding method im-
plementations. The id/c combinator is intended to be used to contract the range of a
constructor procedure for a struct type that implements the generic interface.

The #:defaults option may be provided at most once. When it is provided, each generic
function uses default-pred?s to dispatch to the given default method implementations,
default-impls, if dispatching to the generic method table fails. The syntax of the
default-impls is the same as the methods provided for the #:methods keyword for
struct.

The #:fast-defaults option may be provided at most once. It works the same as
#:defaults, except the fast-pred?s are checked before dispatching to the generic method
table. This option is intended to provide a fast path for dispatching to built-in datatypes, such
as lists and vectors, that do not overlap with structures implementing gen:id .

495

The #:fallbacks option may be provided at most once. When it is provided, the
fallback-impls define fallback method implementations that are used for any instance
of the generic interface that does not supply a specific implementation. The syntax of the
fallback-impls is the same as the methods provided for the #:methods keyword for
struct.

The #:defined-predicate option may be provided at most once. When it is provided,
defined-pred-id is defined as a procedure that reports whether a specific instance of the
generic interface implements a given set of methods. Specifically, (defined-pred-id v
'name ...) produces #t if v has implementations for each method name, not counting
#:fallbacks implementations, and produces #f otherwise. This procedure is intended for
use by higher-level APIs to adapt their behavior depending on method availability.

The #:defined-table option may be provided at most once. When it is provided,
defined-table-id is defined as a procedure that takes an instance of the generic interface
and returns an immutable hash table that maps symbols corresponding to method names
to booleans representing whether or not that method is implemented by the instance. This
option is deprecated; use #:defined-predicate instead.

The #:derive-property option may be provided any number of times. Each time it is pro-
vided, it specifies a structure type property via prop-expr and a value for the property via
prop-value-expr . All structures implementing the generic interface via #:methods au-
tomatically implement this structure type property using the provided values. When prop-
value-expr is executed, each method-id is bound to its specific implementation for the
structure type.

If a value v satisfies id?, then v is a generic instance of gen:id .

If a generic instance v has a corresponding implementation for some method-id pro-
vided via #:methods in struct or via #:defaults or #:fast-defaults in define-
generics, then method-id is an implemented generic method of v.

If method-id is not an implemented generic method of a generic instance v, and method-
id has a fallback implementation that does not raise an exn:fail:support exception when
given v, then method-id is a supported generic method of v.

(raise-support-error name v) Ñ none/c
name : symbol?
v : any/c

Raises an exn:fail:support exception for a generic method called name that does not
support the generic instance v .

Example:

> (raise-support-error 'some-method-name '("arbitrary" "instance" "value"))
some-method-name: not implemented for '("arbitrary"

496

"instance" "value")

(struct exn:fail:support exn:fail ()
#:transparent)

Raised for generic methods that do not support the given generic instance.

(define/generic local-id method-id)

local-id : identifier?

method-id : identifier?

When used inside the method definitions associated with the #:methods keyword, binds
local-id to the generic for method-id . This form is useful for method specializations to
use generic methods (as opposed to the local specialization) on other values.

Using the define/generic form outside a #:methods specification in struct (or
define-struct) is an syntax error.

Examples:

> (define-generics printable
(gen-print printable [port])
(gen-port-print port printable)
(gen-print* printable [port] #:width width #:height [height])
#:defaults ([string?

(define/generic super-print gen-print)
(define (gen-print s [port (current-output-

port)])
(fprintf port "String: „a" s))

(define (gen-port-print port s)
(super-print s port))

(define (gen-print* s [port (current-output-
port)]

#:width w #:height [h 0])
(fprintf port "String („ax„a): „a" w h s))]))

> (define-struct num (v)
#:methods gen:printable
[(define/generic super-print gen-print)
(define (gen-print n [port (current-output-port)])
(fprintf port "Num: „a" (num-v n)))

(define (gen-port-print port n)
(super-print n port))

(define (gen-print* n [port (current-output-port)]
#:width w #:height [h 0])

(fprintf port "Num („ax„a): „a" w h (num-v n)))])

497

> (define-struct bool (v)
#:methods gen:printable
[(define/generic super-print gen-print)
(define (gen-print b [port (current-output-port)])
(fprintf port "Bool: „a"

(if (bool-v b) "Yes" "No")))
(define (gen-port-print port b)
(super-print b port))

(define (gen-print* b [port (current-output-port)]
#:width w #:height [h 0])

(fprintf port "Bool („ax„a): „a" w h
(if (bool-v b) "Yes" "No")))])

> (define x (make-num 10))
> (gen-print x)
Num: 10
> (gen-port-print (current-output-port) x)
Num: 10
> (gen-print* x #:width 100 #:height 90)
Num (100x90): 10
> (gen-print "Strings are printable too!")
String: Strings are printable too!
> (define y (make-bool #t))
> (gen-print y)
Bool: Yes
> (gen-port-print (current-output-port) y)
Bool: Yes
> (gen-print* y #:width 100 #:height 90)
Bool (100x90): Yes
> (define/contract make-num-contracted

(-> number?
(printable/c
[gen-print (->* (printable?) (output-port?) void?)]
[gen-port-print (-> output-port? printable? void?)]
[gen-print* (->* (printable? #:width exact-nonnegative-

integer?)
(output-port? #:height exact-

nonnegative-integer?)
void?)]))

make-num)
> (define z (make-num-contracted 10))
> (gen-print* z #:width "not a number" #:height 5)
make-num-contracted: contract violation

expected: natural?
given: "not a number"
in: the #:width argument of

method gen-print*

498

the range of
(-ą

number?
(printable/c

(gen-print
(-ą* (printable?) (output-port?) void?))

(gen-port-print
(-ą output-port? printable? void?))

(gen-print*
(-ą*

(printable? #:width natural?)
(output-port? #:height natural?)
void?))))

contract from:
(definition make-num-contracted)

blaming: top-level
(assuming the contract is correct)

at: eval:15.0

(generic-instance/c gen-id [method-id method-ctc] ...)

method-ctc : contract?

Creates a contract that recognizes structures that implement the generic interface gen-id ,
and constrains their implementations of the specified method-ids with the corresponding
method-ctcs.

(impersonate-generics gen-id val-expr
[method-id method-proc-expr] ...
maybe-properties)

maybe-properties =
| #:properties props-expr

method-proc-expr : (any/c . -> . any/c)

props-expr : (list/c impersonator-property? any/c)

Creates an impersonator of val-expr , which must be a structure that implements the
generic interface gen-id . The impersonator applies the results of the method-proc-
exprs to the structure’s implementation of the corresponding method-ids, and replaces
the method implementation with the result.

A props-expr can provide properties to attach to the impersonator. The result of props-
expr must be a list with an even number of elements, where the first element of the list is
an impersonator property, the second element is its value, and so on.

499

Changed in version 6.1.1.8 of package base: Added #:properties.

(chaperone-generics gen-id val-expr
[method-id method-proc-expr] ...
maybe-properties)

Like impersonate-generics, but creates a chaperone of val-expr , which must be a
structure that implements the generic interface gen-id . The chaperone applies the spec-
ified method-procs to the structure’s implementation of the corresponding method-ids,
and replaces the method implementation with the result, which must be a chaperone of the
original.

(redirect-generics mode gen-id val-expr
[method-id method-proc-expr] ...
maybe-properties)

Like impersonate-generics, but creates an impersonator of val-expr if mode evaluates
to #f, or creates a chaperone of val-expr otherwise.

5.5 Copying and Updating Structures

(struct-copy id struct-expr fld-id ...)

fld-id = [field-id expr]
| [field-id #:parent parent-id expr]

Creates a new instance of the structure type id with the same field values as the structure
produced by struct-expr , except that the value of each supplied field-id is instead
determined by the corresponding expr . If #:parent is specified, the parent-id must be
bound to a parent structure type of id .

The id must have a transformer binding that encapsulates information about a structure type
(i.e., like the initial identifier bound by struct), and the binding must supply a constructor,
a predicate, and all field accessors.

Each field-id is combined with id (or parent-id , if present) to form id-field-id
(using the lexical context of field-id), which must be one of the accessor bindings in id .
The accessor bindings determined by different field-ids must be distinct. The order of
the field-ids need not match the order of the corresponding fields in the structure type.

The struct-expr is evaluated first. The result must be an instance of the id structure type,
otherwise the exn:fail:contract exception is raised. Next, the field exprs are evaluated
in order (even if the fields that correspond to the field-ids are in a different order). Finally,
the new structure instance is created.

500

The result of struct-expr can be an instance of a sub-type of id , but the resulting copy is
an immediate instance of id (not the sub-type).

Examples:

> (struct fish (color weight) #:transparent)
> (define marlin (fish 'orange-and-white 11))
> (define dory (struct-copy fish marlin

[color 'blue]))
> dory
(fish 'blue 11)
> (struct shark fish (weeks-since-eating-fish) #:transparent)
> (define bruce (shark 'grey 110 3))
> (define chum (struct-copy shark bruce

[weight #:parent fish 90]
[weeks-since-eating-fish 0]))

> chum
(shark 'grey 90 0)
; subtypes can be copied as if they were supertypes,
; but the result is an instance of the supertype
> (define not-really-chum

(struct-copy fish bruce
[weight 90]))

> not-really-chum
(fish 'grey 90)

5.6 Structure Utilities

(struct->vector v [opaque-v]) Ñ vector?
v : any/c
opaque-v : any/c = '...

Creates a vector representing v . The first slot of the result vector contains a symbol whose
printed name has the form struct:id . Each remaining slot contains either the value of a
field in v , if it is accessible via the current inspector, or opaque-v for a field that is not
accessible. A single opaque-v value is used in the vector for contiguous inaccessible fields.
(Consequently, the size of the vector does not match the size of the struct if more than one
field is inaccessible.)

(struct? v) Ñ any
v : any/c

Returns #t if struct-info exposes any structure types of v with the current inspector, #f
otherwise.

501

Typically, when (struct? v) is true, then (struct->vector v) exposes at least one
field value. It is possible, however, for the only visible types of v to contribute zero fields.

(struct-type? v) Ñ boolean?
v : any/c

Returns #t if v is a structure type descriptor value, #f otherwise.

(struct-constructor-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is a constructor procedure generated by struct or make-struct-type, #f
otherwise.

(struct-predicate-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is a predicate procedure generated by struct or make-struct-type, #f
otherwise.

(struct-accessor-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is an accessor procedure generated by struct, make-struct-type, or
make-struct-field-accessor, #f otherwise.

(struct-mutator-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is a mutator procedure generated by struct, make-struct-type, or make-
struct-field-mutator, #f otherwise.

(prefab-struct-key v) Ñ (or/c #f symbol? list?)
v : any/c

Returns #f if v is not an instance of a prefab structure type. Otherwise, the result is the
shorted key that could be used with make-prefab-struct to create an instance of the
structure type.

Examples:

> (prefab-struct-key #s(cat "Garfield"))
'cat
> (struct cat (name) #:prefab)
> (struct cute-cat cat (shipping-dest) #:prefab)

502

> (cute-cat "Nermel" "Abu Dhabi")
'#s((cute-cat cat 1) "Nermel" "Abu Dhabi")
> (prefab-struct-key (cute-cat "Nermel" "Abu Dhabi"))
'(cute-cat cat 1)

(make-prefab-struct key v ...) Ñ struct?
key : prefab-key?
v : any/c

Creates an instance of a prefab structure type, using the vs as field values. The key and the
number of vs determine the prefab structure type.

A key identifies a structure type based on a list with the following items:

• A symbol for the structure type’s name.

• An exact, nonnegative integer representing the number of non-automatic fields in the
structure type, not counting fields from the supertype (if any).

• A list of two items, where the first is an exact, nonnegative integer for the number of
automatic fields in the structure type that are not from the supertype (if any), and the
second element is an arbitrary value that is the value for the automatic fields.

• A vector of exact, nonnegative integers that indicate mutable non-automatic fields in
the structure type, counting from 0 and not including fields from the supertype (if
any).

• Nothing else, if the structure type has no supertype. Otherwise, the rest of the list is
the key for the supertype.

An empty vector and an auto-field list that starts with 0 can be omitted. Furthermore, the
first integer (which indicates the number of non-automatic fields) can be omitted, since it
can be inferred from the number of supplied vs. Finally, a single symbol can be used instead
of a list that contains only a symbol (in the case that the structure type has no supertype, no
automatic fields, and no mutable fields).

The total field count must be no more than 32768. If the number of fields indicated by key is
inconsistent with the number of supplied vs, the exn:fail:contract exception is raised.

Examples:

> (make-prefab-struct 'clown "Binky" "pie")
'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 2) "Binky" "pie")
'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 2 (0 #f) #()) "Binky" "pie")

503

'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 1 (1 #f) #()) "Binky" "pie")
'#s((clown (1 #f)) "Binky" "pie")
> (make-prefab-struct '(clown 1 (1 #f) #(0)) "Binky" "pie")
'#s((clown (1 #f) #(0)) "Binky" "pie")

(prefab-key->struct-type key field-count) Ñ struct-type?
key : prefab-key?
field-count : (integer-in 0 32768)

Returns a structure type descriptor for the prefab structure type specified by the combination
of key and field-count .

If the number of fields indicated by key is inconsistent with field-count , the
exn:fail:contract exception is raised.

(prefab-key? v) Ñ boolean?
v : any/c

Return #t if v can be a prefab structure type key, #f otherwise.

See make-prefab-struct for a description of valid key shapes.

5.6.1 Additional Structure Utilities

(require racket/struct) package: base

The bindings documented in this section are provided by the racket/struct library, not
racket/base or racket.

(make-constructor-style-printer get-constructor
get-contents)

Ñ (-> any/c output-port? (or/c #t #f 0 1) void?)
get-constructor : (-> any/c (or/c symbol? string?))
get-contents : (-> any/c sequence?)

Produces a function suitable as a value for gen:custom-write or prop:custom-write.
The function prints values in “constructor style.” When the value is printed as an expres-
sion, it is shown as an application of the constructor (as returned by get-constructor)
to the contents (as returned by get-contents). When given to write, it is shown as an
unreadable value with the constructor separated from the contents by a colon.

Examples:

504

https://pkgs.racket-lang.org/package/base

> (struct point (x y)
#:methods gen:custom-write
[(define write-proc

(make-constructor-style-printer
(lambda (obj) 'point)
(lambda (obj) (list (point-x obj) (point-y obj)))))])

> (print (point 1 2))
(point 1 2)
> (write (point 1 2))
#<point: 1 2>

The function also cooperates with pretty-print:

> (parameterize ((pretty-print-columns 10))
(pretty-print (point 3000000 4000000)))

(point
3000000
4000000)
> (parameterize ((pretty-print-columns 10))

(pretty-write (point 3000000 4000000)))
#<point:
3000000
4000000>

Keyword arguments can be simulated with unquoted-printing-string:

; Private implementation
> (struct kwpoint-impl (x y)

#:methods gen:custom-write
[(define write-proc

(make-constructor-style-printer
(lambda (obj) 'kwpoint)
(lambda (obj)
(list (unquoted-printing-string "#:x")

(kwpoint-impl-x obj)
(unquoted-printing-string "#:y")
(kwpoint-impl-y obj)))))])

; Public ``constructor''
> (define (kwpoint #:x x #:y y)

(kwpoint-impl x y))
; Example use
> (print (kwpoint #:x 1 #:y 2))
(kwpoint #:x 1 #:y 2)
> (write (kwpoint #:x 3 #:y 4))
#<kwpoint: #:x 3 #:y 4>

505

Added in version 6.3 of package base.

(struct->list v [#:on-opaque on-opaque]) Ñ (or/c list? #f)
v : any/c
on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:

> (define-struct open (u v) #:transparent)
> (struct->list (make-open 'a 'b))
'(a b)
> (struct->list #s(pre 1 2 3))
'(1 2 3)
> (define-struct (secret open) (x y))
> (struct->list (make-secret 0 1 17 22))
struct-ąlist: expected argument of type ănon-opaque structą;
given: (secret 0 1 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)
#f
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)
'(0 1)
> (struct->list 'not-a-struct #:on-opaque 'return-false)
#f
> (struct->list 'not-a-struct #:on-opaque 'skip)
'()

Added in version 6.3 of package base.

5.7 Structure Type Transformer Binding

The struct form binds the name of a structure type as a transformer binding that records
the other identifiers bound to the structure type, the constructor procedure, the predicate
procedure, and the field accessor and mutator procedures. This information can be used
during the expansion of other expressions via syntax-local-value.

For example, the struct variant for subtypes uses the base type name t to find the variable
struct:t containing the base type’s descriptor; it also folds the field accessor and mutator

506

information for the base type into the information for the subtype. As another example,
the match form uses a type name to find the predicates and field accessors for the structure
type. The struct form in an imported signature for unit causes the unit transformer to
generate information about imported structure types, so that match and subtyping struct
forms work within the unit.

The expansion-time information for a structure type can be represented directly as a list of
six elements (of the same sort that the encapsulated procedure must return):

• an identifier that is bound to the structure type’s descriptor, or #f if none is known;

• an identifier that is bound to the structure type’s constructor, or #f if none is known;

• an identifier that is bound to the structure type’s predicate, or #f if none is known;

• a list of identifiers bound to the field accessors of the structure type, optionally with
#f as the list’s last element. A #f as the last element indicates that the structure type
may have additional fields, otherwise the list is a reliable indicator of the number of
fields in the structure type. Furthermore, the accessors are listed in reverse order for
the corresponding constructor arguments. (The reverse order enables sharing in the
lists for a subtype and its base type.)

• a list of identifiers bound to the field mutators of the structure type, or #f for each field
that has no known mutator, and optionally with an extra #f as the list’s last element
(if the accessor list has such a #f). The list’s order and the meaning of a final #f are
the same as for the accessor identifiers, and the length of the mutator list is the same
as the accessor list’s length.

• an identifier that determines a super-type for the structure type, #f if the super-type
(if any) is unknown, or #t if there is no super-type. If a super-type is specified, the
identifier is also bound to structure-type expansion-time information.

Instead of this direct representation, the representation can be a structure created by make-
struct-info (or an instance of a subtype of struct:struct-info), which encapsu-
lates a procedure that takes no arguments and returns a list of six elements. Alternately,
the representation can be a structure whose type has the prop:struct-info structure
type property. Finally, the representation can be an instance of a structure type derived
from struct:struct-info or with the prop:struct-info property that also imple-
ments prop:procedure, and where the instance is further is wrapped by make-set!-
transformer. In addition, the representation may implement the prop:struct-auto-
info property.

Use struct-info? to recognize all allowed forms of the information, and use extract-
struct-info to obtain a list from any representation.

The implementor of a syntactic form can expect users of the form to know what kind of
information is available about a structure type. For example, the match implementation

507

works with structure information containing an incomplete set of accessor bindings, because
the user is assumed to know what information is available in the context of the match ex-
pression. In particular, the match expression can appear in a unit form with an imported
structure type, in which case the user is expected to know the set of fields that are listed in
the signature for the structure type.

(require racket/struct-info) package: base

The bindings documented in this section are provided by the racket/struct-info library,
not racket/base or racket.

(struct-info? v) Ñ boolean?
v : any/c

Returns #t if v is either a six-element list with the correct shape for representing structure-
type information, a procedure encapsulated by make-struct-info, a structure with the
prop:struct-info property, or a structure type derived from struct:struct-info or
with prop:struct-info and wrapped with make-set!-transformer.

(checked-struct-info? v) Ñ boolean?
v : any/c

Returns #t if v is a procedure encapsulated by make-struct-info and produced by
struct, but only when no parent type is specified or the parent type is also specified through
a transformer binding to such a value.

(make-struct-info thunk) Ñ struct-info?
thunk : (-> (and/c struct-info? list?))

Encapsulates a thunk that returns structure-type information in list form. Note that accessors
are listed in reverse order, as mentioned in §5.7 “Structure Type Transformer Binding”.

Examples:

> (define (new-pair? x) (displayln "new pair?") (pair? x))
> (define (new-car x) (displayln "new car") (car x))
> (define (new-cdr x) (displayln "new cdr") (cdr x))
> (define-syntax new-list

(make-struct-info
(λ () (list #f

#'cons
#'new-pair?
(list #'new-cdr #'new-car)
(list #f #f)
#t))))

> (match (list 1 2 3)
[(new-list hd tl) (append tl (list hd))])

508

https://pkgs.racket-lang.org/package/base

new pair?
new car
new cdr
'(2 3 1)

Examples:

> (struct A (x y))
> (define (new-A-x a) (displayln "A-x") (A-x a))
> (define (new-A-y a) (displayln "A-y") (A-y a))
> (define (new-A? a) (displayln "A?") (A? a))
> (define-syntax A-info

(make-struct-info
(λ () (list #'A

#'A
#'new-A?
(list #'new-A-y #'new-A-x)
(list #f #f)
#t))))

> (define-match-expander B
(syntax-rules () [(_ x ...) (A-info x ...)]))

> (match (A 10 20)
[(B x y) (list y x)])

A?
A-x
A-y
'(20 10)

(extract-struct-info v) Ñ (and/c struct-info? list?)
v : struct-info?

Extracts the list form of the structure type information represented by v .

struct:struct-info : struct-type?

The structure type descriptor for the structure type returned by make-struct-info. This
structure type descriptor is mostly useful for creating structure subtypes. The structure type
includes a guard that checks an instance’s first field in the same way as make-struct-info.

prop:struct-info : struct-type-property?

The structure type property for creating new structure types like struct:struct-info.
The property value must be a procedure of one argument that takes an instance structure and
returns structure-type information in list form.

509

prop:struct-auto-info : struct-type-property?
(struct-auto-info? v) Ñ boolean?

v : any/c
(struct-auto-info-lists sai)
Ñ (list/c (listof identifier?) (listof identifier?))
sai : struct-auto-info?

The prop:struct-auto-info property is implemented to provide static information about
which of the accessor and mutator identifiers for a structure type correspond to #:auto fields
(so that they have no corresponding argument in the constructor). The property value must
be a procedure that accepts an instance structure to which the property is given, and the result
must be two lists of identifiers suitable as a result from struct-auto-info-lists.

The struct-auto-info? predicate recognizes values that implement the prop:struct-
auto-info property.

The struct-auto-info-lists function extracts two lists of identifiers from a value that
implements the prop:struct-auto-info property. The first list should be a subset of the
accessor identifiers for the structure type described by sai , and the second list should be a
subset of the mutator identifiers. The two subsets correspond to #:auto fields.

510

6 Classes and Objects
§13 “Classes and
Objects” in The
Racket Guide
introduces classes
and objects.

(require racket/class) package: base

The bindings documented in this section are provided by the racket/class and racket
libraries, but not racket/base.

A class specifies

• a collection of fields;

• a collection of methods;

• initial value expressions for the fields; and

• initialization variables that are bound to initialization arguments.

In the context of the class system, an object is a collection of bindings for fields that are
instantiated according to a class description.

The class system allows a program to define a new class (a derived class) in terms of an
existing class (the superclass) using inheritance, overriding, and augmenting:

• inheritance: An object of a derived class supports methods and instantiates fields
declared by the derived class’s superclass, as well as methods and fields declared in
the derived class expression.

• overriding: Some methods declared in a superclass can be replaced in the derived
class. References to the overridden method in the superclass use the implementation
in the derived class.

• augmenting: Some methods declared in a superclass can be merely extended in the
derived class. The superclass method specifically delegates to the augmenting method
in the derived class.

An interface is a collection of method names to be implemented by a class, combined with
a derivation requirement. A class implements an interface when it

• declares (or inherits) a public method for each variable in the interface;

• is derived from the class required by the interface, if any; and

• specifically declares its intention to implement the interface.

511

https://pkgs.racket-lang.org/package/base

A class can implement any number of interfaces. A derived class automatically implements
any interface that its superclass implements. Each class also implements an implicitly-
defined interface that is associated with the class. The implicitly-defined interface contains
all of the class’s public method names, and it requires that all other implementations of the
interface are derived from the class.

A new interface can extend one or more interfaces with additional method names; each class
that implements the extended interface also implements the original interfaces. The deriva-
tion requirements of the original interface must be consistent, and the extended interface
inherits the most specific derivation requirement from the original interfaces.

Classes, objects, and interfaces are all values. However, a class or interface is not an object
(i.e., there are no “meta-classes” or “meta-interfaces”).

6.1 Creating Interfaces
§13 “Classes and
Objects” in The
Racket Guide
introduces classes,
objects, and
interfaces.

(interface (super-interface-expr ...) name-clause ...)

name-clause = id
| (id contract-expr)

Produces an interface. The ids must be mutually distinct.

Each super-interface-expr is evaluated (in order) when the interface expression is
evaluated. The result of each super-interface-expr must be an interface value, oth-
erwise the exn:fail:object exception is raised. The interfaces returned by the super-
interface-exprs are the new interface’s superinterfaces, which are all extended by the
new interface. Any class that implements the new interface also implements all of the super-
interfaces.

The result of an interface expression is an interface that includes all of the specified
ids, plus all identifiers from the superinterfaces. Duplicate identifier names among the
superinterfaces are ignored, but if a superinterface contains one of the ids in the interface
expression, the exn:fail:object exception is raised. A given id may be paired with a
corresponding contract-expr .

If no super-interface-exprs are provided, then the derivation requirement of the result-
ing interface is trivial: any class that implements the interface must be derived from ob-
ject%. Otherwise, the implementation requirement of the resulting interface is the most
specific requirement from its superinterfaces. If the superinterfaces specify inconsistent
derivation requirements, the exn:fail:object exception is raised.

Examples:

(define file-interface<%>
(interface () open close read-byte write-byte))

512

(define directory-interface<%>
(interface (file-interface<%>)
[file-list (->m (listof (is-a?/c file-interface<%>)))]
parent-directory))

(interface* (super-interface-expr ...)
([property-expr val-expr] ...)

name-clause ...)

name-clause = id
| (id contract-expr)

Like interface, but also associates to the interface the structure-type properties produced
by the property-exprs with the corresponding val-exprs.

Whenever the resulting interface (or a sub-interface derived from it) is explicitly imple-
mented by a class through the class* form, each property is attached with its value to a
structure type that instantiated by instances of the class. Specifically, the property is at-
tached to a structure type with zero immediate fields, which is extended to produce the inter-
nal structure type for instances of the class (so that no information about fields is accessible
to the structure type property’s guard, if any).

Example:

(define i<%> (interface* () ([prop:custom-write
(lambda (obj port mode) (void))])

method1 method2 method3))

6.2 Creating Classes
§13 “Classes and
Objects” in The
Racket Guide
introduces classes
and objects.

object% : class?

A built-in class that has no methods fields, implements only its own interface (class-
>interface object%), and is transparent (i.e,. its inspector is #f, so all immediate in-
stances are equal?). All other classes are derived from object%.

(class* superclass-expr (interface-expr ...)
class-clause
...)

513

class-clause = (inspect inspector-expr)
| (init init-decl ...)
| (init-field init-decl ...)
| (field field-decl ...)
| (inherit-field maybe-renamed ...)
| (init-rest id)
| (init-rest)
| (public maybe-renamed ...)
| (pubment maybe-renamed ...)
| (public-final maybe-renamed ...)
| (override maybe-renamed ...)
| (overment maybe-renamed ...)
| (override-final maybe-renamed ...)
| (augment maybe-renamed ...)
| (augride maybe-renamed ...)
| (augment-final maybe-renamed ...)
| (private id ...)
| (abstract id ...)
| (inherit maybe-renamed ...)
| (inherit/super maybe-renamed ...)
| (inherit/inner maybe-renamed ...)
| (rename-super renamed ...)
| (rename-inner renamed ...)
| method-definition
| definition
| expr
| (begin class-clause ...)

init-decl = id
| (renamed)
| (maybe-renamed default-value-expr)

field-decl = (maybe-renamed default-value-expr)

maybe-renamed = id
| renamed

renamed = (internal-id external-id)

method-definition = (define-values (id) method-procedure)

method-procedure = (lambda kw-formals expr ...+)
| (case-lambda (formals expr ...+) ...)
| (#%plain-lambda formals expr ...+)
| (let-values ([(id) method-procedure] ...)

method-procedure)
| (letrec-values ([(id) method-procedure] ...)

method-procedure)
| (let-values ([(id) method-procedure] ...+)

id)
| (letrec-values ([(id) method-procedure] ...+)

id)
| (chaperone-procedure method-procedure wrapper-proc

other-arg-expr ...)

514

Produces a class value.

The superclass-expr expression is evaluated when the class* expression is evaluated.
The result must be a class value (possibly object%), otherwise the exn:fail:object ex-
ception is raised. The result of the superclass-expr expression is the new class’s super-
class.

The interface-expr expressions are also evaluated when the class* expression is eval-
uated, after superclass-expr is evaluated. The result of each interface-expr must
be an interface value, otherwise the exn:fail:object exception is raised. The interfaces
returned by the interface-exprs are all implemented by the class. For each identifier in
each interface, the class (or one of its ancestors) must declare a public method with the same
name, otherwise the exn:fail:object exception is raised. The class’s superclass must
satisfy the implementation requirement of each interface, otherwise the exn:fail:object
exception is raised.

An inspect class-clause selects an inspector (see §14.9 “Structure Inspectors”) for the
class extension. The inspector-expr must evaluate to an inspector or #fwhen the class*
form is evaluated. Just as for structure types, an inspector controls access to the class’s fields,
including private fields, and also affects comparisons using equal?. If no inspect clause
is provided, access to the class is controlled by the parent of the current inspector (see §14.9
“Structure Inspectors”). A syntax error is reported if more than one inspect clause is
specified.

The other class-clauses define initialization arguments, public and private fields, and
public and private methods. For each id or maybe-renamed in a public, override,
augment, pubment, overment, augride, public-final, override-final, augment-
final, or private clause, there must be one method-definition . All other definition
class-clauses create private fields. All remaining exprs are initialization expressions to
be evaluated when the class is instantiated (see §6.3 “Creating Objects”).

The result of a class* expression is a new class, derived from the specified superclass and
implementing the specified interfaces. Instances of the class are created with the instan-
tiate form or make-object procedure, as described in §6.3 “Creating Objects”.

Each class-clause is (partially) macro-expanded to reveal its shapes. If a class-clause
is a begin expression, its sub-expressions are lifted out of the begin and treated as class-
clauses, in the same way that begin is flattened for top-level and embedded definitions.

Within a class* form for instances of the new class, this is bound to the object itself;
this% is bound to the class of the object; super-instantiate, super-make-object,
and super-new are bound to forms to initialize fields in the superclass (see §6.3 “Creating
Objects”); super is available for calling superclass methods (see §6.2.3.1 “Method Defini-
tions”); and inner is available for calling subclass augmentations of methods (see §6.2.3.1
“Method Definitions”).

(class superclass-expr class-clause ...)

515

Like class*, but omits the interface-exprs, for the case that none are needed.

Example:

(define book-class%
(class object%
(field (pages 5))
(define/public (letters)
(* pages 500))

(super-new)))

this

Within a class* form, this refers to the current object (i.e., the object being initialized or
whose method was called). Use outside the body of a class* form is a syntax error.

Examples:

(define (describe obj)
(printf "Hello „a\n" obj))

(define table%
(class object%
(define/public (describe-self)
(describe this))

(super-new)))

> (send (new table%) describe-self)
Hello #(struct:object:table% ...)

this%

Within a class* form, this% refers to the class of the current object (i.e., the object being
initialized or whose method was called). Use outside the body of a class* form is a syntax
error.

Examples:

(define account%
(class object%
(super-new)
(init-field balance)
(define/public (add n)
(new this% [balance (+ n balance)]))))

(define savings%
(class account%

516

(super-new)
(inherit-field balance)
(define interest 0.04)
(define/public (add-interest)
(send this add (* interest balance)))))

> (let* ([acct (new savings% [balance 500])]
[acct (send acct add 500)]
[acct (send acct add-interest)])

(printf "Current balance: „a\n" (get-field balance acct)))
Current balance: 1040.0

(inspect inspector-expr)

See class*; use outside the body of a class* form is a syntax error.

(init init-decl ...)

See class* and §6.2.1 “Initialization Variables”; use outside the body of a class* form is
a syntax error.

Example:

> (class object%
(super-new)
(init turnip

[(internal-potato potato)]
[carrot 'good]
[(internal-rutabaga rutabaga) 'okay]))

#<class:eval:10:0>

(init-field init-decl ...)

See class*, §6.2.1 “Initialization Variables”, and §6.2.2 “Fields”; use outside the body of a
class* form is a syntax error.

Example:

> (class object%
(super-new)
(init-field turkey

[(internal-ostrich ostrich)]
[chicken 7]
[(internal-emu emu) 13]))

#<class:eval:11:0>

517

(field field-decl ...)

See class* and §6.2.2 “Fields”; use outside the body of a class* form is a syntax error.

Example:

> (class object%
(super-new)
(field [minestrone 'ready]

[(internal-coq-au-vin coq-au-vin) 'stewing]))
#<class:eval:12:0>

(inherit-field maybe-renamed ...)

See class* and §6.2.2 “Fields”; use outside the body of a class* form is a syntax error.

Examples:

(define cookbook%
(class object%
(super-new)
(field [recipes '(caldo-verde oyakodon eggs-benedict)]

[pages 389])))

> (class cookbook%
(super-new)
(inherit-field recipes

[internal-pages pages]))
#<class:eval:14:0>

(init-rest id)
(init-rest)

See class* and §6.2.1 “Initialization Variables”; use outside the body of a class* form is
a syntax error.

Examples:

(define fruit-basket%
(class object%
(super-new)
(init-rest fruits)

518

(displayln fruits)))

> (make-object fruit-basket% 'kiwi 'lychee 'melon)
(kiwi lychee melon)
(object:fruit-basket% ...)

(public maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define jumper%
(class object%
(super-new)
(define (skip) 'skip)
(define (hop) 'hop)
(public skip [hop jump])))

> (send (new jumper%) skip)
'skip
> (send (new jumper%) jump)
'hop

(pubment maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define runner%
(class object%
(super-new)
(define (run) 'run)
(define (trot) 'trot)
(pubment run [trot jog])))

> (send (new runner%) run)
'run
> (send (new runner%) jog)
'trot

519

(public-final maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define point%
(class object%
(super-new)
(init-field [x 0] [y 0])
(define (get-x) x)
(define (do-get-y) y)
(public-final get-x [do-get-y get-y])))

> (send (new point% [x 1] [y 3]) get-y)
3
> (class point%

(super-new)
(define (get-x) 3.14)
(override get-x))

class*: cannot override or augment final method
method name: get-x
class name: eval:25:0

(override maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define sheep%
(class object%
(super-new)
(define/public (bleat)
(displayln "baaaaaaaaah"))))

(define confused-sheep%
(class sheep%
(super-new)
(define (bleat)
(super bleat)
(displayln "???"))

(override bleat)))

520

> (send (new sheep%) bleat)
baaaaaaaaah
> (send (new confused-sheep%) bleat)
baaaaaaaaah
???

(overment maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define turkey%
(class object%
(super-new)
(define/public (gobble)
(displayln "gobble gobble"))))

(define extra-turkey%
(class turkey%
(super-new)
(define (gobble)
(super gobble)
(displayln "gobble gobble gobble")
(inner (void) gobble))

(overment gobble)))

(define cyborg-turkey%
(class extra-turkey%
(super-new)
(define/augment (gobble)
(displayln "110011111011111100010110001011011001100101"))))

> (send (new extra-turkey%) gobble)
gobble gobble
gobble gobble gobble
> (send (new cyborg-turkey%) gobble)
gobble gobble
gobble gobble gobble
110011111011111100010110001011011001100101

(override-final maybe-renamed ...)

521

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define meeper%
(class object%
(super-new)
(define/public (meep)
(displayln "meep"))))

(define final-meeper%
(class meeper%
(super-new)
(define (meep)
(super meep)
(displayln "This meeping ends with me"))

(override-final meep)))

> (send (new meeper%) meep)
meep
> (send (new final-meeper%) meep)
meep
This meeping ends with me

(augment maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define buzzer%
(class object%
(super-new)
(define/pubment (buzz)
(displayln "bzzzt")
(inner (void) buzz))))

(define loud-buzzer%
(class buzzer%
(super-new)
(define (buzz)
(displayln "BZZZZZZZZZT"))

(augment buzz)))

522

> (send (new buzzer%) buzz)
bzzzt
> (send (new loud-buzzer%) buzz)
bzzzt
BZZZZZZZZZT

(augride maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

(augment-final maybe-renamed ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

(private id ...)

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define light%
(class object%
(super-new)
(define on? #t)
(define (toggle) (set! on? (not on?)))
(private toggle)
(define (flick) (toggle))
(public flick)))

> (send (new light%) toggle)
send: no such method

method name: toggle
class name: light%

> (send (new light%) flick)

(abstract id ...)

523

See class* and §6.2.3.1 “Method Definitions”; use outside the body of a class* form is a
syntax error.

Examples:

(define train%
(class object%
(super-new)
(abstract get-speed)
(init-field [position 0])
(define/public (move)
(new this% [position (+ position (get-speed))]))))

(define acela%
(class train%
(super-new)
(define/override (get-speed) 241)))

(define talgo-350%
(class train%
(super-new)
(define/override (get-speed) 330)))

> (new train%)
instantiate: cannot instantiate class with abstract methods

class: #ăclass:train%ą
abstract methods:

get-speed
> (send (new acela%) move)
(object:acela% ...)

(inherit maybe-renamed ...)

See class* and §6.2.3.2 “Inherited and Superclass Methods”; use outside the body of a
class* form is a syntax error.

Examples:

(define alarm%
(class object%
(super-new)
(define/public (alarm)
(displayln "beeeeeeeep"))))

524

(define car-alarm%
(class alarm%
(super-new)
(init-field proximity)
(inherit alarm)
(when (< proximity 10)
(alarm))))

> (new car-alarm% [proximity 5])
beeeeeeeep
(object:car-alarm% ...)

(inherit/super maybe-renamed ...)

See class* and §6.2.3.2 “Inherited and Superclass Methods”; use outside the body of a
class* form is a syntax error.

(inherit/inner maybe-renamed ...)

See class* and §6.2.3.2 “Inherited and Superclass Methods”; use outside the body of a
class* form is a syntax error.

(rename-super renamed ...)

See class* and §6.2.3.2 “Inherited and Superclass Methods”; use outside the body of a
class* form is a syntax error.

(rename-inner renamed ...)

See class* and §6.2.3.2 “Inherited and Superclass Methods”; use outside the body of a
class* form is a syntax error.

(public* (id expr) ...)

Shorthand for (begin (public id) ... (define id expr) ...).

(pubment* (id expr) ...)

Shorthand for (begin (pubment id) ... (define id expr) ...).

525

(public-final* (id expr) ...)

Shorthand for (begin (public-final id) ... (define id expr) ...).

(override* (id expr) ...)

Shorthand for (begin (override id) ... (define id expr) ...).

(overment* (id expr) ...)

Shorthand for (begin (overment id) ... (define id expr) ...).

(override-final* (id expr) ...)

Shorthand for (begin (override-final id) ... (define id expr) ...).

(augment* (id expr) ...)

Shorthand for (begin (augment id) ... (define id expr) ...).

(augride* (id expr) ...)

Shorthand for (begin (augride id) ... (define id expr) ...).

(augment-final* (id expr) ...)

Shorthand for (begin (augment-final id) ... (define id expr) ...).

(private* (id expr) ...)

Shorthand for (begin (private id) ... (define id expr) ...).

(define/public id expr)
(define/public (id . formals) body ...+)

Shorthand for (begin (public id) (define id expr)) or (begin (public id)
(define (id . formals) body ...+))

526

(define/pubment id expr)
(define/pubment (id . formals) body ...+)

Shorthand for (begin (pubment id) (define id expr)) or (begin (pubment
id) (define (id . formals) body ...+))

(define/public-final id expr)
(define/public-final (id . formals) body ...+)

Shorthand for (begin (public-final id) (define id expr)) or (begin
(public-final id) (define (id . formals) body ...+))

(define/override id expr)
(define/override (id . formals) body ...+)

Shorthand for (begin (override id) (define id expr)) or (begin (override
id) (define (id . formals) body ...+))

(define/overment id expr)
(define/overment (id . formals) body ...+)

Shorthand for (begin (overment id) (define id expr)) or (begin (overment
id) (define (id . formals) body ...+))

(define/override-final id expr)
(define/override-final (id . formals) body ...+)

Shorthand for (begin (override-final id) (define id expr)) or (begin
(override-final id) (define (id . formals) body ...+))

(define/augment id expr)
(define/augment (id . formals) body ...+)

Shorthand for (begin (augment id) (define id expr)) or (begin (augment
id) (define (id . formals) body ...+))

(define/augride id expr)
(define/augride (id . formals) body ...+)

527

Shorthand for (begin (augride id) (define id expr)) or (begin (augride
id) (define (id . formals) body ...+))

(define/augment-final id expr)
(define/augment-final (id . formals) body ...+)

Shorthand for (begin (augment-final id) (define id expr)) or (begin
(augment-final id) (define (id . formals) body ...+))

(define/private id expr)
(define/private (id . formals) body ...+)

Shorthand for (begin (private id) (define id expr)) or (begin (private
id) (define (id . formals) body ...+))

(class/derived original-datum
(name-id super-expr (interface-expr ...) deserialize-id-expr)
class-clause
...)

Like class*, but includes a sub-expression to be used as the source for all syntax er-
rors within the class definition. For example, define-serializable-class expands to
class/derived so that errors in the body of the class are reported in terms of define-
serializable-class instead of class.

The original-datum is the original expression to use for reporting errors.

The name-id is used to name the resulting class; if it is #f, the class name is inferred.

The super-expr , interface-exprs, and class-clauses are as for class*.

If the deserialize-id-expr is not literally #f, then a serializable class is generated, and
the result is two values instead of one: the class and a deserialize-info structure produced by
make-deserialize-info. The deserialize-id-expr should produce a value suitable
as the second argument to make-serialize-info, and it should refer to an export whose
value is the deserialize-info structure.

Future optional forms may be added to the sequence that currently ends with deserialize-
id-expr .

6.2.1 Initialization Variables

A class’s initialization variables, declared with init, init-field, and init-rest, are
instantiated for each object of a class. Initialization variables can be used in the initial

528

value expressions of fields, default value expressions for initialization arguments, and in
initialization expressions. Only initialization variables declared with init-field can be
accessed from methods; accessing any other initialization variable from a method is a syntax
error.

The values bound to initialization variables are

• the arguments provided with instantiate or passed to make-object, if the object
is created as a direct instance of the class; or,

• the arguments passed to the superclass initialization form or procedure, if the object is
created as an instance of a derived class.

If an initialization argument is not provided for an initialization variable that has an asso-
ciated default-value-expr , then the default-value-expr expression is evaluated to
obtain a value for the variable. A default-value-expr is only evaluated when an argu-
ment is not provided for its variable. The environment of default-value-expr includes
all of the initialization variables, all of the fields, and all of the methods of the class. If
multiple default-value-exprs are evaluated, they are evaluated from left to right. Object
creation and field initialization are described in detail in §6.3 “Creating Objects”.

If an initialization variable has no default-value-expr , then the object creation or
superclass initialization call must supply an argument for the variable, otherwise the
exn:fail:object exception is raised.

Initialization arguments can be provided by name or by position. The external name of an
initialization variable can be used with instantiate or with the superclass initialization
form. Those forms also accept by-position arguments. The make-object procedure and the
superclass initialization procedure accept only by-position arguments.

Arguments provided by position are converted into by-name arguments using the order of
init and init-field clauses and the order of variables within each clause. When an
instantiate form provides both by-position and by-name arguments, the converted argu-
ments are placed before by-name arguments. (The order can be significant; see also §6.3
“Creating Objects”.)

Unless a class contains an init-rest clause, when the number of by-position arguments
exceeds the number of declared initialization variables, the order of variables in the super-
class (and so on, up the superclass chain) determines the by-name conversion.

If a class expression contains an init-rest clause, there must be only one, and it must
be last. If it declares a variable, then the variable receives extra by-position initialization
arguments as a list (similar to a dotted “rest argument” in a procedure). An init-rest
variable can receive by-position initialization arguments that are left over from a by-name
conversion for a derived class. When a derived class’s superclass initialization provides even
more by-position arguments, they are prefixed onto the by-position arguments accumulated
so far.

529

If too few or too many by-position initialization arguments are provided to an object cre-
ation or superclass initialization, then the exn:fail:object exception is raised. Simi-
larly, if extra by-position arguments are provided to a class with an init-rest clause, the
exn:fail:object exception is raised.

Unused (by-name) arguments are to be propagated to the superclass, as described in §6.3
“Creating Objects”. Multiple initialization arguments can use the same name if the class
derivation contains multiple declarations (in different classes) of initialization variables with
the name. See §6.3 “Creating Objects” for further details.

See also §6.2.3.3 “Internal and External Names” for information about internal and external
names.

6.2.2 Fields

Each field, init-field, and non-method define-values clause in a class declares one
or more new fields for the class. Fields declared with field or init-field are public. Pub-
lic fields can be accessed and mutated by subclasses using inherit-field. Public fields
are also accessible outside the class via class-field-accessor and mutable via class-
field-mutator (see §6.4 “Field and Method Access”). Fields declared with define-
values are accessible only within the class.

A field declared with init-field is both a public field and an initialization variable. See
§6.2.1 “Initialization Variables” for information about initialization variables.

An inherit-field declaration makes a public field defined by a superclass directly ac-
cessible in the class expression. If the indicated field is not defined in the superclass, the
exn:fail:object exception is raised when the class expression is evaluated. Every field
in a superclass is present in a derived class, even if it is not declared with inherit-field
in the derived class. The inherit-field clause does not control inheritance, but merely
controls lexical scope within a class expression.

When an object is first created, all of its fields have the #<undefined> value (see §4.18
“Void”). The fields of a class are initialized at the same time that the class’s initialization
expressions are evaluated; see §6.3 “Creating Objects” for more information.

See also §6.2.3.3 “Internal and External Names” for information about internal and external
names.

6.2.3 Methods

Method Definitions

Each public, override, augment, pubment, overment, augride, public-final,

530

override-final, augment-final, and private clause in a class declares one or more
method names. Each method name must have a corresponding method-definition . The
order of public, etc., clauses and their corresponding definitions (among themselves, and
with respect to other clauses in the class) does not matter.

As shown in the grammar for class*, a method definition is syntactically restricted to cer-
tain procedure forms, as defined by the grammar for method-procedure ; in the last two
forms of method-procedure , the body id must be one of the ids bound by let-values or
letrec-values. A method-procedure expression is not evaluated directly. Instead, for
each method, a class-specific method procedure is created; it takes an initial object argument,
in addition to the arguments the procedure would accept if the method-procedure expres-
sion were evaluated directly. The body of the procedure is transformed to access methods
and fields through the object argument.

A method declared with public, pubment, or public-final introduces a new method
into a class. The method must not be present already in the superclass, otherwise the
exn:fail:object exception is raised when the class expression is evaluated. A method
declared with public can be overridden in a subclass that uses override, overment, or
override-final. A method declared with pubment can be augmented in a subclass that
uses augment, augride, or augment-final. A method declared with public-final can-
not be overridden or augmented in a subclass.

A method declared with override, overment, or override-final overrides a def-
inition already present in the superclass. If the method is not already present, the
exn:fail:object exception is raised when the class expression is evaluated. A method de-
clared with override can be overridden again in a subclass that uses override, overment,
or override-final. A method declared with overment can be augmented in a subclass
that uses augment, augride, or augment-final. A method declared with override-
final cannot be overridden further or augmented in a subclass.

A method declared with augment, augride, or augment-final augments a definition al-
ready present in the superclass. If the method is not already present, the exn:fail:object
exception is raised when the class expression is evaluated. A method declared with augment
can be augmented further in a subclass that uses augment, augride, or augment-final. A
method declared with augride can be overridden in a subclass that uses override, over-
ment, or override-final. (Such an override merely replaces the augmentation, not the
method that is augmented.) A method declared with augment-final cannot be overridden
or augmented further in a subclass.

A method declared with private is not accessible outside the class expression, cannot be
overridden, and never overrides a method in the superclass.

When a method is declared with override, overment, or override-final, then the su-
perclass implementation of the method can be called using super form.

When a method is declared with pubment, augment, or overment, then a subclass aug-
menting method can be called using the inner form. The only difference between public-

531

final and pubment without a corresponding inner is that public-final prevents the
declaration of augmenting methods that would be ignored.

A method declared with abstract must be declared without an implementation. Subclasses
may implement abstract methods via the override, overment, or override-final forms.
Any class that contains or inherits any abstract methods is considered abstract and cannot be
instantiated.

(super id arg ...)
(super id arg arg-list-expr)

Always accesses the superclass method, independent of whether the method is overridden
again in subclasses. Using the super form outside of class* is a syntax error. Each arg is
as for #%app: either arg-expr or keyword arg-expr .

The second form is analogous to using apply with a procedure; the arg-list-expr must
not be a parenthesized expression.

(inner default-expr id arg ...)
(inner default-expr id arg arg-list-expr)

If the object’s class does not supply an augmenting method, then default-expr is evalu-
ated, and the arg expressions are not evaluated. Otherwise, the augmenting method is called
with the arg results as arguments, and default-expr is not evaluated. If no inner call
is evaluated for a particular method, then augmenting methods supplied by subclasses are
never used. Using the inner form outside of class* is an syntax error.

The second form is analogous to using apply with a procedure; the arg-list-expr must
not be a parenthesized expression.

Inherited and Superclass Methods

Each inherit, inherit/super, inherit/inner, rename-super, and rename-inner
clause declares one or more methods that are defined in the class, but must be present in
the superclass. The rename-super and rename-inner declarations are rarely used, since
inherit/super and inherit/inner provide the same access. Also, superclass and aug-
menting methods are typically accessed through super and inner in a class that also de-
clares the methods, instead of through inherit/super, inherit/inner, rename-super,
or rename-inner.

Method names declared with inherit, inherit/super, or inherit/inner access over-
riding declarations, if any, at run time. Method names declared with inherit/super can
also be used with the super form to access the superclass implementation, and method
names declared with inherit/inner can also be used with the inner form to access an
augmenting method, if any.

Method names declared with rename-super always access the superclass’s implementation

532

at run-time. Methods declared with rename-inner access a subclass’s augmenting method,
if any, and must be called with the form

(id (lambda () default-expr) arg ...)

so that a default-expr is available to evaluate when no augmenting method is available.
In such a form, lambda is a literal identifier to separate the default-expr from the arg.
When an augmenting method is available, it receives the results of the arg expressions as
arguments.

Methods that are present in the superclass but not declared with inherit, inherit/super,
or inherit/inner or rename-super are not directly accessible in the class (though they
can be called with send). Every public method in a superclass is present in a derived class,
even if it is not declared with inherit in the derived class; the inherit clause does not
control inheritance, but merely controls lexical scope within a class expression.

If a method declared with inherit, inherit/super, inherit/inner, rename-super, or
rename-inner is not present in the superclass, the exn:fail:object exception is raised
when the class expression is evaluated.

Internal and External Names

Each method declared with public, override, augment, pubment, overment, au-
gride, public-final, override-final, augment-final, inherit, inherit/super,
inherit/inner, rename-super, and rename-inner can have separate internal and ex-
ternal names when (internal-id external-id) is used for declaring the method. The
internal name is used to access the method directly within the class expression (including
within super or inner forms), while the external name is used with send and generic
(see §6.4 “Field and Method Access”). If a single id is provided for a method declaration,
the identifier is used for both the internal and external names.

Method inheritance, overriding, and augmentation are based on external names only. Sep-
arate internal and external names are required for rename-super and rename-inner (for
historical reasons, mainly).

Each init, init-field, field, or inherit-field variable similarly has an internal and
an external name. The internal name is used within the class to access the variable, while
the external name is used outside the class when providing initialization arguments (e.g., to
instantiate), inheriting a field, or accessing a field externally (e.g., with class-field-
accessor). As for methods, when inheriting a field with inherit-field, the external
name is matched to an external field name in the superclass, while the internal name is
bound in the class expression.

A single identifier can be used as an internal identifier and an external identifier, and it is
possible to use the same identifier as internal and external identifiers for different bindings.
Furthermore, within a single class, a single name can be used as an external method name,
an external field name, and an external initialization argument name. Overall, each internal

533

identifier must be distinct from all other internal identifiers, each external method name must
be distinct from all other method names, each external field name must be distinct from all
other field names, and each initialization argument name must be distinct from all other
initialization argument names.

By default, external names have no lexical scope, which means, for example, that an external
method name matches the same syntactic symbol in all uses of send. The define-local-
member-name and define-member-name forms introduce scoped external names.

When a class expression is compiled, identifiers used in place of external names must
be symbolically distinct (when the corresponding external names are required to be dis-
tinct), otherwise a syntax error is reported. When no external name is bound by define-
member-name, then the actual external names are guaranteed to be distinct when class
expression is evaluated. When any external name is bound by define-member-name, the
exn:fail:object exception is raised by class if the actual external names are not distinct.

(define-local-member-name id ...)

Unless it appears as the top-level definition, binds each id so that, within the scope of the
definition, each use of each id as an external name is resolved to a hidden name generated
by the define-local-member-name declaration. Thus, methods, fields, and initializa-
tion arguments declared with such external-name ids are accessible only in the scope of
the define-local-member-name declaration. As a top-level definition, define-local-
member-name binds id to its symbolic form.

The binding introduced by define-local-member-name is a syntax binding that can
be exported and imported with modules. Each evaluation of a define-local-member-
name declaration generates a distinct hidden name (except as a top-level definition). The
interface->method-names procedure does not expose hidden names.

Examples:

(define-values (r o)
(let ()
(define-local-member-name m)
(define c% (class object%

(define/public (m) 10)
(super-new)))

(define o (new c%))

(values (send o m)
o)))

> r
10
> (send o m)
send: no such method

534

method name: m
class name: c%

(define-member-name id key-expr)

Maps a single external name to an external name that is determined by an expression.
The value of key-expr must be the result of either a member-name-key expression or
a generate-member-key call.

(member-name-key identifier)

Produces a representation of the external name for id in the environment of the member-
name-key expression.

(generate-member-key) Ñ member-name-key?

Produces a hidden name, just like the binding for define-local-member-name.

(member-name-key? v) Ñ boolean?
v : any/c

Returns #t for values produced by member-name-key and generate-member-key, #f
otherwise.

(member-name-key=? a-key b-key) Ñ boolean?
a-key : member-name-key?
b-key : member-name-key?

Produces #t if member-name keys a-key and b-key represent the same external name, #f
otherwise.

(member-name-key-hash-code a-key) Ñ integer?
a-key : member-name-key?

Produces an integer hash code consistent with member-name-key=? comparisons, analo-
gous to equal-hash-code.

Examples:

(define (make-c% key)
(define-member-name m key)
(class object%
(define/public (m) 10)
(super-new)))

535

> (send (new (make-c% (member-name-key m))) m)
10
> (send (new (make-c% (member-name-key p))) m)
send: no such method

method name: m
class name: make-c%

> (send (new (make-c% (member-name-key p))) p)
10

(define (fresh-c%)
(let ([key (generate-member-key)])
(values (make-c% key) key)))

(define-values (fc% key) (fresh-c%))

> (send (new fc%) m)
send: no such method

method name: m
class name: make-c%

> (let ()
(define-member-name p key)
(send (new fc%) p))

10

6.3 Creating Objects

The make-object procedure creates a new object with by-position initialization arguments,
the new form creates a new object with by-name initialization arguments, and the instanti-
ate form creates a new object with both by-position and by-name initialization arguments.

All fields in the newly created object are initially bound to the special #<undefined> value
(see §4.18 “Void”). Initialization variables with default value expressions (and no provided
value) are also initialized to #<undefined>. After argument values are assigned to ini-
tialization variables, expressions in field clauses, init-field clauses with no provided
argument, init clauses with no provided argument, private field definitions, and other ex-
pressions are evaluated. Those expressions are evaluated as they appear in the class expres-
sion, from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must
be evaluated once by using the super-make-object procedure, super-new form, or
super-instantiate form.

By-name initialization arguments to a class that have no matching initialization variable are

536

implicitly added as by-name arguments to a super-make-object, super-new, or super-
instantiate invocation, after the explicit arguments. If multiple initialization arguments
are provided for the same name, the first (if any) is used, and the unused arguments are
propagated to the superclass. (Note that converted by-position arguments are always placed
before explicit by-name arguments.) The initialization procedure for the object% class
accepts zero initialization arguments; if it receives any by-name initialization arguments,
then exn:fail:object exception is raised.

If the end of initialization is reached for any class in the hierarchy without invoking the
superclass’s initialization, the exn:fail:object exception is raised. Also, if superclass
initialization is invoked more than once, the exn:fail:object exception is raised.

Fields inherited from a superclass are not initialized until the superclass’s initialization pro-
cedure is invoked. In contrast, all methods are available for an object as soon as the object is
created; the overriding of methods is not affected by initialization (unlike objects in C++).

(make-object class init-v ...) Ñ object?
class : class?
init-v : any/c

Creates an instance of class . The init-vs are passed as initialization arguments, bound
to the initialization variables of class for the newly created object as described in §6.2.1
“Initialization Variables”. If class is not a class, the exn:fail:contract exception is
raised.

(new class-expr (id by-name-expr) ...)

Creates an instance of the value of class-expr (which must be a class), and the value of
each by-name-expr is provided as a by-name argument for the corresponding id .

(instantiate class-expr (by-pos-expr ...) (id by-name-expr) ...)

Creates an instance of the value of class-expr (which must be a class), and the values
of the by-pos-exprs are provided as by-position initialization arguments. In addition, the
value of each by-name-expr is provided as a by-name argument for the corresponding id .

super-make-object

Produces a procedure that takes by-position arguments an invokes superclass initialization.
See §6.3 “Creating Objects” for more information.

(super-instantiate (by-pos-expr ...) (id by-expr ...) ...)

Invokes superclass initialization with the specified by-position and by-name arguments. See
§6.3 “Creating Objects” for more information.

537

(super-new (id by-name-expr ...) ...)

Invokes superclass initialization with the specified by-name arguments. See §6.3 “Creating
Objects” for more information.

6.4 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of
the class are all part of the environment. Within a method body, only the fields and other
methods of the class can be referenced; a reference to any other class-introduced identifier is
a syntax error. Elsewhere within the class, all class-introduced identifiers are available, and
fields and initialization variables can be mutated with set!.

6.4.1 Methods

Method names used within a class can only be used in the procedure position of an applica-
tion expression; any other use is a syntax error.

To allow methods to be applied to lists of arguments, a method application can have the
following form:

(method-id arg arg-list-expr)

This form calls the method in a way analogous to (apply method-id arg ... arg-
list-expr). The arg-list-expr must not be a parenthesized expression.

Methods are called from outside a class with the send, send/apply, and send/keyword-
apply forms.

(send obj-expr method-id arg ...)
(send obj-expr method-id arg arg-list-expr)

Evaluates obj-expr to obtain an object, and calls the method with (external) name method-
id on the object, providing the arg results as arguments. Each arg is as for #%app: ei-
ther arg-expr or keyword arg-expr . In the second form, arg-list-expr cannot be a
parenthesized expression.

If obj-expr does not produce an object, the exn:fail:contract exception is raised. If
the object has no public method named method-id , the exn:fail:object exception is
raised.

538

(send/apply obj-expr method-id arg ... arg-list-expr)

Like the dotted form of send, but arg-list-expr can be any expression.

(send/keyword-apply obj-expr method-id
keyword-list-expr value-list-expr
arg ... arg-list-expr)

Like send/apply, but with expressions for keyword and argument lists like keyword-
apply.

(dynamic-send obj
method-name
v ...
#:<kw> kw-arg ...) Ñ any

obj : object?
method-name : symbol?
v : any/c
kw-arg : any/c

Calls the method on obj whose name matches method-name , passing along all given vs
and kw-args.

(send* obj-expr msg ...+)

msg = (method-id arg ...)
| (method-id arg arg-list-expr)

Calls multiple methods (in order) of the same object. Each msg corresponds to a use of
send.

For example,

(send* edit (begin-edit-sequence)
(insert "Hello")
(insert #\newline)
(end-edit-sequence))

is the same as

(let ([o edit])
(send o begin-edit-sequence)
(send o insert "Hello")
(send o insert #\newline)
(send o end-edit-sequence))

539

(send+ obj-expr msg ...)

msg = (method-id arg ...)
| (method-id arg arg-list-expr)

Calls methods (in order) starting with the object produced by obj-expr . Each method call
will be invoked on the result of the last method call, which is expected to be an object. Each
msg corresponds to a use of send.

This is the functional analogue of send*.

Examples:

(define point%
(class object%
(super-new)
(init-field [x 0] [y 0])
(define/public (move-x dx)
(new this% [x (+ x dx)]))

(define/public (move-y dy)
(new this% [y (+ y dy)]))))

> (send+ (new point%)
(move-x 5)
(move-y 7)
(move-x 12))

(object:point% ...)

(with-method ((id (obj-expr method-id)) ...)
body ...+)

Extracts methods from an object and binds a local name that can be applied directly (in
the same way as declared methods within a class) for each method. Each obj-expr must
produce an object, which must have a public method named by the corresponding method-
id . The corresponding id is bound so that it can be applied directly (see §6.4.1 “Methods”).

Example:

(let ([s (new stack%)])
(with-method ([push (s push!)]

[pop (s pop!)])
(push 10)
(push 9)
(pop)))

540

is the same as

(let ([s (new stack%)])
(send s push! 10)
(send s push! 9)
(send s pop!))

6.4.2 Fields

(get-field id obj-expr)

Extracts the field with (external) name id from the value of obj-expr .

If obj-expr does not produce an object, the exn:fail:contract exception is raised. If
the object has no id field, the exn:fail:object exception is raised.

(dynamic-get-field field-name obj) Ñ any/c
field-name : symbol?
obj : object?

Extracts the field from obj with the (external) name that matches field-name . If the object
has no field matching field-name , the exn:fail:object exception is raised.

(set-field! id obj-expr expr)

Sets the field with (external) name id from the value of obj-expr to the value of expr .

If obj-expr does not produce an object, the exn:fail:contract exception is raised. If
the object has no id field, the exn:fail:object exception is raised.

(dynamic-set-field! field-name obj v) Ñ void?
field-name : symbol?
obj : object?
v : any/c

Sets the field from obj with the (external) name that matches field-name to v . If the
object has no field matching field-name , the exn:fail:object exception is raised.

(field-bound? id obj-expr)

Produces #t if the object result of obj-expr has a field with (external) name id , #f other-
wise.

If obj-expr does not produce an object, the exn:fail:contract exception is raised.

541

(class-field-accessor class-expr field-id)

Returns an accessor procedure that takes an instance of the class produced by class-expr
and returns the value of the object’s field with (external) name field-id .

If class-expr does not produce a class, the exn:fail:contract exception is raised. If
the class has no field-id field, the exn:fail:object exception is raised.

(class-field-mutator class-expr field-id)

Returns a mutator procedure that takes an instance of the class produced by class-expr
and a value, and sets the value of the object’s field with (external) name field-id to the
given value. The result is #<void>.

If class-expr does not produce a class, the exn:fail:contract exception is raised. If
the class has no field-id field, the exn:fail:object exception is raised.

6.4.3 Generics

A generic can be used instead of a method name to avoid the cost of relocating a method by
name within a class.

(generic class-or-interface-expr id)

Produces a generic that works on instances of the class or interface produced by class-or-
interface-expr (or an instance of a class/interface derived from class-or-interface)
to call the method with (external) name id .

If class-or-interface-expr does not produce a class or interface, the
exn:fail:contract exception is raised. If the resulting class or interface does not
contain a method named id , the exn:fail:object exception is raised.

(send-generic obj-expr generic-expr arg ...)
(send-generic obj-expr generic-expr arg arg-list-expr)

Calls a method of the object produced by obj-expr as indicated by the generic produced
by generic-expr . Each arg is as for #%app: either arg-expr or keyword arg-expr .
The second form is analogous to calling a procedure with apply, where arg-list-expr is
not a parenthesized expression.

If obj-expr does not produce an object, or if generic-expr does not produce a generic,
the exn:fail:contract exception is raised. If the result of obj-expr is not an instance of
the class or interface encapsulated by the result of generic-expr , the exn:fail:object
exception is raised.

542

(make-generic type method-name) Ñ generic?
type : (or/c class? interface?)
method-name : symbol?

Like the generic form, but as a procedure that accepts a symbolic method name.

6.5 Mixins

(mixin (interface-expr ...) (interface-expr ...)
class-clause ...)

Produces a mixin, which is a procedure that encapsulates a class extension, leaving the su-
perclass unspecified. Each time that a mixin is applied to a specific superclass, it produces a
new derived class using the encapsulated extension.

The given class must implement interfaces produced by the first set of interface-exprs.
The result of the procedure is a subclass of the given class that implements the interfaces
produced by the second set of interface-exprs. The class-clauses are as for class*,
to define the class extension encapsulated by the mixin.

Evaluation of a mixin form checks that the class-clauses are consistent with both sets
of interface-exprs.

6.6 Traits

(require racket/trait) package: base

The bindings documented in this section are provided by the racket/trait library, not
racket/base or racket.

A trait is a collection of methods that can be converted to a mixin and then applied to a class.
Before a trait is converted to a mixin, the methods of a trait can be individually renamed, and
multiple traits can be merged to form a new trait.

(trait trait-clause ...)

543

https://pkgs.racket-lang.org/package/base

trait-clause = (public maybe-renamed ...)
| (pubment maybe-renamed ...)
| (public-final maybe-renamed ...)
| (override maybe-renamed ...)
| (overment maybe-renamed ...)
| (override-final maybe-renamed ...)
| (augment maybe-renamed ...)
| (augride maybe-renamed ...)
| (augment-final maybe-renamed ...)
| (inherit maybe-renamed ...)
| (inherit/super maybe-renamed ...)
| (inherit/inner maybe-renamed ...)
| method-definition
| (field field-declaration ...)
| (inherit-field maybe-renamed ...)

Creates a trait. The body of a trait form is similar to the body of a class* form, but
restricted to non-private method definitions. In particular, the grammar of maybe-renamed ,
method-definition , and field-declaration are the same as for class*, and ev-
ery method-definition must have a corresponding declaration (one of public, over-
ride, etc.). As in class, uses of method names in direct calls, super calls, and inner
calls depend on bringing method names into scope via inherit, inherit/super, in-
herit/inner, and other method declarations in the same trait; an exception, compared to
class is that overment binds a method name only in the corresponding method, and not
in other methods of the same trait. Finally, macros such as public* and define/public
work in trait as in class.

External identifiers in trait, trait-exclude, trait-exclude-field, trait-alias,
trait-rename, and trait-rename-field forms are subject to binding via define-
member-name and define-local-member-name. Although private methods or fields
are not allowed in a trait form, they can be simulated by using a public or field decla-
ration and a name whose scope is limited to the trait form.

(trait? v) Ñ boolean?
v : any/c

Returns #t if v is a trait, #f otherwise.

(trait->mixin tr) Ñ (class? . -> . class?)
tr : trait?

Converts a trait to a mixin, which can be applied to a class to produce a new class. An
expression of the form

(trait->mixin
(trait

trait-clause ...))

544

is equivalent to

(lambda (%)
(class %

trait-clause ...
(super-new)))

Normally, however, a trait’s methods are changed and combined with other traits before
converting to a mixin.

(trait-sum tr ...+) Ñ trait?
tr : trait?

Produces a trait that combines all of the methods of the given trs. For example,

(define t1
(trait
(define/public (m1) 1)))

(define t2
(trait
(define/public (m2) 2)))

(define t3 (trait-sum t1 t2))

creates a trait t3 that is equivalent to

(trait
(define/public (m1) 1)
(define/public (m2) 2))

but t1 and t2 can still be used individually or combined with other traits.

When traits are combined with trait-sum, the combination drops inherit, in-
herit/super, inherit/inner, and inherit-field declarations when a definition is
supplied for the same method or field name by another trait. The trait-sum operation
fails (the exn:fail:contract exception is raised) if any of the traits to combine define a
method or field with the same name, or if an inherit/super or inherit/inner declara-
tion to be dropped is inconsistent with the supplied definition. In other words, declaring a
method with inherit, inherit/super, or inherit/inner, does not count as defining the
method; at the same time, for example, a trait that contains an inherit/super declaration
for a method m cannot be combined with a trait that defines m as augment, since no class
could satisfy the requirements of both augment and inherit/super when the trait is later
converted to a mixin and applied to a class.

(trait-exclude trait-expr id)

545

Produces a new trait that is like the trait result of trait-expr , but with the definition of
a method named by id removed; as the method definition is removed, either an inherit,
inherit/super, or inherit/inner declaration is added:

• A method declared with public, pubment, or public-final is replaced with an
inherit declaration.

• A method declared with override or override-final is replaced with an in-
herit/super declaration.

• A method declared with augment, augride, or augment-final is replaced with an
inherit/inner declaration.

• A method declared with overment is not replaced with any inherit declaration.

If the trait produced by trait-expr has no method definition for id , the
exn:fail:contract exception is raised.

(trait-exclude-field trait-expr id)

Produces a new trait that is like the trait result of trait-expr , but with the definition of a
field named by id removed; as the field definition is removed, an inherit-field declara-
tion is added.

(trait-alias trait-expr id new-id)

Produces a new trait that is like the trait result of trait-expr , but the definition and dec-
laration of the method named by id is duplicated with the name new-id . The consis-
tency requirements for the resulting trait are the same as for trait-sum, otherwise the
exn:fail:contract exception is raised. This operation does not rename any other use of
id , such as in method calls (even method calls to identifier in the cloned definition for
new-id).

(trait-rename trait-expr id new-id)

Produces a new trait that is like the trait result of trait-expr , but all definitions and refer-
ences to methods named id are replaced by definitions and references to methods named by
new-id . The consistency requirements for the resulting trait are the same as for trait-sum,
otherwise the exn:fail:contract exception is raised.

(trait-rename-field trait-expr id new-id)

Produces a new trait that is like the trait result of trait-expr , but all definitions and ref-
erences to fields named id are replaced by definitions and references to fields named by
new-id . The consistency requirements for the resulting trait are the same as for trait-
sum, otherwise the exn:fail:contract exception is raised.

546

6.7 Object and Class Contracts

(class/c maybe-opaque member-spec ...)

maybe-opaque =
| #:opaque
| #:opaque #:ignore-local-member-names

member-spec = method-spec
| (field field-spec ...)
| (init field-spec ...)
| (init-field field-spec ...)
| (inherit method-spec ...)
| (inherit-field field-spec ...)
| (super method-spec ...)
| (inner method-spec ...)
| (override method-spec ...)
| (augment method-spec ...)
| (augride method-spec ...)
| (absent absent-spec ...)

method-spec = method-id
| (method-id method-contract-expr)

field-spec = field-id
| (field-id contract-expr)

absent-spec = method-id
| (field field-id ...)

Produces a contract for a class.

There are two major categories of contracts listed in a class/c form: external and internal
contracts. External contracts govern behavior when an object is instantiated from a class or
when methods or fields are accessed via an object of that class. Internal contracts govern
behavior when method or fields are accessed within the class hierarchy. This separation
allows for stronger contracts for class clients and weaker contracts for subclasses.

Method contracts must contain an additional initial argument which corresponds to the im-
plicit this parameter of the method. This allows for contracts which discuss the state of the
object when the method is called (or, for dependent contracts, in other parts of the contract).
Alternative contract forms, such as ->m, are provided as a shorthand for writing method
contracts.

Methods and fields listed in an absent clause must not be present in the class.

547

A class contract can be specified to be opaque with the #:opaque keyword. An opaque class
contract will only accept a class that defines exactly the external methods and fields specified
by the contract. A contract error is raised if the contracted class contains any methods or
fields that are not specified. Methods or fields with local member names (i.e., defined with
define-local-member-name) are ignored for this check if #:ignore-local-member-
names is provided.

The external contracts are as follows:

• An external method contract without a tag describes the behavior of the implementa-
tion of method-id on method sends to an object of the contracted class. This contract
will continue to be checked in subclasses until the contracted class’s implementation
is no longer the entry point for dynamic dispatch.

If only the field name is present, this is equivalent to insisting only that the method is
present in the class.

Examples:

(define woody%
(class object%
(define/public (draw who)
(format "reach for the sky, „a" who))

(super-new)))

(define/contract woody+c%
(class/c [draw (->m symbol? string?)])
woody%)

> (send (new woody%) draw #f)
"reach for the sky, #f"
> (send (new woody+c%) draw 'zurg)
"reach for the sky, zurg"
> (send (new woody+c%) draw #f)
draw: contract violation

expected: symbol?
given: #f
in: the 1st argument of

the draw method in
(class/c (draw (-ąm symbol? string?)))

contract from: (definition woody+c%)
contract on: woody+c%
blaming: top-level

(assuming the contract is correct)
at: eval:68.0

• An external field contract, tagged with field, describes the behavior of the value
contained in that field when accessed from outside the class. Since fields may be

548

mutated, these contracts are checked on any external access (via get-field) and
external mutations (via set-field!) of the field.

If only the field name is present, this is equivalent to using the contract any/c (but it
is checked more efficiently).

Examples:

(define woody/hat%
(class woody%
(field [hat-location 'uninitialized])
(define/public (lose-hat) (set! hat-location 'lost))
(define/public (find-hat) (set! hat-location 'on-head))
(super-new)))

(define/contract woody/hat+c%
(class/c [draw (->m symbol? string?)]

[lose-hat (->m void?)]
[find-hat (->m void?)]
(field [hat-location (or/c 'on-head 'lost)]))

woody/hat%)

> (get-field hat-location (new woody/hat%))
'uninitialized
> (let ([woody (new woody/hat+c%)])

(send woody lose-hat)
(get-field hat-location woody))

'lost
> (get-field hat-location (new woody/hat+c%))
woody/hat+c%: broke its own contract

promised: (or/c (quote on-head) (quote lost))
produced: 'uninitialized
in: the hat-location field in

(class/c
(draw (-ąm symbol? string?))
(lose-hat (-ąm void?))
(find-hat (-ąm void?))
(field (hat-location

(or/c 'on-head 'lost))))
contract from: (definition woody/hat+c%)
blaming: (definition woody/hat+c%)

(assuming the contract is correct)
at: eval:73.0

> (let ([woody (new woody/hat+c%)])
(set-field! hat-location woody 'under-the-dresser))

woody/hat+c%: contract violation
expected: (or/c (quote on-head) (quote lost))
given: 'under-the-dresser
in: the hat-location field in

549

(class/c
(draw (-ąm symbol? string?))
(lose-hat (-ąm void?))
(find-hat (-ąm void?))
(field (hat-location

(or/c 'on-head 'lost))))
contract from: (definition woody/hat+c%)
blaming: top-level

(assuming the contract is correct)
at: eval:73.0

• An initialization argument contract, tagged with init, describes the expected behav-
ior of the value paired with that name during class instantiation. The same name can
be provided more than once, in which case the first such contract in the class/c form
is applied to the first value tagged with that name in the list of initialization arguments,
and so on.

If only the initialization argument name is present, this is equivalent to using the con-
tract any/c (but it is checked more efficiently).

Examples:

(define woody/init-hat%
(class woody%
(init init-hat-location)
(field [hat-location init-hat-location])
(define/public (lose-hat) (set! hat-location 'lost))
(define/public (find-hat) (set! hat-location 'on-head))
(super-new)))

(define/contract woody/init-hat+c%
(class/c [draw (->m symbol? string?)]

[lose-hat (->m void?)]
[find-hat (->m void?)]
(init [init-hat-location (or/c 'on-head 'lost)])
(field [hat-location (or/c 'on-head 'lost)]))

woody/init-hat%)

> (get-field hat-location
(new woody/init-hat+c%

[init-hat-location 'lost]))
'lost
> (get-field hat-location

(new woody/init-hat+c%
[init-hat-location 'slinkys-mouth]))

woody/init-hat+c%: contract violation
expected: (or/c (quote on-head) (quote lost))
given: 'slinkys-mouth

550

in: the init-hat-location init argument in
(class/c

(draw (-ąm symbol? string?))
(lose-hat (-ąm void?))
(find-hat (-ąm void?))
(init (init-hat-location

(or/c 'on-head 'lost)))
(field (hat-location

(or/c 'on-head 'lost))))
contract from:

(definition woody/init-hat+c%)
blaming: top-level

(assuming the contract is correct)
at: eval:79.0

• The contracts listed in an init-field section are treated as if each contract appeared
in an init section and a field section.

The internal contracts restrict the behavior of method calls made between classes and their
subclasses; such calls are not controlled by the class contracts described above.

As with the external contracts, when a method or field name is specified but no contract ap-
pears, the contract is satisfied merely with the presence of the corresponding field or method.

• A method contract tagged with inherit describes the behavior of the method when
invoked directly (i.e., via inherit) in any subclass of the contracted class. This
contract, like external method contracts, applies until the contracted class’s method
implementation is no longer the entry point for dynamic dispatch.

Examples:

> (new (class woody+c%
(inherit draw)
(super-new)
(printf "woody sez: “„a”\n" (draw "evil dr pork-

chop"))))
woody sez: “reach for the sky, evil dr porkchop”
(object:eval:82:0 ...)

(define/contract woody+c-inherit%
(class/c (inherit [draw (->m symbol? string?)]))
woody+c%)

> (new (class woody+c-inherit%
(inherit draw)
(printf "woody sez: „a\n" (draw "evil dr pork-

chop"))))

551

draw: contract violation
expected: symbol?
given: "evil dr porkchop"
in: the 1st argument of

the draw method in
(class/c

(inherit (draw (-ąm symbol? string?))))
contract from: (definition woody+c-inherit%)
contract on: woody+c-inherit%
blaming: top-level

(assuming the contract is correct)
at: eval:83.0

• A method contract tagged with super describes the behavior of method-id when
called by the super form in a subclass. This contract only affects super calls in
subclasses which call the contract class’s implementation of method-id .

This example shows how to extend the draw method so that if it is passed two ar-
guments, it combines two calls to the original draw method, but with a contract the
controls how the super methods must be invoked.

Examples:

(define/contract woody2+c%
(class/c (super [draw (->m symbol? string?)]))
(class woody%
(define/override draw
(case-lambda
[(a) (super draw a)]
[(a b) (string-append (super draw a)

" and "
(super draw b))]))

(super-new)))

> (send (new woody2+c%) draw 'evil-dr-porkchop 'zurg)
"reach for the sky, evil-dr-porkchop and reach for the sky,
zurg"
> (send (new woody2+c%) draw "evil dr porkchop" "zurg")
"reach for the sky, evil dr porkchop and reach for the sky,
zurg"

The last call signals an error blaming woody2% because there is no contract checking
the initial draw call.

• A method contract tagged with inner describes the behavior the class expects of
an augmenting method in a subclass. This contract affects any implementations of
method-id in subclasses which can be called via inner from the contracted class.
This means a subclass which implements method-id via augment or overment stop

552

future subclasses from being affected by the contract, since further extension cannot
be reached via the contracted class.

• A method contract tagged with override describes the behavior expected by the con-
tracted class for method-id when called directly (i.e. by the application (method-id
...)). This form can only be used if overriding the method in subclasses will change
the entry point to the dynamic dispatch chain (i.e., the method has never been aug-
mentable).

This time, instead of overriding draw to support two arguments, we can make a new
method, draw2 that takes the two arguments and calls draw. We also add a contract
to make sure that overriding draw doesn’t break draw2.

Examples:

(define/contract woody2+override/c%
(class/c (override [draw (->m symbol? string?)]))
(class woody+c%
(inherit draw)
(define/public (draw2 a b)
(string-append (draw a)

" and "
(draw b)))

(super-new)))

(define woody2+broken-draw
(class woody2+override/c%
(define/override (draw x)

'not-a-string)
(super-new)))

> (send (new woody2+broken-draw) draw2
'evil-dr-porkchop
'zurg)

draw: contract violation
expected: string?
given: 'not-a-string
in: the range of

the draw method in
(class/c

(override (draw (-ąm symbol? string?))))
contract from:

(definition woody2+override/c%)
contract on: woody2+override/c%
blaming: top-level

(assuming the contract is correct)
at: eval:88.0

553

• A method contract tagged with either augment or augride describes the behavior
provided by the contracted class for method-id when called directly from subclasses.
These forms can only be used if the method has previously been augmentable, which
means that no augmenting or overriding implementation will change the entry point
to the dynamic dispatch chain. augment is used when subclasses can augment the
method, and augride is used when subclasses can override the current augmentation.

• A field contract tagged with inherit-field describes the behavior of the value con-
tained in that field when accessed directly (i.e., via inherit-field) in any subclass
of the contracted class. Since fields may be mutated, these contracts are checked on
any access and/or mutation of the field that occurs in such subclasses.

• Changed in version 6.1.1.8 of package base: Opaque class/c now optionally ignores local member names
if an additional keyword is supplied.

(absent absent-spec ...)

See class/c; use outside of a class/c form is a syntax error.

(->m dom ... range)

Similar to ->, except that the domain of the resulting contract contains one more element
than the stated domain, where the first (implicit) argument is contracted with any/c. This
contract is useful for writing simpler method contracts when no properties of this need to
be checked.

(->*m (mandatory-dom ...) (optional-dom ...) rest range)

Similar to ->*, except that the mandatory domain of the resulting contract contains one more
element than the stated domain, where the first (implicit) argument is contracted with any/c.
This contract is useful for writing simpler method contracts when no properties of this need
to be checked.

(case->m (-> dom ... rest range) ...)

Similar to case->, except that the mandatory domain of each case of the resulting contract
contains one more element than the stated domain, where the first (implicit) argument is
contracted with any/c. This contract is useful for writing simpler method contracts when
no properties of this need to be checked.

(->dm (mandatory-dependent-dom ...)
(optional-dependent-dom ...)
dependent-rest
pre-cond
dep-range)

554

Similar to ->d, except that the mandatory domain of the resulting contract contains one more
element than the stated domain, where the first (implicit) argument is contracted with any/c.
In addition, this is appropriately bound in the body of the contract. This contract is useful
for writing simpler method contracts when no properties of this need to be checked.

(object/c member-spec ...)

member-spec = method-spec
| (field field-spec ...)

method-spec = method-id
| (method-id method-contract)

field-spec = field-id
| (field-id contract-expr)

Produces a contract for an object.

Unlike the older form object-contract, but like class/c, arbitrary contract expressions
are allowed. Also, method contracts for object/c follow those for class/c. An ob-
ject wrapped with object/c behaves as if its class had been wrapped with the equivalent
class/c contract.

(instanceof/c class-contract) Ñ contract?
class-contract : contract?

Produces a contract for an object, where the object is an instance of a class that conforms to
class-contract .

(dynamic-object/c method-names
method-contracts
field-names
field-contracts) Ñ contract?

method-names : (listof symbol?)
method-contracts : (listof contract?)
field-names : (listof symbol?)
field-contracts : (listof contract?)

Produces a contract for an object, similar to object/c but where the names and contracts
for both methods and fields can be computed dynamically. The list of names and contracts
for both methods and field respectively must have the same lengths.

(object-contract member-spec ...)

555

member-spec = (method-id method-contract)
| (field field-id contract-expr)

method-contract = (-> dom ... range)
| (->* (mandatory-dom ...)

(optional-dom ...)
rest
range)

| (->d (mandatory-dependent-dom ...)
(optional-dependent-dom ...)
dependent-rest
pre-cond
dep-range)

dom = dom-expr
| keyword dom-expr

range = range-expr
| (values range-expr ...)
| any

mandatory-dom = dom-expr
| keyword dom-expr

optional-dom = dom-expr
| keyword dom-expr

rest =
| #:rest rest-expr

mandatory-dependent-dom = [id dom-expr]
| keyword [id dom-expr]

optional-dependent-dom = [id dom-expr]
| keyword [id dom-expr]

dependent-rest =
| #:rest id rest-expr

pre-cond =
| #:pre-cond boolean-expr

dep-range = any
| [id range-expr] post-cond
| (values [id range-expr] ...) post-cond

post-cond =
| #:post-cond boolean-expr

556

Produces a contract for an object.

Each of the contracts for a method has the same semantics as the corresponding function
contract, but the syntax of the method contract must be written directly in the body of the
object-contract—much like the way that methods in class definitions use the same syntax as
regular function definitions, but cannot be arbitrary procedures. Unlike the method contracts
for class/c, the implicit this argument is not part of the contract. To allow for the use of
this in dependent contracts, ->d contracts implicitly bind this to the object itself.

mixin-contract : contract?

A function contract that recognizes mixins. It guarantees that the input to the function is a
class and the result of the function is a subclass of the input.

(make-mixin-contract type ...) Ñ contract?
type : (or/c class? interface?)

Produces a function contract that guarantees the input to the function is a class that imple-
ments/subclasses each type , and that the result of the function is a subclass of the input.

(is-a?/c type) Ñ flat-contract?
type : (or/c class? interface?)

Accepts a class or interface and returns a flat contract that recognizes objects that instantiate
the class/interface.

See is-a?.

(implementation?/c interface) Ñ flat-contract?
interface : interface?

Returns a flat contract that recognizes classes that implement interface .

See implementation?.

(subclass?/c class) Ñ flat-contract?
class : class?

Returns a flat contract that recognizes classes that are subclasses of class .

See subclass?.

6.8 Object Equality and Hashing

By default, objects that are instances of different classes or that are instances of a non-
transparent class are equal? only if they are eq?. Like transparent structures, two objects

557

that are instances of the same transparent class (i.e., every superclass of the class has #f as
its inspector) are equal? when their field values are equal?.

To customize the way that a class instance is compared to other instances by equal?, imple-
ment the equal<%> interface.

equal<%> : interface?

The equal<%> interface includes three methods, which are analogous to the functions pro-
vided for a structure type with prop:equal+hash:

• equal-to? — Takes two arguments. The first argument is an object that is an in-
stance of the same class (or a subclass that does not re-declare its implementation of
equal<%>) and that is being compared to the target object. The second argument is
an equal?-like procedure of two arguments that should be used for recursive equality
testing. The result should be a true value if the object and the first argument of the
method are equal, #f otherwise.

• equal-hash-code-of — Takes one argument, which is a procedure of one argument
that should be used for recursive hash-code computation. The result should be an exact
integer representing the target object’s hash code.

• equal-secondary-hash-code-of — Takes one argument, which is a procedure of
one argument that should be used for recursive hash-code computation. The result
should be an exact integer representing the target object’s secondary hash code.

The equal<%> interface is unusual in that declaring the implementation of the interface is
different from inheriting the interface. Two objects can be equal only if they are instances of
classes whose most specific ancestor to explicitly implement equal<%> is the same ancestor.

See prop:equal+hash for more information on equality comparisons and hash codes. The
equal<%> interface is implemented with interface* and prop:equal+hash.

Example:

#lang racket

;; Case insensitive words:
(define ci-word%
(class* object% (equal<%>)

;; Initialization
(init-field word)
(super-new)

558

;; We define equality to ignore case:
(define/public (equal-to? other recur)
(string-ci=? word (get-field word other)))

;; The hash codes need to be insensitive to casing as well.
;; We'll just downcase the word and get its hash code.
(define/public (equal-hash-code-of hash-code)
(hash-code (string-downcase word)))

(define/public (equal-secondary-hash-code-of hash-code)
(hash-code (string-downcase word)))))

;; We can create a hash with a single word:
(define h (make-hash))
(hash-set! h (new ci-word% [word "inconceivable!"]) 'value)

;; Lookup into the hash should be case-insensitive, so that
;; both of these should return 'value.
(hash-ref h (new ci-word% [word "inconceivable!"]))
(hash-ref h (new ci-word% [word "INCONCEIVABLE!"]))

;; Comparison fails if we use a non-ci-word%:
(hash-ref h "inconceivable!" 'i-dont-think-it-means-what-you-
think-it-means)

6.9 Object Serialization

(define-serializable-class* class-id superclass-expr
(interface-expr ...)

class-clause ...)

Binds class-id to a class, where superclass-expr , the interface-exprs, and the
class-clauses are as in class*.

This form can only be used at the top level, either within a module or outside. The class-
id identifier is bound to the new class, and deserialize-info:class-id is also defined;
if the definition is within a module, then the latter is provided from a deserialize-info
submodule via module+.

Serialization for the class works in one of two ways:

• If the class implements the built-in interface externalizable<%>, then an object is
serialized by calling its externalize method; the result can be anything that is se-

559

rializable (but, obviously, should not be the object itself). Deserialization creates an
instance of the class with no initialization arguments, and then calls the object’s in-
ternalize method with the result of externalize (or, more precisely, a deserialized
version of the serialized result of a previous call).

To support this form of serialization, the class must be instantiable with no initializa-
tion arguments. Furthermore, cycles involving only instances of the class (and other
such classes) cannot be serialized.

• If the class does not implement externalizable<%>, then every superclass of the
class must be either serializable or transparent (i.e,. have #f as its inspector). Serial-
ization and deserialization are fully automatic, and may involve cycles of instances.

To support cycles of instances, deserialization may create an instance of the call with
all fields as the undefined value, and then mutate the object to set the field values.
Serialization support does not otherwise make an object’s fields mutable.

In the second case, a serializable subclass can implement externalizable<%>, in which
case the externalize method is responsible for all serialization (i.e., automatic serializa-
tion is lost for instances of the subclass). In the first case, all serializable subclasses imple-
ment externalizable<%>, since a subclass implements all of the interfaces of its parent
class.

In either case, if an object is an immediate instance of a subclass (that is not itself serializ-
able), the object is serialized as if it was an immediate instance of the serializable class. In
particular, overriding declarations of the externalize method are ignored for instances of
non-serializable subclasses.

(define-serializable-class class-id superclass-expr
class-clause ...)

Like define-serializable-class*, but without interface expressions (analogous to
class).

externalizable<%> : interface?

The externalizable<%> interface includes only the externalize and internalize
methods. See define-serializable-class* for more information.

6.10 Object Printing

To customize the way that a class instance is printed by print, write and display, imple-
ment the printable<%> interface.

560

printable<%> : interface?

The printable<%> interface includes only the custom-print, custom-write, and
custom-display methods. The custom-print method accepts two arguments: the desti-
nation port and the current quasiquote depth as an exact nonnegative integer. The custom-
write and custom-display methods each accepts a single argument, which is the destina-
tion port to write or display the object.

Calls to the custom-print, custom-write, or custom-display methods are like calls
to a procedure attached to a structure type through the prop:custom-write property. In
particular, recursive printing can trigger an escape from the call.

See prop:custom-write for more information. The printable<%> interface is imple-
mented with interface* and prop:custom-write.

writable<%> : interface?

Like printable<%>, but includes only the custom-write and custom-display methods.
A print request is directed to custom-write.

6.11 Object, Class, and Interface Utilities

(object? v) Ñ boolean?
v : any/c

Returns #t if v is an object, #f otherwise.

Examples:

> (object? (new object%))
#t
> (object? object%)
#f
> (object? "clam chowder")
#f

(class? v) Ñ boolean?
v : any/c

Returns #t if v is a class, #f otherwise.

Examples:

561

> (class? object%)
#t
> (class? (class object% (super-new)))
#t
> (class? (new object%))
#f
> (class? "corn chowder")
#f

(interface? v) Ñ boolean?
v : any/c

Returns #t if v is an interface, #f otherwise.

Examples:

> (interface? (interface () empty cons first rest))
#t
> (interface? object%)
#f
> (interface? "gazpacho")
#f

(generic? v) Ñ boolean?
v : any/c

Returns #t if v is a generic, #f otherwise.

Examples:

> (define c%
(class object%
(super-new)
(define/public (m x)
(+ 3.14 x))))

> (generic? (generic c% m))
#t
> (generic? c%)
#f
> (generic? "borscht")
#f

(object=? a b) Ñ boolean?
a : object?
b : object?

562

Determines whether a and b were returned from the same call to new or not. If the two
objects have fields, this procedure determines whether mutating a field of one would change
that field in the other.

This procedure is similar in spirit to eq? but also works properly with contracts (and has a
stronger guarantee).

Examples:

> (define obj-1 (new object%))
> (define obj-2 (new object%))
> (define/contract obj-3 (object/c) obj-1)
> (object=? obj-1 obj-1)
#t
> (object=? obj-1 obj-2)
#f
> (object=? obj-1 obj-3)
#t
> (eq? obj-1 obj-1)
#t
> (eq? obj-1 obj-2)
#f
> (eq? obj-1 obj-3)
#f

(object-or-false=? a b) Ñ boolean?
a : (or/c object? #f)
b : (or/c object? #f)

Like object=?, but accepts #f for either argument and returns #t if both arguments are #f.

Examples:

> (object-or-false=? #f (new object%))
#f
> (object-or-false=? (new object%) #f)
#f
> (object-or-false=? #f #f)
#t

Added in version 6.1.1.8 of package base.

(object=-hash-code o) Ñ fixnum?
o : object?

Returns the hash code for o that corresponds to the equality relation object=?.

563

Added in version 7.1.0.6 of package base.

(object->vector object [opaque-v]) Ñ vector?
object : object?
opaque-v : any/c = #f

Returns a vector representing object that shows its inspectable fields, analogous to
struct->vector.

Examples:

> (object->vector (new object%))
'#(object:object% ...)
> (object->vector (new (class object%

(super-new)
(field [x 5] [y 10]))))

'#(object:eval:106:0 ...)

(class->interface class) Ñ interface?
class : class?

Returns the interface implicitly defined by class .

Example:

> (class->interface object%)
#<interface:object%>

(object-interface object) Ñ interface?
object : object?

Returns the interface implicitly defined by the class of object .

Example:

> (object-interface (new object%))
#<interface:object%>

(is-a? v type) Ñ boolean?
v : any/c
type : (or/c interface? class?)

Returns #t if v is an instance of a class type or a class that implements an interface type ,
#f otherwise.

Examples:

564

> (define point<%> (interface () get-x get-y))
> (define 2d-point%

(class* object% (point<%>)
(super-new)
(field [x 0] [y 0])
(define/public (get-x) x)
(define/public (get-y) y)))

> (is-a? (new 2d-point%) 2d-point%)
#t
> (is-a? (new 2d-point%) point<%>)
#t
> (is-a? (new object%) 2d-point%)
#f
> (is-a? (new object%) point<%>)
#f

(subclass? v cls) Ñ boolean?
v : any/c
cls : class?

Returns #t if v is a class derived from (or equal to) cls , #f otherwise.

Examples:

> (subclass? (class object% (super-new)) object%)
#t
> (subclass? object% (class object% (super-new)))
#f
> (subclass? object% object%)
#t

(implementation? v intf) Ñ boolean?
v : any/c
intf : interface?

Returns #t if v is a class that implements intf , #f otherwise.

Examples:

> (define i<%> (interface () go))
> (define c%

(class* object% (i<%>)
(super-new)
(define/public (go) 'go)))

565

> (implementation? c% i<%>)
#t
> (implementation? object% i<%>)
#f

(interface-extension? v intf) Ñ boolean?
v : any/c
intf : interface?

Returns #t if v is an interface that extends intf , #f otherwise.

Examples:

> (define point<%> (interface () get-x get-y))
> (define colored-point<%> (interface (point<%>) color))
> (interface-extension? colored-point<%> point<%>)
#t
> (interface-extension? point<%> colored-point<%>)
#f
> (interface-extension? (interface () get-x get-y get-z) point<%>)
#f

(method-in-interface? sym intf) Ñ boolean?
sym : symbol?
intf : interface?

Returns #t if intf (or any of its ancestor interfaces) includes a member with the name sym ,
#f otherwise.

Examples:

> (define i<%> (interface () get-x get-y))
> (method-in-interface? 'get-x i<%>)
#t
> (method-in-interface? 'get-z i<%>)
#f

(interface->method-names intf) Ñ (listof symbol?)
intf : interface?

Returns a list of symbols for the method names in intf , including methods inherited
from superinterfaces, but not including methods whose names are local (i.e., declared with
define-local-member-name).

Examples:

566

> (define i<%> (interface () get-x get-y))
> (interface->method-names i<%>)
'(get-x get-y)

(object-method-arity-includes? object
sym
cnt) Ñ boolean?

object : object?
sym : symbol?
cnt : exact-nonnegative-integer?

Returns #t if object has a method named sym that accepts cnt arguments, #f otherwise.

Examples:

> (define c%
(class object%
(super-new)
(define/public (m x [y 0])
(+ x y))))

> (object-method-arity-includes? (new c%) 'm 1)
#t
> (object-method-arity-includes? (new c%) 'm 2)
#t
> (object-method-arity-includes? (new c%) 'm 3)
#f
> (object-method-arity-includes? (new c%) 'n 1)
#f

(field-names object) Ñ (listof symbol?)
object : object?

Returns a list of all of the names of the fields bound in object , including fields inherited
from superinterfaces, but not including fields whose names are local (i.e., declared with
define-local-member-name).

Examples:

> (field-names (new object%))
'()
> (field-names (new (class object% (super-
new) (field [x 0] [y 0]))))
'(y x)

567

(object-info object) Ñ (or/c class? #f) boolean?
object : object?

Returns two values, analogous to the return values of struct-info:

• class : a class or #f; the result is #f if the current inspector does not control any class
for which the object is an instance.

• skipped?: #f if the first result corresponds to the most specific class of object , #t
otherwise.

(class-info class)
Ñ symbol?

exact-nonnegative-integer?
(listof symbol?)
(any/c exact-nonnegative-integer? . -> . any/c)
(any/c exact-nonnegative-integer? any/c . -> . any/c)
(or/c class? #f)
boolean?

class : class?

Returns seven values, analogous to the return values of struct-type-info:

• name : the class’s name as a symbol;

• field-cnt : the number of fields (public and private) defined by the class;

• field-name-list : a list of symbols corresponding to the class’s public fields; this
list can be larger than field-cnt because it includes inherited fields;

• field-accessor : an accessor procedure for obtaining field values in instances of
the class; the accessor takes an instance and a field index between 0 (inclusive) and
field-cnt (exclusive);

• field-mutator : a mutator procedure for modifying field values in instances of the
class; the mutator takes an instance, a field index between 0 (inclusive) and field-
cnt (exclusive), and a new field value;

• super-class : a class for the most specific ancestor of the given class that is con-
trolled by the current inspector, or #f if no ancestor is controlled by the current in-
spector;

• skipped?: #f if the sixth result is the most specific ancestor class, #t otherwise.

(struct exn:fail:object exn:fail ()
#:extra-constructor-name make-exn:fail:object)

568

Raised for class-related failures, such as attempting to call a method that is not supplied by
an object.

(class-seal class
key
unsealed-inits
unsealed-fields
unsealed-methods
inst-proc
member-proc) Ñ class?

class : class?
key : symbol?
unsealed-inits : (listof symbol?)
unsealed-fields : (listof symbol?)
unsealed-methods : (listof symbol?)
inst-proc : (-> class? any)
member-proc : (-> class? (listof symbol?) any)

Adds a seal to a given class keyed with the symbol key . The given unsealed-inits ,
unsealed-fields , and unsealed-methods list corresponding class members that are
unaffected by sealing.

When a class has any seals, the inst-proc procedure is called on instantiation (normally,
this is used to raise an error on instantiation) and the member-proc function is called (again,
this is normally used to raise an error) when a subclass attempts to add class members that
are not listed in the unsealed lists.

The inst-proc is called with the class value on which an instantiation was attempted. The
member-proc is called with the class value and the list of initialization argument, field, or
method names.
(class-unseal class key wrong-key-proc) Ñ class?

class : class?
key : symbol?
wrong-key-proc : (-> class? any)

Removes a seal on a class that has been previously sealed with the class-seal function
and the given key .

If the unseal removed all of the seals in the class, the class value can be instantiated or
subclassed freely. If the given class value does not contain or any seals or does not contain
any seals with the given key, the wrong-key-proc function is called with the class value.

6.12 Surrogates

(require racket/surrogate) package: base

569

https://pkgs.racket-lang.org/package/base

The bindings documented in this section are provided by the racket/surrogate library,
not racket/base or racket.

The racket/surrogate library provides an abstraction for building an instance of the proxy
design pattern. The pattern consists of two objects, a host and a surrogate object. The host
object delegates method calls to its surrogate object. Each host has a dynamically assigned
surrogate, so an object can completely change its behavior merely by changing the surrogate.

(surrogate use-wrapper-proc method-spec ...)

use-wrapper-proc = #:use-wrapper-proc
|

method-spec = (augment default-expr method-id arg-spec ...)
| (override method-id arg-spec ...)

arg-spec = (id ...)
| id

The surrogate form produces four values: a host mixin (a procedure that accepts and
returns a class), a host interface, a surrogate class, and a surrogate interface.

If #:use-wrapper-proc does not appear, the host mixin adds a single private field to its
argument. It also adds getter and setter methods get-surrogate and set-surrogate to
get and set the value of the field. The set-surrogate method accepts instances of the
class returned by the surrogate form or #f, and it updates the field with its argument;
then, set-surrogate calls the on-disable-surrogate on the previous value of the field
and on-enable-surrogate for the new value of the field. The get-surrogate method
returns the current value of the field.

If #:use-wrapper-proc does appear, the the host mixin adds and a second private field
and its getter and setter methods get-surrogate-wrapper-proc and set-surrogate-
wrapper-proc. The additional field holds a wrapper procedure whose contract is (-> (->
any) (-> any) any), so the procedure is invoked with two thunks. The first thunk is a
fallback that invokes the original object’s method, skipping the surrogate. The second thunk
invokes the surrogate. The default wrapper procedure is

(λ (fallback-thunk surrogate-thunk)
(surrogate-thunk))

That is, it simply defers to the method being invoked on the surrogate. Note that wrapper
procedure can adjust the dynamic extent of calls to the surrogate by, for example, changing
the values of parameters. The wrapper procedure is also invoked when calling the on-
disable-surrogate and on-enable-surrogate methods of the surrogate.

The host mixin has a single overriding method for each method-id in the surrogate form
(even the ones specified with augment). Each of these methods is defined with a case-

570

lambda with one arm for each arg-spec . Each arm has the variables as arguments in the
arg-spec . The body of each method tests the private surrogate field. If the field value is #f,
the method just returns the result of invoking the super or inner method. If the field value is
not #f, the corresponding method of the object in the field is invoked. This method receives
the same arguments as the original method, plus two extras. The extra arguments come at
the beginning of the argument list. The first is the original object. The second is a procedure
that calls the super or inner method (i.e., the method of the class that is passed to the mixin
or an extension, or the method in an overriding class), with the arguments that the procedure
receives.

For example, the host-mixin for this surrogate:

(surrogate (override m (x y z)))

will override the m method and call the surrogate like this:

(define/override (m x y z)
(if surrogate

(send surrogate m
this
(λ (x y z) (super m x y z))
x y z)

(super m x y z)))

where surrogate is bound to the value most recently passed to the host mixin’s set-
surrogate method.

The host interface has the names set-surrogate, get-surrogate, and each of the
method-ids in the original form.

The surrogate class has a single public method for each method-id in the surrogate form.
These methods are invoked by classes constructed by the mixin. Each has a corresponding
method signature, as described in the above paragraph. Each method just passes its argument
along to the super procedure it receives.

In the example above, this is the m method in the surrogate class:

(define/public (m original-object original-super x y z)
(original-super x y z))

If you derive a class from the surrogate class, do not both call the super argument and
the super method of the surrogate class itself. Only call one or the other, since the default
methods call the super argument.

Finally, the interface contains all of the names specified in surrogate’s argument, plus on-
enable-surrogate and on-disable-surrogate. The class returned by surrogate im-
plements this interface.

571

7 Units
§14 “Units” in The
Racket Guide
introduces units.Units organize a program into separately compilable and reusable components. The imports

and exports of a unit are grouped into a signature, which can include “static” information
(such as macros) in addition to placeholders for run-time values. Units with suitably match-
ing signatures can be linked together to form a larger unit, and a unit with no imports can be
invoked to execute its body.

(require racket/unit) package: base

The bindings documented in this section are provided by the racket/unit and racket
libraries, but not racket/base. The racket/unit module name can be used as a language
name with #lang; see §7.10 “Single-Unit Modules”.

7.1 Creating Units

(unit
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
unit-body-expr-or-defn
...)

tagged-sig-spec = sig-spec
| (tag id sig-spec)

sig-spec = sig-id
| (prefix id sig-spec)
| (rename sig-spec (id id) ...)
| (only sig-spec id ...)
| (except sig-spec id ...)

init-depends-decl =
| (init-depend tagged-sig-id ...)

tagged-sig-id = sig-id
| (tag id sig-id)

Produces a unit that encapsulates its unit-body-expr-or-defns. Expressions in the unit
body can refer to identifiers bound by the sig-specs of the import clause, and the body
must include one definition for each identifier of a sig-spec in the export clause. An
identifier that is exported cannot be set!ed in either the defining unit or in importing units,
although the implicit assignment to initialize the variable may be visible as a mutation.

572

https://pkgs.racket-lang.org/package/base

Each import or export sig-spec ultimately refers to a sig-id , which is an identifier that
is bound to a signature by define-signature.

In a specific import or export position, the set of identifiers bound or required by a particular
sig-id can be adjusted in a few ways:

• (prefix id sig-spec) as an import binds the same as sig-spec , except that each
binding is prefixed with id . As an export, this form causes definitions using the id
prefix to satisfy the exports required by sig-spec .

• (rename sig-spec (id id) ...) as an import binds the same as sig-spec , ex-
cept that the first id is used for the binding instead of the second id (where sig-spec
by itself must imply a binding that is bound-identifier=? to second id). As an
export, this form causes a definition for the first id to satisfy the export named by the
second id in sig-spec .

• (only sig-spec id ...) as an import binds the same as sig-spec , but restricted
to just the listed ids (where sig-spec by itself must imply a binding that is bound-
identifier=? to each id). This form is not allowed for an export.

• (except sig-spec id ...) as an import binds the same as sig-spec , but ex-
cluding all listed ids (where sig-spec by itself must imply a binding that is bound-
identifier=? to each id). This form is not allowed for an export.

As suggested by the grammar, these adjustments to a signature can be nested arbitrarily.

A unit’s declared imports are matched with actual supplied imports by signature. That is,
the order in which imports are supplied to a unit when linking is irrelevant; all that matters
is the signature implemented by each supplied import. One actual import must be provided
for each declared import. Similarly, when a unit implements multiple signatures, the order
of the export signatures does not matter.

To support multiple imports or exports for the same signature, an import or export can
be tagged using the form (tag id sig-spec). When an import declaration of a unit
is tagged, then one actual import must be given the same tag (with the same signature) when
the unit is linked. Similarly, when an export declaration is tagged for a unit, then references
to that particular export must explicitly use the tag.

A unit is prohibited syntactically from importing two signatures that are not distinct, unless
they have different tags; two signatures are distinct only if they share no ancestor through
extends. The same syntactic constraint applies to exported signatures. In addition, a unit is
prohibited syntactically from importing the same identifier twice (after renaming and other
transformations on a sig-spec), exporting the same identifier twice (again, after renaming),
or exporting an identifier that is imported.

When units are linked, the bodies of the linked units are executed in an order that is specified
at the linking site. An optional (init-depend tagged-sig-id ...) declaration con-
strains the allowed orders of linking by specifying that the current unit must be initialized

573

after the unit that supplies the corresponding import. Each tagged-sig-id in an init-
depend declaration must have a corresponding import in the import clause.

(define-signature id extension-decl
(sig-elem ...))

extension-decl =
| extends sig-id

sig-elem = id
| (define-syntaxes (id ...) expr)
| (define-values (id ...) expr)
| (define-values-for-export (id ...) expr)
| (contracted [id contract] ...)
| (open sig-spec)
| (struct id (field ...) struct-option ...)
| (sig-form-id . datum)

field = id
| [id #:mutable]

struct-option = #:mutable
| #:constructor-name constructor-id
| #:extra-constructor-name constructor-id
| #:omit-constructor
| #:omit-define-syntaxes
| #:omit-define-values

Binds an identifier to a signature that specifies a group of bindings for import or export:

• Each id in a signature declaration means that a unit implementing the signature must
supply a variable definition for the id . That is, id is available for use in units import-
ing the signature, and id must be defined by units exporting the signature.

• Each define-syntaxes form in a signature declaration introduces a macro that is
available for use in any unit that imports the signature. Free variables in the def-
inition’s expr refer to other identifiers in the signature first, or the context of the
define-signature form if the signature does not include the identifier.

• Each define-values form in a signature declaration introduces code that effectively
prefixes every unit that imports the signature. Free variables in the definition’s expr
are treated the same as for define-syntaxes.

• Each define-values-for-export form in a signature declaration introduces code
that effectively suffixes every unit that exports the signature. Free variables in the
definition’s expr are treated the same as for define-syntaxes.

574

• Each contracted form in a signature declaration means that a unit exporting the
signature must supply a variable definition for each id in that form. If the signature
is imported, then uses of id inside the unit are protected by the appropriate contracts
using the unit as the negative blame. If the signature is exported, then the exported
values are protected by the appropriate contracts which use the unit as the positive
blame, but internal uses of the exported identifiers are not protected. Variables in the
contract expressions are treated the same as for define-syntaxes.

• Each (open sig-spec) adds to the signature everything specified by sig-spec .

• Each (struct id (field ...) struct-option ...) adds all of the identifiers
that would be bound by (struct id (field ...) field-option ...), where
the extra option #:omit-constructor omits the constructor identifier.

• Each (sig-form-id . datum) extends the signature in a way that is defined by
sig-form-id , which must be bound by define-signature-form. One such bind-
ing is for struct/ctc.

When a define-signature form includes an extends clause, then the define signature au-
tomatically includes everything in the extended signature. Furthermore, any implementation
of the new signature can be used as an implementation of the extended signature.

(open sig-spec)

Allowed only in a sig-elem ; see define-signature.

(define-values-for-export (id ...) expr)

Allowed only in a sig-elem ; see define-signature.

(contracted [id contract] ...)

Allowed only in a sig-elem ; see define-signature.

(only sig-spec id ...)

Allowed only in a sig-spec ; see unit.

(except sig-spec id ...)

Allowed only in a sig-spec ; see unit.

575

(rename sig-spec (id id) ...)

Allowed only in a sig-spec ; see unit.

(prefix id sig-spec)

Allowed only in a sig-spec ; see unit.

(import tagged-sig-spec ...)

Allowed only in certain forms; see, for example, unit.

(export tagged-sig-spec ...)

Allowed only in certain forms; see, for example, unit.

(link linkage-decl ...)

Allowed only in certain forms; see, for example, compound-unit.

(tag id sig-spec)
(tag id sig-id)

Allowed only in certain forms; see, for example, unit.

(init-depend tagged-sig-id ...)

Allowed only in a init-depend-decl; see unit.

extends

Allowed only within define-signature.

7.2 Invoking Units

(invoke-unit unit-expr)
(invoke-unit unit-expr (import tagged-sig-spec ...))

576

Invokes the unit produced by unit-expr . For each of the unit’s imports, the invoke-
unit expression must contain a tagged-sig-spec in the import clause; see unit for
the grammar of tagged-sig-spec . If the unit has no imports, the import clause can be
omitted.

When no tagged-sig-specs are provided, unit-expr must produce a unit that expects
no imports. To invoke the unit, all bindings are first initialized to the #<undefined> value.
Next, the unit’s body definitions and expressions are evaluated in order; in the case of a
definition, evaluation sets the value of the corresponding variable(s). Finally, the result of
the last expression in the unit is the result of the invoke-unit expression.

Each supplied tagged-sig-spec takes bindings from the surrounding context and turns
them into imports for the invoked unit. The unit need not declare an import for every pro-
vided tagged-sig-spec , but one tagged-sig-spec must be provided for each declared
import of the unit. For each variable identifier in each provided tagged-sig-spec , the
value of the identifier’s binding in the surrounding context is used for the corresponding
import in the invoked unit.

(define-values/invoke-unit unit-expr
(import tagged-sig-spec ...)
(export tagged-sig-spec ...))

Like invoke-unit, but the values of the unit’s exports are copied to new bindings.

The unit produced by unit-expr is linked and invoked as for invoke-unit. In addition,
the export clause is treated as a kind of import into the local definition context. That is, for
every binding that would be available in a unit that used the export clause’s tagged-sig-
spec as an import, a definition is generated for the context of the define-values/invoke-
unit form.

7.3 Linking Units and Creating Compound Units

(compound-unit
(import link-binding ...)
(export tagged-link-id ...)
(link linkage-decl ...))

link-binding = (link-id : tagged-sig-id)

tagged-link-id = (tag id link-id)
| link-id

linkage-decl = ((link-binding ...) unit-expr tagged-link-id ...)

Links several units into one new compound unit without immediately invoking any of the

577

linked units. The unit-exprs in the link clause determine the units to be linked in creat-
ing the compound unit. The unit-exprs are evaluated when the compound-unit form is
evaluated.

The import clause determines the imports of the compound unit. Outside the compound
unit, these imports behave as for a plain unit; inside the compound unit, they are propagated
to some of the linked units. The export clause determines the exports of the compound
unit. Again, outside the compound unit, these exports are treated the same as for a plain
unit; inside the compound unit, they are drawn from the exports of the linked units. Finally,
the left-hand and right-hand parts of each declaration in the link clause specify how the
compound unit’s imports and exports are propagated to the linked units.

Individual elements of an imported or exported signature are not available within the com-
pound unit. Instead, imports and exports are connected at the level of whole signatures.
Each specific import or export (i.e., an instance of some signature, possibly tagged) is given
a link-id name. Specifically, a link-id is bound by the import clause or the left-hand
part of a declaration in the link clause. A bound link-id is referenced in the right-hand
part of a declaration in the link clause or by the export clause.

The left-hand side of a link declaration gives names to each expected export of the unit pro-
duced by the corresponding unit-expr . The actual unit may export additional signatures,
and it may export an extension of a specific signature instead of just the specified one. If
the unit does not export one of the specified signatures (with the specified tag, if any), the
exn:fail:contract exception is raised when the compound-unit form is evaluated.

The right-hand side of a link declaration specifies the imports to be supplied to the unit pro-
duced by the corresponding unit-expr . The actual unit may import fewer signatures, and
it may import a signature that is extended by the specified one. If the unit imports a signature
(with a particular tag) that is not included in the supplied imports, the exn:fail:contract
exception is raised when the compound-unit form is evaluated. Each link-id supplied as
an import must be bound either in the import clause or in some declaration within the link
clause.

The order of declarations in the link clause determines the order of invocation of the linked
units. When the compound unit is invoked, the unit produced by the first unit-expr is
invoked first, then the second, and so on. If the order specified in the link clause is incon-
sistent with init-depend declarations of the actual units, then the exn:fail:contract
exception is raised when the compound-unit form is evaluated.

7.4 Inferred Linking

578

(define-unit unit-id
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
unit-body-expr-or-defn
...)

Binds unit-id to both a unit and static information about the unit.

Evaluating a reference to a unit-id bound by define-unit produces a unit, just like
evaluating an id bound by (define id (unit ...)). In addition, however, unit-id
can be used in compound-unit/infer. See unit for information on tagged-sig-spec ,
init-depends-decl , and unit-body-expr-or-defn .

(compound-unit/infer
(import tagged-infer-link-import ...)
(export tagged-infer-link-export ...)
(link infer-linkage-decl ...))

tagged-infer-link-import = tagged-sig-id
| (link-id : tagged-sig-id)

tagged-infer-link-export = (tag id infer-link-export)
| infer-link-export

infer-link-export = link-id
| sig-id

infer-linkage-decl = ((link-binding ...) unit-id
tagged-link-id ...)

| unit-id

Like compound-unit. Syntactically, the difference between compound-unit and
compound-unit/infer is that the unit-expr for a linked unit is replaced with a unit-
id , where a unit-id is bound by define-unit (or one of the other unit-binding forms that
we introduce later in this section). Furthermore, an import can name just a sig-id without
locally binding a link-id , and an export can be based on a sig-id instead of a link-id ,
and a declaration in the link clause can be simply a unit-id with no specified exports or
imports.

The compound-unit/infer form expands to compound-unit by adding sig-ids as
needed to the import clause, by replacing sig-ids in the export clause by link-ids,
and by completing the declarations of the link clause. This completion is based on static
information associated with each unit-id . Links and exports can be inferred when all
signatures exported by the linked units are distinct from each other and from all imported

579

signatures, and when all imported signatures are distinct. Two signatures are distinct only if
they share no ancestor through extends.

The long form of a link declaration can be used to resolve ambiguity by giving names
to some of a unit’s exports and supplying specific bindings for some of a unit’s imports.
The long form need not name all of a unit’s exports or supply all of a unit’s imports if the
remaining parts can be inferred.

When a unit declares initialization dependencies, compound-unit/infer checks that the
link declaration is consistent with those dependencies, and it reports a syntax error if not.

Like compound-unit, the compound-unit/infer form produces a (compound) unit with-
out statically binding information about the result unit’s imports and exports. That is,
compound-unit/infer consumes static information, but it does not generate it. Two ad-
ditional forms, define-compound-unit and define-compound-unit/infer, generate
static information (where the former does not consume static information).

Changed in version 6.1.1.8 of package base: Added static checking of the link clause with respect to declared
initialization dependencies.

(define-compound-unit id
(import link-binding ...)
(export tagged-link-id ...)
(link linkage-decl ...))

Like compound-unit, but binds static information about the compound unit like define-
unit, including the propagation of initialization-dependency information (on remaining in-
ports) from the linked units.

(define-compound-unit/infer id
(import link-binding ...)
(export tagged-infer-link-export ...)
(link infer-linkage-decl ...))

Like compound-unit/infer, but binds static information about the compound unit like
define-compound-unit.

(define-unit-binding unit-id
unit-expr
(import tagged-sig-spec ...+)
(export tagged-sig-spec ...+)
init-depends-decl)

Like define-unit, but the unit implementation is determined from an existing unit pro-
duced by unit-expr . The imports and exports of the unit produced by unit-expr must
be consistent with the declared imports and exports, otherwise the exn:fail:contract
exception is raised when the define-unit-binding form is evaluated.

580

(invoke-unit/infer unit-spec)

unit-spec = unit-id
| (link link-unit-id ...)

Like invoke-unit, but uses static information associated with unit-id to infer which
imports must be assembled from the current context. If given a link form containing multiple
link-unit-ids, then the units are first linked via define-compound-unit/infer.

(define-values/invoke-unit/infer maybe-exports unit-spec)

maybe-exports =
| (export tagged-sig-spec ...)

unit-spec = unit-id
| (link link-unit-id ...)

Like define-values/invoke-unit, but uses static information associated with unit-id
to infer which imports must be assembled from the current context and which exports should
be bound by the definition. If given a link form containing multiple link-unit-ids, then
the units are first linked via define-compound-unit/infer.

7.5 Generating A Unit from Context

(unit-from-context tagged-sig-spec)

Creates a unit that implements an interface using bindings in the enclosing environment. The
generated unit is essentially the same as

(unit
(import)
(export tagged-sig-spec)
(define id expr) ...)

for each id that must be defined to satisfy the exports, and each corresponding expr pro-
duces the value of id in the environment of the unit-from-context expression. (The unit
cannot be written as above, however, since each id definition within the unit shadows the
binding outside the unit form.)

See unit for the grammar of tagged-sig-spec .

(define-unit-from-context id tagged-sig-spec)

Like unit-from-context, in that a unit is constructed from the enclosing environment, and
like define-unit, in that id is bound to static information to be used later with inference.

581

7.6 Structural Matching

(unit/new-import-export
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
((tagged-sig-spec ...) unit-expr tagged-sig-spec))

Similar to unit, except the body of the unit is determined by an existing unit produced by
unit-expr . The result is a unit whose implementation is unit-expr , but whose imports,
exports, and initialization dependencies are as in the unit/new-import-export form (in-
stead of as in the unit produced by unit-expr).

The final clause of the unit/new-import-export form determines the connection between
the old and new imports and exports. The connection is similar to the way that compound-
unit propagates imports and exports; the difference is that the connection between import
and the right-hand side of the link clause is based on the names of elements in signatures,
rather than the names of the signatures. That is, a tagged-sig-spec on the right-hand
side of the link clause need not appear as a tagged-sig-spec in the import clause, but
each of the bindings implied by the linking tagged-sig-spec must be implied by some
tagged-sig-spec in the import clause. Similarly, each of the bindings implied by an
export tagged-sig-spec must be implied by some left-hand-side tagged-sig-spec in
the linking clause.

(define-unit/new-import-export unit-id
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
((tagged-sig-spec ...) unit-expr tagged-sig-spec))

Like unit/new-import-export, but binds static information to unit-id like define-
unit.
(unit/s
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
unit-id)

Like unit/new-import-export, but the linking clause is inferred, so unit-id must have
the appropriate static information.

(define-unit/s name-id
(import tagged-sig-spec ...)
(export tagged-sig-spec ...)
init-depends-decl
unit-id)

582

Like unit/s, but binds static information to name-id like define-unit.

7.7 Extending the Syntax of Signatures

(define-signature-form sig-form-id expr)
(define-signature-form (sig-form-id id) body ...+)

Binds sig-form-id for use within a define-signature form.

In the first form, the result of expr must be a transformer procedure. In the second form,
sig-form-id is bound to a transformer procedure whose argument is id and whose body
is the bodys. The result of the transformer must be a list of syntax objects, which are
substituted for a use of sig-form-id in a define-signature expansion. (The result is a
list so that the transformer can produce multiple declarations; define-signature has no
splicing begin form.)

(struct/ctc id ([field contract-expr] ...) struct-option ...)

field = id
| [id #:mutable]

struct-option = #:mutable
| #:omit-constructor
| #:omit-define-syntaxes
| #:omit-define-values

For use with define-signature. The struct/ctc form works similarly to struct, but
the constructor, predicate, field accessors, and field mutators are contracted appropriately.

7.8 Unit Utilities

(unit? v) Ñ boolean?
v : any/c

Returns #t if v is a unit, #f otherwise.

(provide-signature-elements sig-spec ...)

Expands to a provide of all identifiers implied by the sig-specs. See unit for the gram-
mar of sig-spec .

583

7.9 Unit Contracts

(unit/c
(import sig-block ...)
(export sig-block ...)
init-depends-decl
optional-body-ctc)

sig-block = (tagged-sig-id [id contract] ...)
| tagged-sig-id

init-depends-decl =
| (init-depend tagged-sig-id ...)

optional-body-ctc =
| contract
| (values contract ...)

A unit contract wraps a unit and checks both its imported and exported identifiers to ensure
that they match the appropriate contracts. This allows the programmer to add contract checks
to a single unit value without adding contracts to the imported and exported signatures.

The unit value must import a subset of the import signatures and export a superset of the
export signatures listed in the unit contract. Additionally, the unit value must declare initial-
ization dependencies that are a subset of those specified in the unit contract. Any identifier
which is not listed for a given signature is left alone. Variables used in a given contract
expression first refer to other variables in the same signature, and then to the context of the
unit/c expression. If a body contract is specified then the result of invoking the unit value
is wrapped with the given contract, if no body contract is supplied then no wrapping occurs
when the unit value is invoked.

(define-unit/contract unit-id
(import sig-spec-block ...)
(export sig-spec-block ...)
init-depends-decl
optional-body-ctc
unit-body-expr-or-defn
...)

sig-spec-block = (tagged-sig-spec [id contract] ...)
| tagged-sig-spec

optional-body-ctc =
| #:invoke/contract contract
| #:invoke/contract (values contract ...)

584

The define-unit/contract form defines a unit compatible with link inference whose
imports and exports are contracted with a unit contract. The unit name is used for the positive
blame of the contract.

7.10 Single-Unit Modules

When racket/unit is used as a language name with #lang, the module body is treated as
a unit body. The body must match the following module-body grammar:

module-body = require-decl ...
(import tagged-sig-expr ...)
(export tagged-sig-expr ...)
init-depends-decl
unit-body-expr-or-defn
...

require-decl = (require require-spec ...)
| (begin require-decl ...)
| derived-require-form

After any number of require-decls, the content of the module is the same as a unit body.

The resulting unit is exported as base@, where base is derived from the enclosing module’s
name (i.e., its symbolic name, or its path without the directory and file suffix). If the module
name ends in -unit, then base corresponds to the module name before -unit. Otherwise,
the module name serves as base .

7.11 Single-Signature Modules

#lang racket/signature package: base

The racket/signature language treats a module body as a unit signature.

The body must match the following module-body grammar:

module-body = (require require-spec ...) ... sig-spec ...

See §7.1 “Creating Units” for the grammar of sig-spec . Unlike the body of a
racket/unit module, a require in a racket/signature module must be a literal use of
require.

The resulting signature is exported as base^, where base is derived from the enclosing
module’s name (i.e., its symbolic name, or its path without the directory and file suffix). If
the module name ends in -sig, then base corresponds to the module name before -sig.

585

https://pkgs.racket-lang.org/package/base

Otherwise, the module name serves as base .

A struct form as a sig-spec is consistent with the definitions introduced by define-
struct, as opposed to definitions introduced struct. (That behavior was originally a bug,
but it is preserved for compatibility.)

7.12 Transformer Helpers

(require racket/unit-exptime) package: base

The racket/unit-exptime library provides procedures that are intended for use by macro
transformers. In particular, the library is typically imported using for-syntax into a module
that defines macro with define-syntax.

(unit-static-signatures unit-identifier
err-syntax)

Ñ
(list/c (cons/c (or/c symbol? #f)

identifier?))
(list/c (cons/c (or/c symbol? #f)

identifier?))
unit-identifier : identifier?
err-syntax : syntax?

If unit-identifier is bound to static unit information via define-unit (or other such
forms), the result is two values. The first value is for the unit’s imports, and the second is
for the unit’s exports. Each result value is a list, where each list element pairs a symbol or
#f with an identifier. The symbol or #f indicates the import’s or export’s tag (where #f
indicates no tag), and the identifier indicates the binding of the corresponding signature.

If unit-identifier is not bound to static unit information, then the exn:fail:syntax
exception is raised. In that case, the given err-syntax argument is used as the source of
the error, where unit-identifier is used as the detail source location.

(signature-members sig-identifier
err-syntax) Ñ (or/c identifier? #f)

(listof identifier?)
(listof identifier?)
(listof identifier?)

sig-identifier : identifier?
err-syntax : syntax?

If sig-identifier is bound to static unit information via define-signature (or other
such forms), the result is four values:

586

https://pkgs.racket-lang.org/package/base

• an identifier or #f indicating the signature (of any) that is extended by the sig-
identifier binding;

• a list of identifiers representing the variables supplied/required by the signature;

• a list of identifiers for variable definitions in the signature (i.e., variable bindings that
are provided on import, but not defined by units that implement the signature); and

• a list of identifiers with syntax definitions in the signature.

Each of the result identifiers is given a lexical context that is based on sig-identifier , so
the names are suitable for reference or binding in the context of sign-identifier.

If sig-identifier is not bound to a signature, then the exn:fail:syntax exception is
raised. In that case, the given err-syntax argument is used as the source of the error, where
sig-identifier is used as the detail source location.

(unit-static-init-dependencies unit-identifier
err-syntax)

Ñ (list/c (cons/c (or/c symbol? #f)
identifier?))

unit-identifier : identifier?
err-syntax : syntax?

If unit-identifier is bound to static unit information via define-unit (or other such
forms), the result is a list of pairs. Each pair combines a tag (or #f for no tag) and a signature
name, indicating an initialization dependency of the unit on the specified import (i.e., the
same tag and signature are included in the first result from unit-static-signatures).

If unit-identifier is not bound to static unit information, then the exn:fail:syntax
exception is raised. In that case, the given err-syntax argument is used as the source of
the error, where unit-identifier is used as the detail source location.

Added in version 6.1.1.8 of package base.

587

8 Contracts
§7 “Contracts” in
The Racket Guide
introduces
contracts.

The contract system guards one part of a program from another. Programmers specify the
behavior of a module’s exports via (provide (contract-out)), and the contract
system enforces those constraints.

(require racket/contract) package: base

The bindings documented in this section are provided by the racket/contract and
racket libraries, but not racket/base.

Contracts come in two forms: those constructed by the various operations listed in this
section of the manual, and various ordinary Racket values that double as contracts, including

• symbols, booleans, keywords, and null, which are treated as contracts that recognize
themselves, using eq?,

• strings, byte strings, characters, +nan.0, and +nan.0, which are treated as contracts
that recognize themselves using equal?,

• numbers (except +nan.0 and +nan.0), which are treated as contracts that recognize
themselves using =,

• regular expressions, which are treated as contracts that recognize byte strings and
strings that match the regular expression, and

• predicates: any procedure of arity 1 is treated as a predicate. During contract checking,
it is applied to the values that appear and should return #f to indicate that the contract
failed, and anything else to indicate it passed.

Contract combinators are functions such as -> and listof that take contracts and produce
other contracts.

Contracts in Racket are subdivided into three different categories:

• Flat contracts can be fully checked immediately for a given value. These kinds of con-
tracts are essentially predicate functions. Using flat-contract-predicate, you
can extract the predicate from an arbitrary flat contract; some flat contracts can be
applied like functions, in which case they accept a single argument and return #t or
#f to indicate if the given value would be accepted by the contract. All of the flat
contracts returned by functions in this library can be used directly as predicates, but
ordinary Racket values that double as flat contracts (e.g., numbers or symbols) cannot.

The function flat-contract? recognizes a flat contract.

• Chaperone contracts are not always immediately checkable, but are guaranteed to not
change any properties of any values that they check. That is, they may wrap a value

588

https://pkgs.racket-lang.org/package/base

in such a way that it signals contract violations later, as the value is used (e.g., a
function contract checks the inputs and outputs to the function only when the function
is called and returned), but any properties that the value had before being wrapped by
the contract are preserved by the contract wrapper.

All flat contracts may be used where chaperone contracts are expected (but not vice-
versa).

• Impersonator contracts do not provide any guarantees about values they check. Im-
personator contracts may hide properties of values, or even make them completely
opaque (e.g, new-@/c).

All contracts may be used where impersonator contracts are expected.

For more about this hierarchy, see the section “§14.5 “Impersonators and Chaperones”” as
well as a research paper [Strickland12] on chaperones, impersonators, and how they can be
used to implement contracts.

Changed in version 6.1.1.8 of package base: Changed +nan.0 and +nan.0 to be equal?-based contracts.

8.1 Data-structure Contracts

(flat-contract-with-explanation get-explanation
[#:name name])

Ñ flat-contract?
get-explanation : (-> any/c (or/c boolean? (-> blame? any)))
name : any/c = (object-name get-explanation)

Provides a way to use flat contracts that, when a contract fails, provide more information
about the failure.

If get-explanation returns a boolean, then that boolean value is treated as the predicate
in a flat contract. If it returns a procedure, then it is treated similarly to returning #f, except
the result procedure is called to actually signal the contract violation.

The name argument is used as the name of the contract; it defaults to the name of the get-
explanation function.

(flat-contract-with-explanation
(λ (val)
(cond
[(even? val) #t]
[else
(λ (blame)
(define more-information ...do-some-complex-computation-

here...)

589

(raise-blame-error blame val
'(expected: "an even num-

ber" given: "„e"
"and, here is more help:

„s")
val more-information))])))

(flat-named-contract name
flat-contract

[generator]) Ñ flat-contract?
name : any/c
flat-contract : flat-contract?
generator : (or/c #f (-> contract (-> int? any))) = #f

Produces a flat contract like flat-contract , but with the name name .

For example,

(define/contract i
(flat-named-contract
'odd-integer
(lambda (x) (and (integer? x) (odd? x))))
2)

The generator argument adds a generator for the flat-named-contract. See contract-
random-generate for more information.

any/c : flat-contract?

A flat contract that accepts any value.

When using this contract as the result portion of a function contract, consider using any
instead; using any leads to better memory performance, but it also allows multiple results.

none/c : flat-contract?

A flat contract that accepts no values.

(or/c contract ...) Ñ contract?
contract : contract?

Takes any number of contracts and returns a contract that accepts any value that any one of
the contracts accepts individually.

590

The or/c result tests any value by applying the contracts in order, from left to right, with
the exception that it always moves the non-flat contracts (if any) to the end, checking them
last. Thus, a contract such as (or/c (not/c real?) positive?) is guaranteed to only
invoke the positive? predicate on real numbers.

If all of the arguments are procedures or flat contracts, the result is a flat contract. If only
one of the arguments is a higher-order contract, the result is a contract that just checks the
flat contracts and, if they don’t pass, applies the higher-order contract.

If there are multiple higher-order contracts, or/c uses contract-first-order-passes?
to distinguish between them. More precisely, when an or/c is checked, it first checks all
of the flat contracts. If none of them pass, it calls contract-first-order-passes? with
each of the higher-order contracts. If only one returns true, or/c uses that contract. If none
of them return true, it signals a contract violation. If more than one returns true, it also
signals a contract violation. For example, this contract

(or/c (-> number? number?)
(-> string? string? string?))

does not accept a function like this one: (lambda args ...) since it cannot tell which of
the two arrow contracts should be used with the function.

If all of its arguments are list-contract?s, then or/c returns a list-contract?.

(first-or/c contract ...) Ñ contract?
contract : contract?

Takes any number of contracts and returns a contract that accepts any value that any one of
the contracts accepts individually.

The first-or/c result tests any value by applying the contracts in order from left to right.
Thus, a contract such as (first-or/c (not/c real?) positive?) is guaranteed to
only invoke the positive? predicate on real numbers.

If all of the arguments are procedures or flat contracts, the result is a flat contract and simi-
larly if all of the arguments are chaperone contracts the result is too. Otherwise, the result is
an impersonator contract.

If there are multiple higher-order contracts, first-or/c uses contract-first-order-
passes? to distinguish between them. More precisely, when an first-or/c is checked, it
checks the first order passes of the first contract against the value. If it succeeds, then it uses
only that contract. If it fails, then it moves to the second contract, continuing until it finds
one of the contracts where the first order check succeeds. If none of them do, a contract
violation is signaled.

For example, this contract

591

(first-or/c (-> number? number?)
(-> string? string? string?))

accepts the function (λ args 0), applying the (-> number? number?) contract to the
function because it comes first, even though (-> string? string? string?) also ap-
plies.

If all of its arguments are list-contract?s, then first-or/c returns a list-
contract?.

(and/c contract ...) Ñ contract?
contract : contract?

Takes any number of contracts and returns a contract that accepts any value that satisfies all
of the contracts simultaneously.

If all of the arguments are procedures or flat contracts, the result is a flat contract.

The contract produced by and/c tests any value by applying the contracts in order, from left
to right.

This means that and/c can be used to guard predicates that are not total in contracts. For
example, this contract is well-behaved, correctly blaming the definition of whoops-not-a-
number for not being a number:

Example:

> (define/contract whoops-not-a-number
(and/c real? even?)
"four")

whoops-not-a-number: broke its own contract
promised: real?
produced: "four"
in: an and/c case of

(and/c real? even?)
contract from:

(definition whoops-not-a-number)
blaming: (definition whoops-not-a-number)

(assuming the contract is correct)
at: eval:2.0

but if the arguments to and/c are reversed, then the contract itself raises an error:

Example:

> (define/contract whoops-not-a-number

592

(and/c even? real?)
"four")

even?: contract violation
expected: integer
given: "four"

If more than one of the contracts are not flat contracts, then the order in which the higher-
order parts of the contract are tested can be counter-intuitive. As an example, consider this
function that uses and/c in a higher-order manner with contracts that always succeed, but
that print when they are called, in order for us to see the order in which they are called.

Examples:

> (define ((show-me n) x)
(printf "show-me „a\n" n)
#t)

> (define/contract identity-with-complex-printing-contract
(and/c (-> (show-me 4) (show-me 5))

(-> (show-me 3) (show-me 6))
(-> (show-me 2) (show-me 7))
(-> (show-me 1) (show-me 8)))

(λ (x) x))
> (identity-with-complex-printing-contract 101)
show-me 1
show-me 2
show-me 3
show-me 4
show-me 5
show-me 6
show-me 7
show-me 8
101

The checking order is just like the usual ordering when a contract is double-wrapped. The
contract that is first put on has its domain checked second but its range checked first and
we see a similar pattern here in this example, because and/c simply applies the contracts in
order.

(not/c flat-contract) Ñ flat-contract?
flat-contract : flat-contract?

Accepts a flat contract or a predicate and returns a flat contract that checks the inverse of the
argument.

(=/c z) Ñ flat-contract?
z : real?

593

Returns a flat contract that requires the input to be a number and = to z .

(</c n) Ñ flat-contract?
n : real?

Returns a flat contract that requires the input to be a number and < than n .

(>/c n) Ñ flat-contract?
n : real?

Like </c, but for >.

(<=/c n) Ñ flat-contract?
n : real?

Like </c, but for <=.

(>=/c n) Ñ flat-contract?
n : real?

Like </c, but for >=.

(between/c n m) Ñ flat-contract?
n : real?
m : real?

Returns a flat contract that requires the input to be a real number between n and m or equal
to one of them.

(real-in n m) Ñ flat-contract?
n : real?
m : real?

An alias for between/c.

(integer-in j k) Ñ flat-contract?
j : (or/c exact-integer? #f)
k : (or/c exact-integer? #f)

Returns a flat contract that requires the input to be an exact integer between j and k , inclu-
sive. If either j or k is #f, then the range is unbounded on that end.

Examples:

594

> (define/contract two-digit-number
(integer-in 10 99)
23)

> (define/contract not-a-two-digit-number
(integer-in 10 99)
124)

not-a-two-digit-number: broke its own contract
promised: (integer-in 10 99)
produced: 124
in: (integer-in 10 99)
contract from:

(definition not-a-two-digit-number)
blaming: (definition not-a-two-digit-number)

(assuming the contract is correct)
at: eval:3.0

> (define/contract negative-number
(integer-in #f -1)
-4)

> (define/contract not-a-negative-number
(integer-in #f -1)
4)

not-a-negative-number: broke its own contract
promised: (integer-in #f -1)
produced: 4
in: (integer-in #f -1)
contract from:

(definition not-a-negative-number)
blaming: (definition not-a-negative-number)

(assuming the contract is correct)
at: eval:5.0

Changed in version 6.8.0.2 of package base: Allow j and k to be #f

(char-in a b) Ñ flat-contract?
a : char?
b : char?

Returns a flat contract that requires the input to be a character whose code point number is
between the code point numbers of a and b , inclusive.

natural-number/c : flat-contract?

A flat contract that requires the input to be an exact non-negative integer.

(string-len/c len) Ñ flat-contract?
len : real?

595

Returns a flat contract that recognizes strings that have fewer than len characters.

false/c : flat-contract?

An alias for #f for backwards compatibility.

printable/c : flat-contract?

A flat contract that recognizes values that can be written out and read back in with write
and read.

(one-of/c v ...+) Ñ flat-contract?
v : any/c

Accepts any number of atomic values and returns a flat contract that recognizes those values,
using eqv? as the comparison predicate. For the purposes of one-of/c, atomic values
are defined to be: characters, symbols, booleans, null, keywords, numbers, #<void>, and
#<undefined>.

This is a backwards compatibility contract constructor. If neither #<void> nor
#<undefined> are arguments, it simply passes its arguments to or/c.

(symbols sym ...+) Ñ flat-contract?
sym : symbol?

Accepts any number of symbols and returns a flat contract that recognizes those symbols.

This is a backwards compatibility constructor; it merely passes its arguments to or/c.

(vectorof c
[#:immutable immutable
#:flat? flat?
#:eager eager]) Ñ contract?

c : contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f
eager : (or/c #t #f exact-nonnegative-integer?) = #t

Returns a contract that recognizes vectors. The elements of the vector must match c .

If the flat? argument is #t, then the resulting contract is a flat contract, and the c argument
must also be a flat contract. Such flat contracts will be unsound if applied to mutable vectors,
as they will not check future operations on the vector.

If the immutable argument is #t and the c argument is a flat contract and the eager
argument is #t, the result will be a flat contract. If the c argument is a chaperone contract,
then the result will be a chaperone contract.

596

If the eager argument is #t, then immutable vectors are checked eagerly when c is a flat
contract. If the eager argument is a number n, then immutable vectors are checked eagerly
when c is a flat contract and the length of the vector is less than or equal to n.

When a higher-order vectorof contract is applied to a vector, the result is not eq? to the
input. The result will be a copy for immutable vectors and a chaperone or impersonator
of the input for mutable vectors, unless the c argument is a flat contract and the vector is
immutable, in which case the result is the original vector.

Changed in version 6.3.0.5 of package base: Changed flat vector contracts to not copy immutable vectors.
Changed in version 6.7.0.3: Added the #:eager option.

(vector-immutableof c) Ñ contract?
c : contract?

Returns the same contract as (vectorof c #:immutable #t). This form exists for back-
wards compatibility.

(vector/c c
...

[#:immutable immutable
#:flat? flat?]) Ñ contract?

c : contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f

Returns a contract that recognizes vectors whose lengths match the number of contracts
given. Each element of the vector must match its corresponding contract.

If the flat? argument is #t, then the resulting contract is a flat contract, and the c arguments
must also be flat contracts. Such flat contracts will be unsound if applied to mutable vectors,
as they will not check future operations on the vector.

If the immutable argument is #t and the c arguments are flat contracts, the result will be a
flat contract. If the c arguments are chaperone contracts, then the result will be a chaperone
contract.

When a higher-order vector/c contract is applied to a vector, the result is not eq? to the
input. The result will be a copy for immutable vectors and a chaperone or impersonator of
the input for mutable vectors.

(vector-immutable/c c ...) Ñ contract?
c : contract?

Returns the same contract as (vector/c c ... #:immutable #t). This form exists for
reasons of backwards compatibility.

597

(box/c in-c
[c
#:immutable immutable
#:flat? flat?]) Ñ contract?

in-c : contract?
c : contract? = in-c
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f

Returns a contract that recognizes boxes. The content of the box must match c , and muta-
tions on mutable boxes must match in-c .

If the flat? argument is #t, then the resulting contract is a flat contract, and the out argu-
ment must also be a flat contract. Such flat contracts will be unsound if applied to mutable
boxes, as they will not check future operations on the box.

If the immutable argument is #t and the c argument is a flat contract, the result will be a
flat contract. If the c argument is a chaperone contract, then the result will be a chaperone
contract.

When a higher-order box/c contract is applied to a box, the result is not eq? to the input.
The result will be a copy for immutable boxes and either a chaperone or impersonator of the
input for mutable boxes.

(box-immutable/c c) Ñ contract?
c : contract?

Returns the same contract as (box/c c #:immutable #t). This form exists for reasons
of backwards compatibility.

(listof c) Ñ list-contract?
c : contract?

Returns a contract that recognizes a list whose every element matches the contract c . Beware
that when this contract is applied to a value, the result is not necessarily eq? to the input.

Examples:

> (define/contract some-numbers
(listof number?)
(list 1 2 3))

> (define/contract just-one-number
(listof number?)
11)

598

just-one-number: broke its own contract
promised: list?
produced: 11
in: (listof number?)
contract from: (definition just-one-number)
blaming: (definition just-one-number)

(assuming the contract is correct)
at: eval:3.0

(non-empty-listof c) Ñ list-contract?
c : contract?

Returns a contract that recognizes non-empty lists whose elements match the contract c .
Beware that when this contract is applied to a value, the result is not necessarily eq? to the
input.

Examples:

> (define/contract some-numbers
(non-empty-listof number?)
(list 1 2 3))

> (define/contract not-enough-numbers
(non-empty-listof number?)
(list))

not-enough-numbers: broke its own contract
promised: "(and/c list? pair?)"
produced: '()
in: (non-empty-listof number?)
contract from:

(definition not-enough-numbers)
blaming: (definition not-enough-numbers)

(assuming the contract is correct)
at: eval:3.0

(list*of ele-c [last-c]) Ñ contract?
ele-c : contract?
last-c : contract? = ele-c

Returns a contract that recognizes improper lists whose elements match the contract ele-c
and whose last position matches last-c . If an improper list is created with cons, then its
car position is expected to match ele-c and its cdr position is expected to be (list*of
ele-c list-c). Otherwise, it is expected to match last-c . Beware that when this con-
tract is applied to a value, the result is not necessarily eq? to the input.

Examples:

599

> (define/contract improper-numbers
(list*of number?)
(cons 1 (cons 2 3)))

> (define/contract not-improper-numbers
(list*of number?)
(list 1 2 3))

not-improper-numbers: broke its own contract
promised: number?
produced: '()
in: an element of

(list*of number?)
contract from:

(definition not-improper-numbers)
blaming: (definition not-improper-numbers)

(assuming the contract is correct)
at: eval:3.0

Added in version 6.1.1.1 of package base.
Changed in version 6.4.0.4: Added the last-c argument.

(cons/c car-c cdr-c) Ñ contract?
car-c : contract?
cdr-c : contract?

Produces a contract that recognizes pairs whose first and second elements match car-c and
cdr-c , respectively. Beware that when this contract is applied to a value, the result is not
necessarily eq? to the input.

If the cdr-c contract is a list-contract?, then cons/c returns a list-contract?.

Examples:

> (define/contract a-pair-of-numbers
(cons/c number? number?)
(cons 1 2))

> (define/contract not-a-pair-of-numbers
(cons/c number? number?)
(cons #f #t))

not-a-pair-of-numbers: broke its own contract
promised: number?
produced: #f
in: the car of

(cons/c number? number?)
contract from:

(definition not-a-pair-of-numbers)
blaming: (definition not-a-pair-of-numbers)

600

(assuming the contract is correct)
at: eval:3.0

Changed in version 6.0.1.13 of package base: Added the list-contract? propagating behavior.

(cons/dc [car-id contract-expr] [cdr-id (car-id) contract-
expr] cons/dc-option)
(cons/dc [car-id (cdr-id) contract-expr] [cdr-id contract-expr] cons/dc-option)

cons/dc-option =
| #:flat
| #:chaperone
| #:impersonator

Produces a contract that recognizes pairs whose first and second elements match the expres-
sions after car-id and cdr-id , respectively.

In the first case, the contract on the cdr-id portion of the contract may depend on the value
in the car-id portion of the pair and in the second case, the reverse is true.

Examples:

> (define/contract an-ordered-pair-of-reals
(cons/dc [hd real?] [tl (hd) (>=/c hd)])
(cons 1 2))

> (define/contract not-an-ordered-pair-of-reals
(cons/dc [hd real?] [tl (hd) (>=/c hd)])
(cons 2 1))

not-an-ordered-pair-of-reals: broke its own contract
promised: (ą=/c 2)
produced: 1
in: the cdr of

(cons/dc (hd real?) (tl (hd) (ą=/c hd)))
contract from:

(definition not-an-ordered-pair-of-reals)
blaming: (definition not-an-ordered-pair-of-reals)

(assuming the contract is correct)
at: eval:3.0

Added in version 6.1.1.6 of package base.

(list/c c ...) Ñ list-contract?
c : contract?

Produces a contract for a list. The number of elements in the list must match the number of
arguments supplied to list/c, and each element of the list must match the corresponding

601

contract. Beware that when this contract is applied to a value, the result is not necessarily
eq? to the input.

(*list/c prefix suffix ...) Ñ list-contract?
prefix : contract?
suffix : contract?

Produces a contract for a list. The number of elements in the list must be at least as long
as the number of suffix contracts and the tail of the list must match those contracts, one
for each element. The beginning portion of the list can be arbitrarily long, and each element
must match prefix .

Beware that when this contract is applied to a value, the result is not necessarily eq? to the
input.

Examples:

> (define/contract a-list-of-numbers-ending-with-two-integers
(*list/c number? integer? integer?)
(list 1/2 4/5 0+1i -11 322))

> (define/contract not-enough-integers-at-the-end
(*list/c number? integer? integer? integer?)
(list 1/2 4/5 1/2 321 322))

not-enough-integers-at-the-end: broke its own contract
promised: integer?
produced: 1/2
in: the 3rd to the last element of

(*list/c number? integer? integer? integer?)
contract from:

(definition not-enough-integers-at-the-end)
blaming: (definition not-enough-integers-at-the-end)

(assuming the contract is correct)
at: eval:3.0

(syntax/c c) Ñ flat-contract?
c : flat-contract?

Produces a flat contract that recognizes syntax objects whose syntax-e content matches c .

(struct/c struct-id contract-expr ...)

Produces a contract that recognizes instances of the structure type named by struct-id ,
and whose field values match the contracts produced by the contract-exprs.

Contracts for immutable fields must be either flat or chaperone contracts. Contracts for
mutable fields may be impersonator contracts. If all fields are immutable and the contract-
exprs evaluate to flat contracts, a flat contract is produced. If all the contract-exprs are

602

chaperone contracts, a chaperone contract is produced. Otherwise, an impersonator contract
is produced.

(struct/dc struct-id field-spec ... maybe-inv)

field-spec = [field-name maybe-lazy contract-expr]
| [field-name (dep-field-name ...)

maybe-lazy
maybe-contract-type
maybe-dep-state
contract-expr]

field-name = field-id
| (#:selector selector-id)
| (field-id #:parent struct-id)

maybe-lazy =
| #:lazy

maybe-contract-type =
| #:flat
| #:chaperone
| #:impersonator

maybe-dep-state =
| #:depends-on-state

maybe-inv =
| #:inv (dep-field-name ...) invariant-expr

Produces a contract that recognizes instances of the structure type named by struct-id ,
and whose field values match the contracts produced by the field-specs.

If the field-spec lists the names of other fields, then the contract depends on values in
those fields, and the contract-expr expression is evaluated each time a selector is applied,
building a new contract for the fields based on the values of the dep-field-name fields (the
dep-field-name syntax is the same as the field-name syntax). If the field is a dependent
field and no contract-type annotation appears, then it is assumed that the contract is a
chaperone, but not always a flat contract (and thus the entire struct/dc contract is not a
flat contract). If this is not the case, and the contract is always flat then the field must be
annotated with the #:flat, or the field must be annotated with #:impersonator (in which
case, it must be a mutable field).

A field-name is either an identifier naming a field in the first case, an identifier naming a
selector in the second case indicated by the #:selector keyword, or a field id for a struct
that is a parent of struct-id , indicated by the #:parent keyword.

603

If the #:lazy keyword appears, then the contract on the field is checked lazily (only when a
selector is applied); #:lazy contracts cannot be put on mutable fields.

If a dependent contract depends on some mutable state, then use the #:depends-on-state
keyword argument (if a field’s dependent contract depends on a mutable field, this keyword
is automatically inferred). The presence of this keyword means that the contract expression
is evaluated each time the corresponding field is accessed (or mutated, if it is a mutable
field). Otherwise, the contract expression for a dependent field contract is evaluated when
the contract is applied to a value.

If the #:inv clause appears, then the invariant expression is evaluated (and must return a
non-#f value) when the contract is applied to a struct.

Contracts for immutable fields must be either flat or chaperone contracts. Contracts for
mutable fields may be impersonator contracts. If all fields are immutable and the contract-
exprs evaluate to flat contracts, a flat contract is produced. If all the contract-exprs are
chaperone contracts, a chaperone contract is produced. Otherwise, an impersonator contract
is produced.

As an example, the function bst/c below returns a contract for binary search trees whose
values are all between lo and hi. The lazy annotations ensure that this contract does not
change the running time of operations that do not inspect the entire tree.

(struct bt (val left right))
(define (bst/c lo hi)
(or/c #f

(struct/dc bt
[val (between/c lo hi)]
[left (val) #:lazy (bst lo val)]
[right (val) #:lazy (bst val hi)])))

Changed in version 6.0.1.6 of package base: Added #:inv.

(parameter/c in [out]) Ñ contract?
in : contract?
out : contract? = in

Produces a contract on parameters whose values must match out . When the value in the
contracted parameter is set, it must match in .

Examples:

> (define/contract current-snack
(parameter/c string?)
(make-parameter "potato-chip"))

> (define baked/c

604

(flat-named-contract 'baked/c (λ (s) (regexp-
match #rx"baked" s))))
> (define/contract current-dinner

(parameter/c string? baked/c)
(make-parameter "turkey" (λ (s) (string-append "roasted

" s))))
> (current-snack 'not-a-snack)
current-snack: contract violation

expected: string?
given: 'not-a-snack
in: the parameter of

(parameter/c string?)
contract from: (definition current-snack)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

> (parameterize ([current-dinner "tofurkey"])
(current-dinner))

current-dinner: broke its own contract
promised: baked/c
produced: "roasted tofurkey"
in: the parameter of

(parameter/c string? baked/c)
contract from: (definition current-dinner)
blaming: (definition current-dinner)

(assuming the contract is correct)
at: eval:4.0

(procedure-arity-includes/c n) Ñ flat-contract?
n : exact-nonnegative-integer?

Produces a contract for procedures that accept n argument (i.e,. the procedure? contract is
implied).

(hash/c key
val

[#:immutable immutable
#:flat? flat?]) Ñ contract?

key : chaperone-contract?
val : contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f

Produces a contract that recognizes hash tables with keys and values as specified by the key
and val arguments.

605

Examples:

> (define/contract good-hash
(hash/c integer? boolean?)
(hash 1 #t

2 #f
3 #t))

> (define/contract bad-hash
(hash/c integer? boolean?)
(hash 1 "elephant"

2 "monkey"
3 "manatee"))

bad-hash: broke its own contract
promised: boolean?
produced: "elephant"
in: the values of

(hash/c integer? boolean?)
contract from: (definition bad-hash)
blaming: (definition bad-hash)

(assuming the contract is correct)
at: eval:3.0

There are a number of technicalities that control how hash/c contracts behave.

• If the flat? argument is #t, then the resulting contract is a flat contract, and the key
and val arguments must also be flat contracts.

Examples:

> (flat-contract? (hash/c integer? boolean?))
#f
> (flat-contract? (hash/c integer? boolean? #:flat? #t))
#t
> (hash/c integer? (-> integer? integer?) #:flat? #t)
hash/c: contract violation

expected: flat-contract?
given: (-ą integer? integer?)

Such flat contracts will be unsound if applied to mutable hash tables, as they will not
check future mutations to the hash table.

Examples:

> (define original-h (make-hasheq))
> (define/contract ctc-h

(hash/c integer? boolean? #:flat? #t)
original-h)

606

> (hash-set! original-h 1 "not a boolean")
> (hash-ref ctc-h 1)
"not a boolean"

• If the immutable argument is #t and the key and val arguments are flat-
contract?s, the result will be a flat-contract?.

Example:

> (flat-contract? (hash/c integer? boolean? #:immutable #t))
#t

If either the domain or the range is a chaperone-contract?, then the result will be
a chaperone-contract?.

Examples:

> (flat-contract? (hash/c (-> integer? integer?) boolean?
#:immutable #t))

#f
> (chaperone-contract? (hash/c (-> integer? integer?) boolean?

#:immutable #t))
#t

• If the key argument is a chaperone-contract? but not a flat-contract?, then
the resulting contract can be applied only to equal?-based hash tables.

Example:

> (define/contract h
(hash/c (-> integer? integer?) any/c)
(make-hasheq))

h: broke its own contract;
promised equal?-based hash table due to higher-order domain

contract
produced: '#hasheq()
in: (hash/c (-ą integer? integer?) any/c)
contract from: (definition h)
blaming: (definition h)

(assuming the contract is correct)
at: eval:2.0

Also, when such a hash/c contract is applied to a hash table, the result is not eq?
to the input. The result of applying the contract will be a copy for immutable hash
tables, and either a chaperone or impersonator of the original hash table for mutable
hash tables.

607

(hash/dc [key-id key-contract-expr] [value-id (key-id) value-contract-expr]
hash/dc-option)

hash/dc-option =
| #:immutable immutable?-expr hash/dc-option
| #:kind kind-expr hash/dc-option

Creates a contract for hash? tables with keys matching key-contract-expr and where
the contract on the values can depend on the key itself, since key-id will be bound to the
corresponding key before evaluating the values-contract-expr.

If immutable?-expr is #t, then only immutable? hashes are accepted. If it is #f then
immutable? hashes are always rejected. It defaults to 'dont-care, in which case both
mutable and immutable hashes are accepted.

If kind-expr evaluates to 'flat, then key-contract-expr and value-contract-expr
are expected to evaluate to flat-contract?s. If it is 'chaperone, then they are expected
to be chaperone-contract?s, and it may also be 'impersonator, in which case they
may be any contract?s. The default is 'chaperone.

Examples:

> (define/contract h
(hash/dc [k real?] [v (k) (>=/c k)])
(hash 1 3

2 4))
> (define/contract h

(hash/dc [k real?] [v (k) (>=/c k)])
(hash 3 1

4 2))
h: broke its own contract

promised: (ą=/c 3)
produced: 1
in: the values of

(hash/dc (k real?) (v (k) (ą=/c k)))
contract from: (definition h)
blaming: (definition h)

(assuming the contract is correct)
at: eval:3.0

(channel/c val) Ñ contract?
val : contract?

Produces a contract that recognizes channels that communicate values as specified by the
val argument.

608

If the val argument is a chaperone contract, then the resulting contract is a chaperone con-
tract. Otherwise, the resulting contract is an impersonator contract. When a channel contract
is applied to a channel, the resulting channel is not eq? to the input.

Examples:

> (define/contract chan
(channel/c string?)
(make-channel))

> (thread (λ () (channel-get chan)))
#<thread>
> (channel-put chan 'not-a-string)
chan: contract violation

expected: string?
given: 'not-a-string
in: (channel/c string?)
contract from: (definition chan)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

(prompt-tag/c contract ... maybe-call/cc)

maybe-call/cc =
| #:call/cc contract
| #:call/cc (values contract ...)

contract : contract?

Takes any number of contracts and returns a contract that recognizes continuation prompt
tags and will check any aborts or prompt handlers that use the contracted prompt tag.

Each contract will check the corresponding value passed to an abort-current-
continuation and handled by the handler of a call to call-with-continuation-
prompt.

If all of the contracts are chaperone contracts, the resulting contract will also be a chaper-
one contract. Otherwise, the contract is an impersonator contract.

If maybe-call/cc is provided, then the provided contracts are used to check the return
values from a continuation captured with call-with-current-continuation.

Examples:

> (define/contract tag
(prompt-tag/c (-> number? string?))
(make-continuation-prompt-tag))

609

> (call-with-continuation-prompt
(lambda ()
(number->string
(call-with-composable-continuation
(lambda (k)
(abort-current-continuation tag k)))))

tag
(lambda (k) (k "not a number")))

tag: contract violation
expected: number?
given: "not a number"
in: the 1st argument of

(prompt-tag/c
(-ą number? string?)
#:call/cc)

contract from: (definition tag)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

(continuation-mark-key/c contract) Ñ contract?
contract : contract?

Takes a single contract and returns a contract that recognizes continuation marks and will
check any mappings of marks to values or any accesses of the mark value.

If the argument contract is a chaperone contract, the resulting contract will also be a
chaperone contract. Otherwise, the contract is an impersonator contract.

Examples:

> (define/contract mark-key
(continuation-mark-key/c (-> symbol? (listof symbol?)))
(make-continuation-mark-key))

> (with-continuation-mark
mark-key
(lambda (s) (append s '(truffle fudge ganache)))
(let ([mark-value (continuation-mark-set-first

(current-continuation-marks) mark-key)])
(mark-value "chocolate-bar")))

mark-key: contract violation
expected: symbol?
given: "chocolate-bar"
in: the 1st argument of

(continuation-mark-key/c
(-ą symbol? (listof symbol?)))

610

contract from: (definition mark-key)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

(evt/c contract ...) Ñ chaperone-contract?
contract : chaperone-contract?

Returns a contract that recognizes synchronizable events whose synchronization results are
checked by the given contracts.

The resulting contract is always a chaperone contract and its arguments must all be chaper-
one contracts.

Examples:

> (define/contract my-evt
(evt/c evt?)
always-evt)

> (define/contract failing-evt
(evt/c number? number?)
(alarm-evt (+ (current-inexact-milliseconds) 50)))

> (sync my-evt)
#<always-evt>
> (sync failing-evt)
failing-evt: broke its own contract

promised: event that produces 2 values
produced: event that produces 1 values
in: (evt/c number? number?)
contract from: (definition failing-evt)
blaming: (definition failing-evt)

(assuming the contract is correct)
at: eval:3.0

(flat-rec-contract id flat-contract-expr ...)

Constructs a recursive flat contract. A flat-contract-expr can refer to id to refer recur-
sively to the generated contract.

For example, the contract

(flat-rec-contract sexp
(cons/c sexp sexp)
number?
symbol?)

611

is a flat contract that checks for (a limited form of) S-expressions. It says that a sexp is
either two sexps combined with cons, or a number, or a symbol.

Note that if the contract is applied to a circular value, contract checking will not terminate.

(flat-murec-contract ([id flat-contract-expr ...] ...) body ...+)

A generalization of flat-rec-contract for defining several mutually recursive flat con-
tracts simultaneously. Each id is visible in the entire flat-murec-contract form, and
the result of the final body is the result of the entire form.

any

Represents a contract that is always satisfied. In particular, it can accept multiple values. It
can only be used in a result position of contracts like ->. Using any elsewhere is a syntax
error.

(promise/c c) Ñ contract?
c : contract?

Constructs a contract on a promise. The contract does not force the promise, but when the
promise is forced, the contract checks that the result value meets the contract c .

(flat-contract predicate) Ñ flat-contract?
predicate : (-> any/c any/c)

Constructs a flat contract from predicate . A value satisfies the contract if the predicate
returns a true value.

This function is a holdover from before predicates could be used directly as flat contracts. It
exists today for backwards compatibility.

(flat-contract-predicate v) Ñ (-> any/c any/c)
v : flat-contract?

Extracts the predicate from a flat contract.

This function is a holdover from before flat contracts could be used directly as predicates. It
exists today for backwards compatibility.

(property/c accessor ctc [#:name name]) Ñ flat-contract?
accessor : (-> any/c any/c)
ctc : flat-contract?
name : any/c = (object-name accessor)

Constructs a flat contract that checks that the first-order property accessed by accessor
satisfies ctc . The resulting contract is equivalent to

612

(lambda (v) (ctc (accessor v)))

except that more information is included in error messages produced by violations of the
contract. The name argument is used to describe the property being checked in error mes-
sages.

Examples:

> (define/contract (sum-triple lst)
(-> (and/c (listof number?)

(property/c length (=/c 3)))
number?)

(+ (first lst) (second lst) (third lst)))
> (sum-triple '(1 2 3))
6
> (sum-triple '(1 2))
sum-triple: contract violation

expected: (=/c 3)
given: 2
in: the length of

an and/c case of
the 1st argument of
(-ą

(and/c
(listof number?)
(property/c length (=/c 3)))

number?)
contract from: (function sum-triple)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

Added in version 7.3.0.11 of package base.

(suggest/c c field message) Ñ contract?
c : contract?
field : string?
message : string?

Returns a contract that behaves like c , except that it adds an extra line to the error message
on a contract violation.

The field and message strings are added following the guidelines in §10.2.1 “Error Mes-
sage Conventions”.

Examples:

613

> (define allow-calls? #f)
> (define/contract (f)

(suggest/c (->* () #:pre allow-calls? any)
"suggestion" "maybe you should set! allow-calls? to

#t")
5)

> (f)
f: contract violation

#:pre condition
suggestion: maybe you should set! allow-calls? to #t
in: (-ą* () #:pre ... any)
contract from: (function f)
blaming: top-level

(assuming the contract is correct)
at: eval:3.0

8.2 Function Contracts

A function contract wraps a procedure to delay checks for its arguments and results. There
are three primary function contract combinators that have increasing amounts of expressive-
ness and increasing additional overheads. The first -> is the cheapest. It generates wrapper
functions that can call the original function directly. Contracts built with ->* require pack-
aging up arguments as lists in the wrapper function and then using either keyword-apply
or apply. Finally, ->i is the most expensive (along with ->d), because it requires delaying
the evaluation of the contract expressions for the domain and range until the function itself
is called or returns.

The case-> contract is a specialized contract, designed to match case-lambda and
unconstrained-domain-> allows range checking without requiring that the domain have
any particular shape (see below for an example use).

(-> dom ... range)
(-> dom ... ellipsis dom-expr ... range)

dom = dom-expr
| keyword dom-expr

range = range-expr
| (values range-expr ...)
| any

ellipsis = ...

Produces a contract for a function that accepts the argument specified by the dom-expr

614

contracts and returns either a fixed number of results or completely unspecified results (the
latter when any is specified).

Each dom-expr is a contract on an argument to a function, and each range-expr is a
contract on a result of the function.

If the domain contain ... then the function accepts as many arguments as the rest of the
contracts in the domain portion specify, as well as arbitrarily many more that match the
contract just before the Otherwise, the contract accepts exactly the argument specified. Using a -> between

two whitespace-
delimited .s is the
same as putting the
-> right after the
enclosing opening
parenthesis. See
§2.4.3 “Lists and
Racket Syntax” or
§1.3.6 “Reading
Pairs and Lists” for
more information.

For example,

(integer? boolean? . -> . integer?)

produces a contract on functions of two arguments. The first argument must be an integer,
and the second argument must be a boolean. The function must produce an integer.

Examples:

> (define/contract (maybe-invert i b)
(-> integer? boolean? integer?)
(if b (- i) i))

> (maybe-invert 1 #t)
-1
> (maybe-invert #f 1)
maybe-invert: contract violation

expected: integer?
given: #f
in: the 1st argument of

(-ą integer? boolean? integer?)
contract from: (function maybe-invert)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

A domain specification may include a keyword. If so, the function must accept correspond-
ing (mandatory) keyword arguments, and the values for the keyword arguments must match
the corresponding contracts. For example:

(integer? #:invert? boolean? . -> . integer?)

is a contract on a function that accepts a by-position argument that is an integer and an
#:invert? argument that is a boolean.

Examples:

615

> (define/contract (maybe-invert i #:invert? b)
(-> integer? #:invert? boolean? integer?)
(if b (- i) i))

> (maybe-invert 1 #:invert? #t)
-1
> (maybe-invert 1 #f)
maybe-invert: arity mismatch;

the expected number of arguments does not match the given
number

expected: 1 plus an argument with keyword #:invert?
given: 2
arguments...:

1
#f

As an example that uses an ..., this contract:

(integer? string? ... integer? . -> . any)

on a function insists that the first and last arguments to the function must be integers (and
there must be at least two arguments) and any other arguments must be strings.

Examples:

> (define/contract (string-length/between? lower-bound s1 . more-
args)

(-> integer? string? ... integer? boolean?)

(define all-but-first-arg-backwards (reverse (cons s1 more-
args)))

(define upper-bound (first all-but-first-arg-backwards))
(define strings (rest all-but-first-arg-backwards))
(define strings-length
(for/sum ([str (in-list strings)])
(string-length str)))

(<= lower-bound strings-length upper-bound))
> (string-length/between? 4 "farmer" "john" 40)
#t
> (string-length/between? 4 "farmer" 'john 40)
string-length/between?: contract violation

expected: string?
given: 'john
in: the repeated argument of

(-ą integer? string? ... integer? boolean?)
contract from:

616

(function string-length/between?)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

> (string-length/between? 4 "farmer" "john" "fourty")
string-length/between?: contract violation

expected: integer?
given: "fourty"
in: the last argument of

(-ą integer? string? ... integer? boolean?)
contract from:

(function string-length/between?)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

If any is used as the last sub-form for ->, no contract checking is performed on the result
of the function, and thus any number of values is legal (even different numbers on different
invocations of the function).

Examples:

> (define/contract (multiple-xs n x)
(-> natural? any/c any)
(apply
values
(for/list ([_ (in-range n)])
n)))

> (multiple-xs 4 "four")
4
4
4
4

If (values range-expr ...) is used as the last sub-form of ->, the function must pro-
duce a result for each contract, and each value must match its respective contract.

Examples:

> (define/contract (multiple-xs n x)
(-> natural? any/c (values any/c any/c any/c))
(apply
values
(for/list ([_ (in-range n)])
n)))

> (multiple-xs 3 "three")

617

3
3
3
> (multiple-xs 4 "four")
multiple-xs: broke its own contract;

expected 3 values, returned 4 values
in: the range of

(-ą
natural?
any/c
(values any/c any/c any/c))

contract from: (function multiple-xs)
blaming: (function multiple-xs)

(assuming the contract is correct)
at: eval:2.0

Changed in version 6.4.0.5 of package base: Added support for ellipses

(->* (mandatory-dom ...) optional-doms rest pre range post)

mandatory-dom = dom-expr
| keyword dom-expr

optional-doms =
| (optional-dom ...)

optional-dom = dom-expr
| keyword dom-expr

rest =
| #:rest rest-expr

pre =
| #:pre pre-cond-expr
| #:pre/desc pre-cond-expr

range = range-expr
| (values range-expr ...)
| any

post =
| #:post post-cond-expr
| #:post/desc post-cond-expr

The ->* contract combinator produces contracts for functions that accept optional arguments
(either keyword or positional) and/or arbitrarily many arguments. The first clause of a ->*

618

contract describes the mandatory arguments, and is similar to the argument description of a
-> contract. The second clause describes the optional arguments. The range of description
can either be any or a sequence of contracts, indicating that the function must return multiple
values.

If present, the rest-expr contract governs the arguments in the rest parameter. Note that the
rest-expr contract governs only the arguments in the rest parameter, not those in manda-
tory arguments. For example, this contract:

(->* () #:rest (cons/c integer? (listof integer?)) any)

does not match the function

(λ (x . rest) x)

because the contract insists that the function accept zero arguments (because there are no
mandatory arguments listed in the contract). The ->* contract does not know that the con-
tract on the rest argument is going to end up disallowing empty argument lists.

The pre-cond-expr and post-cond-expr expressions are checked as the function is
called and returns, respectively, and allow checking of the environment without an explicit
connection to an argument (or a result). If the #:pre or #:post keywords are used, then a
#f result is treated as a failure and any other result is treated as success. If the #:pre/desc
or #:post/desc keyword is used, the result of the expression must be either a boolean, a
string, or a list of strings, where #t means success and any of the other results mean failure.
If the result is a string or a list of strings, the strings are expected to have at exactly one
space after each newline and multiple are used as lines in the error message; the contract
itself adds single space of indentation to each of the strings in that case. The formatting re-
quirements are not checked but they match the recommendations in §10.2.1 “Error Message
Conventions”.

As an example, the contract

(->* () (boolean? #:x integer?) #:rest (listof symbol?) symbol?)

matches functions that optionally accept a boolean, an integer keyword argument #:x and
arbitrarily more symbols, and that return a symbol.

(->i maybe-chaperone
(mandatory-dependent-dom ...)
dependent-rest
pre-condition
dependent-range
post-condition)

619

(->i maybe-chaperone
(mandatory-dependent-dom ...)
(optional-dependent-dom ...)
dependent-rest
pre-condition
dependent-range
post-condition)

620

maybe-chaperone = #:chaperone
|

mandatory-dependent-dom = id+ctc
| keyword id+ctc

optional-dependent-dom = id+ctc
| keyword id+ctc

dependent-rest =
| #:rest id+ctc

pre-condition =
| #:pre (id ...)
boolean-expr pre-condition

| #:pre/desc (id ...)
expr pre-condition

| #:pre/name (id ...)
string boolean-expr pre-condition

dependent-range = any
| id+ctc
| un+ctc
| (values id+ctc ...)
| (values un+ctc ...)

post-condition =
| #:post (id ...)
boolean-expr post-condition

| #:post/desc (id ...)
expr post-condition

| #:post/name (id ...)
string boolean-expr post-condition

id+ctc = [id contract-expr]
| [id (id ...) contract-expr]

un+ctc = [_ contract-expr]
| [_ (id ...) contract-expr]

The ->i contract combinator differs from the ->* combinator in that each argument and re-
sult is named and these names can be used in the subcontracts and in the pre-/post-condition
clauses. In other words, ->i expresses dependencies among arguments and results.

The optional first keyword argument to ->i indicates if the result contract will be a chaper-
one. If it is #:chaperone, all of the contract for the arguments and results must be chaperone

621

contracts and the result of ->i will be a chaperone contract. If it is not present, then the result
contract will not be a chaperone contract.

The first sub-form of a ->i contract covers the mandatory and the second sub-form covers
the optional arguments. Following that is an optional rest-args contract, and an optional pre-
condition. The pre-condition is introduced with the #:pre keyword followed by the list of
names on which it depends. If the #:pre/name keyword is used, the string supplied is used
as part of the error message; similarly with #:post/name. If #:pre/desc or #:post/desc
is used, the the result of the expression is treated the same way as ->*.

The dependent-range non-terminal specifies the possible result contracts. If it is any, then
any value is allowed. Otherwise, the result contract pairs a name and a contract or a multiple
values return with names and contracts. In the last two cases, the range contract may be
optionally followed by a post-condition; the post-condition expression is not allowed if the
range contract is any. Like the pre-condition, the post-condition must specify the variables
on which it depends.

Consider this sample contract:

(->i ([x number?]
[y (x) (>=/c x)])
[result (x y) (and/c number? (>=/c (+ x y)))])

It specifies a function of two arguments, both numbers. The contract on the second argument
(y) demands that it is greater than the first argument. The result contract promises a number
that is greater than the sum of the two arguments. While the dependency specification for y
signals that the argument contract depends on the value of the first argument, the dependency
sequence for result indicates that the contract depends on both argument values. Since the In general, an

empty sequence is
(nearly) equivalent
to not adding a
sequence at all
except that the
former is more
expensive than the
latter.

contract for x does not depend on anything else, it does not come with any dependency
sequence, not even ().

This example is like the previous one, except the x and y arguments are now optional key-
word arguments, instead of mandatory, by-position arguments:

(->i ()
(#:x [x number?]
#:y [y (x) (>=/c x)])
[result (x y) (and/c number? (>=/c (+ x y)))])

The contract expressions are not always evaluated in order. First, if there is no dependency
for a given contract expression, the contract expression is evaluated at the time that the ->i
expression is evaluated rather than the time when the function is called or returns. These
dependency-free contract expressions are evaluated in the order in which they are listed.
Second, the dependent contract sub-expressions are evaluated when the contracted function
is called or returns in some order that satisfies the dependencies. That is, if a contract for
an argument depends on the value of some other contract, the former is evaluated first (so

622

that the argument, with its contract checked, is available for the other). When there is no
dependency between two arguments (or the result and an argument), then the contract that
appears earlier in the source text is evaluated first.

If all of the identifier positions of the range contract are _s (underscores), then the range
contract expressions are evaluated when the function is called instead of when it returns.
Otherwise, dependent range expressions are evaluated when the function returns.

If there are optional arguments that are not supplied, then the corresponding variables will be
bound to a special value called the-unsupplied-arg value. For example, in this contract:

(->i ([x (y) (if (unsupplied-arg? y)
real?
(>=/c y))])

([y real?])
any)

the contract on x depends on y , but y might not be supplied at the call site. In that case, the
value of y in the contract on x is the-unsupplied-arg and the ->i contract must check
for it and tailor the contract on x to account for y not being supplied.

When the contract expressions for unsupplied arguments are dependent, and the argument is
not supplied at the call site, the contract expressions are not evaluated at all. For example, in
this contract, y ’s contract expression is evaluated only when y is supplied:

(->i ()
([x real?]
[y (x) (>=/c x)])
any)

In contrast, x ’s expression is always evaluated (indeed, it is evaluated when the ->i expres-
sion is evaluated because it does not have any dependencies).

(->d (mandatory-dependent-dom ...)
dependent-rest
pre-condition
dependent-range
post-condition)

(->d (mandatory-dependent-dom ...)
(optional-dependent-dom ...)
dependent-rest
pre-condition
dependent-range
post-condition)

623

mandatory-dependent-dom = [id dom-expr]
| keyword [id dom-expr]

optional-dependent-dom = [id dom-expr]
| keyword [id dom-expr]

dependent-rest =
| #:rest id rest-expr

pre-condition =
| #:pre boolean-expr
| #:pre-cond boolean-expr

dependent-range = any
| [_ range-expr]
| (values [_ range-expr] ...)
| [id range-expr]
| (values [id range-expr] ...)

post-condition =
| #:post-cond boolean-expr

This contract is here for backwards compatibility; any new code should use ->i instead.

This contract is similar to ->i, but is “lax”, meaning that it does not enforce contracts inter-
nally. For example, using this contract

(->d ([f (-> integer? integer?)])
#:pre
(zero? (f #f))
any)

will allow f to be called with #f, trigger whatever bad behavior the author of f was trying
to prohibit by insisting that f’s contract accept only integers.

The #:pre-cond and #:post-cond keywords are aliases for #:pre and #:post and are
provided for backwards compatibility.

(case-> (-> dom-expr ... rest range) ...)

rest =
| #:rest rest-expr

range = range-expr
| (values range-expr ...)
| any

624

This contract form is designed to match case-lambda. Each argument to case-> is a con-
tract that governs a clause in the case-lambda. If the #:rest keyword is present, the cor-
responding clause must accept an arbitrary number of arguments. The range specification
is just like that for -> and ->*.

For example, this contract matches a function with two cases, one that accepts an integer,
returning void, and one that accepts no arguments and returns an integer.

(case-> (-> integer? void?)
(-> integer?))

Such a contract could be used to guard a function that controls access to a single shared
integer.

(dynamic->*
[#:mandatory-domain-contracts mandatory-domain-contracts
#:optional-domain-contracts optional-domain-contracts
#:mandatory-keywords mandatory-keywords
#:mandatory-keyword-contracts mandatory-keyword-contracts
#:optional-keywords optional-keywords
#:optional-keyword-contracts optional-keyword-contracts
#:rest-contract rest-contract]
#:range-contracts range-contracts)

Ñ contract?
mandatory-domain-contracts : (listof contract?) = '()
optional-domain-contracts : (listof contract?) = '()
mandatory-keywords : (listof keyword?) = '()
mandatory-keyword-contracts : (listof contract?) = '()
optional-keywords : (listof keyword?) = '()
optional-keyword-contracts : (listof contract?) = '()
rest-contract : (or/c #f contract?) = #f
range-contracts : (or/c #f (listof contract?))

Like ->*, except the number of arguments and results can be computed at runtime, instead
of being fixed at compile-time. Passing #f as the #:range-contracts argument produces
a contract like one where any is used with -> or ->*.

For many uses, dynamic->*’s result is slower than ->* (or ->), but for some it has compa-
rable speed. The name of the contract returned by dynamic->* uses the -> or ->* syntax.

(unconstrained-domain-> range-expr ...)

Constructs a contract that accepts a function, but makes no constraint on the function’s
domain. The range-exprs determine the number of results and the contract for each result.

Generally, this contract must be combined with another contract to ensure that the domain is
actually known to be able to safely call the function itself.

625

For example, the contract

(provide
(contract-out
[f (->d ([size natural-number/c]

[proc (and/c (unconstrained-domain-> number?)
(lambda (p)
(procedure-arity-includes? p size)))])

()
[_ number?])]))

says that the function f accepts a natural number and a function. The domain of the function
that f accepts must include a case for size arguments, meaning that f can safely supply
size arguments to its input.

For example, the following is a definition of f that cannot be blamed using the above con-
tract:

(define (f i g)
(apply g (build-list i add1)))

predicate/c : contract?

Use this contract to indicate that some function is a predicate. It is semantically equivalent
to (-> any/c boolean?).

This contract also includes an optimization so that functions returning #t from struct-
predicate-procedure? are just returned directly, without being wrapped. This contract is
used by provide/contract’s struct sub-form so that struct predicates end up not being
wrapped.

the-unsupplied-arg : unsupplied-arg?

Used by ->i (and ->d) to bind optional arguments that are not supplied by a call site.

(unsupplied-arg? v) Ñ boolean?
v : any/c

A predicate to determine whether v is the-unsupplied-arg.

8.3 Parametric Contracts

(require racket/contract/parametric) package: base

626

https://pkgs.racket-lang.org/package/base

The most convenient way to use parametric contract is to use contract-out’s #:exists
keyword. The racket/contract/parametric provides a few more, general-purpose
parametric contracts.

(parametric->/c (x ...) c)

Creates a contract for parametric polymorphic functions. Each function is protected by c ,
where each x is bound in c and refers to a polymorphic type that is instantiated each time
the function is applied.

At each application of a function, the parametric->/c contract constructs a new opaque
wrapper for each x ; values flowing into the polymorphic function (i.e. values protected
by some x in negative position with respect to parametric->/c) are wrapped in the cor-
responding opaque wrapper. Values flowing out of the polymorphic function (i.e. values
protected by some x in positive position with respect to parametric->/c) are checked
for the appropriate wrapper. If they have it, they are unwrapped; if they do not, a contract
violation is signaled.

Examples:

> (define swap-ctc (parametric->/c [A B] (-> A B (values B A))))
> (define/contract (good-swap a b)

swap-ctc
(values b a))

> (good-swap 1 2)
2
1
> (define/contract (bad-swap a b)

swap-ctc
(values a b))

> (bad-swap 1 2)
bad-swap: broke its own contract

promised: B
produced: #ăAą
in: the range of

(parametric-ą/c (A B) (-ą A B (values B A)))
contract from: (function bad-swap)
blaming: (function bad-swap)

(assuming the contract is correct)
at: eval:5.0

> (define/contract (copy-first a b)
swap-ctc
(values a a))

> (let ((v 'same-symbol)) (copy-first v v))
copy-first: broke its own contract

promised: B

627

produced: #ăAą
in: the range of

(parametric-ą/c (A B) (-ą A B (values B A)))
contract from: (function copy-first)
blaming: (function copy-first)

(assuming the contract is correct)
at: eval:7.0

> (define/contract (inspect-first a b)
swap-ctc
(if (integer? a)
(+ a b)
(raise-user-error "an opaque wrapped value is not an inte-

ger")))
> (inspect-first 1 2)
an opaque wrapped value is not an integer

(new-@/c [name]) Ñ contract?
name : (or/c symbol? #f) = #f

Constructs a new universal contract.

Universal contracts accept all values when in negative positions (e.g., function inputs) and
wrap them in an opaque struct, hiding the precise value. In positive positions (e.g. function
returns), a universal contract accepts only values that were previously accepted in negative
positions (by checking for the wrappers).

The name is used to identify the contract in error messages and defaults to a name based on
the lexical context of new-@/c.

For example, this contract:

(let ([a (new-@/c 'a)])
(-> a a))

describes the identity function (or a non-terminating function). That is, the first use of the a
appears in a negative position and thus inputs to that function are wrapped with an opaque
struct. Then, when the function returns, it is checked to determine whether the result is
wrapped, since the second a appears in a positive position.

The new-@/c contract constructor is dual to new-D/c.

(new-D/c [name]) Ñ contract?
name : (or/c symbol? #f) = #f

Constructs a new existential contract.

628

Existential contracts accept all values when in positive positions (e.g., function returns) and
wrap them in an opaque struct, hiding the precise value. In negative positions (e.g. function
inputs), they accepts only values that were previously accepted in positive positions (by
checking for the wrappers).

The name is used to identify the contract in error messages and defaults to a name based on
the lexical context of new-@/c.

For example, this contract:

(let ([a (new-D/c 'a)])
(-> (-> a a)

any/c))

describes a function that accepts the identity function (or a non-terminating function) and
returns an arbitrary value. That is, the first use of the a appears in a positive position and
thus inputs to that function are wrapped with an opaque struct. Then, when the function
returns, it is checked to see if the result is wrapped, since the second a appears in a negative
position.

The new-D/c construct constructor is dual to new-@/c.

8.4 Lazy Data-structure Contracts

(contract-struct id (field-id ...))

NOTE: This library is deprecated; use struct, instead. Lazy struct con-
tracts no longer require a separate struct declaration; instead struct/dc and
struct/c work directly with struct and define-struct.

Like struct, but with two differences: they do not define field mutators, and they define
two contract constructors: id/c and id/dc. The first is a procedure that accepts as many
arguments as there are fields and returns a contract for struct values whose fields match the
arguments. The second is a syntactic form that also produces contracts on the structs, but the
contracts on later fields may depend on the values of earlier fields.

The generated contract combinators are lazy: they only verify the contract holds for the
portion of some data structure that is actually inspected. More precisely, a lazy data structure
contract is not checked until a selector extracts a field of a struct.

(id/dc field-spec ...)

629

field-spec = [field-id contract-expr]
| [field-id (field-id ...) contract-expr]

In each field-spec case, the first field-id specifies which field the con-
tract applies to; the fields must be specified in the same order as the original
contract-struct. The first case is for when the contract on the field does not
depend on the value of any other field. The second case is for when the contract
on the field does depend on some other fields, and the parenthesized field-ids
indicate which fields it depends on; these dependencies can only be to earlier
fields.

(define-contract-struct id (field-id ...))

NOTE: This library is deprecated; use struct, instead. Lazy struct con-
tracts no longer require a separate struct declaration; instead struct/dc and
struct/c work directly with struct and define-struct.

Like contract-struct, but where the constructor’s name is make-id , much like define-
struct.

8.5 Structure Type Property Contracts

(struct-type-property/c value-contract) Ñ contract?
value-contract : contract?

Produces a contract for a structure type property. When the contract is applied to a struct
type property, it produces a wrapped struct type property that applies value-contract to
the value associated with the property when it used to create a new struct type (via struct,
make-struct-type, etc).

The struct type property’s accessor function is not affected; if it is exported, it must be
protected separately.

As an example, consider the following module. It creates a structure type property, prop,
whose value should be a function mapping a structure instance to a numeric predicate. The
module also exports app-prop, which extracts the predicate from a structure instance and
applies it to a given value.

> (module propmod racket
(require racket/contract)
(define-values (prop prop? prop-ref)
(make-struct-type-property 'prop))

630

(define (app-prop x v)
(((prop-ref x) x) v))

(provide/contract
[prop? (-> any/c boolean?)]
[prop (struct-type-property/c

(-> prop? (-> integer? boolean?)))]
[app-prop (-> prop? integer? boolean?)])
(provide prop-ref))

The structmod module creates a structure type named s with a single field; the value of
prop is a function that extracts the field value from an instance. Thus the field ought to
be an integer predicate, but notice that structmod places no contract on s enforcing that
constraint.

> (module structmod racket
(require 'propmod)
(struct s (f) #:property prop (lambda (s) (s-f s)))
(provide (struct-out s)))

> (require 'propmod 'structmod)

First we create an s instance with an integer predicate, so the constraint on prop is in fact
satisfied. The first call to app-prop is correct; the second simply violates the contract of
app-prop.

> (define s1 (s even?))
> (app-prop s1 5)
#f
> (app-prop s1 'apple)
app-prop: contract violation

expected: integer?
given: 'apple
in: the 2nd argument of

(-ą prop? integer? boolean?)
contract from: propmod
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

We are able to create s instances with values other than integer predicates, but applying
app-prop on them blames structmod, because the function associated with prop—that
is, (lambda (s) (s-f s))—does not always produce a value satisfying (-> integer?
boolean?).

> (define s2 (s "not a fun"))
> (app-prop s2 5)

631

prop: contract violation
expected: a procedure
given: "not a fun"
in: the range of

the struct property value of
(struct-type-property/c

(-ą prop? (-ą integer? boolean?)))
contract from: propmod
blaming: structmod

(assuming the contract is correct)
at: eval:2.0

> (define s3 (s list))
> (app-prop s3 5)
prop: contract violation

expected: boolean?
given: '(5)
in: the range of

the range of
the struct property value of
(struct-type-property/c

(-ą prop? (-ą integer? boolean?)))
contract from: propmod
blaming: structmod

(assuming the contract is correct)
at: eval:2.0

The fix would be to propagate the obligation inherited from prop to s:

(provide (contract-out
[struct s ([f (-> integer? boolean?)])]))

Finally, if we directly apply the property accessor, prop-ref, and then misuse the resulting
function, the propmod module is blamed:

> ((prop-ref s3) 'apple)
prop: broke its own contract

promised: prop?
produced: 'apple
in: the 1st argument of

the struct property value of
(struct-type-property/c

(-ą prop? (-ą integer? boolean?)))
contract from: propmod
blaming: propmod

(assuming the contract is correct)
at: eval:2.0

632

The propmod module has an obligation to ensure a function associated with prop is applied
only to values satisfying prop?. By directly providing prop-ref, it enables that constraint
to be violated (and thus it is blamed), even though the bad application actually occurs else-
where.

Generally there is no need to provide a structure type property accessor at all; it is typically
only used by other functions within the module. But if it must be provided, it should be
protected thus:

(provide (contract-out
[prop-ref (-> prop? (-> prop? (-> integer? boolean?)))]))

8.6 Attaching Contracts to Values

(contract-out unprotected-submodule contract-out-item ...)

unprotected-submodule =
| #:unprotected-submodule submodule-name

contract-out-item = (struct id/super ((id contract-expr) ...)
struct-option)

| (rename orig-id id contract-expr)
| (id contract-expr)
| #:D poly-variables
| #:exists poly-variables
| #:@ poly-variables
| #:forall poly-variables

poly-variables = id
| (id ...)

id/super = id
| (id super-id)

struct-option =
| #:omit-constructor

A provide-spec for use in provide (currently only for the same phase level as the pro-
vide form; for example, contract-out cannot be nested within for-syntax). Each id
is provided from the module. In addition, clients of the module must live up to the contract
specified by contract-expr for each export.

The contract-out form treats modules as units of blame. The module that defines the
provided variable is expected to meet the positive (co-variant) positions of the contract. Each

633

module that imports the provided variable must obey the negative (contra-variant) positions
of the contract. Each contract-expr in a contract-out form is effectively moved to the
end of the enclosing module, so a contract-expr can refer to variables that are defined
later in the same module.

Only uses of the contracted variable outside the module are checked. Inside the module, no
contract checking occurs.

The rename form of contract-out exports the first variable (the internal name) with the
name specified by the second variable (the external name).

The struct form of contract-out provides a structure-type definition, and each field has
a contract that dictates the contents of the fields. The structure-type definition must appear
before the provide clause within the enclosing module. If the structure type has a parent,
the second struct form (above) must be used, with the first name referring to the structure
type to export and the second name referring to the parent structure type. Unlike a struct
definition, however, all of the fields (and their contracts) must be listed. The contract on
the fields that the sub-struct shares with its parent are only used in the contract for the sub-
struct’s constructor, and the selector or mutators for the super-struct are not provided. The
exported structure-type name always doubles as a constructor, even if the original structure-
type name does not act as a constructor. If the #:omit-constructor option is present, the
constructor is not provided.

Note that if the struct is created with serializable-struct or define-serializable-
struct, contract-out does not protect struct instances that are created via deserialize.
Consider using struct-guard/c instead.

The #:D, #:exists, #:@, and #:forall clauses define new abstract contracts. The vari-
ables are bound in the remainder of the contract-out form to new contracts that hide the
values they accept and ensure that the exported functions are treated parametrically. See
new-D/c and new-@/c for details on how the clauses hide the values.

If #:unprotected-submodule appears, the identifier that follows it is used as the name of
a submodule that contract-out generates. The submodule exports all of the names in the
contract-out, but without contracts.

The implementation of contract-out uses syntax-property to attach properties to the
code it generates that records the syntax of the contracts in the fully expanded program.
Specifically, the symbol 'provide/contract-original-contract is bound to vectors
of two elements, the exported identifier and a syntax object for the expression that produces
the contract controlling the export.

Changed in version 7.3.0.3 of package base: Added #:unprotected-submodule.

(recontract-out id ...)

A provide-spec for use in provide (currently, just like contract-out, only for the same

634

phase level as the provide form).

It re-exports id , but with positive blame associated to the module containing recontract-
out instead of the location of the original site of id .

This can be useful when a public module wants to export an identifier from a private module
but where any contract violations should be reported in terms of the public module instead
of the private one.

Examples:

> (module private-implementation racket/base
(require racket/contract)
(define (recip x) (/ 1 x))
(define (non-zero? x) (not (= x 0)))
(provide/contract [recip (-> (and/c real? non-zero?)

(between/c -1 1))]))
> (module public racket/base

(require racket/contract
'private-implementation)

(provide (recontract-out recip)))
> (require 'public)
> (recip +nan.0)
recip: broke its own contract

promised: (between/c -1 1)
produced: +nan.0
in: the range of

(-ą
(and/c real? non-zero?)
(between/c -1 1))

contract from: public
blaming: public

(assuming the contract is correct)
at: eval:3.0

Replacing the use of recontract-out with just recip would result in a contract violation
blaming the private module.

(provide/contract unprotected-submodule contract-out-item ...)

A legacy shorthand for (provide (contract-out unprotected-submodule
contract-out-item ...)), except that a contract-expr within provide/contract
is evaluated at the position of the provide/contract form instead of at the end of the
enclosing module.

(struct-guard/c contract-expr ...)

635

Returns a procedure suitable to be passed as the #:guard argument to struct,
serializable-struct (and related forms). The guard procedure ensures that each con-
tract protects the corresponding field values, as long as the struct is not mutated. Mutations
are not protected.

Examples:

> (struct snake (weight hungry?)
#:guard (struct-guard/c real? boolean?))

> (snake 1.5 "yep")
snake, field 2: contract violation

expected: boolean?
given: "yep"
in: boolean?
contract from: top-level
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

8.6.1 Nested Contract Boundaries

(require racket/contract/region) package: base

(with-contract blame-id (wc-export ...) free-var-list ... body ...+)
(with-contract blame-id results-spec free-var-list ... body ...+)

wc-export = (id contract-expr)

result-spec = #:result contract-expr
| #:results (contract-expr ...)

free-var-list =
| #:freevar id contract-expr
| #:freevars ([id contract-expr] ...)

Generates a local contract boundary.

The first with-contract form cannot appear in expression position. All names defined
within the first with-contract form are visible externally, but those names listed in the
wc-export list are protected with the corresponding contract. The body of the form allows
definition/expression interleaving if its context does.

The second with-contract form must appear in expression position. The final body ex-
pression should return the same number of values as the number of contracts listed in the
result-spec , and each returned value is contracted with its respective contract. The se-
quence of body forms is treated as for let.

636

https://pkgs.racket-lang.org/package/base

The blame-id is used for the positive positions of contracts paired with exported ids.
Contracts broken within the with-contract body will use the blame-id for their negative
position.

If a free-var-list is given, then any uses of the free variables inside the body will be protected
with contracts that blame the context of the with-contract form for the positive positions
and the with-contract form for the negative ones.

(define/contract id contract-expr free-var-list init-value-expr)
(define/contract (head args) contract-expr free-var-list body ...+)

Works like define, except that the contract contract-expr is attached to the bound value.
For the definition of head and args , see define. For the definition of free-var-list ,
see with-contract.

Examples:

> (define/contract distance (>=/c 0) 43.52)
> (define/contract (furlongs->feet fr)

(-> real? real?)
(* 660 fr))

; a contract violation expected here:
> (furlongs->feet "not a furlong")
furlongs-ąfeet: contract violation

expected: real?
given: "not a furlong"
in: the 1st argument of

(-ą real? real?)
contract from: (function furlongs-ąfeet)
blaming: top-level

(assuming the contract is correct)
at: eval:3.0

The define/contract form treats the individual definition as a contract region. The defi-
nition itself is responsible for positive (co-variant) positions of the contract, and references
to id outside of the definition must meet the negative positions of the contract. Since the
contract boundary is between the definition and the surrounding context, references to id
inside the define/contract form are not checked.

Examples:

; an unsual predicate that prints when called
> (define (printing-int? x)

(displayln "I was called")
(exact-integer? x))

637

> (define/contract (fact n)
(-> printing-int? printing-int?)
(if (zero? n)

1
(* n (fact (sub1 n)))))

> (fact 5) ; only prints twice, not for each recursive call
I was called
I was called
120

If a free-var-list is given, then any uses of the free variables inside the body will be pro-
tected with contracts that blame the context of the define/contract form for the positive
positions and the define/contract form for the negative ones.

Examples:

> (define (integer->binary-string n)
(number->string n 2))

> (define/contract (numbers->strings lst)
(-> (listof number?) (listof string?))
#:freevar integer->binary-string (-> exact-integer? string?)
; mistake, lst might contain inexact numbers
(map integer->binary-string lst))

> (numbers->strings '(4.0 3.3 5.8))
integer-ąbinary-string: contract violation

expected: exact-integer?
given: 4.0
in: the 1st argument of

(-ą exact-integer? string?)
contract from: top-level
blaming: (function numbers-ąstrings)

(assuming the contract is correct)
at: eval:3.0

(define-struct/contract struct-id ([field contract-expr] ...)
struct-option ...)

(define-struct/contract (struct-id super-struct-id)
([field contract-expr] ...)
struct-option ...)

Works like define-struct, except that the arguments to the constructor, accessors, and
mutators are protected by contracts. For the definitions of field and struct-option , see
define-struct.

The define-struct/contract form only allows a subset of the struct-option

638

keywords: #:mutable, #:transparent, #:auto-value, #:omit-define-syntaxes,
#:property and #:omit-define-values.

Examples:

> (define-struct/contract fish ([color number?]))
> (make-fish 5)
#<fish>
> (make-fish #f)
make-fish: contract violation

expected: number?
given: #f
in: the 1st argument of

(-ą number? symbol? any)
contract from: (struct fish)
blaming: top-level

(assuming the contract is correct)
> (define-struct/contract (salmon fish) ([ocean symbol?]))
> (make-salmon 5 'atlantic)
#<salmon>
> (make-salmon 5 #f)
make-salmon: contract violation

expected: symbol?
given: #f
in: the 2nd argument of

(-ą any/c symbol? symbol? any)
contract from: (struct salmon)
blaming: top-level

(assuming the contract is correct)
> (make-salmon #f 'pacific)
make-fish: contract violation

expected: number?
given: #f
in: the 1st argument of

(-ą number? symbol? any)
contract from: (struct fish)
blaming: top-level

(assuming the contract is correct)

(invariant-assertion invariant-expr expr)

Establishes an invariant of expr , determined by invariant-expr .

Unlike the specification of a contract, an invariant-assertion does not establish a
boundary between two parties. Instead, it simply attaches a logical assertion to the value.

639

Because the form uses contract machinery to check the assertion, the surrounding module is
treated as the party to be blamed for any violations of the assertion.

This means, for example, that the assertion is checked on recursive calls, when an invariant
is used on the right-hand side of a definition:

Examples:

> (define furlongss->feets
(invariant-assertion
(-> (listof real?) (listof real?))
(λ (l)
(cond
[(empty? l) empty]
[else
(if (= 327 (car l))

(furlongss->feets (list "wha?"))
(cons (furlongs->feet (first l))

(furlongss->feets (rest l))))]))))
> (furlongss->feets (list 1 2 3))
'(660 1320 1980)
> (furlongss->feets (list 1 327 3))
furlongss-ąfeets: assertion violation

expected: real?
given: "wha?"
in: an element of

the 1st argument of
(-ą (listof real?) (listof real?))

contract from: invariant-assertion
at: eval:5.0

Added in version 6.0.1.11 of package base.

current-contract-region

Bound by define-syntax-parameter, this contains information about the current con-
tract region, used by the above forms to determine the candidates for blame assignment.

8.6.2 Low-level Contract Boundaries

640

(define-module-boundary-contract id
orig-id
contract-expr
pos-blame-party
source-loc
name-for-blame
context-limit)

pos-blame-party =
| #:pos-source pos-source-expr

source-loc =
| #:srcloc srcloc-expr

name-for-blame =
| #:name-for-blame
| blame-id

context-limit =
| #:context-limit limit-expr

Defines id to be orig-id , but with the contract contract-expr .

The identifier id is defined as a macro transformer that consults the context of its use to de-
termine the name for negative blame assignment (using the entire module where a reference
appears as the negative party).

The positive party defaults to the module containing the use of define-module-boundary-
contract, but can be specified explicitly via the #:pos-source keyword.

The source location used in the blame error messages for the location of the place where the
contract was put on the value defaults to the source location of the use of define-module-
boundary-contract, but can be specified via the #:srcloc argument, in which case it can
be any of the things that the third argument to datum->syntax can be.

The name used in the error messages will be orig-id , unless #:name-for-blame is sup-
plied, in which case the identifier following it is used as the name in the error messages.

If #:context-limit is supplied, it behaves the same as it does when supplied to contract.

Examples:

> (module server racket/base
(require racket/contract/base)
(define (f x) #f)
(define-module-boundary-contract g f (-> integer? integer?))
(provide g))

641

> (module client racket/base
(require 'server)
(define (clients-fault) (g #f))
(define (servers-fault) (g 1))
(provide servers-fault clients-fault))

> (require 'client)
> (clients-fault)
g: contract violation

expected: integer?
given: #f
in: the 1st argument of

(-ą integer? integer?)
contract from: 'server
blaming: client

(assuming the contract is correct)
at: eval:2.0

> (servers-fault)
g: broke its own contract

promised: integer?
produced: #f
in: the range of

(-ą integer? integer?)
contract from: 'server
blaming: (quote server)

(assuming the contract is correct)
at: eval:2.0

Changed in version 6.7.0.4 of package base: Added the #:name-for-blame argument.
Changed in version 6.90.0.29: Added the #:context-limit argument.

(contract contract-expr to-protect-expr
positive-blame-expr negative-blame-expr)

(contract contract-expr to-protect-expr
positive-blame-expr negative-blame-expr
#:context-limit limit-expr)

(contract contract-expr to-protect-expr
positive-blame-expr negative-blame-expr
value-name-expr source-location-expr)

The primitive mechanism for attaching a contract to a value. The purpose of contract is as
a target for the expansion of some higher-level contract specifying form.

The contract expression adds the contract specified by contract-expr to the value pro-
duced by to-protect-expr . The result of a contract expression is the result of the to-
protect-expr expression, but with the contract specified by contract-expr enforced on
to-protect-expr .

642

The values of positive-blame-expr and negative-blame-expr indicate how to assign
blame for positive and negative positions of the contract specified by contract-expr . They
may be any value, and are formatted as by display for purposes of contract violation error
messages.

If specified, value-name-expr indicates a name for the protected value to be used in error
messages. If not supplied, or if value-name-expr produces #f, no name is printed. Oth-
erwise, it is also formatted as by display. More precisely, the value-name-expr ends up
in the blame-name field of the blame record, which is used as the first portion of the error
message.

Examples:

> (contract integer? #f 'pos 'neg 'timothy #f)
timothy: broke its own contract

promised: integer?
produced: #f
in: integer?
contract from: pos
blaming: pos

(assuming the contract is correct)
> (contract integer? #f 'pos 'neg #f #f)
broke its own contract

promised: integer?
produced: #f
in: integer?
contract from: pos
blaming: pos

(assuming the contract is correct)

If specified, source-location-expr indicates the source location reported by contract
violations. The expression must produce a srcloc structure, syntax object, #f, or a list or
vector in the format accepted by the third argument to datum->syntax.

If #:context-limit is supplied, the following expression must evaluate to either #f or a
natural number. If the expression evaluates to an natural number, the number of layers of
context information is limited to at most that many. For example, if the number is 0, no
context information is recorded and the error messages do not contain the section that starts
with in:.

8.7 Building New Contract Combinators

(require racket/contract/combinator) package: base

643

https://pkgs.racket-lang.org/package/base

(make-contract
[#:name name
#:first-order test
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection proj
#:stronger stronger
#:equivalent equivalent
#:list-contract? is-list-contract?])

Ñ contract?
name : any/c = 'anonymous-contract
test : (-> any/c any/c) = (λ (x) #t)
late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))

= #f
collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c any/c) collapsible-contract?)))

= #f
val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))

= #f
proj : (-> blame? (-> any/c any/c))

= (λ (b)
(λ (x)
(if (test x)
x
(raise-blame-error
b x
'(expected: "„a" given: "„e")
name x))))

stronger : (or/c #f (-> contract? contract? boolean?)) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
is-list-contract? : boolean? = #f

644

(make-chaperone-contract
[#:name name
#:first-order test
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection proj
#:stronger stronger
#:equivalent equivalent
#:list-contract? is-list-contract?])

Ñ chaperone-contract?
name : any/c = 'anonymous-chaperone-contract
test : (-> any/c any/c) = (λ (x) #t)
late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))

= #f
collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c any/c) collapsible-contract?)))

= #f
val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))

= #f
proj : (-> blame? (-> any/c any/c))

= (λ (b)
(λ (x)
(if (test x)
x
(raise-blame-error
b x
'(expected: "„a" given: "„e")
name x))))

stronger : (or/c #f (-> contract? contract? boolean?)) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
is-list-contract? : boolean? = #f

645

(make-flat-contract
[#:name name
#:first-order test
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection proj
#:stronger stronger
#:equivalent equivalent
#:list-contract? is-list-contract?])

Ñ flat-contract?
name : any/c = 'anonymous-flat-contract
test : (-> any/c any/c) = (λ (x) #t)
late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))

= #f
collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c any/c) collapsible-contract?)))

= #f
val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))

= #f
proj : (-> blame? (-> any/c any/c))

= (λ (b)
(λ (x)
(if (test x)
x
(raise-blame-error
b x
'(expected: "„a" given: "„e")
name x))))

stronger : (or/c #f (-> contract? contract? boolean?)) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
is-list-contract? : boolean? = #f

These functions build simple higher-order contracts, chaperone contracts, and flat contracts,
respectively. They all take the same set of three optional arguments: a name, a first-order
predicate, and a blame-tracking projection. For make-flat-contract, see also flat-
contract-with-explanation.

The name argument is any value to be rendered using display to describe the contract
when a violation occurs. The default name for simple higher-order contracts is anonymous-
contract, for chaperone contracts is anonymous-chaperone-contract, and for flat con-
tracts is anonymous-flat-contract.

The first-order predicate test is used to determine which values the contract applies to.
This test is used by contract-first-order-passes?, and indirectly by or/c and from-
or/c to determine which higher-order contract to wrap a value with when there are multiple
higher-order contracts to choose from. The default test accepts any value. The predicate

646

should be influenced by the value of (contract-first-order-okay-to-give-up?) (see
it’s documentation for more explanation).

The late-neg-proj argument defines the behavior of applying the contract via a late neg
projection. If it is supplied, this argument accepts a blame object that is missing one party
(see also blame-missing-party?). Then it must return a function that accepts both the
value that is getting the contract and the name of the missing blame party, in that order. The
result must either be the value (perhaps suitably wrapped with a chaperone or impersonator
to enforce the contract), or signal a contract violation using raise-blame-error. The
default is #f.

The collapsible-late-neg-proj argument takes the place of the late-neg-proj ar-
gument for contracts that support collapsing. If it is supplied, this argument accepts a blame
object that is missing one party. It must return two values. The first value must be a function
that accepts both the value that is getting the contract and the name of the missing blame
party, in that order. The second value should be a collapsible representation of the contract.

The projection proj and val-first-proj are older mechanisms for defining the behavior
of applying the contract. The proj argument is a curried function of two arguments: the
first application accepts a blame object, and the second accepts a value to protect with the
contract. The projection must either produce the value, suitably wrapped to enforce any
higher-order aspects of the contract, or signal a contract violation using raise-blame-
error. The default projection produces an error when the first-order test fails, and produces
the value unchanged otherwise. The val-first-proj is like late-neg-proj , except with
an extra layer of currying.

At least one of the late-neg-proj , proj , val-first-proj , or test must be non-#f.

The projection arguments (late-neg-proj , proj , and val-first-proj) must be in sync
with the test argument. In particular, if the test argument returns #f for some value, then
the projections must raise a blame error for that value and if the test argument returns #t for
some value, then the projection must not signal any blame for this value, unless there are
higher-order interactions later. In other words, for flat contracts, the test and projection
arguments must check the same predicate (which is why thee default projection uses the
test argument directly).

Projections for chaperone contracts must produce a value that passes chaperone-of? when
compared with the original, uncontracted value. Projections for flat contracts must fail pre-
cisely when the first-order test does, and must produce the input value unchanged otherwise.
Applying a flat contract may result in either an application of the predicate, or the projection,
or both; therefore, the two must be consistent. The existence of a separate projection only
serves to provide more specific error messages. Most flat contracts do not need to supply an
explicit projection.

The stronger argument is used to implement contract-stronger?. The first argument
is always the contract itself and the second argument is whatever was passed as the second ar-
gument to contract-stronger?. If no stronger argument is supplied, then a default that

647

compares its arguments with equal? is used for flat contracts and chaperone contracts. For
impersonator contracts constructed with make-contract that do not supply the stronger
argument, contract-stronger? returns #f.

Similarly, the equivalent argument is used to implement contract-equivalent?. If it
isn’t supplied or #false is supplied, then equal? is used for chaperone and flat contracts,
and (λ (x y) #f) is used otherwise.

The is-list-contract? argument is used by the list-contract? predicate to determine
if this is a contract that accepts only list? values.

Examples:

> (define int/c
(make-flat-contract #:name 'int/c #:first-order integer?))

> (contract int/c 1 'positive 'negative)
1
> (contract int/c "not one" 'positive 'negative)
eval:4:0: broke its own contract

promised: int/c
produced: "not one"
in: int/c
contract from: positive
blaming: positive

(assuming the contract is correct)
> (int/c 1)
#t
> (int/c "not one")
#f
> (define int->int/c

(make-contract
#:name 'int->int/c
#:first-order
(λ (x) (and (procedure? x) (procedure-arity-includes? x 1)))
#:projection
(λ (b)
(let ([domain ((contract-projection int/c) (blame-swap b))]

[range ((contract-projection int/c) b)])
(λ (f)
(if (and (procedure? f) (procedure-arity-

includes? f 1))
(λ (x) (range (f (domain x))))
(raise-blame-error
b f
'(expected "a function of one argu-

ment" given: "„e")
f)))))))

648

> (contract int->int/c "not fun" 'positive 'negative)
eval:8:0: broke its own contract;

promised a function of one argument
produced: "not fun"
in: int-ąint/c
contract from: positive
blaming: positive

(assuming the contract is correct)
> (define halve

(contract int->int/c (λ (x) (/ x 2)) 'positive 'negative))
> (halve 2)
1
> (halve 1/2)
halve: contract violation

expected: int/c
given: 1/2
in: int-ąint/c
contract from: positive
blaming: negative

(assuming the contract is correct)
> (halve 1)
halve: broke its own contract

promised: int/c
produced: 1/2
in: int-ąint/c
contract from: positive
blaming: positive

(assuming the contract is correct)

Changed in version 6.0.1.13 of package base: Added the #:list-contract? argument.
Changed in version 6.90.0.30: Added the #:equivalent argument.
Changed in version 7.1.0.10: Added the #:collapsible-late-neg-projection argument.

(build-compound-type-name c/s ...) Ñ any
c/s : any/c

Produces an S-expression to be used as a name for a contract. The arguments should be either
contracts or symbols. It wraps parentheses around its arguments and extracts the names from
any contracts it is supplied with.

(coerce-contract id v) Ñ contract?
id : symbol?
v : any/c

Converts a regular Racket value into an instance of a contract struct, converting it according
to the description of contracts.

649

If v is not one of the coercible values, coerce-contract signals an error, using the first
argument in the error message.

(coerce-contracts id vs) Ñ (listof contract?)
id : symbol?
vs : (listof any/c)

Coerces all of the arguments in vs into contracts (via coerce-contract/f) and signals an
error if any of them are not contracts. The error messages assume that the function named
by id got vs as its entire argument list.

(coerce-chaperone-contract id v) Ñ chaperone-contract?
id : symbol?
v : any/c

Like coerce-contract, but requires the result to be a chaperone contract, not an arbitrary
contract.

(coerce-chaperone-contracts id vs)
Ñ (listof chaperone-contract?)
id : symbol?
vs : (listof any/c)

Like coerce-contracts, but requires the results to be chaperone contracts, not arbitrary
contracts.

(coerce-flat-contract id v) Ñ flat-contract?
id : symbol?
v : any/c

Like coerce-contract, but requires the result to be a flat contract, not an arbitrary contract.

(coerce-flat-contracts id v) Ñ (listof flat-contract?)
id : symbol?
v : (listof any/c)

Like coerce-contracts, but requires the results to be flat contracts, not arbitrary contracts.

(coerce-contract/f v) Ñ (or/c contract? #f)
v : any/c

Like coerce-contract, but returns #f if the value cannot be coerced to a contract.

(get/build-val-first-projection c)
Ñ (-> blame? (-> any/c (-> any/c any/c)))
c : contract?

650

Returns the val-first projection for c .

See make-contract for more details.

Added in version 6.1.1.5 of package base.

(get/build-late-neg-projection c)
Ñ (-> blame? (-> any/c any/c any/c))
c : contract?

Returns the late-neg projection for c .

If c does not have a late-neg contract, then this function uses the original projection for it
and logs a warning to the 'racket/contract logger.

See make-contract for more details.

Added in version 6.2.900.11 of package base.

(skip-projection-wrapper?) Ñ boolean?
(skip-projection-wrapper? wrap?) Ñ void?

wrap? : boolean?
= #f

The functions make-chaperone-contract and build-chaperone-contract-
property wrap their arguments to ensure that the result of the projections are chaperones
of the input. This layer of wrapping can, in some cases, introduce unwanted overhead into
contract checking. If this parameter’s value is #t during the dynamic extent of the call to
either of those functions, the wrapping (and thus the checks) are skipped.

(with-contract-continuation-mark blame body ...)
(with-contract-continuation-mark blame+neg-party body ...)

Inserts a continuation mark that informs the contract profiler (see the contract profiling doc-
umentation) that contract checking is happening. For the costs from checking your new
combinator to be included, you should wrap any deferred, higher-order checks with this
form. First-order checks are recognized automatically and do not require this form.

If your combinator’s projections operate on complete blame objects (i.e., no missing blame
parties), the blame object should be the first argument to this form. Otherwise (e.g., in the
case of late-neg projections), a pair of the blame object and the missing party should be
used instead.

Added in version 6.4.0.4 of package base.

(contract-pos/neg-doubling e1 e2)

651

Some contract combinators need to build projections for subcontracts with both regular and
blame-swaped versions of the blame that they are given in order to check both access and
mutations (e.g., vector/c and vectorof). In the case that such combinators are nested
deeply inside each other, there is a potential for an exponential explosion of nested projec-
tions being built.

To avoid that explosion, wrap each of the calls to the blame-accepting portion of the com-
binator in contract-pos/neg-doubling. It returns three values. The first is a boolean,
indicating how to interpret the other two results. If the boolean is #t, then the other two
results are the values of e1 and e2 and we are not too deep in the nesting. If the boolean
is #f, then we have passed a threshold and it is not safe to evaluate e1 and e2 yet, as we
are in danger of running into the exponential slowdown. In that case, the last two results are
thunks that, when invoked, compute the values of e1 and e2 .

As an example, vectorof uses contract-pos/neg-doubling wrapping its two calls to
the blame-accepting part of the projection for its subcontract. When it receives a #f as
that first boolean, it does not invoke the thunks right away, but waits until the interposition
procedure that it attaches to the chaperoned vector is called. Then it invokes them (and
caches the result). This delays the construction of the projections until they are actually
needed, avoiding the exponential blowup.

Added in version 6.90.0.27 of package base.

8.7.1 Blame Objects

This section describes blame objects and operations on them.

(blame? v) Ñ boolean?
v : any/c

This predicate recognizes blame objects.

(raise-blame-error b
#:missing-party missing-party
v
fmt
v-fmt ...) Ñ none/c

b : blame?
missing-party : #f
v : any/c
fmt : (or/c string?

(listof (or/c string?
'given 'given:
'expected 'expected:)))

v-fmt : any/c

652

Signals a contract violation. The first argument, b , records the current blame information,
including positive and negative parties, the name of the contract, the name of the value,
and the source location of the contract application. The #:missing-party argument sup-
plies one of the blame parties. It should be non-#f when the b object was created without
supplying a negative party. See blame-add-missing-party and the description of the
late-neg-proj argument of make-contract.

The second positional argument, v , is the value that failed to satisfy the contract.

The remaining arguments are a format string, fmt , and its arguments, v-fmt ..., specify-
ing an error message specific to the precise violation.

If fmt is a list, then the elements are concatenated together (with spaces added, unless
there are already spaces at the ends of the strings), after first replacing symbols with ei-
ther their string counterparts, or replacing 'given with "produced" and 'expected with
"promised", depending on whether or not the b argument has been swapped or not (see
blame-swap).

If fmt contains the symbols 'given: or 'expected:, they are replaced like 'given and
'expected are, but the replacements are prefixed with the string "\n " to conform to the
error message guidelines in §10.2.1 “Error Message Conventions”.

(blame-add-context blame
context

[#:important important
#:swap? swap?]) Ñ blame?

blame : blame?
context : (or/c string? #f)
important : (or/c string? #f) = #f
swap? : boolean? = #f

Adds some context information to blame error messages that explicates which portion of the
contract failed (and that gets rendered by raise-blame-error).

The context argument describes one layer of the portion of the contract, typically of the
form "the 1st argument of" (in the case of a function contract) or "a conjunct of"
(in the case of an and/c contract).

For example, consider this contract violation:

> (define/contract f
(list/c (-> integer? integer?))
(list (λ (x) x)))

> ((car f) #f)
f: contract violation

expected: integer?
given: #f

653

in: the 1st argument of
the 1st element of
(list/c (-ą integer? integer?))

contract from: (definition f)
blaming: top-level

(assuming the contract is correct)
at: eval:2.0

It shows that the portion of the contract being violated is the first occurrence of integer?,
because the -> and the list/c combinators each internally called blame-add-context to
add the two lines following “in” in the error message.

The important argument is used to build the beginning part of the contract violation. The
last important argument that gets added to a blame object is used. The class/c con-
tract adds an important argument, as does the -> contract (when -> knows the name of the
function getting the contract).

The swap? argument has the effect of calling blame-swap while adding the layer of context,
but without creating an extra blame object.

Passing #f as the context string argument is no longer relevant. For backwards compatibility,
blame-add-context returns b when context is #f.

Changed in version 6.90.0.29 of package base: The context argument being #f is no longer relevant.

(blame-context blame) Ñ (listof string?)
blame : blame?

Returns the context information that would be supplied in an error message, if blame is
passed to raise-blame-error.

(blame-positive b) Ñ any/c
b : blame?

(blame-negative b) Ñ any/c
b : blame?

These functions produce printable descriptions of the current positive and negative parties
of a blame object.

(blame-contract b) Ñ any/c
b : blame?

This function produces a description of the contract associated with a blame object (the result
of contract-name).

(blame-value b) Ñ any/c
b : blame?

654

This function produces the name of the value to which the contract was applied, or #f if no
name was provided.

(blame-source b) Ñ srcloc?
b : blame?

This function produces the source location associated with a contract. If no source location
was provided, all fields of the structure will contain #f.

(blame-swap b) Ñ blame?
b : blame?

This function swaps the positive and negative parties of a blame object. (See also blame-
add-context.)

(blame-original? b) Ñ boolean?
b : blame?

(blame-swapped? b) Ñ boolean?
b : blame?

These functions report whether the current blame of a given blame object is the same as
in the original contract invocation (possibly of a compound contract containing the current
one), or swapped, respectively. Each is the negation of the other; both are provided for
convenience and clarity.

(blame-replace-negative b neg) Ñ blame?
b : blame?
neg : any/c

Produces a blame? object just like b except that it uses neg instead of the negative position
b has.

(blame-update b pos neg) Ñ blame?
b : blame?
pos : any/c
neg : any/c

Produces a blame? object just like b except that it adds pos and neg to the positive and
negative parties of b respectively.

(blame-missing-party? b) Ñ boolean?
b : blame?

Returns #t when b does not have both parties.

655

(blame-add-missing-party b missing-party)
Ñ (and/c blame? (not/c blame-missing-party?))
b : (and/c blame? blame-missing-party?)
missing-party : any/c

Produces a new blame object like b , except that the missing party is replaced with missing-
party .

(struct exn:fail:contract:blame exn:fail:contract (object)
#:extra-constructor-name make-exn:fail:contract:blame)

object : blame?

This exception is raised to signal a contract error. The object field contains a blame object
associated with a contract violation.

(current-blame-format) Ñ (-> blame? any/c string? string?)
(current-blame-format proc) Ñ void?

proc : (-> blame? any/c string? string?)

A parameter that is used when constructing a contract violation error. Its value is procedure
that accepts three arguments:

• the blame object for the violation,

• the value that the contract applies to, and

• a message indicating the kind of violation.

The procedure then returns a string that is put into the contract error message. Note that the
value is often already included in the message that indicates the violation.

Examples:

> (define (show-blame-error blame value message)
(string-append
"Contract Violation!\n"
(format "Guilty Party: „a\n" (blame-positive blame))
(format "Innocent Party: „a\n" (blame-negative blame))
(format "Contracted Value Name: „a\n" (blame-value blame))
(format "Contract Location: „s\n" (blame-source blame))
(format "Contract Name: „a\n" (blame-contract blame))
(format "Offending Value: „s\n" value)
(format "Offense: „a\n" message)))

> (current-blame-format show-blame-error)

656

> (define/contract (f x)
(-> integer? integer?)
(/ x 2))

> (f 2)
1
> (f 1)
Contract Violation!
Guilty Party: (function f)
Innocent Party: top-level
Contracted Value Name: f
Contract Location: #(struct:srcloc eval 4 0 4 1)
Contract Name: (-ą integer? integer?)
Offending Value: 1/2
Offense: promised: integer?

produced: 1/2

> (f 1/2)
Contract Violation!
Guilty Party: top-level
Innocent Party: (function f)
Contracted Value Name: f
Contract Location: #(struct:srcloc eval 4 0 4 1)
Contract Name: (-ą integer? integer?)
Offending Value: 1/2
Offense: expected: integer?

given: 1/2

8.7.2 Contracts as structs

The property prop:contract allows arbitrary structures to act as contracts. The prop-
erty prop:chaperone-contract allows arbitrary structures to act as chaperone contracts;
prop:chaperone-contract inherits prop:contract, so chaperone contract structures
may also act as general contracts. The property prop:flat-contract allows arbitrary
structures to act as flat contracts; prop:flat-contract inherits both prop:chaperone-
contract and prop:procedure, so flat contract structures may also act as chaperone con-
tracts, as general contracts, and as predicate procedures.

prop:contract : struct-type-property?
prop:chaperone-contract : struct-type-property?
prop:flat-contract : struct-type-property?

These properties declare structures to be contracts or flat contracts, respectively. The
value for prop:contract must be a contract property constructed by build-contract-
property; likewise, the value for prop:chaperone-contract must be a chaperone

657

contract property constructed by build-chaperone-contract-property and the value
for prop:flat-contract must be a flat contract property constructed by build-flat-
contract-property.

prop:contracted : struct-type-property?
impersonator-prop:contracted : impersonator-property?

These properties attach a contract value to the protected structure, chaperone, or imper-
sonator value. The function has-contract? returns #t for values that have one of these
properties, and value-contract extracts the value from the property (which is expected to
be the contract on the value).

prop:blame : struct-type-property?
impersonator-prop:blame : impersonator-property?

These properties attach a blame information to the protected structure, chaperone, or im-
personator value. The function has-blame? returns #t for values that have one of these
properties, and value-blame extracts the value from the property.

The value is expected to be the blame record for the contract on the value or a cons-pair
of a blame record with a missing party and the missing party. The value-blame function
reassembles the arguments of the pair into a complete blame record using blame-add-
missing-party. If the value has one of the properties, but the value is not a blame object
or a pair whose car position is a blame object, then has-blame? returns #f but value-
blame returns #f.

658

(build-flat-contract-property
[#:name get-name
#:first-order get-first-order
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection get-projection
#:stronger stronger
#:equivalent equivalent
#:generate generate
#:list-contract? is-list-contract?])

Ñ flat-contract-property?
get-name : (-> contract? any/c)

= (λ (c) 'anonymous-flat-contract)
get-first-order : (-> contract? (-> any/c boolean?))

= (λ (c) (λ (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))

= #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/c) collapsible-contract?))))

= #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))

= #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))

= (λ (c)
(λ (b)
(λ (x)
(if ((get-first-order c) x)

x
(raise-blame-error
b x '(expected: "„a" given: "„e")
(get-name c) x)))))

stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])

[generator
(c)
(-> (and/c positive? real?)

(or/c (-> (or/c contract-random-generate-fail? c))
#f))])

= (λ (c) (λ (fuel) #f))
is-list-contract? : (-> contract? boolean?) = (λ (c) #f)

659

(build-chaperone-contract-property
[#:name get-name
#:first-order get-first-order
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection get-projection
#:stronger stronger
#:equivalent equivalent
#:generate generate
#:exercise exercise
#:list-contract? is-list-contract?])

Ñ chaperone-contract-property?
get-name : (-> contract? any/c)

= (λ (c) 'anonymous-chaperone-contract)
get-first-order : (-> contract? (-> any/c boolean?))

= (λ (c) (λ (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))

= #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/c) collapsible-contract?))))

= #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))

= #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))

= (λ (c)
(λ (b)
(λ (x)
(if ((get-first-order c) x)

x
(raise-blame-error
b x '(expected: "„a" given: "„e")
(get-name c) x)))))

stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])

[generator
(c)
(-> (and/c positive? real?)

(or/c (-> (or/c contract-random-generate-fail? c))
#f))])

= (λ (c) (λ (fuel) #f))
exercise : (->i ([c contract?])

[result
(c)
(-> (and/c positive? real?)

(values
(-> c void?)
(listof contract?)))])

= (λ (c) (λ (fuel) (values void '())))
is-list-contract? : (-> contract? boolean?) = (λ (c) #f)

660

(build-contract-property
[#:name get-name
#:first-order get-first-order
#:late-neg-projection late-neg-proj
#:collapsible-late-neg-projection collapsible-late-neg-proj
#:val-first-projection val-first-proj
#:projection get-projection
#:stronger stronger
#:equivalent equivalent
#:generate generate
#:exercise exercise
#:list-contract? is-list-contract?])

Ñ contract-property?
get-name : (-> contract? any/c) = (λ (c) 'anonymous-contract)
get-first-order : (-> contract? (-> any/c boolean?))

= (λ (c) (λ (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))

= #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/c) collapsible-contract?))))

= #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))

= #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))

= (λ (c)
(λ (b)
(λ (x)
(if ((get-first-order c) x)

x
(raise-blame-error
b x '(expected: "„a" given: "„e")
(get-name c) x)))))

stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])

[generator
(c)
(-> (and/c positive? real?)

(or/c (-> (or/c contract-random-generate-fail? c))
#f))])

= (λ (c) (λ (fuel) #f))
exercise : (->i ([c contract?])

[result
(c)
(-> (and/c positive? real?)

(values
(-> c void?)
(listof contract?)))])

= (λ (c) (λ (fuel) (values void '())))
is-list-contract? : (-> contract? boolean?) = (λ (c) #f)661

These functions build the arguments for prop:contract, prop:chaperone-contract,
and prop:flat-contract, respectively.

A contract property specifies the behavior of a structure when used as a contract. It is
specified in terms of seven properties:

• get-name which produces a description to write as part of a contract violation;

• get-first-order , which produces a first-order predicate to be used by contract-
first-order-passes?;

• late-neg-proj , which produces a blame-tracking projection defining the behavior
of the contract (The get-projection and val-first-proj arguments also specify
the projection, but using a different signature. They are here for backwards compati-
bility.);

• collapsible-late-neg-proj , similar to late-neg-proj which produces a
blame-tracking projection defining the behavior of the contract, this function addi-
tionally specifies the collapsible behavior of the contract;

• stronger , a predicate that determines whether this contract (passed in the first argu-
ment) is stronger than some other contract (passed in the second argument) and whose
default always returns #f;

• equivalent , a predicate that determines whether this contract (passed in the first
argument) is equivalent to some other contract (passed in the second argument); the
default for flat and chaperone contracts is equal? and for impersonator contracts re-
turns #f;

• generate , which returns a thunk that generates random values matching the contract
(using contract-random-generate-fail) to indicate failure) or #f to indicate that
random generation for this contract isn’t supported;

• exercise , which returns a function that exercises values matching the contract (e.g.,
if it is a function contract, it may call the function) and a list of contracts whose values
will be generated by this process;

• and is-list-contract?, which is used by flat-contract? to determine if this
contract accepts only list?s.

At least one of the late-neg-proj , collapsible-late-neg-proj , get-projection ,
val-first-proj , or get-first-order must be non-#f.

These accessors are passed as (optional) keyword arguments to build-contract-
property, and are applied to instances of the appropriate structure type by the contract
system. Their results are used analogously to the arguments of make-contract.

A chaperone contract property specifies the behavior of a structure when used as a chaper-
one contract. It is specified using build-chaperone-contract-property, and accepts

662

exactly the same set of arguments as build-contract-property. The only difference is
that the projection accessor must return a value that passes chaperone-of? when compared
with the original, uncontracted value.

A flat contract property specifies the behavior of a structure when used as a flat contract.
It is specified using build-flat-contract-property, and accepts similar arguments as
build-contract-property. The differences are:

• the projection accessor is expected not to wrap its argument in a higher-order fashion,
analogous to the constraint on projections in make-flat-contract;

• the #:exercise keyword argument is omitted because it is not relevant for flat con-
tracts.

Changed in version 6.0.1.13 of package base: Added the #:list-contract? argument.
Changed in version 6.1.1.4: Allow generate to return contract-random-generate-fail.
Changed in version 6.90.0.30: Added the #:equivalent argument.
Changed in version 7.1.0.10: Added the #:collapsible-late-neg-projection argument.

(contract-property? v) Ñ boolean?
v : any/c

(chaperone-contract-property? v) Ñ boolean?
v : any/c

(flat-contract-property? v) Ñ boolean?
v : any/c

These predicates detect whether a value is a contract property, chaperone contract property,
or a flat contract property, respectively.

8.7.3 Obligation Information in Check Syntax

Check Syntax in DrRacket shows obligation information for contracts according to syntax-
propertys that the contract combinators leave in the expanded form of the program. These
properties indicate where contracts appear in the source and where the positive and negative
positions of the contracts appear.

To make Check Syntax show obligation information for your new contract combinators, use
the following properties (some helper macros and functions are below):

• 'racket/contract:contract : (vector/c symbol? (listof syntax?) (listof syntax?))

This property should be attached to the result of a transformer that implements a con-
tract combinator. It signals to Check Syntax that this is where a contract begins.

663

The first element in the vector should be a unique (in the sense of eq?) value that
Check Syntax can use a tag to match up this contract with its subpieces (specified by
the two following syntax properties).

The second and third elements of the vector are syntax objects from pieces of the
contract, and Check Syntax will color them. The first list should contain subparts
that are the responsibility of parties (typically modules) that provide implementations
of the contract. The second list should contain subparts that are the responsibility of
clients.

For example, in (->* () #:pre #t any/c #:post #t), the ->* and the #:post
should be in the first list and #:pre in the second list.

• 'racket/contract:negative-position : symbol?

This property should be attached to sub-expressions of a contract combinator that are
expected to be other contracts. The value of the property should be the key (the first
element from the vector for the 'racket/contract:contract property) indicating
which contract this is.

This property should be used when the expression’s value is a contract that clients are
responsible for.

• 'racket/contract:positive-position : symbol?

This form is just like 'racket/contract:negative-position, except that it
should be used when the expression’s value is a contract that the original party should
be responsible for.

• 'racket/contract:contract-on-boundary : symbol?

The presence of this property tells Check Syntax that it should start coloring from
this point. It expects the expression to be a contract (and, thus, to have the
'racket/contract:contract property); this property indicates that this contract
is on a (module) boundary.

(The value of the property is not used.)

• 'racket/contract:internal-contract : symbol?

Like 'racket/contract:contract-on-boundary, the presence of this property
triggers coloring, but this is meant for use when the party (module) containing the
contract (regardless of whether or not this module exports anything matching the con-
tract) can be blamed for violating the contract. This comes into play for ->i contracts,
since the contract itself has access to values under contract via the dependency.

(define/final-prop header body ...)

header = main-id
| (main-id id ...)
| (main-id id id)

664

The same as (define header body ...), except that uses of main-id in the header are
annotated with the 'racket/contract:contract property (as above).

(define/subexpression-pos-prop header body ...)

header = main-id
| (main-id id ...)
| (main-id id id)

The same as (define header body ...), except that uses of main-id in the header are
annotated with the 'racket/contract:contract property (as above) and arguments are
annotated with the 'racket/contract:positive-position property.

8.7.4 Utilities for Building New Combinators

(contract-stronger? c1 c2) Ñ boolean?
c1 : contract?
c2 : contract?

Returns #t if the contract c1 accepts either fewer or the same set of values that c2 does.

Chaperone contracts and flat contracts that are the same (i.e., where c1 is equal? to c2) are
considered to always be stronger than each other.

This function is conservative, so it may return #f when c1 does, in fact, accept fewer values.

Examples:

> (contract-stronger? integer? integer?)
#t
> (contract-stronger? (between/c 25 75) (between/c 0 100))
#t
> (contract-stronger? (between/c 0 100) (between/c 25 75))
#f
> (contract-stronger? (between/c -10 0) (between/c 0 10))
#f
> (contract-stronger? (λ (x) (and (real? x) (<= x 0)))

(λ (x) (and (real? x) (<= x 100))))
#f

(contract-equivalent? c1 c2) Ñ boolean?
c1 : contract?
c2 : contract?

665

Returns #t if the contract c1 accepts the same set of values that c2 does.

Chaperone contracts and flat contracts that are the same (i.e., where c1 is equal? to c2) are
considered to always be equivalent to each other.

This function is conservative, so it may return #f when c1 does, in fact, accept the same set
of values that c2 does.

Examples:

> (contract-equivalent? integer? integer?)
#t
> (contract-equivalent? (non-empty-listof integer?)

(cons/c integer? (listof integer?)))
#t
> (contract-equivalent? (λ (x) (and (real? x) (and (number? x) (>= (sqr x) 0))))

(λ (x) (and (real? x) (real? x))))
#f

Added in version 6.90.0.30 of package base.

(contract-first-order-passes? contract v) Ñ boolean?
contract : contract?
v : any/c

Returns a boolean indicating whether the first-order tests of contract pass for v .

If it returns #f, the contract is guaranteed not to hold for that value; if it returns #t, the
contract may or may not hold. If the contract is a first-order contract, a result of #t guarantees
that the contract holds.

See also contract-first-order-okay-to-give-up? and contract-first-order-
try-less-hard.

(contract-first-order c) Ñ (-> any/c boolean?)
c : contract?

Produces the first-order test used by or/c to match values to higher-order contracts.

8.8 Contract Utilities

(contract? v) Ñ boolean?
v : any/c

Returns #t if its argument is a contract (i.e., constructed with one of the combinators de-
scribed in this section or a value that can be used as a contract) and #f otherwise.

666

(chaperone-contract? v) Ñ boolean?
v : any/c

Returns #t if its argument is a chaperone contract, i.e., one that guarantees that it returns a
value which passes chaperone-of? when compared to the original, uncontracted value.

(impersonator-contract? v) Ñ boolean?
v : any/c

Returns #t if its argument is an impersonator contract, i.e., a contract that is neither a chap-
erone contract nor a flat contract.

(flat-contract? v) Ñ boolean?
v : any/c

Returns #t when its argument is a contract that can be checked immediately (unlike, say, a
function contract).

For example, flat-contract constructs flat contracts from predicates, and symbols,
booleans, numbers, and other ordinary Racket values (that are defined as contracts) are also
flat contracts.

(list-contract? v) Ñ boolean?
v : any/c

Recognizes certain contract? values that accept list?s.

A list contract is one that insists that its argument is a list?, meaning that the value cannot
be cyclic and must either be the empty list or a pair constructed with cons and another list.

Added in version 6.0.1.13 of package base.

(contract-name c) Ñ any/c
c : contract?

Produces the name used to describe the contract in error messages.

(value-contract v) Ñ (or/c contract? #f)
v : has-contract?

Returns the contract attached to v , if recorded. Otherwise it returns #f.

To support value-contract and value-contract in your own contract combinators, use
prop:contracted or impersonator-prop:contracted.

667

(has-contract? v) Ñ boolean?
v : any/c

Returns #t if v is a value that has a recorded contract attached to it.

(value-blame v) Ñ (or/c blame? #f)
v : has-blame?

Returns the blame object for the contract attached to v , if recorded. Otherwise it returns #f.

To support value-contract and value-blame in your own contract combinators, use
prop:blame or impersonator-prop:blame.

Added in version 6.0.1.12 of package base.

(has-blame? v) Ñ boolean?
v : any/c

Returns #t if v is a value that has a contract with blame information attached to it.

Added in version 6.0.1.12 of package base.

(contract-late-neg-projection c)
Ñ (-> blame? (-> any/c (or/c #f any/c) any/c))
c : contract?

Produces the projection defining a contract’s behavior.

The first argument, blame? object encapsulates information about the contract checking,
mostly used to create a meaningful error message if a contract violation is detected. The
resulting function’s first argument is the value that should have the contract and its second
argument is a missing party for the blame object, to be passed to raise-contract-error.

If possible, use this function instead of contract-val-first-projection or contract-
projection.

(contract-projection c) Ñ (-> blame? (-> any/c any/c))
c : contract?

Produces the projection defining a contract’s behavior. See also contract-late-neg-
projection.

(contract-val-first-projection c)
Ñ (-> blame? (-> any/c (-> any/c any/c)))
c : contract?

668

Produces the projection defining a contract’s behavior. See also contract-late-neg-
projection.

(make-none/c sexp-name) Ñ contract?
sexp-name : any/c

Makes a contract that accepts no values, and reports the name sexp-name when signaling a
contract violation.

(recursive-contract contract-expr recursive-contract-option ...)
(recursive-contract contract-expr type recursive-contract-option ...)

recursive-contract-option = #:list-contract?
| #:extra-delay

type = #:impersonator
| #:chaperone
| #:flat

Delays the evaluation of its argument until the contract is checked, making recursive con-
tracts possible. If type is not given, an impersonator contract is created.

If the recursive-contract-option #:list-contract? is given, then the result is a
list-contract? and the contract-expr must evaluate to a list-contract?.

If the recursive-contract-option #:extra-delay is given, then the contract-expr
expression is evaluated only when the first value to be checked against the contract is sup-
plied to the contract. Without it, the contract-expr is evaluated earlier. This option is
supported only when type is #:flat.

Examples:

> (define even-length-list/c
(or/c null?

(cons/c any/c
(cons/c any/c

(recursive-contract even-length-
list/c #:flat)))))
> (even-length-list/c '(A B))
#t
> (even-length-list/c '(1 2 3))
#f

Changed in version 6.0.1.13 of package base: Added the #:list-contract? option.
Changed in version 6.7.0.3: Added the #:extra-delay option.

669

(opt/c contract-expr maybe-name)

maybe-name =
| #:error-name id

This optimizes its argument contract expression by traversing its syntax and, for known
contract combinators, fuses them into a single contract combinator that avoids as much al-
location overhead as possible. The result is a contract that should behave identically to its
argument, except faster.

If the #:error-name argument is present, and contract-expr evaluates to a non-contract
expression, then opt/c raises an error using id as the name of the primitive, instead of using
the name opt/c.

Examples:

> (define/contract (f x)
(opt/c '(not-a-contract))
x)

opt/c: contract violation
expected: contract?
given: '(not-a-contract)

> (define/contract (f x)
(opt/c '(not-a-contract) #:error-name define/contract)
x)

define/contract: contract violation
expected: contract?
given: '(not-a-contract)

(define-opt/c (id id ...) expr)

This defines a recursive contract and simultaneously optimizes it. As long as the defined
function terminates, define-opt/c behaves just as if the -opt/c were not present, defining
a function on contracts (except that the body expression must return a contract). But, it also
optimizes that contract definition, avoiding extra allocation, much like opt/c does.

For example,

(define-contract-struct bt (val left right))

(define-opt/c (bst-between/c lo hi)
(or/c null?

(bt/c [val (real-in lo hi)]
[left (val) (bst-between/c lo val)]
[right (val) (bst-between/c val hi)])))

670

(define bst/c (bst-between/c -inf.0 +inf.0))

defines the bst/c contract that checks the binary search tree invariant. Removing the
-opt/c also makes a binary search tree contract, but one that is (approximately) 20 times
slower.

Note that in some cases, a call to a function defined by define-opt/c may terminate, even
if the corresponding define-based function would not terminate. This is a shortcoming in
define-opt/c that we hope to understand and fix at some point, but have no concrete plans
currently.

contract-continuation-mark-key : continuation-mark-key?

Key used by continuation marks that are present during contract checking. The value of
these marks are the blame objects that correspond to the contract currently being checked.

Added in version 6.4.0.4 of package base.

(contract-custom-write-property-proc c
p
mode) Ñ void?

c : contract?
p : output-port?
mode : (or/c #f #t 0 1)

Prints c to p using the contract’s name.

Added in version 6.1.1.5 of package base.

(rename-contract contract name) Ñ contract?
contract : contract?
name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract.

Added in version 6.3 of package base.

(contract-first-order-okay-to-give-up?)

This form returns a boolean that controls the result of first-order contact checks. More
specifically, if it returns #t, then a first-order check may return #t even when the entire first-
order checks have not happened. If it returns #f then the first order checks must continue
until a definitive answer is returned.

671

This will only return #t in the dynamic extent of or/c or first-or/c’s checking to deter-
mine which branch to use.

Added in version 6.3.0.9 of package base.

(contract-first-order-try-less-hard e)

Encourages first-order checks that happen in the dynamic-extent of e to be more likely to
give up. That is, makes it more likely that contract-first-order-okay-to-give-up?
might return #t.

If not in the dynamic-extent of or/c’s or first-or/c’s checking to determine the branch,
then this form has no effect.

Added in version 6.3.0.9 of package base.

(if/c predicate then-contract else-contract) Ñ contract?
predicate : (-> any/c any/c)
then-contract : contract?
else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if
predicate returns true, the then-contract is applied; otherwise, the else-contract
is applied. The resulting contract is a flat contract if both then-contract and else-
contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

Added in version 6.3 of package base.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

Added in version 6.3 of package base.

672

8.9 racket/contract/base

(require racket/contract/base) package: base

The racket/contract/base module provides a subset of the exports of
racket/contract module. In particular, it contains everything in the

• §8.1 “Data-structure Contracts”

• §8.2 “Function Contracts”

• §8.6 “Attaching Contracts to Values” and

• §8.8 “Contract Utilities” sections.

Unfortunately, using racket/contract/base does not yield a significantly smaller mem-
ory footprint than racket/contract, but it can still be useful to add contracts to libraries
that racket/contract uses to implement some of the more sophisticated parts of the con-
tract system.

8.10 Collapsible Contracts

(require racket/contract/collapsible) package: base

Added in version 7.1.0.10 of package base.

Collapsible contracts are an optimization in the contract system designed to avoid a par-
ticular pathological build up of contract wrappers on higher-order values. The vectorof,
vector/c, and -> contract combinators support collapsing for vector contracts and function
contracts for functions returning a single value.

Intuitively, a collapsible contract is a tree structure. The tree nodes represent higher-order
contracts (e.g., ->) and the tree leaves represent sequences of flat contracts. Two trees can
collapse into one tree via the merge procedure, which removes unnecessary flat contracts
from the leaves.

For more information on the motivation and design of collapsible contracts, see [Feltey18].
For the theoretical foundations, see [Greenberg15].

Warning: the features described in this section are experimental and may not be sufficient
to implement new collapsible contracts. Implementing new collapsible contracts requires
the use of unsafe chaperones and impersonators which are only supported for vector and
procedure values. This documentation exists primarily to allow future maintenance of the
racket/contract/collapsible library. End Warning

673

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(get/build-collapsible-late-neg-projection c)
Ñ (-> blame? (values (-> any/c any/c any/c) collapsible-contract?))
c : contract?

Returns the collapsible-late-neg projection for c .

If c does not have a collapsible-late-neg projection, then this function uses the origi-
nal projection for it and constructs a leaf as its collapsible representation.

collapsible-contract-continuation-mark-key
: continuation-mark-key?

Key used by continuation marks that are present during collapsible contract checking. The
value of these marks are #t if the current contract is collapsible.

(with-collapsible-contract-continuation-mark body ...)

Inserts a continuation mark that informs the contract profiler that the current contract is
collapsible.

prop:collapsible-contract : struct-type-property?

Structures implementing this property are usable as collapsible contracts. The value associ-
ated with this property should be constructed by calling build-collapsible-contract-
property.

(collapsible-contract? v) Ñ boolean?
v : any/c

A predicate recognizing structures with the prop:collapsible-contract property.

(merge new-cc new-neg old-cc old-neg) Ñ collapsible-contract?
new-cc : collapsible-contract?
new-neg : any/c
old-cc : collapsible-contract?
old-neg : any/c

Combine two collapsible contracts into a single collapsible contract. The new-neg and
old-neg arguments are expected to be blame parties similar to those passed to a late neg
projection.

(collapsible-guard cc val neg-party) Ñ any/c
cc : collapsible-contract?
val : any/c
neg-party : any/c

674

Similar to a late neg projection, this function guards the value val with the collapsible
contract cc .

(collapsible-contract-property? v) Ñ boolean?
v : any/c

This predicate indicates that a value can be used as the property for prop:collapsible-
contract.

(build-collapsible-contract-property
[#:try-merge try-merge
#:collapsible-guard collapsible-guard])

Ñ collapsible-contract-property?
try-merge : (or/c #f

(-> collapsible-contract?
any/c
collapsible-contract?
any/c
(or/c #f collapsible-contract?)))

= #f

collapsible-guard : (-> collapsible-contract? any/c any/c any/c)
= (λ (cc v neg)

(error
"internal error: contract does not support `collapsible-guard`" cc))

Constructs a collapsible contract property from a merging function and a guard. The try-
merge argument is similar to merge, but may return #f instead of a collapsible contract and
may be specialized to a particular collapsible contract. The collapsible-guard argument
should be specialized to the particular collapsible contract being implemented.

(struct collapsible-ho/c (latest-blame missing-party latest-ctc))
latest-blame : blame?
missing-party : any/c
latest-ctc : contract?

A common parent structure for collapsible contracts for higher-order values. The latest-
blame field holds the blame object for the most recent contract attached. Similarly, the
missing-party field holds the latest missing party passed to the contract. The latest-
contract field stores the most recent contract attached to the value.

(struct collapsible-leaf/c (proj-list
contract-list
blame-list
missing-party-list))

proj-list : (listof (-> any/c any/c any/c))
contract-list : (listof contract?)
blame-list : (listof blame?)
missing-party-list : (listof any/c)

675

A structure representing the leaf nodes of a collapsible contract. The proj-list field holds
a list of partially applied late neg projections. The contract-list, blame-list, and
missing-party-list fields hold a list of contracts, blame objects, and blame missing
parties respectively.

impersonator-prop:collapsible : impersonator-property?
(has-impersonator-prop:collapsible? v) Ñ boolean?

v : any/c
(get-impersonator-prop:collapsible v) Ñ collapsible-property?

v : any/c

An impersonator property (and its accessors) that should be attached to chaperoned or im-
personated values that are guarded with a collapsible contract.

(struct collapsible-property (c-c neg-party ref))
c-c : collapsible-contract?
neg-party : any/c
ref : (or/c #f impersonator?)

The parent struct of properties that should be attached to chaperones or impersonators of
values protected with a collapsible contract. The c-c field stores the collapsible contract
that is or will in the future be attached to the the value. The neg-party field stores the
latest missing blame party passed to the contract on the value. The ref field is mutable and
stores a reference to the chaperone or impersonator to which this property is attached. This
is necessary to determine whether an unknown chaperone has been attached to a value after
it has been protected by a collapsible contract.

(struct collapsible-count-property collapsible-property (count
prev))

count : natural-number/c
prev : (or/c collapsible-count-property? any/c)

This property is associated with the impersonator-prop:collapsible property before
the value completely enters the collapsible mode. These properties keep track of the number
of contracts on a value in the count field, and hold a reference to the previous count property
in the prev field or the original value without a contract. This allows the contract system to
traverse the chain of attached contracts and merge them into a single collapsible contract to
protect the original value.

(struct collapsible-wrapper-property collapsible-property
(checking-wrapper)

checking-wrapper : impersonator?

This property is used when a value is guarded by a collapsible contract. The checking-
wrapper field holds a chaperone or impersonator that dispatches to the collapsible contract

676

stored in this property to perform any necessary contract checks. When the value receives
another contract and merging happens, the checking wrapper will remain the same even
though the specific collapsible contract attached to the value may change.

8.11 Legacy Contracts

(make-proj-contract name proj first-order) Ñ contract?
name : any/c
proj : (or/c (-> any/c

any/c
(list/c any/c any/c)
contact?
(-> any/c any/c))

(-> any/c
any/c
(list/c any/c any/c)
contact?
boolean?
(-> any/c any/c)))

first-order : (-> any/c boolean?)

Builds a contract using an old interface.

Modulo errors, it is equivalent to:

(make-contract
#:name name
#:first-order first-order
#:projection
(cond
[(procedure-arity-includes? proj 5)
(lambda (blame)
(proj (blame-positive blame)

(blame-negative blame)
(list (blame-source blame) (blame-value blame))
(blame-contract blame)
(not (blame-swapped? blame))))]

[(procedure-arity-includes? proj 4)
(lambda (blame)
(proj (blame-positive blame)

(blame-negative blame)
(list (blame-source blame) (blame-value blame))
(blame-contract blame)))]))

677

(raise-contract-error val
src
pos
name
fmt
arg ...) Ñ any/c

val : any/c
src : any/c
pos : any/c
name : any/c
fmt : string?
arg : any/c

Calls raise-blame-error after building a blame struct from the val , src , pos , and name
arguments. The fmt string and following arguments are passed to format and used as the
string in the error message.

(contract-proc c)
Ñ (->* (symbol? symbol? (or/c syntax? (list/c any/c any/c)))

(boolean?)
(-> any/c any))

c : contract?

Constructs an old-style projection from a contract.

The resulting function accepts the information that is in a blame struct and returns a projec-
tion function that checks the contract.

8.12 Random generation

(contract-random-generate ctc [fuel fail]) Ñ any/c
ctc : contract?
fuel : 5 = exact-nonnegative-integer?
fail : (or/c #f (-> any) (-> boolean? any)) = #f

Attempts to randomly generate a value which will match the contract. The fuel argument
limits how hard the generator tries to generate a value matching the contract and is a rough
limit of the size of the resulting value.

The generator may fail to generate a value, either because some contracts do not have cor-
responding generators (for example, not all predicates have generators) or because there is
not enough fuel. In either case, the function fail is invoked. If fail accepts an argument,

678

it is called with #t when there is no generator for ctc and called with #f when there is a
generator, but the generator ended up returning contract-random-generate-fail.

Example:

> (for/list ([i (in-range 10)])
(contract-random-generate (or/c integer? #f)))

'(-1 #f 462057146.0 #f #f #f -107.0 66 #f -470823604.0)

Changed in version 6.1.1.5 of package base: Allow fail to accept a boolean.

(contract-exercise [#:fuel fuel
#:shuffle? shuffle?]
val ...+) Ñ void?

fuel : exact-nonnegative-integer? = 10
shuffle? : any/c = #f
val : any/c

Attempts to get the vals to break their contracts (if any).

Uses value-contract to determine if any of the vals have a contract and, for those that
do, uses information about the contract’s shape to poke and prod at the value. For example,
if the value is function, it will use the contract to tell it what arguments to supply to the value.

The argument fuel determines how hard contract-exercise tries to break the values.
It controls both the number of exercise iterations and the size of the intermediate values
generated during the exercises.

The argument shuffle? controls whether contract-exercise randomizes the exercise
order or not. If shuffle? is not #f, contract-exercise would shuffle the order of the
contracts in each exercise iteration.

Examples:

> (define/contract (returns-false x)
(-> integer? integer?)
; does not obey its contract
#f)

> (contract-exercise returns-false)
returns-false: broke its own contract

promised: integer?
produced: #f
in: the range of

(-ą integer? integer?)
contract from: (function returns-false)
blaming: (function returns-false)

679

(assuming the contract is correct)
at: eval:2.0

> (define/contract (calls-its-argument-with-eleven f)
(-> (-> integer? integer?) boolean?)
; f returns an integer, but
; we're supposed to return a boolean
(f 11))

> (contract-exercise calls-its-argument-with-eleven)
calls-its-argument-with-eleven: broke its own contract

promised: boolean?
produced: 426063937
in: the range of

(-ą (-ą integer? integer?) boolean?)
contract from:

(function calls-its-argument-with-eleven)
blaming: (function calls-its-argument-with-eleven)

(assuming the contract is correct)
at: eval:4.0

Changed in version 7.0.0.18 of package base: Added the shuffle? optional argument.

(contract-random-generate/choose c fuel) Ñ (or/c #f (-> c))
c : contract?
fuel : exact-nonnegative-integer?

This function is like contract-random-generate, but it is intended to be used with
combinators that generate values based on sub-contracts they have. It must be called
when contract-random-generate (and contract-exercise) creates the generators.
To be more precise, contract-random-generate/choose is available only for the gen-
erate and exercise arguments in build-contract-property, build-chaperone-
contract-property or build-flat-contract-property and only during the dynamic
extent of the call to generate (and exercise). That is, after it receives the c and fuel
arguments and before it returns the thunk (or the exerciser).

contract-random-generate/choose will never fail, but it might escape back to an en-
closing call or to the original call to contract-random-generate.

It chooses one of several possible generation strategies, and thus it may not actually use the
generator associated with c , but might instead use a stashed value that matches c that it
knows about via contract-random-generate-stash.

Added in version 6.1.1.5 of package base.

contract-random-generate-fail : contract-random-generate-fail?

An atomic value that is used to indicate that a generator failed to generate a value.

680

Added in version 6.1.1.5 of package base.

(contract-random-generate-fail? v) Ñ boolean?
v : any/c

A predicate to recognize contract-random-generate-fail.

Added in version 6.1.1.5 of package base.

(contract-random-generate-env? v) Ñ boolean?
v : any/c

Recognizes contract generation environments.

Added in version 6.1.1.5 of package base.

(contract-random-generate-stash env c v) Ñ void?
env : contract-random-generate-env?
c : contract?
v : c

This should be called with values that the program under test supplies during contract gen-
eration. For example, when (-> (-> integer? integer?) integer?) is generated, it
may call its argument function. That argument function may return an integer and, if so, that
integer should be saved by calling contract-random-generate-stash, so it can be used
by other integer generators.

Added in version 6.1.1.5 of package base.

(contract-random-generate-get-current-environment)
Ñ contract-random-generate-env?

Returns the environment currently being for generation. This function can be called only
during the dynamic extent of contract generation. It is intended to be grabbed during the
construction of a contract generator and then used with contract-random-generate-
stash while generation is happening.

Added in version 6.1.1.5 of package base.

681

9 Pattern Matching
§12 “Pattern
Matching” in The
Racket Guide
introduces pattern
matching.

The match form and related forms support general pattern matching on Racket values. See
also §4.7 “Regular Expressions” for information on regular-expression matching on strings,
bytes, and streams.

(require racket/match) package: base

The bindings documented in this section are provided by the racket/match and racket
libraries, but not racket/base.

(match val-expr clause ...)

clause = [pat body ...+]
| [pat (=> id) body ...+]
| [pat #:when cond-expr body ...+]

Finds the first pat that matches the result of val-expr , and evaluates the corresponding
bodys with bindings introduced by pat (if any). Bindings introduced by pat are not avail-
able in other parts of pat . The last body in the matching clause is evaluated in tail position
with respect to the match expression.

To find a match, the clauses are tried in order. If no clause matches, then the
exn:misc:match? exception is raised.

An optional #:when cond-expr specifies that the pattern should only match if cond-expr
produces a true value. cond-expr is in the scope of all of the variables bound in pat .
cond-expr must not mutate the object being matched before calling the failure procedure,
otherwise the behavior of matching is unpredictable. See also failure-cont, which is a
lower-level mechanism achieving the same ends.

Examples:

> (define (m x)
(match x
[(list a b c)
#:when (= 6 (+ a b c))
'sum-is-six]
[(list a b c) 'sum-is-not-six]))

> (m '(1 2 3))
'sum-is-six
> (m '(2 3 4))
'sum-is-not-six

An optional (=> id) between a pat and the bodys is bound to a failure procedure of zero
arguments. If this procedure is invoked, it escapes back to the pattern matching expression,

682

https://pkgs.racket-lang.org/package/base

and resumes the matching process as if the pattern had failed to match. The bodys must not
mutate the object being matched before calling the failure procedure, otherwise the behavior
of matching is unpredictable.

Examples:

> (define (m x)
(match x
[(list a b c)
(=> exit)
(f x exit)]
[(list a b c) 'sum-is-not-six]))

> (define (f x exit)
(if (= 6 (apply + x))

'sum-is-six
(exit)))

> (m '(1 2 3))
'sum-is-six
> (m '(2 3 4))
'sum-is-not-six

The grammar of pat is as follows, where non-italicized identifiers are recognized symboli-
cally (i.e., not by binding).

pat ::= id match anything, bind identifier
| (var id) match anything, bind identifier
| _ match anything
| literal match literal
| (quote datum) match equal? value
| (list lvp ...) match sequence of lvps
| (list-rest lvp ... pat) match lvps consed onto a pat
| (list-no-order pat ...) match pats in any order
| (list-no-order pat ... lvp) match pats in any order
| (vector lvp ...) match vector of pats
| (hash-table (pat pat) ...) match hash table
| (hash-table (pat pat) ...+ ooo) match hash table
| (cons pat pat) match pair of pats
| (mcons pat pat) match mutable pair of pats
| (box pat) match boxed pat
| (struct-id pat ...) match struct-id instance
| (struct struct-id (pat ...)) match struct-id instance
| (regexp rx-expr) match string
| (regexp rx-expr pat) match string, result with pat
| (pregexp px-expr) match string
| (pregexp px-expr pat) match string, result with pat
| (and pat ...) match when all pats match

683

| (or pat ...) match when any pat match
| (not pat ...) match when no pat matches
| (app expr pats ...) match (expr value) output values to pats
| (? expr pat ...) match if (expr value) and pats
| (quasiquote qp) match a quasipattern
| derived-pattern match using extension

literal ::= #t match true
| #f match false
| string match equal? string
| bytes match equal? byte string
| number match equal? number
| char match equal? character
| keyword match equal? keyword
| regexp match equal? regexp literal
| pregexp match equal? pregexp literal

lvp ::= pat ooo greedily match pat instances
| pat match pat

qp ::= literal match literal
| id match symbol
| (qp ...) match sequences of qps
| (qp qp) match qps ending qp
| (qp ooo . qp) match qps beginning with repeated qp
| #(qp ...) match vector of qps
| #&qp match boxed qp
| #s(prefab-key qp ...) match prefab struct with qp fields
| ,pat match pat
| ,@(list lvp ...) match lvps, spliced
| ,@(list-rest lvp ... pat) match lvps plus pat , spliced
| ,@'qp match list-matching qp , spliced

ooo ::= ... zero or more; ... is literal
| ___ zero or more
| ..k k or more
| __k k or more

In more detail, patterns match as follows:

• id (excluding the reserved names _, ..., ___, ..k , and __k for non-negative integers
k) Unlike in cond and

case, else is not a
keyword in match.or (var id) — matches anything, and binds id to the matching values. If an id

is used multiple times within a pattern, the corresponding matches must be the same
according to (match-equality-test), except that instances of an id in different
or and not sub-patterns are independent. The binding for id is not available in other
parts of the same pattern.

Examples:

> (match '(1 2 3)

684

[(list a b a) (list a b)]
[(list a b c) (list c b a)])

'(3 2 1)
> (match '(1 (x y z) 1)

[(list a b a) (list a b)]
[(list a b c) (list c b a)])

'(1 (x y z))
> (match #f

[else
(cond
[#f 'not-evaluated]
[else 'also-not-evaluated])])

• _ — matches anything, without binding any identifiers.

Example:

> (match '(1 2 3)
[(list _ _ a) a])

3

• #t, #f, string , bytes , number , char , or (quote datum) — matches an equal?
constant.

Example:

> (match "yes"
["no" #f]
["yes" #t])

#t

• (list lvp ...) — matches a list of elements. In the case of (list pat ...), the
pattern matches a list with as many element as pats, and each element must match
the corresponding pat . In the more general case, each lvp corresponds to a “spliced”
list of greedy matches.

For spliced lists, ... and ___ are aliases for zero or more matches. The ..k and __k
forms are also aliases, specifying k or more matches. Pattern variables that precede
these splicing operators are bound to lists of matching forms.

Examples:

> (match '(1 2 3)
[(list a b c) (list c b a)])

'(3 2 1)
> (match '(1 2 3)

[(list 1 a ...) a])
'(2 3)

685

> (match '(1 2 3)
[(list 1 a ..3) a]
[_ 'else])

'else
> (match '(1 2 3 4)

[(list 1 a ..3) a]
[_ 'else])

'(2 3 4)
> (match '(1 2 3 4 5)

[(list 1 a ..3 5) a]
[_ 'else])

'(2 3 4)
> (match '(1 (2) (2) (2) 5)

[(list 1 (list a) ..3 5) a]
[_ 'else])

'(2 2 2)

• (list-rest lvp ... pat) — similar to a list pattern, but the final pat matches
the “rest” of the list after the last lvp . In fact, the matched value can be a non-list
chain of pairs (i.e., an “improper list”) if pat matches non-list values.

Examples:

> (match '(1 2 3 . 4)
[(list-rest a b c d) d])

4
> (match '(1 2 3 . 4)

[(list-rest a ... d) (list a d)])
'((1 2 3) 4)

• (list-no-order pat ...) — similar to a list pattern, but the elements to match
each pat can appear in the list in any order.

Example:

> (match '(1 2 3)
[(list-no-order 3 2 x) x])

1
Unlike other
patterns,
list-no-order
doesn’t allow
duplicate identifiers
between
subpatterns. For
example the
patterns
(list-no-order
x 1 x) and
(list-no-order
x 1 x ...) both
produce syntax
errors.

• (list-no-order pat ... lvp) — generalizes list-no-order to allow a pat-
tern that matches multiple list elements that are interspersed in any order with matches
for the other patterns.

Example:

> (match '(1 2 3 4 5 6)
[(list-no-order 6 2 y ...) y])

'(1 3 4 5)

686

• (vector lvp ...) — like a list pattern, but matching a vector.

Example:

> (match #(1 (2) (2) (2) 5)
[(vector 1 (list a) ..3 5) a])

'(2 2 2)

• (hash-table (pat pat) ...) — similar to list-no-order, but matching
against hash table’s key–value pairs.

Example:

> (match #hash(("a" . 1) ("b" . 2))
[(hash-table ("b" b) ("a" a)) (list b a)])

'(2 1)

• (hash-table (pat pat) ...+ ooo) — Generalizes hash-table to support a
final repeating pattern.

Example:

> (match #hash(("a" . 1) ("b" . 2))
[(hash-table (key val) ...) key])

'("b" "a")

• (cons pat1 pat2) — matches a pair value.

Example:

> (match (cons 1 2)
[(cons a b) (+ a b)])

3

• (mcons pat1 pat2) — matches a mutable pair value.

Example:

> (match (mcons 1 2)
[(cons a b) 'immutable]
[(mcons a b) 'mutable])

'mutable

• (box pat) — matches a boxed value.

Example:

> (match #&1
[(box a) a])

1

687

• (struct-id pat ...) or (struct struct-id (pat ...)) — matches an in-
stance of a structure type named struct-id , where each field in the instance matches
the corresponding pat . See also struct*.

Usually, struct-id is defined with struct. More generally, struct-id must be
bound to expansion-time information for a structure type (see §5.7 “Structure Type
Transformer Binding”), where the information includes at least a predicate binding
and field accessor bindings corresponding to the number of field pats. In particular,
a module import or a unit import with a signature containing a struct declaration
can provide the structure type information.

Examples:

(struct tree (val left right))

> (match (tree 0 (tree 1 #f #f) #f)
[(tree a (tree b _ _) _) (list a b)])

'(0 1)

• (struct struct-id _) — matches any instance of struct-id , without regard to
contents of the fields of the instance.

• (regexp rx-expr) — matches a string that matches the regexp pattern produced by
rx-expr ; see §4.7 “Regular Expressions” for more information about regexps.

Examples:

> (match "apple"
[(regexp #rx"p+") 'yes]
[_ 'no])

'yes
> (match "banana"

[(regexp #rx"p+") 'yes]
[_ 'no])

'no

• (regexp rx-expr pat) — extends the regexp form to further constrain the match
where the result of regexp-match is matched against pat .

Examples:

> (match "apple"
[(regexp #rx"p+(.)" (list _ "l")) 'yes]
[_ 'no])

'yes
> (match "append"

[(regexp #rx"p+(.)" (list _ "l")) 'yes]
[_ 'no])

'no

688

• (pregexp rx-expr) or (pregexp rx-expr pat) — like the regexp patterns,
but if rx-expr produces a string, it is converted to a pattern using pregexp instead
of regexp.

• (and pat ...) — matches if all of the pats match. This pattern is often used
as (and id pat) to bind id to the entire value that matches pat . The pats are
matched in the order that they appear.

Example:

> (match '(1 (2 3) 4)
[(list _ (and a (list _ ...)) _) a])

'(2 3)

• (or pat ...) — matches if any of the pats match. Each pat must bind the same
set of identifiers.

Example:

> (match '(1 2)
[(or (list a 1) (list a 2)) a])

1

• (not pat ...) — matches when none of the pats match, and binds no identifiers.

Examples:

> (match '(1 2 3)
[(list (not 4) ...) 'yes]
[_ 'no])

'yes
> (match '(1 4 3)

[(list (not 4) ...) 'yes]
[_ 'no])

'no

• (app expr pats ...) — applies expr to the value to be matched; each result of
the application is matched against one of the pats , respectively.

Examples:

> (match '(1 2)
[(app length 2) 'yes])

'yes
> (match "3.14"

[(app string->number (? number? pi))
`(I got ,pi)])

'(I got 3.14)
> (match '(1 2)

[(app (lambda (v) (split-at v 1)) '(1) '(2)) 'yes])

689

'yes
> (match '(1 2 3)

[(app (λ (ls) (apply values ls)) x y (? odd? z))
(list 'yes x y z)])

'(yes 1 2 3)

• (? expr pat ...) — applies expr to the value to be matched, and checks whether
the result is a true value; the additional pats must also match; i.e., ? combines a
predicate application and an and pattern. However, ?, unlike and, guarantees that
expr is matched before any of the pats. The expr

procedure may be
called more than
once on identical
input (although this
happens only
rarely), and the
order in which calls
to expr are made
should not be relied
upon.

Example:

> (match '(1 3 5)
[(list (? odd?) ...) 'yes])

'yes

• (quasiquote qp) — introduces a quasipattern, in which identifiers match symbols.
Like the quasiquote expression form, unquote and unquote-splicing escape
back to normal patterns.

Example:

> (match '(1 2 3)
[`(1 ,a ,(? odd? b)) (list a b)])

'(2 3)

• derived-pattern — matches a pattern defined by a macro extension via define-
match-expander.

Note that the matching process may destructure the input multiple times, and may evaluate
expressions embedded in patterns such as (app expr pat) in arbitrary order, or multiple
times. Therefore, such expressions must be safe to call multiple times, or in an order other
than they appear in the original program.

9.1 Additional Matching Forms

(match* (val-expr ...+) clause* ...)

clause* = [(pat ...+) body ...+]
| [(pat ...+) (=> id) body ...+]
| [(pat ...+) #:when cond-expr body ...+]

Matches a sequence of values against each clause in order, matching only when all patterns
in a clause match. Each clause must have the same number of patterns as the number of
val-exprs.

690

Examples:

> (match* (1 2 3)
[(_ (? number?) x) (add1 x)])

4
> (match* (15 17)

[((? number? a) (? number? b))
#:when (= (+ a 2) b)
'diff-by-two])

'diff-by-two

(match/values expr clause clause ...)

If expr evaluates to n values, then match all n values against the patterns in clause
Each clause must contain exactly n patterns. At least one clause is required to determine
how many values to expect from expr .

(define/match (head args)
match*-clause ...)

head = id
| (head args)

args = arg ...
| arg rest-id

arg = arg-id
| [arg-id default-expr]
| keyword arg-id
| keyword [arg-id default-expr]

match*-clause = [(pat ...+) body ...+]
| [(pat ...+) (=> id) body ...+]
| [(pat ...+) #:when cond-expr body ...+]

Binds id to a procedure that is defined by pattern matching clauses using match*. Each
clause takes a sequence of patterns that correspond to the arguments in the function header.
The arguments are ordered as they appear in the function header for matching purposes.

Examples:

(define/match (fact n)
[(0) 1]
[(n) (* n (fact (sub1 n)))])

> (fact 5)
120

691

The function header may also contain optional or keyword arguments, may have curried
arguments, and may also contain a rest argument.

Examples:

(define/match ((f x) #:y [y '(1 2 3)])
[((regexp #rx"p+") `(,a 2 3)) a]
[(_ _) #f])

> ((f "ape") #:y '(5 2 3))
5
> ((f "dog"))
#f

(define/match (g x y . rst)
[(0 0 '()) #t]
[(5 5 '(5 5)) #t]
[(_ _ _) #f])

> (g 0 0)
#t
> (g 5 5 5 5)
#t
> (g 1 2)
#f

(match-lambda clause ...)

Equivalent to (lambda (id) (match id clause ...)).

(match-lambda* clause ...)

Equivalent to (lambda lst (match lst clause ...)).

(match-lambda** clause* ...)

Equivalent to (lambda (args ...) (match* (args ...) clause* ...)), where the
number of args ... is computed from the number of patterns appearing in each of the
clause* .

(match-let ([pat expr] ...) body ...+)

Generalizes let to support pattern bindings. Each expr is matched against its correspond-
ing pat (the match must succeed), and the bindings that pat introduces are visible in the
bodys.

Example:

692

> (match-let ([(list a b) '(1 2)]
[(vector x ...) #(1 2 3 4)])

(list b a x))
'(2 1 (1 2 3 4))

(match-let* ([pat expr] ...) body ...+)

Like match-let, but generalizes let*, so that the bindings of each pat are available in
each subsequent expr .

Example:

> (match-let* ([(list a b) '(#(1 2 3 4) 2)]
[(vector x ...) a])

x)
'(1 2 3 4)

(match-let-values ([(pat ...) expr] ...) body ...+)

Like match-let, but generalizes let-values.

(match-let*-values ([(pat ...) expr] ...) body ...+)

Like match-let*, but generalizes let*-values.

(match-letrec ([pat expr] ...) body ...+)

Like match-let, but generalizes letrec.

(match-letrec-values ([(pat ...) expr] ...) body ...+)

Like match-let, but generalizes letrec-values.

Added in version 6.1.1.8 of package base.

(match-define pat expr)

Defines the names bound by pat to the values produced by matching against the result of
expr .

Examples:

> (match-define (list a b) '(1 2))
> b
2

693

(match-define-values (pat pats ...) expr)

Like match-define but for when expr produces multiple values. Like match/values, it
requires at least one pattern to determine the number of values to expect.

Examples:

> (match-define-values (a b) (values 1 2))
> b
2

(exn:misc:match? v) Ñ boolean?
v : any/c

A predicate for the exception raised in the case of a match failure.

(failure-cont)

Continues matching as if the current pattern failed. Note that unlike use of the => form, this
does not escape the current context, and thus should only be used in tail position with respect
to the match form.

9.2 Extending match

(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)

Binds id to a match expander.

The first proc-expr sub-expression must evaluate to a transformer that produces a pat
for match. Whenever id appears as the beginning of a pattern, this transformer is given,
at expansion time, a syntax object corresponding to the entire pattern (including id). The
pattern is replaced with the result of the transformer.

A transformer produced by a second proc-expr sub-expression is used when id is used in
an expression context. Using the second proc-expr , id can be given meaning both inside
and outside patterns.

Match expanders are not invoked unless id appears in the first position in a sequence. In-
stead, identifiers bound by define-match-expander are used as binding identifiers (like
any other identifier) when they appear anywhere except the first position in a sequence.

For example, to extend the pattern matcher and destructure syntax lists,

694

(define (syntax-list? x)
(and (syntax? x)

(list? (syntax->list x))))
(define-match-expander syntax-list
(lambda (stx)
(syntax-case stx ()
[(_ elts ...)
#'(? syntax-list?

(app syntax->list (list elts ...)))])))
(define (make-keyword-predicate keyword)
(lambda (stx)
(and (identifier? stx)

(free-identifier=? stx keyword))))
(define or-keyword? (make-keyword-predicate #'or))
(define and-keyword? (make-keyword-predicate #'and))

> (match #'(or 3 4)
[(syntax-list (? or-keyword?) b c)
(list "OOORRR!" b c)]
[(syntax-list (? and-keyword?) b c)
(list "AAANND!" b c)])

'("OOORRR!" #<syntax:eval:69:0 3> #<syntax:eval:69:0 4>)
> (match #'(and 5 6)

[(syntax-list (? or-keyword?) b c)
(list "OOORRR!" b c)]

[(syntax-list (? and-keyword?) b c)
(list "AAANND!" b c)])

'("AAANND!" #<syntax:eval:70:0 5> #<syntax:eval:70:0 6>)

And here is an example showing how define-match-expander-bound identifiers are not
treated specially unless they appear in the first position of pattern sequence. Consider this
(incorrect) definition of a length function:

(define-match-expander nil
(λ (stx) #''())
(λ (stx) #''()))

(define (len l)
(match l
[nil 0]
[(cons hd tl) (+ 1 (len tl))]))

Because there are no parenthesis around nil, match treats the first case as an identifier
(which matches everything) instead of a use of the match expander and len always returns
0.

> (len nil)

695

0
> (len (cons 1 nil))
0
> (len (cons 1 (cons 2 nil)))
0

prop:match-expander : struct-type-property?

A structure type property to identify structure types that act as match expanders like the ones
created by define-match-expander.

The property value must be an exact non-negative integer or a procedure of one or two argu-
ments. In the former case, the integer designates a field within the structure that should con-
tain a procedure; the integer must be between 0 (inclusive) and the number of non-automatic
fields in the structure type (exclusive, not counting supertype fields), and the designated field
must also be specified as immutable.

If the property value is a procedure of one argument, then the procedure serves as the trans-
former for match expansion. If the property value is a procedure of two arguments, then
the first argument is the structure whose type has prop:match-expander property, and the
second argument is a syntax object as for a match expander..

If the property value is a assignment transformer, then the wrapped procedure is extracted
with set!-transformer-procedure before it is called.

This binding is provided for-syntax.

prop:legacy-match-expander : struct-type-property?

Like prop:match-expander, but for the legacy match syntax.

This binding is provided for-syntax.

(match-expander? v) Ñ boolean?
v : any/c

(legacy-match-expander? v) Ñ boolean?
v : any/c

Predicates for values which implement the appropriate match expander properties.

(syntax-local-match-introduce stx) Ñ syntax?
stx : syntax?

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

696

(match-equality-test) Ñ (any/c any/c . -> . any)
(match-equality-test comp-proc) Ñ void?

comp-proc : (any/c any/c . -> . any)

A parameter that determines the comparison procedure used to check whether multiple uses
of an identifier match the “same” value. The default is equal?.

(match/derived val-expr original-datum clause ...)
(match*/derived (val-expr ...) original-datum clause* ...)

Like match and match* respectively, but includes a sub-expression to be used as the
source for all syntax errors within the form. For example, match-lambda expands to
match/derived so that errors in the body of the form are reported in terms of match-
lambda instead of match.

9.3 Library Extensions

(== val comparator)
(== val)

A match expander which checks if the matched value is the same as val when compared by
comparator . If comparator is not provided, it defaults to equal?.

Examples:

> (match (list 1 2 3)
[(== (list 1 2 3)) 'yes]
[_ 'no])

'yes
> (match (list 1 2 3)

[(== (list 1 2 3) eq?) 'yes]
[_ 'no])

'no
> (match (list 1 2 3)

[(list 1 2 (== 3 =)) 'yes]
[_ 'no])

'yes

(struct* struct-id ([field pat] ...))

A match pattern form that matches an instance of a structure type named struct-id , where
the field field in the instance matches the corresponding pat .

697

Any field of struct-id may be omitted, and such fields can occur in any order.

Examples:

(struct tree (val left right))

> (match (tree 0 (tree 1 #f #f) #f)
[(struct* tree ([val a]

[left (struct* tree ([right #f] [val b]))]))
(list a b)])

'(0 1)

698

10 Control Flow

10.1 Multiple Values

See §1.1.3 “Multiple Return Values” for general information about multiple result values.
In addition to call-with-values (described in this section), the let-values, let*-
values, letrec-values, and define-values forms (among others) create continuations
that receive multiple values.

(values v ...) Ñ any
v : any/c

Returns the given vs. That is, values returns its provided arguments.

Examples:

> (values 1)
1
> (values 1 2 3)
1
2
3
> (values)

(call-with-values generator receiver) Ñ any
generator : (-> any)
receiver : procedure?

Calls generator , and passes the values that generator produces as arguments to re-
ceiver . Thus, call-with-values creates a continuation that accepts any number of val-
ues that receiver can accept. The receiver procedure is called in tail position with
respect to the call-with-values call.

Examples:

> (call-with-values (lambda () (values 1 2)) +)
3
> (call-with-values (lambda () 1) (lambda (x y) (+ x y)))
result arity mismatch;

expected number of values not received
expected: 2
received: 1
in: local-binding form
values...:

1

699

10.2 Exceptions
§10.1 “Exceptions”
in The Racket
Guide introduces
exceptions.

See §1.1.15 “Exceptions” for information on the Racket exception model. It is based on a
proposal by Friedman, Haynes, and Dybvig [Friedman95].

Whenever a primitive error occurs in Racket, an exception is raised. The value that is passed
to the current exception handler for a primitive error is always an instance of the exn struc-
ture type. Every exn structure value has a message field that is a string, the primitive error
message. The default exception handler recognizes exception values with the exn? predi-
cate and passes the error message to the current error display handler (see error-display-
handler).

Primitive procedures that accept a procedure argument with a particular required arity
(e.g., call-with-input-file, call/cc) check the argument’s arity immediately, raising
exn:fail:contract if the arity is incorrect.

10.2.1 Error Message Conventions

Racket’s error message convention is to produce error messages with the following shape:

xsrclocy: xnamey: xmessagey;
xcontinued-messagey ...
xfieldy: xdetaily
...

The message starts with an optional source location, xsrclocy, which is followed by a colon
and space when present. The message continues with an optional xnamey that usually iden-
tifies the complaining function, syntactic form, or other entity, but may also refer to an entity
being complained about; the xnamey is also followed by a colon and space when present.

The xmessagey should be relatively short, and it should be largely independent of specific
values that triggered the error. More detailed explanation that requires multiple lines should
continue with each line indented by a single space, in which case xmessagey should end in
a semi-colon (but the semi-colon should be omitted if xcontinued-messagey is not present).
Message text should be lowercase—using semi-colons to separate sentences if needed, al-
though long explanations may be better deferred to extra fields.

Specific values that triggered the error or other helpful information should appear in separate
xfieldy lines, each of which is indented by two spaces. If a xdetaily is especially long or takes
multiple lines, it should start on its own line after the xfieldy label, and each of its lines should
be indented by three spaces. Field names should be all lowercase.

A xfieldy name should end with ... if the field provides relatively detailed information that
might be distracting in common cases but useful in others. For example, when a contract
failure is reported for a particular argument of a function, other arguments to the function

700

might be shown in an “other arguments...” field. The intent is that fields whose names end
in ... might be hidden by default in an environment such as DrRacket.

Make xfieldy names as short as possible, relying on xmessagey or xcontinued messagey text
to clarify the meaning for a field. For example, prefer “given” to “given turtle” as a field
name, where xmessagey is something like “given turtle is too sleepy” to clarify that “given”
refers to a turtle.

10.2.2 Raising Exceptions

(raise v [barrier?]) Ñ any
v : any/c
barrier? : any/c = #t

Raises an exception, where v represents the exception being raised. The v argument can be
anything; it is passed to the current exception handler.

If barrier? is true, then the call to the exception handler is protected by a continuation
barrier, so that multiple returns/escapes are impossible. All exceptions raised by racket
functions effectively use raise with a #t value for barrier?.

Breaks are disabled from the time the exception is raised until the exception handler obtains
control, and the handler itself is parameterize-breaked to disable breaks initially; see
§10.6 “Breaks” for more information on breaks.

Examples:

> (with-handlers ([number? (lambda (n)
(+ n 5))])

(raise 18 #t))
23
> (define-struct (my-exception exn:fail:user) ())
> (with-handlers ([my-exception? (lambda (e)

#f)])
(+ 5 (raise (make-my-exception

"failed"
(current-continuation-marks)))))

#f
> (raise 'failed #t)
uncaught exception: failed

(error message-sym) Ñ any
message-sym : symbol?

(error message-str v ...) Ñ any

701

message-str : string?
v : any/c

(error who-sym format-str v ...) Ñ any
who-sym : symbol?
format-str : string?
v : any/c

Raises the exception exn:fail, which contains an error string. The different forms produce
the error string in different ways:

• (error message-sym) creates a message string by concatenating "error: " with
the string form of message-sym . Use this form sparingly.

• (error message-str v ...) creates a message string by concatenating
message-str with string versions of the vs (as produced by the current error value
conversion handler; see error-value->string-handler). A space is inserted be-
fore each v . Use this form sparingly, because it does not conform well to Racket’s
error message conventions; consider raise-arguments-error, instead.

• (error who-sym format-str v ...) creates a message string equivalent to the
string created by

(format (string-append "„s: " format-str) who-sym v ...)

When possible, use functions such as raise-argument-error, instead, which con-
struct messages that follow Racket’s error message conventions.

In all cases, the constructed message string is passed to make-exn:fail, and the resulting
exception is raised.

Examples:

> (error 'failed)
error: failed
> (error "failed" 23 'pizza (list 1 2 3))
failed 23 pizza (1 2 3)
> (error 'method-a "failed because „a" "no argument supplied")
method-a: failed because no argument supplied

(raise-user-error message-sym) Ñ any
message-sym : symbol?

(raise-user-error message-str v ...) Ñ any
message-str : string?
v : any/c

(raise-user-error who-sym format-str v ...) Ñ any

702

who-sym : symbol?
format-str : string?
v : any/c

Like error, but constructs an exception with make-exn:fail:user instead of make-
exn:fail. The default error display handler does not show a “stack trace” for
exn:fail:user exceptions (see §10.5 “Continuation Marks”), so raise-user-error
should be used for errors that are intended for end users.

(raise-argument-error name expected v) Ñ any
name : symbol?
expected : string?
v : any/c

(raise-argument-error name
expected
bad-pos
v ...) Ñ any

name : symbol?
expected : string?
bad-pos : exact-nonnegative-integer?
v : any/c

Creates an exn:fail:contract value and raises it as an exception. The name argument
is used as the source procedure’s name in the error message. The expected argument is
used as a description of the expected contract (i.e., as a string, but the string is intended to
contain a contract expression).

In the first form, v is the value received by the procedure that does not have the expected
type.

In the second form, the bad argument is indicated by an index bad-pos (counting from 0),
and all of the original arguments v are provided (in order). The resulting error message
names the bad argument and also lists the other arguments. If bad-pos is not less than the
number of vs, the exn:fail:contract exception is raised.

Examples:

> (define (feed-machine bits)
(if (not (integer? bits))
(raise-argument-error 'feed-machine "integer?" bits)
"fed the machine"))

> (feed-machine 'turkey)
feed-machine: contract violation

expected: integer?
given: 'turkey

> (define (feed-cow animal)

703

(if (not (eq? animal 'cow))
(raise-argument-error 'feed-cow "'cow" animal)
"fed the cow"))

> (feed-cow 'turkey)
feed-cow: contract violation

expected: 'cow
given: 'turkey

> (define (feed-animals cow sheep goose cat)
(if (not (eq? goose 'goose))
(raise-argument-error 'feed-animals "'goose" 2 cow sheep goose cat)
"fed the animals"))

> (feed-animals 'cow 'sheep 'dog 'cat)
feed-animals: contract violation

expected: 'goose
given: 'dog
argument position: 3rd
other arguments...:

'cow
'sheep
'cat

(raise-result-error name expected v) Ñ any
name : symbol?
expected : string?
v : any/c

(raise-result-error name
expected
bad-pos
v ...) Ñ any

name : symbol?
expected : string?
bad-pos : exact-nonnegative-integer?
v : any/c

Like raise-argument-error, but the error message describe v as a “result” instead of an
“argument.”

(raise-arguments-error name
message
field
v ...
...) Ñ any

name : symbol?
message : string?
field : string?
v : any/c

704

Creates an exn:fail:contract value and raises it as an exception. The name is used
as the source procedure’s name in the error message. The message is the error message; if
message contains newline characters, each extra line should be suitably indented (with one
extra space at the start of each line), but it should not end with a newline character. Each
field must have a corresponding v , and the two are rendered on their own line in the error
message; each v is formatted using the error value conversion handler (see error-value-
>string-handler), unless v is a unquoted-printing string, in which case the string content
is displayed without using the error value conversion handler.

Example:

> (raise-arguments-error 'eat
"fish is smaller than its given meal"
"fish" 12
"meal" 13)

eat: fish is smaller than its given meal
fish: 12
meal: 13

(raise-range-error name
type-description
index-prefix
index
in-value
lower-bound
upper-bound
alt-lower-bound) Ñ any

name : symbol?
type-description : string?
index-prefix : string?
index : exact-integer?
in-value : any/c
lower-bound : exact-integer?
upper-bound : exact-integer?
alt-lower-bound : (or/c #f exact-integer?)

Creates an exn:fail:contract value and raises it as an exception to report an out-of-
range error. The type-description string describes the value for which the index is meant
to select an element, and index-prefix is a prefix for the word “index.” The index
argument is the rejected index. The in-value argument is the value for which the index
was meant. The lower-bound and upper-bound arguments specify the valid range of
indices, inclusive; if upper-bound is below lower-bound , the value is characterized as
“empty.” If alt-lower-bound is not #f, and if index is between alt-lower-bound
and upper-bound , then the error is report as index being less than the “starting” index
lower-bound .

705

Since upper-bound is inclusive, a typical value is one less than the size of a collection—for
example, (sub1 (vector-length vec)), (sub1 (length lst)), and so on.

Examples:

> (raise-range-error 'vector-ref "vector" "starting
" 5 #(1 2 3 4) 0 3)
vector-ref: starting index is out of range

starting index: 5
valid range: [0, 3]
vector: '#(1 2 3 4)

> (raise-range-error 'vector-ref "vector" "ending
" 5 #(1 2 3 4) 0 3)
vector-ref: ending index is out of range

ending index: 5
valid range: [0, 3]
vector: '#(1 2 3 4)

> (raise-range-error 'vector-ref "vector" "" 3 #() 0 -1)
vector-ref: index is out of range for empty vector

index: 3
> (raise-range-error 'vector-ref "vector" "ending
" 1 #(1 2 3 4) 2 3 0)
vector-ref: ending index is smaller than starting index

ending index: 1
starting index: 2
valid range: [0, 3]
vector: '#(1 2 3 4)

(raise-type-error name expected v) Ñ any
name : symbol?
expected : string?
v : any/c

(raise-type-error name expected bad-pos v ...) Ñ any
name : symbol?
expected : string?
bad-pos : exact-nonnegative-integer?
v : any/c

Like raise-argument-error, but with Racket’s old formatting conventions, and where
expected is used as a “type” description instead of a contract expression. Use raise-
argument-error or raise-result-error, instead.

(raise-mismatch-error name
message
v ...+
...+) Ñ any

706

name : symbol?
message : string?
v : any/c

Similar to raise-arguments-error, but using Racket’s old formatting conventions, with a
required v immediately after the first message string, and with further message strings that
are spliced into the message without line breaks or space. Use raise-arguments-error,
instead.

(raise-arity-error name arity-v arg-v ...) Ñ any
name : (or/c symbol? procedure?)
arity-v : (or/c exact-nonnegative-integer?

arity-at-least?
(listof
(or/c exact-nonnegative-integer?

arity-at-least?)))
arg-v : any/c

Creates an exn:fail:contract:arity value and raises it as an exception. The name is
used for the source procedure’s name in the error message.

The arity-v value must be a possible result from procedure-arity, except that it does
not have to be normalized (see procedure-arity? for the details of normalized arities);
raise-arity-error will normalize the arity and use the normalized form in the error
message. If name is a procedure, its actual arity is ignored.

The arg-v arguments are the actual supplied arguments, which are shown in the error
message (using the error value conversion handler; see error-value->string-handler);
also, the number of supplied arg-vs is explicitly mentioned in the message.

Example:

> (raise-arity-error 'unite (arity-at-least 13) "Virginia" "Maryland")
unite: arity mismatch;

the expected number of arguments does not match the given
number

expected: at least 13
given: 2
arguments...:

"Virginia"
"Maryland"

(raise-arity-mask-error name mask arg-v ...) Ñ any
name : (or/c symbol? procedure?)
mask : exact-integer?
arg-v : any/c

707

The same as raise-arity-error, but using the arity representation described with
procedure-arity-mask.

Added in version 7.0.0.11 of package base.

(raise-result-arity-error name
arity-v
detail-str
result-v ...) Ñ any

name : (or/c symbol? #f)
arity-v : exact-nonnegative-integer?
detail-str : (or/c string? #f)
result-v : any/c

Like raise-arity-error, but reports a “result” mismatch instead of an “argument” mis-
match. The name argument can be #f to omit an initial source for the error. The detail-
str argument, if non-#f, should be a string that starts with a newline, since it is added near
the end of the generated error message.

Example:

> (raise-result-arity-error 'let-values 2 "\n in: exam-
ple" 'a 2.0 "three")
let-values: result arity mismatch;

expected number of values not received
expected: 2
received: 3
in: example
values...:

'a
2.0
"three"

Added in version 6.90.0.26 of package base.

(raise-syntax-error name
message

[expr
sub-expr
extra-sources
message-suffix]) Ñ any

name : (or/c symbol? #f)
message : string?
expr : any/c = #f
sub-expr : any/c = #f
extra-sources : (listof syntax?) = null
message-suffix : string? = ""

708

Creates an exn:fail:syntax value and raises it as an exception. Macros use this proce-
dure to report syntax errors.

The name argument is usually #f when expr is provided; it is described in more detail
below. The message is used as the main body of the error message; if message contains
newline characters, each new line should be suitably indented (with one space at the start),
and it should not end with a newline character.

The optional expr argument is the erroneous source syntax object or S-expression (but the
expression #f cannot be represented by itself; it must be wrapped as a syntax object). The
optional sub-expr argument is a syntax object or S-expression (again, #f cannot represent
itself) within expr that more precisely locates the error. Both may appear in the generated
error-message text if error-print-source-location is #t. Source location information
in the error-message text is similarly extracted from sub-expr or expr when at least one is
a syntax object and error-print-source-location is #t.

If sub-expr is provided and not #f, it is used (in syntax form) for the exprs field of the
generated exception record, else the expr is used if provided and not #f. In either case,
the syntax object is consed onto extra-sources to produce the exprs field, or extra-
sources is used directly for exprs if neither expr nor sub-expr is provided and not #f.

The form name used in the generated error message is determined through a combination of
the name , expr , and sub-expr arguments:

• When name is #f, and when expr is either an identifier or a syntax pair containing
an identifier as its first element, then the form name from the error message is the
identifier’s symbol.

• When name is #f and when expr is not an identifier or a syntax pair containing an
identifier as its first element, then the form name in the error message is "?".

• When name is a symbol, then the symbol is used as the form name in the generated
error message.

The message-suffix string is appended to the end of the error message. If not "", it should
normally start with a newline and two spaces to add extra fields to the message (see §10.2.1
“Error Message Conventions”).

Changed in version 6.90.0.18 of package base: Added the message-suffix optional argument.

(unquoted-printing-string? v) Ñ boolean?
v : any/c

(unquoted-printing-string s) Ñ unquoted-printing-string?
s : string?

(unquoted-printing-string-value ups) Ñ string?
ups : unquoted-printing-string?

709

An unquoted-printing string wraps a string and prints, writes, and displays the same
way that the string displays. An unquoted-printing string is especially useful with raise-
arguments-error to serve as a field “value” that causes literal text to be printed as the field
content.

The unquoted-printing-string? procedure returns #t if v is a unquoted-printing string,
#f otherwise. The unquoted-printing-string creates a unquoted-printing string value
that encapsulates the string s , and unquoted-printing-string-value returns the string
within a unquoted-printing string.

Added in version 6.10.0.2 of package base.

10.2.3 Handling Exceptions

(call-with-exception-handler f thunk) Ñ any
f : (any/c . -> . any)
thunk : (-> any)

Installs f as the exception handler for the dynamic extent of the call to thunk . If an excep-
tion is raised during the evaluation of thunk (in an extension of the current continuation that
does not have its own exception handler), then f is applied to the raised value in the con-
tinuation of the raise call (but the continuation is normally extended with a continuation
barrier; see §1.1.12 “Prompts, Delimited Continuations, and Barriers” and raise).

Any procedure that takes one argument can be an exception handler. Normally, an exception
handler escapes from the context of the raise call via abort-current-continuation
or some other escape mechanism. To propagate an exception to the “previous” exception
handler—that is, the exception handler associated with the rest of the continuation after the
point where the called exception handler was associated with the continuation—an excep-
tion handler can simply return a result instead of escaping, in which case the raise call
propagates the value to the previous exception handler (still in the dynamic extent of the call
to raise, and under the same barrier, if any). If an exception handler returns a result and no
previous handler is available, the uncaught-exception handler is used.

A call to an exception handler is parameterize-breaked to disable breaks, and it is
wrapped with call-with-exception-handler to install an exception handler that reports
both the original and newly raised exceptions via the error display handler and then escapes
via the error escape handler.

(uncaught-exception-handler) Ñ (any/c . -> . any)
(uncaught-exception-handler f) Ñ void?

f : (any/c . -> . any)

A parameter that determines an uncaught-exception handler used by raise when the
relevant continuation has no exception handler installed with call-with-exception-

710

handler or with-handlers. Unlike exception handlers installed with call-with-
exception-handler, the uncaught-exception handler must not return a value when called
by raise; if it returns, an exception is raised (to be handled by an exception handler that
reports both the original and newly raised exception).

The default uncaught-exception handler prints an error message using the current error
display handler (see error-display-handler), unless the argument to the handler is
an instance of exn:break:hang-up. If the argument to the handler is an instance of
exn:break:hang-up or exn:break:terminate, the default uncaught-exception handler
then calls the exit handler with 1, which normally exits or escapes. For any argument, the
default uncaught-exception handler then escapes by calling the current error escape handler
(see error-escape-handler). The call to each handler is parameterized to set error-
display-handler to the default error display handler, and it is parameterize-breaked
to disable breaks. The call to the error escape handler is further parameterized to set error-
escape-handler to the default error escape handler; if the error escape handler returns,
then the default error escape handler is called.

When the current error display handler is the default handler, then the error-display call is
parameterized to install an emergency error display handler that logs an error (see log-
error) and never fails.

(with-handlers ([pred-expr handler-expr] ...)
body ...+)

Evaluates each pred-expr and handler-expr in the order that they are specified, and then
evaluates the bodys with a new exception handler during its dynamic extent.

The new exception handler processes an exception only if one of the pred-expr procedures
returns a true value when applied to the exception, otherwise the exception handler is invoked
from the continuation of the with-handlers expression (by raising the exception again).
If an exception is handled by one of the handler-expr procedures, the result of the entire
with-handlers expression is the return value of the handler.

When an exception is raised during the evaluation of bodys, each predicate procedure pred-
expr is applied to the exception value; if a predicate returns a true value, the corresponding
handler-expr procedure is invoked with the exception as an argument. The predicates are
tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of the entire with-
handlers expression is restored, but also parameterize-breaked to disable breaks. Thus,
breaks are disabled by default during the predicate and handler procedures (see §10.6
“Breaks”), and the exception handler is the one from the continuation of the with-handlers
expression.

The exn:fail? procedure is useful as a handler predicate to catch all error exceptions.
Avoid using (lambda (x) #t) as a predicate, because the exn:break exception typically
should not be caught (unless it will be re-raised to cooperatively break). Beware, also, of

711

catching and discarding exceptions, because discarding an error message can make debug-
ging unnecessarily difficult; instead of discarding an error message, consider logging it via
log-error or a logging form created by define-logger.

Examples:

> (with-handlers ([exn:fail:syntax?
(λ (e) (displayln "got a syntax error"))])

(raise-syntax-error #f "a syntax error"))
got a syntax error
> (with-handlers ([exn:fail:syntax?

(λ (e) (displayln "got a syntax error"))]
[exn:fail?
(λ (e) (displayln "fallback clause"))])

(raise-syntax-error #f "a syntax error"))
got a syntax error

(with-handlers* ([pred-expr handler-expr] ...)
body ...+)

Like with-handlers, but if a handler-expr procedure is called, breaks are not explicitly
disabled, and the handler call is in tail position with respect to the with-handlers* form.

10.2.4 Configuring Default Handling

(error-escape-handler) Ñ (-> any)
(error-escape-handler proc) Ñ void?

proc : (-> any)

A parameter for the error escape handler, which takes no arguments and escapes from the
dynamic context of an exception. The default error escape handler escapes using (abort-
current-continuation (default-continuation-prompt-tag) void).

The error escape handler is normally called directly by an exception handler, in a parame-
terization that sets the error display handler and error escape handler to the default handlers,
and it is normally parameterize-breaked to disable breaks. To escape from a run-time
error in a different context, use raise or error.

Due to a continuation barrier around exception-handling calls, an error escape handler cannot
invoke a full continuation that was created prior to the exception, but it can abort to a prompt
(see call-with-continuation-prompt) or invoke an escape continuation (see call-
with-escape-continuation).

(error-display-handler) Ñ (string? any/c . -> . any)
(error-display-handler proc) Ñ void?

proc : (string? any/c . -> . any)

712

A parameter for the error display handler, which is called by the default exception handler
with an error message and the exception value. More generally, the handler’s first argument
is a string to print as an error message, and the second is a value representing a raised
exception.

The default error display handler displays its first argument to the current error port
(determined by the current-error-port parameter) and extracts a stack trace (see
continuation-mark-set->context) to display from the second argument if it is an exn
value but not an exn:fail:user value. The default error

display handler in
DrRacket also uses
the second
argument to
highlight source
locations.

To report a run-time error, use raise or procedures like error, instead of calling the error
display handler directly.

(error-print-width) Ñ (and/c exact-integer? (>=/c 3))
(error-print-width width) Ñ void?

width : (and/c exact-integer? (>=/c 3))

A parameter whose value is used as the maximum number of characters used to print a
Racket value that is embedded in a primitive error message.

(error-print-context-length) Ñ exact-nonnegative-integer?
(error-print-context-length cnt) Ñ void?

cnt : exact-nonnegative-integer?

A parameter whose value is used by the default error display handler as the maximum num-
ber of lines of context (or “stack trace”) to print; a single “...” line is printed if more lines
are available after the first cnt lines. A 0 value for cnt disables context printing entirely.

(error-value->string-handler)
Ñ (any/c exact-nonnegative-integer?

. -> .
string?)

(error-value->string-handler proc) Ñ void?
proc : (any/c exact-nonnegative-integer?

. -> .
string?)

A parameter that determines the error value conversion handler, which is used to print a
Racket value that is embedded in a primitive error message.

The integer argument to the handler specifies the maximum number of characters that should
be used to represent the value in the resulting string. The default error value conversion han-
dler prints the value into a string (using the current global port print handler; see global-
port-print-handler). If the printed form is too long, the printed form is truncated and
the last three characters of the return string are set to “...”.

713

If the string returned by an error value conversion handler is longer than requested, the string
is destructively “truncated” by setting the first extra position in the string to the null character.
If a non-string is returned, then the string "..." is used. If a primitive error string needs to
be generated before the handler has returned, the default error value conversion handler is
used.

Calls to an error value conversion handler are parameterized to re-install the default
error value conversion handler, and to enable printing of unreadable values (see print-
unreadable).

(error-print-source-location) Ñ boolean?
(error-print-source-location include?) Ñ void?

include? : any/c

A parameter that controls whether read and syntax error messages include source informa-
tion, such as the source line and column or the expression. This parameter also controls the
error message when a module-defined variable is accessed before its definition is executed;
the parameter determines whether the message includes a module name. Only the mes-
sage field of an exn:fail:read, exn:fail:syntax, or exn:fail:contract:variable
structure is affected by the parameter. The default is #t.

10.2.5 Built-in Exception Types

(struct exn (message continuation-marks)
#:extra-constructor-name make-exn
#:transparent)

message : string?
continuation-marks : continuation-mark-set?

The base structure type for exceptions. The message field contains an error message, and the
continuation-marks field contains the value produced by (current-continuation-
marks) immediately before the exception was raised.

Exceptions raised by Racket form a hierarchy under exn:

exn
exn:fail
exn:fail:contract
exn:fail:contract:arity
exn:fail:contract:divide-by-zero
exn:fail:contract:non-fixnum-result
exn:fail:contract:continuation
exn:fail:contract:variable

exn:fail:syntax

714

exn:fail:syntax:unbound
exn:fail:syntax:missing-module

exn:fail:read
exn:fail:read:eof
exn:fail:read:non-char

exn:fail:filesystem
exn:fail:filesystem:exists
exn:fail:filesystem:version
exn:fail:filesystem:errno
exn:fail:filesystem:missing-module

exn:fail:network
exn:fail:network:errno

exn:fail:out-of-memory
exn:fail:unsupported
exn:fail:user

exn:break
exn:break:hang-up
exn:break:terminate

(struct exn:fail exn ()
#:extra-constructor-name make-exn:fail
#:transparent)

Raised for exceptions that represent errors, as opposed to exn:break.

(struct exn:fail:contract exn:fail ()
#:extra-constructor-name make-exn:fail:contract
#:transparent)

Raised for errors from the inappropriate run-time use of a function or syntactic form.

(struct exn:fail:contract:arity exn:fail:contract ()
#:extra-constructor-name make-exn:fail:contract:arity
#:transparent)

Raised when a procedure is applied to the wrong number of arguments.

(struct exn:fail:contract:divide-by-zero exn:fail:contract ()
#:extra-constructor-name
make-exn:fail:contract:divide-by-zero
#:transparent)

Raised for division by exact zero.

715

(struct exn:fail:contract:non-fixnum-result exn:fail:contract ()
#:extra-constructor-name
make-exn:fail:contract:non-fixnum-result
#:transparent)

Raised by functions like fx+ when the result would not be a fixnum.

(struct exn:fail:contract:continuation exn:fail:contract ()
#:extra-constructor-name make-exn:fail:contract:continuation
#:transparent)

Raised when a continuation is applied where the jump would cross a continuation barrier.

(struct exn:fail:contract:variable exn:fail:contract (id)
#:extra-constructor-name make-exn:fail:contract:variable
#:transparent)

id : symbol?

Raised for a reference to a not-yet-defined top-level variable or module-level variable.

(struct exn:fail:syntax exn:fail (exprs)
#:extra-constructor-name make-exn:fail:syntax
#:transparent)

exprs : (listof syntax?)

Raised for a syntax error that is not a read error. The exprs indicate the relevant source
expressions, least-specific to most-specific.

This structure type implements the prop:exn:srclocs property.

(struct exn:fail:syntax:unbound exn:fail:syntax ()
#:extra-constructor-name make-exn:fail:syntax:unbound
#:transparent)

Raised by #%top or set! for an unbound identifier within a module.

(struct exn:fail:syntax:missing-module exn:fail:syntax (path)
#:extra-constructor-name make-exn:fail:syntax:missing-module
#:transparent)

path : module-path?

Raised by the default module name resolver or default load handler to report a module path—
a reported in the path field—whose implementation file cannot be found.

716

The default module name resolver raises this exception only when it is given a syntax object
as its second argument, and the default load handler raises this exception only when the value
of current-module-path-for-load is a syntax object (in which case both the exprs field
and the path field are determined by the syntax object.

This structure type implements the prop:exn:missing-module property.

(struct exn:fail:read exn:fail (srclocs)
#:extra-constructor-name make-exn:fail:read
#:transparent)

srclocs : (listof srcloc?)

Raised for a read error. The srclocs indicate the relevant source expressions.

(struct exn:fail:read:eof exn:fail:read ()
#:extra-constructor-name make-exn:fail:read:eof
#:transparent)

Raised for a read error, specifically when the error is due to an unexpected end-of-file.

(struct exn:fail:read:non-char exn:fail:read ()
#:extra-constructor-name make-exn:fail:read:non-char
#:transparent)

Raised for a read error, specifically when the error is due to an unexpected non-character
(i.e., “special”) element in the input stream.

(struct exn:fail:filesystem exn:fail ()
#:extra-constructor-name make-exn:fail:filesystem
#:transparent)

Raised for an error related to the filesystem (such as a file not found).

(struct exn:fail:filesystem:exists exn:fail:filesystem ()
#:extra-constructor-name make-exn:fail:filesystem:exists
#:transparent)

Raised for an error when attempting to create a file that exists already.

(struct exn:fail:filesystem:version exn:fail:filesystem ()
#:extra-constructor-name make-exn:fail:filesystem:version
#:transparent)

Raised for a version-mismatch error when loading an extension.

717

(struct exn:fail:filesystem:errno exn:fail:filesystem (errno)
#:extra-constructor-name make-exn:fail:filesystem:errno
#:transparent)

errno : (cons/c exact-integer? (or/c 'posix 'windows 'gai))

Raised for a filesystem error for which a system error code is available. The sym-
bol part of an errno field indicates the category of the error code: 'posix indicates
a C/Posix errno value, 'windows indicates a Windows system error code (under Win-
dows, only), and 'gai indicates a getaddrinfo error code (which shows up only in
exn:fail:network:errno exceptions for operations that resolve hostnames, but is al-
lowed in exn:fail:filesystem:errno instances for consistency).

(struct exn:fail:filesystem:missing-module exn:fail:filesystem
(path)

#:extra-constructor-name
make-exn:fail:filesystem:missing-module
#:transparent)

path : module-path?

Raised by the default module name resolver or default load handler to report a module path—
a reported in the path field—whose implementation file cannot be found.

The default module name resolver raises this exception only when it is not given a syntax
object as its second argument, and the default load handler raises this exception only when
the value of current-module-path-for-load is not a syntax object.

This structure type implements the prop:exn:missing-module property.

(struct exn:fail:network exn:fail ()
#:extra-constructor-name make-exn:fail:network
#:transparent)

Raised for TCP and UDP errors.

(struct exn:fail:network:errno exn:fail:network (errno)
#:extra-constructor-name make-exn:fail:network:errno
#:transparent)

errno : (cons/c exact-integer? (or/c 'posix 'windows 'gai))

Raised for a TCP or UDP error for which a system error code is available, where the errno
field is as for exn:fail:filesystem:errno.

(struct exn:fail:out-of-memory exn:fail ()
#:extra-constructor-name make-exn:fail:out-of-memory
#:transparent)

718

Raised for an error due to insufficient memory, in cases where sufficient memory is at least
available for raising the exception.

(struct exn:fail:unsupported exn:fail ()
#:extra-constructor-name make-exn:fail:unsupported
#:transparent)

Raised for an error due to an unsupported feature on the current platform or configuration.

(struct exn:fail:user exn:fail ()
#:extra-constructor-name make-exn:fail:user
#:transparent)

Raised for errors that are intended to be seen by end users. In particular, the default error
printer does not show the program context when printing the error message.

(struct exn:break exn (continuation)
#:extra-constructor-name make-exn:break
#:transparent)

continuation : continuation?

Raised asynchronously (when enabled) in response to a break request. The continuation
field can be used to resume the interrupted computation in the uncaught-exception handler
or call-with-exception-handler (but not with-handlers because it escapes from the
exception context before evaluating any predicates or handlers).

(struct exn:break:hang-up exn:break ()
#:extra-constructor-name make-exn:break:hang-up
#:transparent)

Raised asynchronously for hang-up breaks. The default uncaught-exception handler reacts
to this exception type by calling the exit handler.

(struct exn:break:terminate exn:break ()
#:extra-constructor-name make-exn:break:terminate
#:transparent)

Raised asynchronously for termination-request breaks. The default uncaught-exception han-
dler reacts to this exception type by calling the exit handler.

prop:exn:srclocs : struct-type-property?

A property that identifies structure types that provide a list of srcloc values. The property
is normally attached to structure types used to represent exception information.

719

The property value must be a procedure that accepts a single value—the structure type in-
stance from which to extract source locations—and returns a list of srclocs. Some error
display handlers use only the first returned location.

As an example,

#lang racket

;; We create a structure that supports the
;; prop:exn:srcloc protocol. It carries
;; with it the location of the syntax that
;; is guilty.
(define-struct (exn:fail:he-who-shall-not-be-named

exn:fail)
(a-srcloc)
#:property prop:exn:srclocs
(lambda (a-struct)
(match a-struct
[(struct exn:fail:he-who-shall-not-be-named

(msg marks a-srcloc))
(list a-srcloc)])))

;; We can play with this by creating a form that
;; looks at identifiers, and only flags specific ones.
(define-syntax (skeeterize stx)
(syntax-case stx ()
[(_ expr)
(cond
[(and (identifier? #'expr)

(eq? (syntax-e #'expr) 'voldemort))
(quasisyntax/loc stx
(raise (make-exn:fail:he-who-shall-not-be-named

"oh dear don't say his name"
(current-continuation-marks)
(srcloc '#,(syntax-source #'expr)

'#,(syntax-line #'expr)
'#,(syntax-column #'expr)
'#,(syntax-position #'expr)
'#,(syntax-span #'expr)))))]

[else
;; Otherwise, leave the expression alone.
#'expr])]))

(define (f x)
(* (skeeterize x) x))

720

(define (g voldemort)
(* (skeeterize voldemort) voldemort))

;; Examples:
(f 7)
(g 7)
;; The error should highlight the use
;; of the one-who-shall-not-be-named
;; in g.

(exn:srclocs? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:exn:srclocs property, #f otherwise.

(exn:srclocs-accessor v)
Ñ (exn:srclocs? . -> . (listof srcloc))
v : exn:srclocs?

Returns the srcloc-getting procedure associated with v .

(struct srcloc (source line column position span)
#:extra-constructor-name make-srcloc
#:transparent)

source : any/c
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)

The fields of a srcloc instance are as follows:

• source — An arbitrary value identifying the source, often a path (see §15.1 “Paths”).

• line — The line number (counts from 1) or #f (unknown).

• column — The column number (counts from 0) or #f (unknown).

• position — The starting position (counts from 1) or #f (unknown).

• span — The number of covered positions (counts from 0) or #f (unknown).

See §1.4.16 “Printing Compiled Code” for information about the treatment of srcloc values
that are embedded in compiled code.

721

(srcloc->string srcloc) Ñ (or/c string? #f)
srcloc : srcloc?

Formats srcloc as a string suitable for error reporting. A path source in srcloc is shown
relative to the value of current-directory-for-user. The result is #f if srcloc does
not contain enough information to format a string.

prop:exn:missing-module : struct-type-property?

A property that identifies structure types that provide a module path for a load that fails
because a module is not found.

The property value must be a procedure that accepts a single value—the structure type in-
stance from which to extract source locations—and returns a module path.

(exn:missing-module? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:exn:missing-module property, #f otherwise.

(exn:missing-module-accessor v)
Ñ (exn:missing-module? . -> . module-path?)
v : exn:srclocs?

Returns the module path-getting procedure associated with v .

10.2.6 Additional Exception Functions

(require racket/exn) package: base

The bindings documented in this section are provided by the racket/exn library, not
racket/base or racket.

Added in version 6.3 of package base.

(exn->string exn) Ñ string?
exn : (or/c exn? any/c)

Formats exn as a string. If exn is an exn?, collects and returns the output from the current
(error-display-handler); otherwise, simply converts exn to a string using (format
"„s\n" exn).

722

https://pkgs.racket-lang.org/package/base

10.3 Delayed Evaluation

(require racket/promise) package: base

The bindings documented in this section are provided by the racket/promise and racket
libraries, but not racket/base.

A promise encapsulates an expression to be evaluated on demand via force. After a promise
has been forced, every later force of the promise produces the same result.

(promise? v) Ñ boolean?
v : any/c

Returns #t if v is a promise, #f otherwise.

(delay body ...+)

Creates a promise that, when forced, evaluates the bodys to produce its value. The result is
then cached, so further uses of force produce the cached value immediately. This includes
multiple values and exceptions.

(lazy body ...+)

Like delay, if the last body produces a promise when forced, then this promise is forced,
too, to obtain a value. In other words, this form creates a composable promise, where the
computation of its body is “attached” to the computation of the following promise, and a
single force iterates through the whole chain, tail-calling each step.

Note that the last body of this form must produce a single value, but the value can itself be
a delay promise that returns multiple values.

The lazy form is useful for implementing lazy libraries and languages, where tail calls can
be wrapped in a promise.

(force v) Ñ any
v : any/c

If v is a promise, then the promise is forced to obtain a value. If the promise has not
been forced before, then the result is recorded in the promise so that future forces on the
promise produce the same value (or values). If forcing the promise raises an exception, then
the exception is similarly recorded so that forcing the promise will raise the same exception
every time.

If v is forced again before the original call to force returns, then the exn:fail exception
is raised.

If v is not a promise, then it is returned as the result.

723

https://pkgs.racket-lang.org/package/base

(promise-forced? promise) Ñ boolean?
promise : promise?

Returns #t if promise has been forced.

(promise-running? promise) Ñ boolean?
promise : promise?

Returns #t if promise is currently being forced. (Note that a promise can be either running
or forced but not both.)

10.3.1 Additional Promise Kinds

(delay/name body ...+)

Creates a “call-by-name” promise that is similar to delay-promises, except that the resulting
value is not cached. This kind of promise is essentially a thunk that is wrapped in a way that
force recognizes.

If a delay/name promise forces itself, no exception is raised, the promise is never consid-
ered “running” or “forced” in the sense of promise-running? and promise-forced?.

(promise/name? promise) Ñ boolean?
promise : any/c

Returns #t if promise is a promise created with delay/name.

Added in version 6.3 of package base.

(delay/strict body ...+)

Creates a “strict” promise: it is evaluated immediately, and the result is wrapped in a promise
value. Note that the body can evaluate to multiple values, and forcing the resulting promise
will return these values.

(delay/sync body ...+)

Produces a promise where an attempt to force the promise by a thread other than one
currently running the promise causes the force to block until a result is available. This kind
of promise is also a synchronizable event for use with sync; syncing on the promise does
not force it, but merely waits until a value is forced by another thread. The synchronization
result is #<void>.

If a promise created by delay/sync is forced on a thread that is already running the promise,
an exception is raised in the same way as for promises created with delay.

724

(delay/thread body/option ...+)

body/option = body
| #:group thread-group-expr

Like delay/sync, but begins the computation immediately on a newly created thread. The
thread is created under the thread group specified by thread-group-expr , which defaults
to (make-thread-group). A #:group specification can appear at most once.

Exceptions raised by the bodys are caught as usual and raised only when the promise is
forced. Unlike delay/sync, if the thread running body terminates without producing a
result or exception, force of the promise raises an exception (instead of blocking).

(delay/idle body/option ...+)

body/option = body
| #:wait-for wait-evt-expr
| #:work-while while-evt-expr
| #:tick tick-secs-expr
| #:use use-ratio-expr

Like delay/thread, but with the following differences:

• the computation does not start until the event produced by wait-evt-expr is ready,
where the default is (system-idle-evt);

• the computation thread gets to work only when the process is otherwise idle as deter-
mined by while-evt-expr , which also defaults to (system-idle-evt);

• the thread is allowed to run only periodically: out of every tick-secs-expr (defaults
to 0.2) seconds, the thread is allowed to run use-ratio-expr (defaults to 0.12) of
the time proportionally; i.e., the thread runs for (* tick-secs-expr use-ratio-
expr) seconds.

If the promise is forced before the computation is done, it runs the rest of the computation
immediately without waiting on events or periodically restricting evaluation.

A #:wait-for, #:work-while, #:tick, or #:use specification can appear at most once.

10.4 Continuations
§10.3
“Continuations” in
The Racket Guide
introduces
continuations.

See §1.1.1 “Sub-expression Evaluation and Continuations” and §1.1.12 “Prompts, Delimited
Continuations, and Barriers” for general information about continuations. Racket’s support

725

for prompts and composable continuations most closely resembles Dorai Sitaram’s % and
fcontrol operator [Sitaram93].

Racket installs a continuation barrier around evaluation in the following contexts, preventing
full-continuation jumps into the evaluation context protected by the barrier:

• applying an exception handler, an error escape handler, or an error display handler
(see §10.2 “Exceptions”);

• applying a macro transformer (see §12.4 “Syntax Transformers”), evaluating a
compile-time expression, or applying a module name resolver (see §14.4.1 “Resolving
Module Names”);

• applying a custom-port procedure (see §13.1.9 “Custom Ports”), an event guard pro-
cedure (see §11.2.1 “Events”), or a parameter guard procedure (see §11.3.2 “Parame-
ters”);

• applying a security-guard procedure (see §14.6 “Security Guards”);

• applying a will procedure (see §16.3 “Wills and Executors”); or

• evaluating or loading code from the stand-alone Racket command line (see §18.1
“Running Racket or GRacket”).

In addition, extensions of Racket may install barriers in additional contexts. Finally, call-
with-continuation-barrier applies a thunk barrier between the application and the cur-
rent continuation.

(call-with-continuation-prompt proc
[prompt-tag
handler]
arg ...) Ñ any

proc : procedure?
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)
handler : (or/c procedure? #f) = #f
arg : any/c

Applies proc to the given args with the current continuation extended by a prompt.
The prompt is tagged by prompt-tag , which must be a result from either default-
continuation-prompt-tag (the default) or make-continuation-prompt-tag. The
call to call-with-continuation-prompt returns the result of proc .

The handler argument specifies a handler procedure to be called in tail position with re-
spect to the call-with-continuation-prompt call when the installed prompt is the target
of an abort-current-continuation call with prompt-tag ; the remaining arguments
of abort-current-continuation are supplied to the handler procedure. If handler is

726

#f, the default handler accepts a single abort-thunk argument and calls (call-with-
continuation-prompt abort-thunk prompt-tag #f); that is, the default handler re-
installs the prompt and continues with a given thunk.

(abort-current-continuation prompt-tag
v ...) Ñ any

prompt-tag : any/c
v : any/c

Resets the current continuation to that of the nearest prompt tagged by prompt-tag in the
current continuation; if no such prompt exists, the exn:fail:contract:continuation
exception is raised. The vs are delivered as arguments to the target prompt’s handler proce-
dure.

The protocol for vs supplied to an abort is specific to the prompt-tag . When abort-
current-continuation is used with (default-continuation-prompt-tag), gener-
ally, a single thunk should be supplied that is suitable for use with the default prompt
handler. Similarly, when call-with-continuation-prompt is used with (default-
continuation-prompt-tag), the associated handler should generally accept a single
thunk argument.

Each thread’s continuation starts with a prompt for (default-continuation-prompt-
tag) that uses the default handler, which accepts a single thunk to apply (with the prompt
intact).

(make-continuation-prompt-tag) Ñ continuation-prompt-tag?
(make-continuation-prompt-tag sym) Ñ continuation-prompt-tag?

sym : symbol?

Creates a prompt tag that is not equal? to the result of any other value (including prior
or future results from make-continuation-prompt-tag). The optional sym argument, if
supplied, is used when printing the prompt tag.

(default-continuation-prompt-tag) Ñ continuation-prompt-tag?

Returns a constant prompt tag for which a prompt is installed at the start of every thread’s
continuation; the handler for each thread’s initial prompt accepts any number of values and
returns. The result of default-continuation-prompt-tag is the default tag for any
procedure that accepts a prompt tag.

(call-with-current-continuation proc
[prompt-tag]) Ñ any

proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

727

Captures the current continuation up to the nearest prompt tagged by prompt-tag ; if no
such prompt exists, the exn:fail:contract:continuation exception is raised. The
truncated continuation includes only continuation marks and dynamic-wind frames in-
stalled since the prompt.

The captured continuation is delivered to proc , which is called in tail position with respect
to the call-with-current-continuation call.

If the continuation argument to proc is ever applied, then it removes the portion of the
current continuation up to the nearest prompt tagged by prompt-tag (not including the
prompt; if no such prompt exists, the exn:fail:contract:continuation exception is
raised), or up to the nearest continuation frame (if any) shared by the current and captured
continuations—whichever is first. While removing continuation frames, dynamic-wind
post-thunks are executed. Finally, the (unshared portion of the) captured continuation is
appended to the remaining continuation, applying dynamic-wind pre-thunks.

The arguments supplied to an applied procedure become the result values for the restored
continuation. In particular, if multiple arguments are supplied, then the continuation receives
multiple results.

If, at application time, a continuation barrier would be introduced by replacing the current
continuation with the applied one, then the exn:fail:contract:continuation excep-
tion is raised.

A continuation can be invoked from the thread (see §11.1 “Threads”) other than the one
where it was captured.

(call/cc proc [prompt-tag]) Ñ any
proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

The call/cc binding is an alias for call-with-current-continuation.

(call-with-composable-continuation proc
[prompt-tag]) Ñ any

proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Similar to call-with-current-continuation, but applying the resulting continuation
procedure does not remove any portion of the current continuation. Instead, application
always extends the current continuation with the captured continuation (without installing
any prompts other than those captured in the continuation).

When call-with-composable-continuation is called, if a continuation barrier ap-
pears in the continuation before the closest prompt tagged by prompt-tag , the

728

exn:fail:contract:continuation exception is raised (because attempting to apply the
continuation would always fail).

(call-with-escape-continuation proc) Ñ any
proc : (continuation? . -> . any)

Like call-with-current-continuation, but proc is not called in tail position, and the
continuation procedure supplied to proc can only be called during the dynamic extent of
the call-with-escape-continuation call.

Due to the limited applicability of its continuation, call-with-escape-continuation
can be implemented more efficiently than call-with-current-continuation.

A continuation obtained from call-with-escape-continuation is actually a kind of
prompt. Escape continuations are provided mainly for backwards compatibility, since they
pre-date general prompts in Racket, and because call/ec is often an easy replacement for
call/cc to improve performance.

(call/ec proc) Ñ any
proc : (continuation? . -> . any)

The call/ec binding is an alias for call-with-escape-continuation.

(let/cc k body ...+)

Equivalent to (call/cc (lambda (k) body ...)).

(let/ec k body ...+)

Equivalent to (call/ec (lambda (k) body ...)).

(call-with-continuation-barrier thunk) Ñ any
thunk : (-> any)

Applies thunk with a continuation barrier between the application and the current contin-
uation. The results of thunk are the results of the call-with-continuation-barrier
call.

(continuation-prompt-available? prompt-tag
[cont]) Ñ any

prompt-tag : continuation-prompt-tag?
cont : continuation? = (call/cc values)

Returns #t if cont , which must be a continuation, includes a prompt tagged by prompt-
tag , #f otherwise.

729

(continuation? v) Ñ boolean?
v : any/c

Return #t if v is a continuation as produced by call-with-current-continuation,
call-with-composable-continuation, or call-with-escape-continuation, #f
otherwise.

(continuation-prompt-tag? v) Ñ boolean?
v : any/c

Returns #t if v is a continuation prompt tag as produced by default-continuation-
prompt-tag or make-continuation-prompt-tag.

(dynamic-wind pre-thunk
value-thunk
post-thunk) Ñ any

pre-thunk : (-> any)
value-thunk : (-> any)
post-thunk : (-> any)

Applies its three thunk arguments in order. The value of a dynamic-wind expression is
the value returned by value-thunk . The pre-thunk procedure is invoked before calling
value-thunk and post-thunk is invoked after value-thunk returns. The special prop-
erties of dynamic-wind are manifest when control jumps into or out of the value-thunk
application (either due to a prompt abort or a continuation invocation): every time control
jumps into the value-thunk application, pre-thunk is invoked, and every time control
jumps out of value-thunk , post-thunk is invoked. (No special handling is performed
for jumps into or out of the pre-thunk and post-thunk applications.)

When dynamic-wind calls pre-thunk for normal evaluation of value-thunk , the con-
tinuation of the pre-thunk application calls value-thunk (with dynamic-wind’s special
jump handling) and then post-thunk . Similarly, the continuation of the post-thunk ap-
plication returns the value of the preceding value-thunk application to the continuation of
the entire dynamic-wind application.

When pre-thunk is called due to a continuation jump, the continuation of pre-thunk

• jumps to a more deeply nested pre-thunk , if any, or jumps to the destination contin-
uation; then

• continues with the context of the pre-thunk ’s dynamic-wind call.

Normally, the second part of this continuation is never reached, due to a jump in the first
part. However, the second part is relevant because it enables jumps to escape continuations

730

that are contained in the context of the dynamic-wind call. Furthermore, it means that
the continuation marks (see §10.5 “Continuation Marks”) and parameterization (see §11.3.2
“Parameters”) for pre-thunk correspond to those of the dynamic-wind call that installed
pre-thunk . The pre-thunk call, however, is parameterize-breaked to disable breaks
(see also §10.6 “Breaks”).

Similarly, when post-thunk is called due to a continuation jump, the continuation of post-
thunk jumps to a less deeply nested post-thunk , if any, or jumps to a pre-thunk protect-
ing the destination, if any, or jumps to the destination continuation, then continues from the
post-thunk ’s dynamic-wind application. As for pre-thunk , the parameterization of the
original dynamic-wind call is restored for the call, and the call is parameterize-breaked
to disable breaks.

In both cases, the target for a jump is recomputed after each pre-thunk or post-thunk
completes. When a prompt-delimited continuation (see §1.1.12 “Prompts, Delimited Contin-
uations, and Barriers”) is captured in a post-thunk , it might be delimited and instantiated
in such a way that the target of a jump turns out to be different when the continuation is
applied than when the continuation was captured. There may even be no appropriate target,
if a relevant prompt or escape continuation is not in the continuation after the restore; in that
case, the first step in a pre-thunk or post-thunk ’s continuation can raise an exception.

Examples:

> (let ([v (let/ec out
(dynamic-wind
(lambda () (display "in "))
(lambda ()
(display "pre ")
(display (call/cc out))
#f)

(lambda () (display "out "))))])
(when v (v "post ")))

in pre out in post out
> (let/ec k0

(let/ec k1
(dynamic-wind
void
(lambda () (k0 'cancel))
(lambda () (k1 'cancel-canceled)))))

'cancel-canceled
> (let* ([x (make-parameter 0)]

[l null]
[add (lambda (a b)

(set! l (append l (list (cons a b)))))])
(let ([k (parameterize ([x 5])

(dynamic-wind
(lambda () (add 1 (x)))

731

(lambda () (parameterize ([x 6])
(let ([k+e (let/cc k (cons k void))])
(add 2 (x))
((cdr k+e))
(car k+e))))

(lambda () (add 3 (x)))))])
(parameterize ([x 7])
(let/cc esc
(k (cons void esc)))))

l)
'((1 . 5) (2 . 6) (3 . 5) (1 . 5) (2 . 6) (3 . 5))

10.4.1 Additional Control Operators

(require racket/control) package: base

The bindings documented in this section are provided by the racket/control library, not
racket/base or racket.

The racket/control library provides various control operators from the research litera-
ture on higher-order control operators, plus a few extra convenience forms. These control
operators are implemented in terms of call-with-continuation-prompt, call-with-
composable-continuation, etc., and they generally work sensibly together. Many are
redundant; for example, reset and prompt are aliases.

(call/prompt proc [prompt-tag handler] arg ...) Ñ any
proc : procedure?
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)
handler : (or/c procedure? #f) = #f
arg : any/c

The call/prompt binding is an alias for call-with-continuation-prompt.

(abort/cc prompt-tag v ...) Ñ any
prompt-tag : any/c
v : any/c

The abort/cc binding is an alias for abort-current-continuation.

(call/comp proc [prompt-tag]) Ñ any
proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

732

https://pkgs.racket-lang.org/package/base

The call/comp binding is an alias for call-with-composable-continuation.

(abort v ...) Ñ any
v : any/c

Returns the vs to a prompt using the default continuation prompt tag and the default abort
handler.

That is, (abort v ...) is equivalent to

(abort-current-continuation
(default-continuation-prompt-tag)
(lambda () (values v ...)))

Example:

> (prompt
(printf "start here\n")
(printf "answer is „a\n" (+ 2 (abort 3))))

start here
3

(% expr)
(% expr handler-expr)
(% expr handler-expr #:tag tag-expr)
(fcontrol v #:tag prompt-tag) Ñ any

v : any/c
prompt-tag : (default-continuation-prompt-tag)

Sitaram’s operators [Sitaram93].

The essential reduction rules are:

(% val proc) => val
(% E[(fcontrol val)] proc) => (proc val (lambda (x) E[x]))
; where E has no %

When handler-expr is omitted, % is the same as prompt. If prompt-tag is provided, %
uses specific prompt tags like prompt-at.

Examples:

> (% (+ 2 (fcontrol 5))
(lambda (v k)
(k v)))

7

733

> (% (+ 2 (fcontrol 5))
(lambda (v k)

v))
5

(prompt expr ...+)
(control id expr ...+)

Among the earliest operators for higher-order control [Felleisen88a, Felleisen88,
Sitaram90].

The essential reduction rules are:

(prompt val) => val
(prompt E[(control k expr)]) => (prompt ((lambda (k) expr)

(lambda (v) E[v])))
; where E has no prompt

Examples:

> (prompt
(+ 2 (control k (k 5))))

7
> (prompt

(+ 2 (control k 5)))
5
> (prompt

(+ 2 (control k (+ 1 (control k1 (k1 6))))))
7
> (prompt

(+ 2 (control k (+ 1 (control k1 (k 6))))))
8
> (prompt

(+ 2 (control k (control k1 (control k2 (k2 6))))))
6

(prompt-at prompt-tag-expr expr ...+)
(control-at prompt-tag-expr id expr ...+)

Like prompt and control, but using specific prompt tags:

(prompt-at tag val) => val
(prompt-at tag E[(control-at tag k expr)]) => (prompt-at tag

((lambda (k) expr)
(lambda (v) E[v])))

; where E has no prompt-at for tag

734

(reset expr ...+)
(shift id expr ...+)

Danvy and Filinski’s operators [Danvy90].

The essential reduction rules are:

(reset val) => val
(reset E[(shift k expr)]) => (reset ((lambda (k) expr)

(lambda (v) (reset E[v]))))
; where E has no reset

The reset and prompt forms are interchangeable.

(reset-at prompt-tag-expr expr ...+)
(shift-at prompt-tag-expr identifier expr ...+)

Like reset and shift, but using the specified prompt tags.

(prompt0 expr ...+)
(reset0 expr ...+)
(control0 id expr ...+)
(shift0 id expr ...+)

Generalizations of prompt, etc. [Shan04].

The essential reduction rules are:

(prompt0 val) => val
(prompt0 E[(control0 k expr)]) => ((lambda (k) expr)

(lambda (v) E[v]))
(reset0 val) => val
(reset0 E[(shift0 k expr)]) => ((lambda (k) expr)

(lambda (v) (reset0 E[v])))

The reset0 and prompt0 forms are interchangeable. Furthermore, the following reductions
apply:

(prompt E[(control0 k expr)]) => (prompt ((lambda (k) expr)
(lambda (v) E[v])))

(reset E[(shift0 k expr)]) => (reset ((lambda (k) expr)
(lambda (v) (reset0 E[v]))))

(prompt0 E[(control k expr)]) => (prompt0 ((lambda (k) expr)
(lambda (v) E[v])))

(reset0 E[(shift k expr)]) => (reset0 ((lambda (k) expr)
(lambda (v) (reset E[v]))))

735

That is, both the prompt/reset and control/shift sites must agree for 0-like behavior,
otherwise the non-0 behavior applies.

(prompt0-at prompt-tag-expr expr ...+)
(reset0-at prompt-tag-expr expr ...+)
(control0-at prompt-tag-expr id expr ...+)
(shift0-at prompt-tag-expr id expr ...+)

Variants of prompt0, etc., that accept a prompt tag.

(spawn proc) Ñ any
proc : ((any/c . -> . any) . -> . any)

The operators of Hieb and Dybvig [Hieb90].

The essential reduction rules are:

(prompt-at tag obj) => obj
(spawn proc) => (prompt tag (proc (lambda (x) (abort tag x))))
(prompt-at tag E[(abort tag proc)])
=> (proc (lambda (x) (prompt-at tag E[x])))
; where E has no prompt-at for tag

(splitter proc) Ñ any
proc : (((-> any) . -> . any)

((continuation? . -> . any) . -> . any)
. -> . any)

The operator of Queinnec and Serpette [Queinnec91].

The essential reduction rules are:

(splitter proc) => (prompt-at tag
(proc (lambda (thunk)

(abort tag thunk))
(lambda (proc)
(control0-at tag k (proc k)))))

(prompt-at tag E[(abort tag thunk)]) => (thunk)
; where E has no prompt-at for tag

(prompt-at tag E[(control0-at tag k expr)]) => ((lambda (k) expr)
(lambda (x) E[x]))

; where E has no prompt-at for tag

(new-prompt) Ñ any
(set prompt-expr expr ...+)
(cupto prompt-expr id expr ...+)

736

The operators of Gunter et al. [Gunter95].

In this library, new-prompt is an alias for make-continuation-prompt-tag, set is an
alias for prompt0-at, and cupto is an alias for control0-at.

10.5 Continuation Marks

See §1.1.11 “Continuation Frames and Marks” and §1.1.12 “Prompts, Delimited Continua-
tions, and Barriers” for general information about continuation marks.

The list of continuation marks for a key k and a continuation C that extends C0 is defined as
follows:

• If C is an empty continuation, then the mark list is null.

• If C ’s first frame contains a mark m for k , then the mark list for C is (cons m lst),
where lst is the mark list for k in C0.

• If C ’s first frame does not contain a mark keyed by k , then the mark list for C is the
mark list for C0.

The with-continuation-mark form installs a mark on the first frame of the current con-
tinuation (see §3.19 “Continuation Marks: with-continuation-mark”). Procedures such
as current-continuation-marks allow inspection of marks.

Whenever Racket creates an exception record for a primitive exception, it fills the
continuation-marks field with the value of (current-continuation-marks), thus
providing a snapshot of the continuation marks at the time of the exception.

When a continuation procedure returned by call-with-current-continuation or
call-with-composable-continuation is invoked, it restores the captured continuation,
and also restores the marks in the continuation’s frames to the marks that were present when
call-with-current-continuation or call-with-composable-continuation was
invoked.

(continuation-marks cont [prompt-tag]) Ñ continuation-mark-set?
cont : (or/c continuation? thread? #f)
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Returns an opaque value containing the set of continuation marks for all keys in the contin-
uation cont (or the current continuation of cont if it is a thread) up to the prompt tagged
by prompt-tag . If cont is #f, the resulting set of continuation marks is empty. If cont
is an escape continuation (see §1.1.12 “Prompts, Delimited Continuations, and Barriers”),
then the current continuation must extend cont , or the exn:fail:contract exception is

737

raised. If cont was not captured with respect to prompt-tag and does not include a prompt
for prompt-tag , the exn:fail:contract exception is raised. If cont is a dead thread,
the result is an empty set of continuation marks.

(current-continuation-marks [prompt-tag])
Ñ continuation-mark-set?
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Returns an opaque value containing the set of continuation marks for all keys in the current
continuation up to prompt-tag . In other words, it produces the same value as

(call-with-current-continuation
(lambda (k)
(continuation-marks k prompt-tag))

prompt-tag)

(continuation-mark-set->list mark-set
key-v

[prompt-tag]) Ñ list?
mark-set : continuation-mark-set?
key-v : any/c
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Returns a newly-created list containing the marks for key-v in mark-set , which is a set of
marks returned by current-continuation-marks. The result list is truncated at the first
point, if any, where continuation frames were originally separated by a prompt tagged with
prompt-tag .

(make-continuation-mark-key) Ñ continuation-mark-key?
(make-continuation-mark-key sym) Ñ continuation-mark-key?

sym : symbol?

Creates a continuation mark key that is not equal? to the result of any other value (including
prior and future results from make-continuation-mark-key). The continuation mark key
can be used as the key argument for with-continuation-mark or accessor procedures
like continuation-mark-set-first. The mark key can be chaperoned or impersonated,
unlike other values that are used as the mark key.

The optional sym argument, if provided, is used when printing the continuation mark.

(continuation-mark-set->list* mark-set
key-list

[none-v
prompt-tag]) Ñ (listof vector?)

738

mark-set : continuation-mark-set?
key-list : (listof any/c)
none-v : any/c = #f
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Returns a newly-created list containing vectors of marks in mark-set for the keys in key-
list , up to prompt-tag . The length of each vector in the result list is the same as the length
of key-list , and a value in a particular vector position is the value for the corresponding
key in key-list . Values for multiple keys appear in a single vector only when the marks
are for the same continuation frame in mark-set . The none-v argument is used for vector
elements to indicate the lack of a value.
(continuation-mark-set-first mark-set

key-v
[none-v
prompt-tag]) Ñ any

mark-set : (or/c continuation-mark-set? #f)
key-v : any/c
none-v : any/c = #f
prompt-tag : continuation-prompt-tag?

= (default-continuation-prompt-tag)

Returns the first element of the list that would be returned by (continuation-mark-
set->list (or mark-set (current-continuation-marks prompt-tag)) key-v
prompt-tag), or none-v if the result would be the empty list. Typically, this result
can be computed more quickly using continuation-mark-set-first than using
continuation-mark-set->list.
(call-with-immediate-continuation-mark key-v

proc
[default-v]) Ñ any

key-v : any/c
proc : (any/c . -> . any)
default-v : any/c = #f

Calls proc with the value associated with key-v in the first frame of the current continuation
(i.e., a value that would be replaced if the call to call-with-immediate-continuation-
mark were replaced with a with-continuation-mark form using key-v as the key ex-
pression). If no such value exists in the first frame, default-v is passed to proc . The proc
is called in tail position with respect to the call-with-immediate-continuation-mark
call.

This function could be implemented with a combination of with-continuation-mark,
current-continuation-marks, and continuation-mark-set->list*, as shown be-
low, but call-with-immediate-continuation-mark is implemented more efficiently;
it inspects only the first frame of the current continuation.

739

; Equivalent, but inefficient:
(define (call-with-immediate-continuation-mark key-
v proc [default-v #f])
(define private-key (gensym))
(with-continuation-mark
private-key #t
(let ([vecs (continuation-mark-set->list* (current-

continuation-marks)
(list key-v private-

key)
default-v)])

(proc (vector-ref (car vecs) 0)))))

(continuation-mark-key? v) Ñ boolean?
v : any/c

Returns #t if v is a mark key created by make-continuation-mark-key, #f otherwise.

(continuation-mark-set? v) Ñ boolean?
v : any/c

Returns #t if v is a mark set created by continuation-marks or current-
continuation-marks, #f otherwise.

(continuation-mark-set->context mark-set) Ñ list?
mark-set : continuation-mark-set?

Returns a list representing an approximate “stack trace” for mark-set ’s continuation. The
list contains pairs, where the car of each pair contains either #f or a symbol for a procedure
name, and the cdr of each pair contains either #f or a srcloc value for the procedure’s
source location (see §13.1.4 “Counting Positions, Lines, and Columns”); the car and cdr
are never both #f.

Conceptually, the stack-trace list is the result of continuation-mark-set->list with
mark-set and Racket’s private key for procedure-call marks. The implementation may be
different, however, and the results may merely approximate the correct answer. Thus, while
the result may contain useful hints to humans about the context of an expression, it is not
reliable enough for programmatic use.

A stack trace is extracted from an exception and displayed by the default error display
handler (see error-display-handler) for exceptions other than exn:fail:user (see
raise-user-error in §10.2.2 “Raising Exceptions”).

Examples:

740

> (define (extract-current-continuation-marks key)
(continuation-mark-set->list
(current-continuation-marks)
key))

> (with-continuation-mark 'key 'mark
(extract-current-continuation-marks 'key))

'(mark)
> (with-continuation-mark 'key1 'mark1

(with-continuation-mark 'key2 'mark2
(list
(extract-current-continuation-marks 'key1)
(extract-current-continuation-marks 'key2))))

'((mark1) (mark2))
> (with-continuation-mark 'key 'mark1

(with-continuation-mark 'key 'mark2 ; replaces previous mark
(extract-current-continuation-marks 'key)))

'(mark2)
> (with-continuation-mark 'key 'mark1

(list ; continuation extended to evaluate the argument
(with-continuation-mark 'key 'mark2

(extract-current-continuation-marks 'key))))
'((mark2 mark1))
> (let loop ([n 1000])

(if (zero? n)
(extract-current-continuation-marks 'key)
(with-continuation-mark 'key n
(loop (sub1 n)))))

'(1)

10.6 Breaks

A break is an asynchronous exception, usually triggered through an external source con-
trolled by the user, or through the break-thread procedure. For example, the user may type
Ctl-C in a terminal to trigger a break. On some platforms, the Racket process may receive
SIGINT, SIGHUP, or SIGTERM; the latter two correspond to hang-up and terminate breaks
as reflected by exn:break:hang-up and exn:break:terminate, respectively. Multiple
breaks may be collapsed into a single exception, and multiple breaks of different kinds may
be collapsed to a single “strongest” break, where a hang-up break is stronger than an inter-
rupt break, and a terminate break is stronger than a hang-up break.

A break exception can only occur in a thread while breaks are enabled. When a break is de-
tected and enabled, the exn:break (or exn:break:hang-up or exn:break:terminate)
exception is raised in the thread sometime afterward; if breaking is disabled when break-
thread is called, the break is suspended until breaking is again enabled for the thread. While

741

a thread has a suspended break, additional breaks are ignored.

Breaks are enabled through the break-enabled parameter-like procedure and through the
parameterize-break form, which is analogous to parameterize. The break-enabled
procedure does not represent a parameter to be used with parameterize, because changing
the break-enabled state of a thread requires an explicit check for breaks, and this check is
incompatible with the tail evaluation of a parameterize expression’s body.

Certain procedures, such as semaphore-wait/enable-break, enable breaks temporarily
while performing a blocking action. If breaks are enabled for a thread, and if a break is
triggered for the thread but not yet delivered as an exn:break exception, then the break
is guaranteed to be delivered before breaks can be disabled in the thread. The timing of
exn:break exceptions is not guaranteed in any other way.

Before calling a with-handlers predicate or handler, an exception handler, an error dis-
play handler, an error escape handler, an error value conversion handler, or a pre-thunk or
post-thunk for a dynamic-wind, the call is parameterize-breaked to disable breaks.
Furthermore, breaks are disabled during the transitions among handlers related to excep-
tions, during the transitions between pre-thunks and post-thunks for dynamic-wind,
and during other transitions for a continuation jump. For example, if breaks are disabled
when a continuation is invoked, and if breaks are also disabled in the target continuation,
then breaks will remain disabled from the time of the invocation until the target continuation
executes unless a relevant dynamic-wind pre-thunk or post-thunk explicitly enables
breaks.

If a break is triggered for a thread that is blocked on a nested thread (see call-in-nested-
thread), and if breaks are enabled in the blocked thread, the break is implicitly handled by
transferring it to the nested thread.

When breaks are enabled, they can occur at any point within execution, which makes certain
implementation tasks subtle. For example, assuming breaks are enabled when the following
code is executed,

(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait s))

then it is not the case that a #<void> result means the semaphore was decremented or a
break was received, exclusively. It is possible that both occur: the break may occur af-
ter the semaphore is successfully decremented but before a #<void> result is returned by
semaphore-wait. A break exception will never damage a semaphore, or any other built-
in construct, but many built-in procedures (including semaphore-wait) contain internal
sub-expressions that can be interrupted by a break.

In general, it is impossible using only semaphore-wait to implement the guarantee that
either the semaphore is decremented or an exception is raised, but not both. Racket therefore
supplies semaphore-wait/enable-break (see §11.2.3 “Semaphores”), which does permit
the implementation of such an exclusive guarantee:

742

(parameterize-break #f
(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait/enable-break s)))

In the above expression, a break can occur at any point until breaks are disabled, in which
case a break exception is propagated to the enclosing exception handler. Otherwise, the
break can only occur within semaphore-wait/enable-break, which guarantees that if a
break exception is raised, the semaphore will not have been decremented.

To allow similar implementation patterns over blocking port operations, Racket provides
read-bytes-avail!/enable-break, write-bytes-avail/enable-break, and other
procedures.

(break-enabled) Ñ boolean?
(break-enabled on?) Ñ void?

on? : any/c

Gets or sets the break enabled state of the current thread. If on? is not supplied, the result
is #t if breaks are currently enabled, #f otherwise. If on? is supplied as #f, breaks are
disabled, and if on? is a true value, breaks are enabled.

(parameterize-break boolean-expr body ...+)

Evaluates boolean-expr to determine whether breaks are initially enabled while evaluating
the bodys in sequence. The result of the parameterize-break expression is the result of
the last expr.

As with parameterize, a fresh thread cell is allocated to hold the break-enabled state of
the continuation, and calls to break-enabled within the continuation access or modify the
new cell. Unlike a parameter, a mutation to the break setting via break-enabled is not
inherited by new threads (i.e., the thread cell is not preserved).

(current-break-parameterization) Ñ break-parameterization?

Analogous to (current-parameterization) (see §11.3.2 “Parameters”); it returns a
break parameterization (effectively, a thread cell) that holds the current continuation’s break-
enable state.
(call-with-break-parameterization break-param

thunk) Ñ any
break-param : break-parameterization?
thunk : (-> any)

Analogous to (call-with-parameterization parameterization thunk) (see
§11.3.2 “Parameters”), calls thunk in a continuation whose break-enabled state is in
break-param . The thunk is not called in tail position with respect to the call-with-
break-parameterization call.

743

(break-parameterization? v) Ñ boolean?
v : any/c

Returns #t if v is a break parameterization as produced by current-break-
parameterization, #f otherwise.

Added in version 6.1.1.8 of package base.

10.7 Exiting

(exit [v]) Ñ any
v : any/c = #t

Passes v to the current exit handler. If the exit handler does not escape or terminate the
thread, #<void> is returned.

(exit-handler) Ñ (any/c . -> . any)
(exit-handler proc) Ñ void?

proc : (any/c . -> . any)

A parameter that determines the current exit handler. The exit handler is called by exit.

The default exit handler in the Racket executable takes any argument, calls plumber-
flush-all on the original plumber, and shuts down the OS-level Racket process. The
argument is used as the OS-level exit code if it is an exact integer between 1 and 255 (which
normally means “failure”); otherwise, the exit code is 0, (which normally means “success”).

(executable-yield-handler) Ñ (byte? . -> . any)
(executable-yield-handler proc) Ñ void?

proc : (byte? . -> . any)

A parameter that determines a procedure to be called as the Racket process is about to exit
normally. The procedure associated with this parameter is not called when exit (or, more
precisely, the default exit handler) is used to exit early. The argument to the handler is the
status code that is returned to the system on exit. The default executable-yield handler simply
returns #<void>.

The scheme/gui/base library sets this parameter to wait until all frames are closed, timers
stopped, and queued events handled in the main eventspace. See scheme/gui/base for
more information.

744

11 Concurrency and Parallelism

Racket supports multiple threads of control within a program, thread-local storage, some
primitive synchronization mechanisms, and a framework for composing synchronization ab-
stractions. In addition, the racket/future and racket/place libraries provide support
for parallelism to improve performance.

11.1 Threads
§18 “Concurrency
and
Synchronization” in
The Racket Guide
introduces threads.

See §1.1.13 “Threads” for basic information on the Racket thread model. See also §11.4
“Futures”.

When a thread is created, it is placed into the management of the current custodian and
added to the current thread group. A thread can have any number of custodian managers
added through thread-resume.

A thread that has not terminated can be garbage collected (see §1.1.7 “Garbage Collec-
tion”) if it is unreachable and suspended or if it is unreachable and blocked on only un-
reachable events through functions such as semaphore-wait, semaphore-wait/enable-
break, channel-put, channel-get, sync, sync/enable-break, or thread-wait. Be-
ware, however, of a limitation on place-channel blocking; see the caveat in §11.5 “Places”. In GRacket, a

handler thread for
an eventspace is
blocked on an
internal semaphore
when its event
queue is empty.
Thus, the handler
thread is collectible
when the
eventspace is
unreachable and
contains no visible
windows or running
timers.

A thread can be used as a synchronizable event (see §11.2.1 “Events”). A thread is ready for
synchronization when thread-wait would not block; the synchronization result of a thread
is the thread itself.

All constant-time procedures and operations provided by Racket are thread-safe because
they are atomic. For example, set! assigns to a variable as an atomic action with respect
to all threads, so that no thread can see a “half-assigned” variable. Similarly, vector-set!
assigns to a vector atomically. The hash-set! procedure is not atomic, but the table is
protected by a lock; see §4.13 “Hash Tables” for more information. Port operations are
generally not atomic, but they are thread-safe in the sense that a byte consumed by one
thread from an input port will not be returned also to another thread, and procedures like
port-commit-peeked and write-bytes-avail offer specific concurrency guarantees.

11.1.1 Creating Threads

(thread thunk) Ñ thread?
thunk : (-> any)

Calls thunk with no arguments in a new thread of control. The thread procedure returns
immediately with a thread descriptor value. When the invocation of thunk returns, the
thread created to invoke thunk terminates.

745

(thread? v) Ñ thread?
v : any/c

Returns #t if v is a thread descriptor, #f otherwise.

(current-thread) Ñ thread?

Returns the thread descriptor for the currently executing thread.

(thread/suspend-to-kill thunk) Ñ thread?
thunk : (-> any)

Like thread, except that “killing” the thread through kill-thread or custodian-
shutdown-all merely suspends the thread instead of terminating it.

(call-in-nested-thread thunk [cust]) Ñ any
thunk : (-> any)
cust : custodian? = (current-custodian)

Creates a nested thread managed by cust to execute thunk . (The nested thread’s current
custodian is inherited from the creating thread, independent of the cust argument.) The
current thread blocks until thunk returns, and the result of the call-in-nested-thread
call is the result returned by thunk .

The nested thread’s exception handler is initialized to a procedure that jumps to the be-
ginning of the thread and transfers the exception to the original thread. The handler thus
terminates the nested thread and re-raises the exception in the original thread.

If the thread created by call-in-nested-thread dies before thunk returns, the
exn:fail exception is raised in the original thread. If the original thread is killed before
thunk returns, a break is queued for the nested thread.

If a break is queued for the original thread (with break-thread) while the nested thread
is running, the break is redirected to the nested thread. If a break is already queued on the
original thread when the nested thread is created, the break is moved to the nested thread. If
a break remains queued on the nested thread when it completes, the break is moved to the
original thread.

If the thread created by call-in-nested-thread dies while itself in a call to call-in-
nested-thread, the outer call to call-in-nested-thread waits for the innermost nested
thread to complete, and any breaks pending on the inner threads are moved to the original
thread.

11.1.2 Suspending, Resuming, and Killing Threads

746

(thread-suspend thd) Ñ void?
thd : thread?

Immediately suspends the execution of thd if it is running. If the thread has terminated
or is already suspended, thread-suspend has no effect. The thread remains suspended
(i.e., it does not execute) until it is resumed with thread-resume. If the current custodian
does not solely manage thd (i.e., some custodian of thd is not the current custodian or a
subordinate), the exn:fail:contract exception is raised, and the thread is not suspended.

(thread-resume thd [benefactor]) Ñ void?
thd : thread?
benefactor : (or/c thread? custodian? #f) = #f

Resumes the execution of thd if it is suspended and has at least one custodian (possibly
added through benefactor , as described below). If the thread has terminated, or if the
thread is already running and benefactor is not supplied, or if the thread has no custo-
dian and benefactor is not supplied, then thread-resume has no effect. Otherwise, if
benefactor is supplied, it triggers up to three additional actions:

• If benefactor is a thread, whenever it is resumed from a suspended state in the
future, then thd is also resumed. (Resuming thd may trigger the resumption of other
threads that were previously attached to thd through thread-resume.)

• New custodians may be added to thd ’s set of managers. If benefactor is a thread,
then all of the thread’s custodians are added to thd . Otherwise, benefactor is a
custodian, and it is added to thd (unless the custodian is already shut down). If
thd becomes managed by both a custodian and one or more of its subordinates, the
redundant subordinates are removed from thd . If thd is suspended and a custodian
is added, then thd is resumed only after the addition.

• If benefactor is a thread, whenever it receives a new managing custodian in the
future, then thd also receives the custodian. (Adding custodians to thd may trigger
adding the custodians to other threads that were previously attached to thd through
thread-resume.)

(kill-thread thd) Ñ void?
thd : thread?

Terminates the specified thread immediately, or suspends the thread if thd was created with
thread/suspend-to-kill. Terminating the main thread exits the application. If thd has
already terminated, kill-thread does nothing. If the current custodian does not manage
thd (and none of its subordinates manages thd), the exn:fail:contract exception is
raised, and the thread is not killed or suspended.

Unless otherwise noted, procedures provided by Racket (and GRacket) are kill-safe and
suspend-safe; that is, killing or suspending a thread never interferes with the application of

747

procedures in other threads. For example, if a thread is killed while extracting a character
from an input port, the character is either completely consumed or not consumed, and other
threads can safely use the port.

(break-thread thd [kind]) Ñ void?
thd : thread?
kind : (or/c #f 'hang-up 'terminate) = #f

Registers a break with the specified thread, where kind optionally indicates the kind of
break to register. If breaking is disabled in thd , the break will be ignored until breaks are
re-enabled (see §10.6 “Breaks”).

(sleep [secs]) Ñ void?
secs : (>=/c 0) = 0

Causes the current thread to sleep until at least secs seconds have passed after it starts
sleeping. A zero value for secs simply acts as a hint to allow other threads to execute. The
value of secs can be a non-integer to request a sleep duration to any precision; the precision
of the actual sleep time is unspecified.

(thread-running? thd) Ñ any
thd : thread?

Returns #t if thd has not terminated and is not suspended, #f otherwise.

(thread-dead? thd) Ñ any
thd : thread?

Returns #t if thd has terminated, #f otherwise.

11.1.3 Synchronizing Thread State

(thread-wait thd) Ñ void?
thd : thread?

Blocks execution of the current thread until thd has terminated. Note that (thread-wait
(current-thread)) deadlocks the current thread, but a break can end the deadlock (if
breaking is enabled; see §10.6 “Breaks”).

(thread-dead-evt thd) Ñ evt?
thd : thread?

748

Returns a synchronizable event (see §11.2.1 “Events”) that is ready for synchronization if
and only if thd has terminated. Unlike using thd directly, however, a reference to the event
does not prevent thd from being garbage collected (see §1.1.7 “Garbage Collection”). For a
given thd , thread-dead-evt always returns the same (i.e., eq?) result. The synchroniza-
tion result of a thread-dead event is the thread-dead event itself.

(thread-resume-evt thd) Ñ evt?
thd : thread?

Returns a synchronizable event (see §11.2.1 “Events”) that becomes ready for synchroniza-
tion when thd is running. (If thd has terminated, the event never becomes ready.) If thd
runs and is then suspended after a call to thread-resume-evt, the result event remains
ready; after each suspend of thd a fresh event is generated to be returned by thread-
resume-evt. The result of the event is thd , but if thd is never resumed, then reference to
the event does not prevent thd from being garbage collected (see §1.1.7 “Garbage Collec-
tion”).

(thread-suspend-evt thd) Ñ evt?
thd : thread?

Returns a synchronizable event (see §11.2.1 “Events”) that becomes ready for synchroniza-
tion when thd is suspended. (If thd has terminated, the event will never unblock.) If thd is
suspended and then resumes after a call to thread-suspend-evt, the result event remains
ready; after each resume of thd created a fresh event to be returned by thread-suspend-
evt. The result of the event is thd , but if thd is never resumed, then reference to the event
does not prevent thd from being garbage collected (see §1.1.7 “Garbage Collection”).

11.1.4 Thread Mailboxes

Each thread has a mailbox through which it can receive arbitrary messages. In other words,
each thread has a built-in asynchronous channel. See also §11.2.4

“Buffered
Asynchronous
Channels”.

(thread-send thd v [fail-thunk]) Ñ any
thd : thread?
v : any/c
fail-thunk : (or/c (-> any) #f)

= (lambda () (raise-mismatch-error))

Queues v as a message to thd without blocking. If the message is queued, the result is
#<void>. If thd stops running—as in thread-running?—before the message is queued,
then fail-thunk is called (through a tail call) if it is a procedure to produce the result, or
#f is returned if fail-thunk is #f.

(thread-receive) Ñ any/c

749

Receives and dequeues a message queued for the current thread, if any. If no message is
available, thread-receive blocks until one is available.

(thread-try-receive) Ñ any/c

Receives and dequeues a message queued for the current thread, if any, or returns #f imme-
diately if no message is available.

(thread-receive-evt) Ñ evt?

Returns a constant synchronizable event (see §11.2.1 “Events”) that becomes ready for syn-
chronization when the synchronizing thread has a message to receive. The synchronization
result of a thread-receive event is the thread-receive event itself.

(thread-rewind-receive lst) Ñ void?
lst : list?

Pushes the elements of lst back onto the front of the current thread’s queue. The elements
are pushed one by one, so that the first available message is the last element of lst .

11.2 Synchronization

Racket’s synchronization toolbox spans four layers:

• synchronizable events — a general framework for synchronization;

• channels — a primitive that can be used, in principle, to build most other kinds of
synchronizable events (except the ones that compose events); and

• semaphores — a simple and especially cheap primitive for synchronization.

• future semaphores — a simple synchronization primitive for use with futures.

11.2.1 Events

A synchronizable event (or just event for short) works with the sync procedure to coordinate
synchronization among threads. Certain kinds of objects double as events, including ports
and threads. Other kinds of objects exist only for their use as events.

At any point in time, an event is either ready for synchronization, or it is not; depending on
the kind of event and how it is used by other threads, an event can switch from not ready to
ready (or back), at any time. If a thread synchronizes on an event when it is ready, then the
event produces a particular synchronization result.

750

Synchronizing an event may affect the state of the event. For example, when synchronizing
a semaphore, then the semaphore’s internal count is decremented, just as with semaphore-
wait. For most kinds of events, however (such as a port), synchronizing does not modify
the event’s state.

Racket values that act as synchronizable events include asynchronous channels, channels,
custodian boxes, log receivers, place channels, ports, semaphores, subprocesses, TCP listen-
ers, threads, and will executors. Libraries can define new synchronizable events, especially
though prop:evt.

(evt? v) Ñ boolean?
v : any/c

Returns #t if v is a synchronizable event, #f otherwise.

Examples:

> (evt? never-evt)
#t
> (evt? (make-channel))
#t
> (evt? 5)
#f

(sync evt ...) Ñ any
evt : evt?

Blocks as long as none of the synchronizable events evts are ready, as defined above.

When at least one evt is ready, its synchronization result (often evt itself) is returned.
If multiple evts are ready, one of the evts is chosen pseudo-randomly for the result; the
current-evt-pseudo-random-generator parameter sets the random-number generator
that controls this choice.

Examples:

> (define ch (make-channel))
> (thread (λ () (displayln (sync ch))))
#<thread>
> (channel-put ch 'hellooooo)
hellooooo

Changed in version 6.1.0.3 of package base: Allow 0 arguments instead of 1 or more.

(sync/timeout timeout evt ...) Ñ any
timeout : (or/c #f (and/c real? (not/c negative?)) (-> any))
evt : evt?

751

Like sync if timeout is #f. If timeout is a real number, then the result is #f if timeout
seconds pass without a successful synchronization. If timeout is a procedure, then it is
called in tail position if polling the evts discovers no ready events.

A zero value for timeout is equivalent to (lambda () #f). In either case, each evt is
checked at least once before returning #f or calling timeout .

See also alarm-evt for an alternative timeout mechanism.

Examples:

; times out before waking up
> (sync/timeout

0.5
(thread (λ () (sleep 1) (displayln "woke up!"))))

#f
> (sync/timeout

(λ () (displayln "no ready events"))
never-evt)

no ready events

Changed in version 6.1.0.3 of package base: Allow 1 argument instead of 2 or more.

(sync/enable-break evt ...) Ñ any
evt : evt?

Like sync, but breaking is enabled (see §10.6 “Breaks”) while waiting on the evts. If break-
ing is disabled when sync/enable-break is called, then either all evts remain unchosen
or the exn:break exception is raised, but not both.

(sync/timeout/enable-break timeout evt ...) Ñ any
timeout : (or/c #f (and/c real? (not/c negative?)) (-> any))
evt : evt?

Like sync/enable-break, but with a timeout as for sync/timeout.

(choice-evt evt ...) Ñ evt?
evt : evt?

Creates and returns a single event that combines the evts. Supplying the result to sync is
the same as supplying each evt to the same call.

That is, an event returned by choice-evt is ready for synchronization when one or more
of the evts supplied to choice-evt are ready for synchronization. If the choice event is
chosen, one of its ready evts is chosen pseudo-randomly, and the synchronization result is
the chosen evt ’s synchronization result.

752

Examples:

> (define ch1 (make-channel))
> (define ch2 (make-channel))
> (define either-channel (choice-evt ch1 ch2))
> (thread (λ () (displayln (sync either-channel))))
#<thread>
> (channel-put

(if (> (random) 0.5) ch1 ch2)
'tuturuu)

tuturuu

(wrap-evt evt wrap) Ñ evt?
evt : evt?
wrap : (any/c -> . any)

Creates an event that is ready for synchronization when evt is ready for synchronization, but
whose synchronization result is determined by applying wrap to the synchronization result
of evt . The number of arguments accepted by wrap must match the number of values for
the synchronization result of evt .

The call to wrap is parameterize-breaked to disable breaks initially.

Examples:

> (define ch (make-channel))
> (define evt (wrap-evt ch (λ (v) (format "you've got mail:
„a" v))))
> (thread (λ () (displayln (sync evt))))
#<thread>
> (channel-put ch "Dear Alice ...")
you've got mail: Dear Alice ...

(handle-evt evt handle) Ñ handle-evt?
evt : evt?
handle : (any/c -> . any)

Like wrap-evt, except that handle is called in tail position with respect to the synchroniza-
tion request—and without breaks explicitly disabled—when it is not wrapped by wrap-evt,
chaperone-evt, or another handle-evt.

Examples:

> (define msg-ch (make-channel))
> (define exit-ch (make-channel))

753

> (thread
(λ ()
(let loop ([val 0])
(printf "val = „a„n" val)
(sync (handle-evt

msg-ch
(λ (val) (loop val)))
(handle-evt
exit-ch
(λ (val) (displayln val)))))))

val = 0
#<thread>
> (channel-put msg-ch 5)
val = 5
> (channel-put msg-ch 7)
val = 7
> (channel-put exit-ch 'done)
done

(guard-evt maker) Ñ evt?
maker : (-> (or/c evt? any/c))

Creates a value that behaves as an event, but that is actually an event maker.

An event guard returned by guard-evt generates an event when guard is used with sync
(or whenever it is part of a choice event used with sync, etc.), where the generated event is
the result of calling maker . The maker procedure may be called by sync at most once for a
given call to sync, but maker may not be called if a ready event is chosen before guard is
even considered.

If maker returns a non-event, then maker ’s result is replaced with an event that is ready for
synchronization and whose synchronization result is guard .

(nack-guard-evt maker) Ñ evt?
maker : (evt? . -> . (or/c evt? any/c))

Like guard-evt, but when maker is called, it is given a NACK (“negative acknowledg-
ment”) event. After starting the call to maker , if the event from maker is not ultimately
chosen as the ready event, then the NACK event supplied to maker becomes ready for syn-
chronization with a #<void> value.

The NACK event becomes ready for synchronization when the event is abandoned when
either some other event is chosen, the synchronizing thread is dead, or control escapes from
the call to sync (even if nack-guard ’s maker has not yet returned a value). If the event re-
turned by maker is chosen, then the NACK event never becomes ready for synchronization.

754

(poll-guard-evt maker) Ñ evt?
maker : (boolean? . -> . (or/c evt? any/c))

Like guard-evt, but when maker is called, it is provided a boolean value that indicates
whether the event will be used for a poll, #t, or for a blocking synchronization, #f.

If #t is supplied to maker , if breaks are disabled, if the polling thread is not terminated, and
if polling the resulting event produces a synchronization result, then the event will certainly
be chosen for its result.

(replace-evt evt maker) Ñ evt?
evt : evt?
maker : (any/c -> . (or/c evt? any/c))

Like guard-evt, but maker is called only after evt becomes ready for synchronization,
and the synchronization result of evt is passed to maker .

The attempt to synchronize on evt proceeds concurrently as the attempt to synchronize
on the result guard from replace-evt; despite that concurrency, if maker is called, it is
called in the thread that is synchronizing on guard . Synchronization can succeed for both
evt and another synchronized with guard at the same time; the single-choice guarantee
of synchronization applies only to the result of maker and other events synchronized with
guard .

If maker returns a non-event, then maker ’s result is replaced with an event that is ready for
synchronization and whose synchronization result is guard .

Added in version 6.1.0.3 of package base.

always-evt : evt?

A constant event that is always ready for synchronization, with itself as its synchronization
result.

Example:

> (sync always-evt)
#<always-evt>

never-evt : evt?

A constant event that is never ready for synchronization.

Example:

755

> (sync/timeout 0.1 never-evt)
#f

(system-idle-evt) Ñ evt?

Returns an event that is ready for synchronization when the system is otherwise idle: if the
result event were replaced by never-evt, no thread in the system would be available to run.
In other words, all threads must be suspended or blocked on events with timeouts that have
not yet expired. The system-idle event’s synchronization result is #<void>. The result of
the system-idle-evt procedure is always the same event.

Examples:

> (define th (thread (λ () (let loop () (loop)))))
> (sync/timeout 0.1 (system-idle-evt))
#f
> (kill-thread th)
> (sync (system-idle-evt))

(alarm-evt msecs) Ñ evt?
msecs : real?

Returns a synchronizable event that is not ready for synchronization when (current-
inexact-milliseconds) would return a value that is less than msecs , and it is ready
for synchronization when (current-inexact-milliseconds) would return a value that
is more than msecs . The synchronization result of a alarm event is the alarm event itself.

Examples:

> (define alarm (alarm-evt (+ (current-inexact-
milliseconds) 100)))
> (sync alarm)
#<alarm-evt>

(handle-evt? evt) Ñ boolean?
evt : evt?

Returns #t if evt was created by handle-evt or by choice-evt applied to another event
for which handle-evt? produces #t. For any other event, handle-evt? produces #f.

Examples:

> (handle-evt? never-evt)
#f
> (handle-evt? (handle-evt always-evt values))
#t

756

prop:evt : struct-type-property?

A structure type property that identifies structure types whose instances can serve as syn-
chronizable events. The property value can be any of the following:

• An event evt : In this case, using the structure as an event is equivalent to using evt .

• A procedure proc of one argument: In this case, the structure is similar to an event
generated by guard-evt, except that the would-be guard procedure proc receives
the structure as an argument, instead of no arguments; also, a non-event result from
proc is replaced with an event that is already ready for synchronization and whose
synchronization result is the structure.

• An exact, non-negative integer between 0 (inclusive) and the number of non-automatic
fields in the structure type (exclusive, not counting supertype fields): The integer iden-
tifies a field in the structure, and the field must be designated as immutable. If the field
contains an object or an event-generating procedure of one argument, the event or
procedure is used as above. Otherwise, the structure acts as an event that is never
ready.

For working with
foreign libraries, a
prop:evt value
can also be a result
of
unsafe-poller,
although that
possibility is
omitted from the
safe contract of
prop:evt.

Instances of a structure type with the prop:input-port or prop:output-port property
are also synchronizable events by virtue of being a port. If the structure type has more
than one of prop:evt, prop:input-port, and prop:output-port, then the prop:evt
value (if any) takes precedence for determining the instance’s behavior as an event, and the
prop:input-port property takes precedence over prop:output-port for synchroniza-
tion.

Examples:

> (define-struct wt (base val)
#:property prop:evt (struct-field-index base))

> (define sema (make-semaphore))
> (sync/timeout 0 (make-wt sema #f))
#f
> (semaphore-post sema)
> (sync/timeout 0 (make-wt sema #f))
#<semaphore>
> (semaphore-post sema)
> (sync/timeout 0 (make-wt (lambda (self) (wt-val self)) sema))
#<semaphore>
> (semaphore-post sema)
> (define my-wt (make-wt (lambda (self) (wrap-evt

(wt-val self)
(lambda (x) self)))

sema))

757

> (sync/timeout 0 my-wt)
#<wt>
> (sync/timeout 0 my-wt)
#f

(current-evt-pseudo-random-generator)
Ñ pseudo-random-generator?

(current-evt-pseudo-random-generator generator) Ñ void?
generator : pseudo-random-generator?

A parameter that determines the pseudo-random number generator used by sync for events
created by choice-evt.

11.2.2 Channels

A channel both synchronizes a pair of threads and passes a value from one to the other.
Channels are synchronous; both the sender and the receiver must block until the (atomic)
transaction is complete. Multiple senders and receivers can access a channel at once, but a
single sender and receiver is selected for each transaction.

Channel synchronization is fair: if a thread is blocked on a channel and transaction oppor-
tunities for the channel occur infinitely often, then the thread eventually participates in a
transaction.

In addition to its use with channel-specific procedures, a channel can be used as a synchroniz-
able event (see §11.2.1 “Events”). A channel is ready for synchronization when channel-
get would not block; the channel’s synchronization result is the same as the channel-get
result.

For buffered asynchronous channels, see §11.2.4 “Buffered Asynchronous Channels”.

(channel? v) Ñ boolean?
v : any/c

Returns #t if v is a channel, #f otherwise.

(make-channel) Ñ channel?

Creates and returns a new channel. The channel can be used with channel-get, with
channel-try-get, or as a synchronizable event (see §11.2.1 “Events”) to receive a value
through the channel. The channel can be used with channel-put or through the result of
channel-put-evt to send a value through the channel.

(channel-get ch) Ñ any
ch : channel?

758

Blocks until a sender is ready to provide a value through ch . The result is the sent value.

(channel-try-get ch) Ñ any
ch : channel?

Receives and returns a value from ch if a sender is immediately ready, otherwise returns #f.

(channel-put ch v) Ñ void?
ch : channel?
v : any/c

Blocks until a receiver is ready to accept the value v through ch .

(channel-put-evt ch v) Ñ channel-put-evt?
ch : channel?
v : any/c

Returns a fresh synchronizable event for use with sync. The event is ready for synchroniza-
tion when (channel-put ch v) would not block, and the event’s synchronization result
is the event itself.

(channel-put-evt? v) Ñ boolean?
v : any/c

Returns #t if v is a channel-put event produced by channel-put-evt, #f otherwise.

11.2.3 Semaphores

A semaphore has an internal counter; when this counter is zero, the semaphore can block a
thread’s execution (through semaphore-wait) until another thread increments the counter
(using semaphore-post). The maximum value for a semaphore’s internal counter is
platform-specific, but always at least 10000.

A semaphore’s counter is updated in a single-threaded manner, so that semaphores can be
used for reliable synchronization. Semaphore waiting is fair: if a thread is blocked on a
semaphore and the semaphore’s internal value is non-zero infinitely often, then the thread is
eventually unblocked.

In addition to its use with semaphore-specific procedures, a semaphore can be used as a
synchronizable event (see §11.2.1 “Events”). A semaphore is ready for synchronization
when semaphore-wait would not block; the synchronization result of a semaphore is the
semaphore itself.

(semaphore? v) Ñ boolean?
v : any/c

759

Returns #t if v is a semaphore, #f otherwise.

(make-semaphore [init]) Ñ semaphore?
init : exact-nonnegative-integer? = 0

Creates and returns a new semaphore with the counter initially set to init . If init is larger
than a semaphore’s maximum internal counter value, the exn:fail exception is raised.

(semaphore-post sema) Ñ void?
sema : semaphore?

Increments the semaphore’s internal counter and returns #<void>. If the semaphore’s inter-
nal counter has already reached its maximum value, the exn:fail exception is raised.

(semaphore-wait sema) Ñ void?
sema : semaphore?

Blocks until the internal counter for semaphore sema is non-zero. When the counter is
non-zero, it is decremented and semaphore-wait returns #<void>.

(semaphore-try-wait? sema) Ñ boolean?
sema : semaphore?

Like semaphore-wait, but semaphore-try-wait? never blocks execution. If sema ’s in-
ternal counter is zero, semaphore-try-wait? returns #f immediately without decrement-
ing the counter. If sema ’s counter is positive, it is decremented and #t is returned.

(semaphore-wait/enable-break sema) Ñ void?
sema : semaphore?

Like semaphore-wait, but breaking is enabled (see §10.6 “Breaks”) while waiting on
sema . If breaking is disabled when semaphore-wait/enable-break is called, then ei-
ther the semaphore’s counter is decremented or the exn:break exception is raised, but not
both.

(semaphore-peek-evt sema) Ñ semaphore-peek-evt?
sema : semaphore?

Creates and returns a new synchronizable event (for use with sync, for example) that is
ready for synchronization when sema is ready, but synchronizing the event does not decre-
ment sema ’s internal count. The synchronization result of a semaphore-peek event is the
semaphore-peek event itself.

(semaphore-peek-evt? v) Ñ boolean?
v : any/c

760

Returns #t if v is a semaphore wrapper produced by semaphore-peek-evt, #f otherwise.

(call-with-semaphore sema
proc

[try-fail-thunk]
arg ...) Ñ any

sema : semaphore?
proc : procedure?
try-fail-thunk : (or/c (-> any) #f) = #f
arg : any/c

Waits on sema using semaphore-wait, calls proc with all args, and then posts to sema .
A continuation barrier blocks full continuation jumps into or out of proc (see §1.1.12
“Prompts, Delimited Continuations, and Barriers”), but escape jumps are allowed, and sema
is posted on escape. If try-fail-thunk is provided and is not #f, then semaphore-try-
wait? is called on sema instead of semaphore-wait, and try-fail-thunk is called if
the wait fails.
(call-with-semaphore/enable-break sema

proc
[try-fail-thunk]
arg ...) Ñ any

sema : semaphore?
proc : procedure?
try-fail-thunk : (or/c (-> any) #f) = #f
arg : any/c

Like call-with-semaphore, except that semaphore-wait/enable-break is used with
sema in non-try mode. When try-fail-thunk is provided and not #f, then breaks are
enabled around the use of semaphore-try-wait? on sema .

11.2.4 Buffered Asynchronous Channels

(require racket/async-channel) package: base

The bindings documented in this section are provided by the racket/async-channel li-
brary, not racket/base or racket.

Creating and Using Asynchronous Channels See also §11.1.4
“Thread
Mailboxes”.An asynchronous channel is like a channel, but it buffers values so that a send operation does

not wait on a receive operation.

In addition to its use with procedures that are specific to asynchronous channels, an asyn-
chronous channel can be used as a synchronizable event (see §11.2.1 “Events”). An asyn-
chronous channel is ready for synchronization when async-channel-get would not block;

761

https://pkgs.racket-lang.org/package/base

the asynchronous channel’s synchronization result is the same as the async-channel-get
result.

(async-channel? v) Ñ boolean?
v : any/c

Returns #t if v is an asynchronous channel, #f otherwise.

(make-async-channel [limit]) Ñ async-channel?
limit : (or/c exact-positive-integer? #f) = #f

Returns an asynchronous channel with a buffer limit of limit items. A get operation blocks
when the channel is empty, and a put operation blocks when the channel has limit items
already. If limit is #f, the channel buffer has no limit (so a put never blocks).

(async-channel-get ach) Ñ any/c
ach : async-channel?

Blocks until at least one value is available in ach , and then returns the first of the values that
were put into async-channel.

(async-channel-try-get ach) Ñ any/c
ach : async-channel?

If at least one value is immediately available in ach , returns the first of the values that were
put into ach . If async-channel is empty, the result is #f.

(async-channel-put ach v) Ñ void?
ach : async-channel?
v : any/c

Puts v into ach , blocking if ach ’s buffer is full until space is available.

(async-channel-put-evt ach v) Ñ evt?
ach : async-channel?
v : any/c

Returns a synchronizable event that is ready for synchronization when (async-channel-
put ach v) would return a value (i.e., when the channel holds fewer values already than
its limit); the synchronization result of a asychronous channel-put event is the asychronous
channel-put event itself.

Examples:

762

(define (server input-channel output-channel)
(thread (lambda ()

(define (get)
(async-channel-get input-channel))

(define (put x)
(async-channel-put output-channel x))

(define (do-large-computation)
(sqrt 9))

(let loop ([data (get)])
(case data
[(quit) (void)]
[(add) (begin

(put (+ 1 (get)))
(loop (get)))]

[(long) (begin
(put (do-large-computation))
(loop (get)))])))))

(define to-server (make-async-channel))
(define from-server (make-async-channel))

> (server to-server from-server)
#<thread>
> (async-channel? to-server)
#t
> (printf "Adding 1 to 4\n")
Adding 1 to 4
> (async-channel-put to-server 'add)
> (async-channel-put to-server 4)
> (printf "Result is „a\n" (async-channel-get from-server))
Result is 5
> (printf "Ask server to do a long computation\n")
Ask server to do a long computation
> (async-channel-put to-server 'long)
> (printf "I can do other stuff\n")
I can do other stuff
> (printf "Ok, computation from server is „a\n"

(async-channel-get from-server))
Ok, computation from server is 3
> (async-channel-put to-server 'quit)

Contracts and Impersonators on Asynchronous Channels
(async-channel/c c) Ñ contract?

c : contract?

Returns a contract that recognizes asynchronous channels. Values put into or retrieved from

763

the channel must match c .

If the c argument is a flat contract or a chaperone contract, then the result will be a chaperone
contract. Otherwise, the result will be an impersonator contract.

When an async-channel/c contract is applied to an asynchronous channel, the result is
not eq? to the input. The result will be either a chaperone or impersonator of the input
depending on the type of contract.

(impersonate-async-channel channel
get-proc
put-proc
prop
prop-val ...
...)

Ñ (and/c async-channel? impersonator?)
channel : async-channel?
get-proc : (any/c . -> . any/c)
put-proc : (any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Returns an impersonator of channel , which redirects the async-channel-get and
async-channel-put operations.

The get-proc must accept the value that async-channel-get produces on channel ; it
must produce a replacement value, which is the result of the get operation on the imperson-
ator.

The put-proc must accept the value passed to async-channel-put called on channel ;
it must produce a replacement value, which is the value passed to the put procedure called
on the original channel.

The get-proc and put-proc procedures are called for all operations that get or put values
from the channel, not just async-channel-get and async-channel-put.

Pairs of prop and prop-val (the number of arguments to impersonate-async-channel
must be odd) add impersonator properties or override impersonator property values of chan-
nel .

(chaperone-async-channel channel
get-proc
put-proc
prop
prop-val ...
...)

Ñ (and/c async-channel? chaperone?)

764

channel : async-channel?
get-proc : (any/c . -> . any/c)
put-proc : (any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Like impersonate-async-channel, but the get-proc procedure must produce the same
value or a chaperone of the original value, and put-proc must produce the same value or a
chaperone of the original value.

11.3 Thread-Local Storage

Thread cells provides primitive support for thread-local storage. Parameters combine thread
cells and continuation marks to support thread-specific, continuation-specific binding.

11.3.1 Thread Cells

A thread cell contains a thread-specific value; that is, it contains a specific value for each
thread, but it may contain different values for different threads. A thread cell is created
with a default value that is used for all existing threads. When the cell’s content is changed
with thread-cell-set!, the cell’s value changes only for the current thread. Similarly,
thread-cell-ref obtains the value of the cell that is specific to the current thread.

A thread cell’s value can be preserved, which means that when a new thread is created, the
cell’s initial value for the new thread is the same as the creating thread’s current value. If
a thread cell is non-preserved, then the cell’s initial value for a newly created thread is the
default value (which was supplied when the cell was created).

Within the current thread, the current values of all preserved threads cells can be captured
through current-preserved-thread-cell-values. The captured set of values can be
imperatively installed into the current thread through another call to current-preserved-
thread-cell-values. The capturing and restoring threads can be different.

(thread-cell? v) Ñ boolean?
v : any/c

Returns #t if v is a thread cell, #f otherwise.

(make-thread-cell v [preserved?]) Ñ thread-cell?
v : any/c
preserved? : any/c = #f

765

Creates and returns a new thread cell. Initially, v is the cell’s value for all threads. If
preserved? is true, then the cell’s initial value for a newly created threads is the creating
thread’s value for the cell, otherwise the cell’s value is initially v in all future threads.

(thread-cell-ref cell) Ñ any
cell : thread-cell?

Returns the current value of cell for the current thread.

(thread-cell-set! cell v) Ñ any
cell : thread-cell?
v : any/c

Sets the value in cell to v for the current thread.

Examples:

> (define cnp (make-thread-cell '(nerve) #f))
> (define cp (make-thread-cell '(cancer) #t))
> (thread-cell-ref cnp)
'(nerve)
> (thread-cell-ref cp)
'(cancer)
> (thread-cell-set! cnp '(nerve nerve))
> (thread-cell-set! cp '(cancer cancer))
> (thread-cell-ref cnp)
'(nerve nerve)
> (thread-cell-ref cp)
'(cancer cancer)
> (define ch (make-channel))
> (thread (lambda ()

(channel-put ch (thread-cell-ref cnp))
(channel-put ch (thread-cell-ref cp))
(channel-get ch)
(channel-put ch (thread-cell-ref cp))))

#<thread>
> (channel-get ch)
'(nerve)
> (channel-get ch)
'(cancer cancer)
> (thread-cell-set! cp '(cancer cancer cancer))
> (thread-cell-ref cp)
'(cancer cancer cancer)
> (channel-put ch 'ok)
> (channel-get ch)
'(cancer cancer)

766

(current-preserved-thread-cell-values) Ñ thread-cell-values?
(current-preserved-thread-cell-values thread-cell-vals) Ñ void?

thread-cell-vals : thread-cell-values?

When called with no arguments, this procedure produces a thread-cell-vals that repre-
sents the current values (in the current thread) for all preserved thread cells.

When called with a thread-cell-vals generated by a previous call to current-
preserved-thread-cell-values, the values of all preserved thread cells (in the current
thread) are set to the values captured in thread-cell-vals ; if a preserved thread cell was
created after thread-cell-vals was generated, then the thread cell’s value for the current
thread reverts to its initial value.

(thread-cell-values? v) Ñ boolean?
v : any/c

Returns #t if v is a set of thread cell values produced by current-preserved-thread-
cell-values, #f otherwise.

11.3.2 Parameters
§4.13 “Dynamic
Binding:
parameterize” in
The Racket Guide
introduces
parameters.

See §1.1.14 “Parameters” for basic information on the parameter model. Parameters corre-
spond to preserved thread fluids in Scsh [Gasbichler02].

To parameterize code in a thread- and continuation-friendly manner, use parameterize.
The parameterize form introduces a fresh thread cell for the dynamic extent of its body
expressions.

When a new thread is created, the parameterization for the new thread’s initial continuation
is the parameterization of the creator thread. Since each parameter’s thread cell is preserved,
the new thread “inherits” the parameter values of its creating thread. When a continuation
is moved from one thread to another, settings introduced with parameterize effectively
move with the continuation.

In contrast, direct assignment to a parameter (by calling the parameter procedure with a
value) changes the value in a thread cell, and therefore changes the setting only for the cur-
rent thread. Consequently, as far as the memory manager is concerned, the value originally
associated with a parameter through parameterize remains reachable as long the continu-
ation is reachable, even if the parameter is mutated.

(make-parameter v [guard]) Ñ parameter?
v : any/c
guard : (or/c (any/c . -> . any) #f) = #f

767

Returns a new parameter procedure. The value of the parameter is initialized to v in all
threads. If guard is supplied, it is used as the parameter’s guard procedure. A guard proce-
dure takes one argument. Whenever the parameter procedure is applied to an argument, the
argument is passed on to the guard procedure. The result returned by the guard procedure
is used as the new parameter value. A guard procedure can raise an exception to reject a
change to the parameter’s value. The guard is not applied to the initial v .

(parameterize ([parameter-expr value-expr] ...)
body ...+)

parameter-expr : parameter?
§4.13 “Dynamic
Binding:
parameterize” in
The Racket Guide
introduces
parameterize.

The result of a parameterize expression is the result of the last body . The parameter-
exprs determine the parameters to set, and the value-exprs determine the corresponding
values to install while evaluating the body-exprs. All of the parameter-exprs are eval-
uated first (and checked with parameter?), then all value-exprs are evaluated, and then
the parameters are bound in the continuation to preserved thread cells that contain the val-
ues of the value-exprs. The last body-expr is in tail position with respect to the entire
parameterize form.

Outside the dynamic extent of a parameterize expression, parameters remain bound to
other thread cells. Effectively, therefore, old parameters settings are restored as control exits
the parameterize expression.

If a continuation is captured during the evaluation of parameterize, invoking the contin-
uation effectively re-introduces the parameterization, since a parameterization is associated
to a continuation via a continuation mark (see §10.5 “Continuation Marks”) using a private
key.

Examples:

> (parameterize ([exit-handler (lambda (x) 'no-exit)])
(exit))

> (define p1 (make-parameter 1))
> (define p2 (make-parameter 2))
> (parameterize ([p1 3]

[p2 (p1)])
(cons (p1) (p2)))

'(3 . 1)
> (let ([k (let/cc out

(parameterize ([p1 2])
(p1 3)
(cons (let/cc k

(out k))
(p1))))])

(if (procedure? k)

768

(k (p1))
k))

'(1 . 3)
> (define ch (make-channel))
> (parameterize ([p1 0])

(thread (lambda ()
(channel-put ch (cons (p1) (p2))))))

#<thread>
> (channel-get ch)
'(0 . 2)
> (define k-ch (make-channel))
> (define (send-k)

(parameterize ([p1 0])
(thread (lambda ()

(let/ec esc
(channel-put ch

((let/cc k
(channel-put k-ch k)
(esc)))))))))

> (send-k)
#<thread>
> (thread (lambda () ((channel-get k-ch)

(let ([v (p1)])
(lambda () v)))))

#<thread>
> (channel-get ch)
1
> (send-k)
#<thread>
> (thread (lambda () ((channel-get k-ch) p1)))
#<thread>
> (channel-get ch)
0

(parameterize* ((parameter-expr value-expr) ...)
body ...+)

Analogous to let* compared to let, parameterize* is the same as a nested series of
single-parameter parameterize forms.

(make-derived-parameter parameter
guard
wrap) Ñ parameter?

parameter : parameter?
guard : (any/c . -> . any)
wrap : (any/c . -> . any)

769

Returns a parameter procedure that sets or retrieves the same value as parameter , but with:

• guard applied when setting the parameter (before any guard associated with param-
eter), and

• wrap applied when obtaining the parameter’s value.

See also chaperone-procedure, which can also be used to guard parameter procedures.

(parameter? v) Ñ boolean?
v : any/c

Returns #t if v is a parameter procedure, #f otherwise.

(parameter-procedure=? a b) Ñ boolean?
a : parameter?
b : parameter?

Returns #t if the parameter procedures a and b always modify the same parameter with the
same guards (although possibly with different chaperones), #f otherwise.

(current-parameterization) Ñ parameterization?

Returns the current continuation’s parameterization.

(call-with-parameterization parameterization
thunk) Ñ any

parameterization : parameterization?
thunk : (-> any)

Calls thunk (via a tail call) with parameterization as the current parameterization.

(parameterization? v) Ñ boolean?
v : any/c

Returns #t if v is a parameterization returned by current-parameterization, #f other-
wise.

11.4 Futures
§20.1 “Parallelism
with Futures” in
The Racket Guide
introduces futures.

(require racket/future) package: base

The bindings documented in this section are provided by the racket/future and racket
libraries, but not racket/base. Currently, parallel

support for future
is enabled by
default for
Windows, Linux
x86/x86_64, and
Mac OS
x86/x86_64. To
enable support for
other platforms, use
--enable-futures
with configure
when building
Racket.

770

https://pkgs.racket-lang.org/package/base

The future and touch functions from racket/future provide access to parallelism as
supported by the hardware and operating system. In contrast to thread, which provides
concurrency for arbitrary computations without parallelism, future provides parallelism
for limited computations. A future executes its work in parallel (assuming that support
for parallelism is available) until it detects an attempt to perform an operation that is too
complex for the system to run safely in parallel. Similarly, work in a future is suspended if it
depends in some way on the current continuation, such as raising an exception. A suspended
computation for a future is resumed when touch is applied to the future.

“Safe” parallel execution of a future means that all operations provided by the system must
be able to enforce contracts and produce results as documented. “Safe” does not preclude
concurrent access to mutable data that is visible in the program. For example, a computation
in a future might use set! to modify a shared variable, in which case concurrent assignment
to the variable can be visible in other futures and threads. Furthermore, guarantees about
the visibility of effects and ordering are determined by the operating system and hardware—
which rarely support, for example, the guarantee of sequential consistency that is provided
for thread-based concurrency. At the same time, operations that seem obviously safe may
have a complex enough implementation internally that they cannot run in parallel. See also
§20.1 “Parallelism with Futures” in The Racket Guide.

A future never runs in parallel if all of the custodians that allow its creating thread to run are
shut down. Such futures can execute through a call to touch, however.

11.4.1 Creating and Touching Futures

(future thunk) Ñ future?
thunk : (-> any)

(touch f) Ñ any
f : future?

The future procedure returns a future value that encapsulates thunk . The touch function
forces the evaluation of the thunk inside the given future, returning the values produced by
thunk . After touch forces the evaluation of a thunk , the resulting values are retained by
the future in place of thunk , and additional touches of the future return those values.

Between a call to future and touch for a given future, the given thunk may run specula-
tively in parallel to other computations, as described above.

Example:

> (let ([f (future (lambda () (+ 1 2)))])
(list (+ 3 4) (touch f)))

'(7 3)

(futures-enabled?) Ñ boolean?

771

Returns whether parallel support for futures is enabled in the current Racket configuration.

(current-future) Ñ (or/c #f future?)

Returns the descriptor of the future whose thunk execution is the current continuation; that
is, if a future descriptor f is returned, (touch f) will produce the result of the current
continuation. If a future thunk itself uses touch, future-thunk executions can be nested, in
which case the descriptor of the most immediately executing future is returned. If the current
continuation does not return to the touch of any future, the result is #f.

(future? v) Ñ boolean?
v : any/c

Returns #t if v is a future value, #f otherwise.

(would-be-future thunk) Ñ future?
thunk : (-> any)

Returns a future that never runs in parallel, but that consistently logs all potentially “unsafe”
operations during the execution of the future’s thunk (i.e., operations that interfere with
parallel execution).

With a normal future, certain circumstances might prevent the logging of unsafe operations.
For example, when executed with debug-level logging,

(touch (future (lambda ()
(printf "hello1")
(printf "hello2")
(printf "hello3"))))

might log three messages, one for each printf invocation. However, if the touch is per-
formed before the future has a chance to start running in parallel, the future thunk evaluates
in the same manner as any ordinary thunk, and no unsafe operations are logged. Replacing
future with would-be-future ensures the logging of all three calls to printf.

(processor-count) Ñ exact-positive-integer?

Returns the number of parallel computation units (e.g., processors or cores) that are available
on the current machine.

(for/async (for-clause ...) body ...+)
(for*/async (for-clause ...) body ...+)

Like for and for*, but each iteration of the body is executed in a separate future, and the
futures may be touched in any order.

772

11.4.2 Future Semaphores

(make-fsemaphore init) Ñ fsemaphore?
init : exact-nonnegative-integer?

Creates and returns a new future semaphore with the counter initially set to init .

A future semaphore is similar to a plain semaphore, but future-semaphore operations can
be performed safely in parallel (to synchronize parallel computations). In contrast, opera-
tions on plain semaphores are not safe to perform in parallel, and they therefore prevent a
computation from continuing in parallel.

(fsemaphore? v) Ñ boolean?
v : any/c

Returns #t if v is an future semaphore value, #f otherwise.

(fsemaphore-post fsema) Ñ void?
fsema : fsemaphore?

Increments the future semaphore’s internal counter and returns #<void>.

(fsemaphore-wait fsema) Ñ void?
fsema : fsemaphore?

Blocks until the internal counter for fsema is non-zero. When the counter is non-zero, it is
decremented and fsemaphore-wait returns #<void>.

(fsemaphore-try-wait? fsema) Ñ boolean?
fsema : fsemaphore?

Like fsemaphore-wait, but fsemaphore-try-wait? never blocks execution. If fsema ’s
internal counter is zero, fsemaphore-try-wait? returns #f immediately without decre-
menting the counter. If fsema ’s counter is positive, it is decremented and #t is returned.

(fsemaphore-count fsema) Ñ exact-nonnegative-integer?
fsema : fsemaphore?

Returns fsema ’s current internal counter value.

11.4.3 Future Performance Logging

Racket traces use logging (see §15.5 “Logging”) extensively to report information about how
futures are evaluated. Logging output is useful for debugging the performance of programs
that use futures.

773

Though textual log output can be viewed directly (or retrieved in code via trace-futures),
it is much easier to use the graphical profiler tool provided by future-visualizer.

Future events are logged with the topic 'future. In addition to its string message, each
event logged for a future has a data value that is an instance of a future-event prefab
structure:

(struct future-event (future-id proc-id action time prim-
name user-data)
#:prefab)

The future-id field is an exact integer that identifies a future, or it is #f when action is
'missing. The future-id field is particularly useful for correlating logged events.

The proc-id fields is an exact, non-negative integer that identifies a parallel process. Pro-
cess 0 is the main Racket process, where all expressions other than future thunks evaluate.

The time field is an inexact number that represents time in the same way as current-
inexact-milliseconds.

The action field is a symbol:

• 'create: a future was created.

• 'complete: a future’s thunk evaluated successfully, so that touch will produce a
value for the future immediately.

• 'start-work and 'end-work: a particular process started and ended working on a
particular future.

• 'start-0-work: like 'start-work, but for a future thunk that for some structural
reason could not be started in a process other than 0 (e.g., the thunk requires too much
local storage to start).

• 'start-overflow-work: like 'start-work, where the future thunk’s work was
previously stopped due to an internal stack overflow.

• 'sync: blocking (processes other than 0) or initiation of handing (process 0) for an
“unsafe” operation in a future thunk’s evaluation; the operation must run in process 0.

• 'block: like 'sync, but for a part of evaluation that must be delayed until the future
is touched, because the evaluation may depend on the current continuation.

• 'touch (never in process 0): like 'sync or 'block, but for a touch operation within
a future thunk.

• 'overflow (never in process 0): like 'sync or 'block, but for the case that a process
encountered an internal stack overflow while evaluating a future thunk.

774

• 'result or 'abort: waiting or handling for 'sync, 'block, or 'touch ended with
a value or an error, respectively.

• 'suspend (never in process 0): a process blocked by 'sync, 'block, or 'touch
abandoned evaluation of a future; some other process may pick up the future later.

• 'touch-pause and 'touch-resume (in process 0, only): waiting in touch for a
future whose thunk is being evaluated in another process.

• 'missing: one or more events for the process were lost due to internal buffer limits
before they could be reported, and the time-id field reports an upper limit on the time
of the missing events; this kind of event is rare.

Assuming no 'missing events, then 'start-work, 'start-0-work, 'start-overflow-
work is always paired with 'end-work; 'sync, 'block, and 'touch are always paired
with 'result, 'abort, or 'suspend; and 'touch-pause is always paired with 'touch-
resume.

In process 0, some event pairs can be nested within other event pairs: 'sync, 'block, or
'touch with 'result or 'abort; 'touch-pause with 'touch-resume; and 'start-
work with 'end-work.

A 'block in process 0 is generated when an unsafe operation is handled. This type of event
will contain a symbol in the unsafe-op-name field that is the name of the operation. In all
other cases, this field contains #f.

The prim-name field will always be #f unless the event occurred on process 0 and its ac-
tion is either 'block or 'sync. If these conditions are met, prim-name will contain the
name of the Racket primitive which required the future to synchronize with the runtime
thread (represented as a symbol).

The user-data field may take on a number of different values depending on both the ac-
tion and prim-name fields:

• 'touch on process 0: contains the integer ID of the future being touched.

• 'sync and prim-name is '|allocate memory|: The size (in bytes) of the requested
allocation.

• 'sync and prim-name is 'jit_on_demand: The runtime thread is performing a JIT
compilation on behalf of the future future-id. The field contains the name of the
function being JIT compiled (as a symbol).

• 'create: A new future was created. The field contains the integer ID of the newly
created future.

775

11.5 Places
§20.2 “Parallelism
with Places” in The
Racket Guide
introduces places.

(require racket/place) package: base

The bindings documented in this section are provided by the racket/place and racket
libraries, but not racket/base.

Places enable the development of parallel programs that take advantage of machines with
multiple processors, cores, or hardware threads. Currently, parallel

support for places is
enabled only for the
3m (main) and CS
variants of Racket,
and only by default
for Windows, Linux
x86/x86_64, and
Mac OS
x86/x86_64. To
enable support for
other platforms, use
--enable-places
with configure
when building
Racket. The
place-enabled?
function reports
whether places run
in parallel.
Implementation and
operating-system
constraints may
limit the scalability
of places. For
example, although
places can perform
garbage collections
independently in
the 3m variant, a
garbage collection
may need to
manipulate a page
table that is shared
across all places,
and that shared
page table can be a
bottleneck with
enough
places—perhaps
around 8 or 16.

A place is a parallel task that is effectively a separate instance of the Racket virtual ma-
chine, although all places run within a single operating-system process. Places communicate
through place channels, which are endpoints for a two-way buffered communication.

To a first approximation, place channels support only immutable, transparent values as mes-
sages. In addition, place channels themselves can be sent across channels to establish
new (possibly more direct) lines of communication in addition to any existing lines. Fi-
nally, mutable values produced by shared-flvector, make-shared-flvector, shared-
fxvector, make-shared-fxvector, shared-bytes, and make-shared-bytes can be
sent across place channels; mutation of such values is visible to all places that share the value,
because they are allowed in a shared memory space. See place-message-allowed?.

A place channel can be used as a synchronizable event (see §11.2.1 “Events”) to receive a
value through the channel. A place channel is ready for synchronization when a message
is available on the channel, and the place channel’s synchronization result is the message
(which is removed on synchronization). A place can also receive messages with place-
channel-get, and messages can be sent with place-channel-put.

Two place channels are equal? if they are endpoints for the same underlying channels while
both or neither is a place descriptor. Place channels can be equal? without being eq? after
being sent messages through a place channel.

Constraints on messages across a place channel—and therefore on the kinds of data that
places share—enable greater parallelism than future, even including separate garbage col-
lection of separate places. At the same time, the setup and communication costs for places
can be higher than for futures.

For example, the following expression launches two places, echoes a message to each, and
then waits for the places to terminate:

(let ([pls (for/list ([i (in-range 2)])
(dynamic-place "place-worker.rkt" 'place-main))])

(for ([i (in-range 2)]
[p pls])

(place-channel-put p i)
(printf "„a\n" (place-channel-get p)))

(map place-wait pls))

776

https://pkgs.racket-lang.org/package/base

The "place-worker.rkt" module must export the place-main function that each place
executes, where place-main must accept a single place channel argument:

#lang racket
(provide place-main)

(define (place-main pch)
(place-channel-put pch (format "Hello from place „a"

(place-channel-get pch))))

Place channels are subject to garbage collection, like other Racket values, and a thread that
is blocked reading from a place channel can be garbage collected if place channel’s writing
end becomes unreachable. However, unlike normal channel blocking, if otherwise unreach-
able threads are mutually blocked on place channels that are reachable only from the same
threads, the threads and place channels are all considered reachable, instead of unreachable.

When a place is created, its parameter values are generally set to the initial values
of the parameters in the creating place, except that the current values of the follow-
ing parameters are used: current-library-collection-paths, current-library-
collection-links, and current-compiled-file-roots.

A newly created place is registered with the current custodian, so that the place is terminated
when the custodian is shut down.

11.5.1 Using Places

(place-enabled?) Ñ boolean?

Returns #t if Racket is configured so that dynamic-place and place create places that can
run in parallel, #f if dynamic-place and place are simulated using thread.

(place? v) Ñ boolean?
v : any/c

Returns #t if v is a place descriptor value, #f otherwise. Every place descriptor is also a
place channel.

(place-channel? v) Ñ boolean?
v : any/c

Returns #t if v is place channel, #f otherwise.

777

(dynamic-place module-path
start-name

[#:at location
#:named named]) Ñ place?

module-path : (or/c module-path? path?)
start-name : symbol?
location : (or/c #f place-location?) = #f
named : any/c = #f

Creates a place to run the procedure that is identified by module-path and start-name .
The result is a place descriptor value that represents the new parallel task; the place descriptor
is returned immediately. The place descriptor value is also a place channel that permits
communication with the place.

The module indicated by module-path must export a function with the name start-name .
The function must accept a single argument, which is a place channel that corresponds to the
other end of communication for the place descriptor returned by place.

If location is provided, it must be a place location, such as a distributed places node
produced by create-place-node.

When the place is created, the initial exit handler terminates the place, using the argument to
the exit handler as the place’s completion value. Use (exit v) to immediately terminate a
place with the completion value v . Since a completion value is limited to an exact integer
between 0 and 255, any other value for v is converted to 0.

If the function indicated by module-path and start-name returns, then the place termi-
nates with the completion value 0.

In the created place, the current-input-port parameter is set to an empty input port,
while the values of the current-output-port and current-error-port parameters are
connected to the current ports in the creating place. If the output ports in the creating
place are file-stream ports, then the connected ports in the created place share the under-
lying streams, otherwise a thread in the creating place pumps bytes from the created place’s
ports to the current ports in the creating place.

The module-path argument must not be a module path of the form (quote sym) unless
the module is predefined (see module-predefined?).

The dynamic-place binding is protected in the sense of protect-out, so access to this
operation can be prevented by adjusting the code inspector (see §14.10 “Code Inspectors”).

778

(dynamic-place* module-path
start-name

[#:in in
#:out out
#:err err]) Ñ place?

(or/c output-port? #f)
(or/c input-port? #f)
(or/c input-port? #f)

module-path : (or/c module-path? path?)
start-name : symbol?
in : (or/c input-port? #f) = #f
out : (or/c output-port? #f) = (current-output-port)
err : (or/c output-port? #f) = (current-error-port)

Like dynamic-place, but accepts specific ports to the new place’s ports, and returns a
created port when #f is supplied for a port. The in , out , and err ports are connected
to the current-input-port, current-output-port, and current-error-port ports,
respectively, for the place. Any of the ports can be #f, in which case a file-stream port (for an
operating-system pipe) is created and returned by dynamic-place*. The err argument can
be 'stdout, in which case the same file-stream port or that is supplied as standard output is
also used for standard error. For each port or 'stdout that is provided, no pipe is created
and the corresponding returned value is #f.

The caller of dynamic-place* is responsible for closing all returned ports; none are closed
automatically.

The dynamic-place* procedure returns four values:

• a place descriptor value representing the created place;

• an output port piped to the place’s standard input, or #f if in was a port;

• an input port piped from the place’s standard output, or #f if out was a port;

• an input port piped from the place’s standard error, or #f if err was a port or 'stdout.

The dynamic-place* binding is protected in the same way as dynamic-place.

(place id body ...+)

Creates a place that evaluates body expressions with id bound to a place channel. The
bodys close only over id plus the top-level bindings of the enclosing module, because the
bodys are lifted to a submodule. The result of place is a place descriptor, like the result of
dynamic-place.

779

The generated submodule has the name place-body-n for an integer n , and the submodule
exports a main function that takes a place channel for the new place. The submodule is not
intended for use, however, except by the expansion of the place form.

The place binding is protected in the same way as dynamic-place.

(place* maybe-port ...
id
body ...+)

maybe-port =
| #:in in-expr
| #:out out-expr
| #:err err-expr

Like place, but supports optional #:in, #:out, and #:err expressions (at most one of
each) to specify ports in the same way and with the same defaults as dynamic-place*. The
result of a place* form is also the same as for dynamic-place*.

The place* binding is protected in the same way as dynamic-place.

(place/context id body ...+)

Like place, but body ... may have free lexical variables, which are automatically sent
to the newly-created place. Note that these variables must have values accepted by place-
message-allowed?, otherwise an exn:fail:contract exception is raised.

(place-wait p) Ñ exact-integer?
p : place?

Returns the completion value of the place indicated by p , blocking until the place has termi-
nated.

If any pumping threads were created to connect a non-file-stream port to the ports in the
place for p (see dynamic-place), place-wait returns only when the pumping threads
have completed.

(place-dead-evt p) Ñ evt?
p : place?

Returns a synchronizable event (see §11.2.1 “Events”) that is ready for synchronization if
and only if p has terminated. The synchronization result of a place-dead event is the place-
dead event itself.

If any pumping threads were created to connect a non-file-stream port to the ports in the
place for p (see dynamic-place), the event returned by place-dead-evt may become
ready even if a pumping thread is still running.

780

(place-kill p) Ñ void?
p : place?

Immediately terminates the place, setting the place’s completion value to 1 if the place does
not have a completion value already.

(place-break p [kind]) Ñ void?
p : place?
kind : (or/c #f 'hang-up 'terminate) = #f

Sends the main thread of place p a break; see §10.6 “Breaks”.

(place-channel) Ñ place-channel? place-channel?

Returns two place channels. Data sent through the first channel can be received through the
second channel, and data sent through the second channel can be received from the first.

Typically, one place channel is used by the current place to send messages to a destination
place; the other place channel is sent to the destination place (via an existing place channel).

(place-channel-put pch v) Ñ void
pch : place-channel?
v : place-message-allowed?

Sends a message v on channel pch . Since place channels are asynchronous, place-
channel-put calls are non-blocking.

See place-message-allowed? form information on automatic coercions in v , such as
converting a mutable string to an immutable string.

(place-channel-get pch) Ñ place-message-allowed?
pch : place-channel?

Returns a message received on channel pch , blocking until a message is available.

(place-channel-put/get pch v) Ñ any/c
pch : place-channel?
v : any/c

Sends an immutable message v on channel pch and then waits for a message (perhaps a
reply) on the same channel.

(place-message-allowed? v) Ñ boolean?
v : any/c

781

Returns #t if v is allowed as a message on a place channel, #f otherwise.

If (place-enabled?) returns #f, then the result is always #t and no conversions are per-
formed on v as a message. Otherwise, the following kinds of data are allowed as messages:

• numbers, characters, booleans, keywords, and #<void>;

• symbols, where the eq?ness of uninterned symbols is preserved within a single mes-
sage, but not across messages;

• strings and byte strings, where mutable strings and byte strings are automatically re-
placed by immutable variants;

• paths (for any platform);

• pairs, lists, vectors, and immutable prefab structures containing message-allowed val-
ues, where a mutable vector is automatically replaced by an immutable vector and
where impersonators of vectors and prefab structures are copied;

• hash tables where mutable hash tables are automatically replaced by immutable vari-
ants, and where a hash table impersonator is copied;

• place channels, where a place descriptor is automatically replaced by a plain place
channel;

• file-stream ports and TCP ports, where the underlying representation (such as a file
descriptor, socket, or handle) is duplicated and attached to a fresh port in the receiving
place;

• C pointers as created or accessed via ffi/unsafe; and

• values produced by shared-flvector, make-shared-flvector, shared-
fxvector, make-shared-fxvector, shared-bytes, and make-shared-bytes.

prop:place-location : struct-type-property?
(place-location? v) Ñ boolean?

v : any/c

A structure type property and associated predicate for implementations of place locations.
The value of prop:place-location must be a procedure of four arguments: the place
location itself, a module path, a symbol for the start function exported by the module, and a
place name (which can be #f for an anonymous place).

A place location can be passed as the #:at argument to dynamic-place, which in turn
simply calls the prop:place-location value of the place location.

A distributed places note created with create-place-node is an example of a place loca-
tion.

782

11.5.2 Places Logging

Place events are reported to a logger named 'place. In addition to its string message,
each event logged for a place has a data value that is an instance of a place-event prefab
structure:

(struct place-event (place-id action value time)
#:prefab)

The place-id field is an exact integer that identifies a place.

The time field is an inexact number that represents time in the same way as current-
inexact-milliseconds.

The action field is a symbol:

• 'create: a place was created. This event is logged in the creating place, and the
event’s value field has the ID for the created place.

• 'reap: a place that was previously created in the current place has exited (and that
fact has been detected, possibly via place-wait). The event’s value field has the ID
for the exited place.

• 'enter: a place has started, logged within the started place. The event’s value field
has #f.

• 'exit: a place is exiting, logged within the exiting place. The event’s value field has
#f.

• 'put: a place-channel message has been sent. The event’s value field is a positive
exact integer that approximates the message’s size.

• 'get: a place-channel message has been received. The event’s value field is a posi-
tive exact integer that approximates the message’s size.

Changed in version 6.0.0.2 of package base: Added logging via 'place and place-event.

11.6 Engines

(require racket/engine) package: base

The bindings documented in this section are provided by the racket/engine library, not
racket/base or racket.

An engine is an abstraction that models processes that can be preempted by a timer or other
external trigger. They are inspired by the work of Haynes and Friedman [Haynes84].

783

https://pkgs.racket-lang.org/package/base

Engines log their behavior via a logger with the name 'racket/engine. The logger is
created when the module is instantiated and uses the result of (current-logger) as its
parent. The library adds logs a 'debug level message: when engine-run is called, when
the engine timeout expires, and when the engine is stopped (either because it terminated or
it reached a safe point to stop). Each log message holds a value of the struct:

(struct engine-info (msec name) #:prefab)

where the msec field holds the result of (current-inexact-milliseconds) at the mo-
ment of logging, and the name field holds the name of the procedure passed to engine.

(engine proc) Ñ engine?
proc : ((any/c . -> . void?) . -> . any/c)

Returns an engine object to encapsulate a thread that runs only when allowed. The proc
procedure should accept one argument, and proc is run in the engine thread when engine-
run is called. If engine-run returns due to a timeout, then the engine thread is suspended
until a future call to engine-run. Thus, proc only executes during the dynamic extent of a
engine-run call.

The argument to proc is a procedure that takes a boolean, and it can be used to disable
suspends (in case proc has critical regions where it should not be suspended). A true value
passed to the procedure enables suspends, and #f disables suspends. Initially, suspends are
allowed.

(engine? v) Ñ any
v : any/c

Returns #t if v is an engine produced by engine, #f otherwise.

(engine-run until engine) Ñ boolean?
until : (or/c evt? real?)
engine : engine?

Allows the thread associated with engine to execute for up as long as until milliseconds
(if until is a real number) or until is ready (if until is an event). If engine ’s procedure
disables suspends, then the engine can run arbitrarily long until it re-enables suspends.

The engine-run procedure returns #t if engine ’s procedure completes (or if it completed
earlier), and the result is available via engine-result. The engine-run procedure returns
#f if engine ’s procedure does not complete before it is suspended after timeout-secs. If
engine ’s procedure raises an exception, then it is re-raised by engine-run.

(engine-result engine) Ñ any
engine : engine?

784

Returns the result for engine if it has completed with a value (as opposed to an exception),
#f otherwise.

(engine-kill engine) Ñ void?
engine : engine?

Forcibly terminates the thread associated with engine if it is still running, leaving the engine
result unchanged.

785

12 Macros
§16 “Macros” in
The Racket Guide
introduces Macros.See §1.2 “Syntax Model” for general information on how programs are parsed. In particu-

lar, the subsection §1.2.3.2 “Expansion Steps” describes how parsing triggers macros, and
§1.2.3.5 “Transformer Bindings” describes how macro transformers are called.

12.1 Pattern-Based Syntax Matching

(syntax-case stx-expr (literal-id ...)
clause ...)

clause = [pattern result-expr]
| [pattern fender-expr result-expr]

pattern = np-pattern
| (pattern ...)
| (pattern ...+ . np-pattern)
| (pattern ... pattern ellipsis pattern np-pattern)

np-pattern = _
| id
| #(pattern ...)
| #(pattern ... pattern ellipsis pattern ...)
| #&pattern
| #s(key-datum pattern ...)
| #s(key-datum pattern ... pattern ellipsis pattern ...)
| (ellipsis stat-pattern)
| const

stat-pattern = id
| (stat-pattern ...)
| (stat-pattern ...+ . stat-pattern)
| #(stat-pattern ...)
| const

ellipsis = ...

Finds the first pattern that matches the syntax object produced by stx-expr , and for
which the corresponding fender-expr (if any) produces a true value; the result is from
the corresponding result-expr , which is in tail position for the syntax-case form. If no
clause matches, then the exn:fail:syntax exception is raised; the exception is generated
by calling raise-syntax-error with #f as the “name” argument, a string with a generic
error message, and the result of stx-expr .

786

A syntax object matches a pattern as follows:

_

A _ pattern (i.e., an identifier with the same binding as _) matches any syntax
object.

id

An id matches any syntax object when it is not bound to ... or _ and does not
have the same binding as any literal-id . The id is further bound as pattern
variable for the corresponding fender-expr (if any) and result-expr . A
pattern-variable binding is a transformer binding; the pattern variable can be
referenced only through forms like syntax. The binding’s value is the syntax
object that matched the pattern with a depth marker of 0.

An id that has the same binding as a literal-id matches a syntax object that
is an identifier with the same binding in the sense of free-identifier=?. The
match does not introduce any pattern variables.

(pattern ...)

A (pattern ...) pattern matches a syntax object whose datum form (i.e.,
without lexical information) is a list with as many elements as sub-patterns in
the pattern, and where each syntax object that corresponds to an element of the
list matches the corresponding sub-pattern .

Any pattern variables bound by the sub-patterns are bound by the complete
pattern; the bindings must all be distinct.

(pattern ...+ . np-pattern)

Like the previous kind of pattern, but matches syntax objects that are not nec-
essarily lists; for n sub-patterns before the final np-pattern , the syntax ob-
ject’s datum must be a pair such that n-1 cdrs produce pairs. The final np-
pattern is matched against the syntax object corresponding to the nth cdr (or
the datum->syntax coercion of the datum using the nearest enclosing syntax
object’s lexical context and source location).

(pattern ... pattern ellipsis pattern ...)

787

Like the (pattern ...) kind of pattern, but matching a syntax object with
any number (zero or more) elements that match the sub-pattern followed by
ellipsis in the corresponding position relative to other sub-patterns.

For each pattern variable bound by the sub-pattern followed by ellipsis ,
the larger pattern binds the same pattern variable to a list of values, one for each
element of the syntax object matched to the sub-pattern , with an incremented
depth marker. (The sub-pattern itself may contain ellipsis , leading to a
pattern variables bound to lists of lists of syntax objects with a depth marker of
2, and so on.)

(pattern ... pattern ellipsis pattern np-pattern)

Like the previous kind of pattern, but with a final np-pattern as for (pattern
...+ . np-pattern). The final np-pattern never matches a syntax object
whose datum is a pair.

#(pattern ...)

Like a (pattern ...) pattern, but matching a vector syntax object whose
elements match the corresponding sub-patterns.

#(pattern ... pattern ellipsis pattern ...)

Like a (pattern ... pattern ellipsis pattern ...) pattern, but
matching a vector syntax object whose elements match the corresponding sub-
patterns.

#&pattern

Matches a box syntax object whose content matches the pattern .

#s(key-datum pattern ...)

Like a (pattern ...) pattern, but matching a prefab structure syntax object
whose fields match the corresponding sub-patterns. The key-datum must
correspond to a valid first argument to make-prefab-struct.

#s(key-datum pattern ... pattern ellipsis pattern ...)

Like a (pattern ... pattern ellipsis pattern ...) pattern, but
matching a prefab structure syntax object whose elements match the corre-
sponding sub-patterns.

788

(ellipsis stat-pattern)

Matches the same as stat-pattern , which is like a pattern , but identifiers
with the binding ... are treated the same as other ids.

const

A const is any datum that does not match one of the preceding forms; a syn-
tax object matches a const pattern when its datum is equal? to the quoted
const .

If stx-expr produces a non-syntax object, then its result is converted to a syntax object
using datum->syntax and the lexical context and source location of the stx-expr .

If stx-expr produces a syntax object that is tainted or armed, then any syntax object bound
by a pattern are tainted—unless the binding corresponds to the whole syntax object pro-
duced by stx-expr , in which case it remains tainted or armed.

Examples:

> (require (for-syntax racket/base))
> (define-syntax (swap stx)

(syntax-case stx ()
[(_ a b) #'(let ([t a])

(set! a b)
(set! b t))]))

> (let ([x 5] [y 10])
(swap x y)
(list x y))

'(10 5)
> (syntax-case #'(ops 1 2 3 => +) (=>)

[(_ x ... => op) #'(op x ...)])
#<syntax:eval:585:0 (+ 1 2 3)>
> (syntax-case #'(let ([x 5] [y 9] [z 12])

(+ x y z))
(let)

[(let ([var expr] ...) body ...)
(list #'(var ...)

#'(expr ...))])
'(#<syntax:eval:586:0 (x y z)> #<syntax:eval:586:0 (5 9 12)>)

(syntax-case* stx-expr (literal-id ...) id-compare-expr
clause ...)

789

Like syntax-case, but id-compare-expr must produce a procedure that accepts two
arguments. A literal-id in a pattern matches an identifier for which the procedure
returns true when given the identifier to match (as the first argument) and the identifier in the
pattern (as the second argument).

In other words, syntax-case is like syntax-case* with an id-compare-expr that pro-
duces free-identifier=?.

(with-syntax ([pattern stx-expr] ...)
body ...+)

Similar to syntax-case, in that it matches a pattern to a syntax object. Unlike syntax-
case, all patterns are matched, each to the result of a corresponding stx-expr , and the
pattern variables from all matches (which must be distinct) are bound with a single body
sequence. The result of the with-syntax form is the result of the last body , which is in tail
position with respect to the with-syntax form.

If any pattern fails to match the corresponding stx-expr , the exn:fail:syntax excep-
tion is raised.

A with-syntax form is roughly equivalent to the following syntax-case form:

(syntax-case (list stx-expr ...) ()
[(pattern ...) (let () body ...+)])

However, if any individual stx-expr produces a non-syntax object, then it is converted
to one using datum->syntax and the lexical context and source location of the individual
stx-expr .

Examples:

> (define-syntax (hello stx)
(syntax-case stx ()
[(_ name place)
(with-syntax ([print-name #'(printf "„a\n" 'name)]

[print-place #'(printf "„a\n" 'place)])
#'(begin

(define (name times)
(printf "Hello\n")
(for ([i (in-range 0 times)])

print-name))
(define (place times)
(printf "From\n")
(for ([i (in-range 0 times)])

print-place))))]))
> (hello jon utah)
> (jon 2)

790

Hello
jon
jon
> (utah 2)
From
utah
utah
> (define-syntax (math stx)

(define (make+1 expression)
(with-syntax ([e expression])
#'(+ e 1)))

(syntax-case stx ()
[(_ numbers ...)
(with-syntax ([(added ...)

(map make+1
(syntax->list #'(numbers ...)))])

#'(begin
(printf "got „a\n" added)
...))]))

> (math 3 1 4 1 5 9)
got 4
got 2
got 5
got 2
got 6
got 10

(syntax template)

791

template = id
| (head-template ...)
| (head-template ...+ . template)
| #(head-template ...)
| #&template
| #s(key-datum head-template ...)
| („? template template)
| (ellipsis stat-template)
| const

head-template = template
| head-template ellipsis ...+
| („@ . template)
| („? head-template head-template)
| („? head-template)

stat-template = like template , but without ..., „?, and „@

ellipsis = ...

Constructs a syntax object based on a template , which can include pattern variables bound
by syntax-case or with-syntax.

A template produces a single syntax object. A head-template produces a sequence of
zero or more syntax objects. A stat-template is like a template , except that ..., „?,
and „@ are interpreted as constants instead of template forms.

A template produces a syntax object as follows:

id

If id is bound as a pattern variable, then id as a template produces the pattern
variable’s match result. Unless the id is a sub-template that is replicated by
ellipsis in a larger template , the pattern variable’s value must be a syntax
object with a depth marker of 0 (as opposed to a list of matches).

More generally, if the pattern variable’s value has a depth marker n, then it can
only appear within a template where it is replicated by at least n ellipsises.
In that case, the template will be replicated enough times to use each match
result at least once.

If id is not bound as a pattern variable, then id as a template produces (quote-
syntax id).

(head-template ...)

792

Produces a syntax object whose datum is a list, and where the elements of the
list correspond to syntax objects produced by the head-templates.

(head-template template)

Like the previous form, but the result is not necessarily a list; instead, the place
of the empty list in the resulting syntax object’s datum is taken by the syntax
object produced by template .

#(head-template ...)

Like the (head-template ...) form, but producing a syntax object whose
datum is a vector instead of a list.

#&template

Produces a syntax object whose datum is a box holding the syntax object pro-
duced by template .

#s(key-datum head-template ...)

Like the (head-template ...) form, but producing a syntax object whose
datum is a prefab structure instead of a list. The key-datum must correspond
to a valid first argument of make-prefab-struct.

(„? template1 template2)

Produces the result of template1 if template1 has no pattern variables with
“missing values”; otherwise, produces the result of template2 .

A pattern variable bound by syntax-case never has a missing value, but pat-
tern variables bound by syntax-parse (for example, „or or „optional pat-
terns) can.

Examples:

> (syntax-parse #'(m 1 2 3)
[(_ („optional („seq #:op op:expr)) arg:expr ...)
#'((„? op +) arg ...)])

#<syntax:eval:3:0 (+ 1 2 3)>

793

> (syntax-parse #'(m #:op max 1 2 3)
[(_ („optional („seq #:op op:expr)) arg:expr ...)
#'((„? op +) arg ...)])

#<syntax:eval:4:0 (max 1 2 3)>

(ellipsis stat-template)

Produces the same result as stat-template , which is like a template , but
..., „?, and „@ are treated like an id (with no pattern binding).

const

A const template is any form that does not match the preceding cases, and it
produces the result (quote-syntax const).

A head-template produces a sequence of syntax objects; that sequence is “inlined” into
the result of the enclosing template . The result of a head-template is defined as follows:

template

Produces one syntax object, according to the rules for template above.

head-template ellipsis ...+

Generates a sequence of syntax objects by “mapping” the head-template over
the values of its pattern variables. The number of iterations depends on the
values of the pattern variables referenced within the sub-template.

To be more precise: Let outer be inner followed by one ellipsis. A pattern
variable is an iteration pattern variable for outer if occurs at a depth equal
to its depth marker. There must be at least one; otherwise, an error is raised.
If there are multiple iteration variables, then all of their values must be lists
of the same length. The result for outer is produced by mapping the inner
template over the iteration pattern variable values and decreasing their effective
depth markers by 1 within inner . The outer result is formed by appending
the inner results.

Consequently, if a pattern variable occurs at a depth greater than its depth
marker, it is used as an iteration pattern variable for the innermost ellipses but
not the outermost. A pattern variable must not occur at a depth less than its
depth marker; otherwise, an error is raised.

794

(„@ . template)

Produces the sequence of elements in the syntax list produced by template . If
template does not produce a proper syntax list, an exception is raised.

Examples:

> (with-syntax ([(key ...) #'('a 'b 'c)]
[(val ...) #'(1 2 3)])

#'(hash („@ key val) ...))
#<syntax:eval:2:0 (hash (quote a) 1 (quote b) 2 (quote
c) 3)>
> (with-syntax ([xs #'(2 3 4)])

#'(list 1 („@ . xs) 5))
#<syntax:eval:3:0 (list 1 2 3 4 5)>

(„? head-template1 head-template2)

Produces the result of head-template1 if none of its pattern variables have
“missing values”; otherwise produces the result of head-template2 .

(„? head-template)

Produces the result of head-template if none of its pattern variables have
“missing values”; otherwise produces nothing.

Equivalent to („? head-template („@)).

A (syntax template) form is normally abbreviated as #'template ; see also §1.3.8
“Reading Quotes”. If template contains no pattern variables, then #'template is equiva-
lent to (quote-syntax template).

Changed in version 6.90.0.25 of package base: Added „@ and „?.

(quasisyntax template)

Like syntax, but (unsyntax expr) and (unsyntax-splicing expr) escape to an ex-
pression within the template .

The expr must produce a syntax object (or syntax list) to be substituted in place of the un-
syntax or unsyntax-splicing form within the quasiquoting template, just like unquote
and unquote-splicing within quasiquote. (If the escaped expression does not generate
a syntax object, it is converted to one in the same way as for the right-hand side of with-
syntax.) Nested quasisyntaxes introduce quasiquoting layers in the same way as nested
quasiquotes.

795

Also analogous to quasiquote, the reader converts #` to quasisyntax, #, to unsyntax,
and #,@ to unsyntax-splicing. See also §1.3.8 “Reading Quotes”.

(unsyntax expr)

Illegal as an expression form. The unsyntax form is for use only with a quasisyntax
template.

(unsyntax-splicing expr)

Illegal as an expression form. The unsyntax-splicing form is for use only with a qua-
sisyntax template.

(syntax/loc stx-expr template)

stx-expr : syntax?

Like syntax, except that the immediate resulting syntax object takes its source-location
information from the result of stx-expr (which must produce a syntax object).

Only the source location of the immediate result—the “outermost” syntax object—is ad-
justed. The source location is not adjusted if both the source and position of stx-expr are
#f. The source location is adjusted only if the resulting syntax object comes from the tem-
plate itself rather than the value of a syntax pattern variable. For example, if x is a syntax
pattern variable, then (syntax/loc stx-expr x) does not use the location of stx-expr .

Changed in version 6.90.0.25 of package base: Previously, syntax/loc did not enforce the contract on stx-expr
if template was just a pattern variable.

(quasisyntax/loc stx-expr template)

stx-expr : syntax?

Like quasisyntax, but with source-location assignment like syntax/loc.

(quote-syntax/prune id)

Like quote-syntax, but the lexical context of id is pruned via identifier-prune-
lexical-context to including binding only for the symbolic name of id and for '#%top.
Use this form to quote an identifier when its lexical information will not be transferred to
other syntax objects (except maybe to '#%top for a top-level binding).

(syntax-rules (literal-id ...)
[(id . pattern) template] ...)

Equivalent to

796

(lambda (stx)
(syntax-case stx (literal-id ...)
[(generated-id . pattern) (syntax-protect #'template)] ...))

where each generated-id binds no identifier in the corresponding template .

(syntax-id-rules (literal-id ...)
[pattern template] ...)

Equivalent to

(make-set!-transformer
(lambda (stx)
(syntax-case stx (literal-id ...)
[pattern (syntax-protect #'template)] ...)))

(define-syntax-rule (id . pattern) template)

Equivalent to

(define-syntax id
(syntax-rules ()
[(id . pattern) template]))

but with syntax errors potentially phrased in terms of pattern .

...

The ... transformer binding prohibits ... from being used as an expression. This binding is
useful only in syntax patterns and templates (or other unrelated expression forms that treat it
specially like ->), where it indicates repetitions of a pattern or template. See syntax-case
and syntax.

_

The _ transformer binding prohibits _ from being used as an expression. This binding is
useful only in syntax patterns, where it indicates a pattern that matches any syntax object.
See syntax-case.

„?
„@

The„? and„@ transformer bindings prohibit these forms from being used as an expression.
The bindings are useful only in syntax templates. See syntax.

Added in version 6.90.0.25 of package base.

797

(syntax-pattern-variable? v) Ñ boolean?
v : any/c

Returns #t if v is a value that, as a transformer-binding value, makes the bound variable
as pattern variable in syntax and other forms. To check whether an identifier is a pattern
variable, use syntax-local-value to get the identifier’s transformer value, and then test
the value with syntax-pattern-variable?.

The syntax-pattern-variable? procedure is provided for-syntax by racket/base.

12.2 Syntax Object Content

(syntax? v) Ñ boolean?
v : any/c

Returns #t if v is a syntax object, #f otherwise. See also §1.2.2 “Syntax Objects”.

Examples:

> (syntax? #'quinoa)
#t
> (syntax? #'(spelt triticale buckwheat))
#t
> (syntax? (datum->syntax #f 'millet))
#t
> (syntax? "barley")
#f

(identifier? v) Ñ boolean?
v : any/c

Returns #t if v is a syntax object and (syntax-e stx) produces a symbol.

Examples:

> (identifier? #'linguine)
#t
> (identifier? #'(if wheat? udon soba))
#f
> (identifier? 'ramen)
#f
> (identifier? 15)
#f

798

(syntax-source stx) Ñ any
stx : syntax?

Returns the source for the syntax object stx , or #f if none is known. The source is repre-
sented by an arbitrary value (e.g., one passed to read-syntax), but it is typically a file path
string.

(syntax-line stx) Ñ (or/c exact-positive-integer? #f)
stx : syntax?

Returns the line number (positive exact integer) for the start of the syntax object in its source,
or #f if the line number or source is unknown. The result is #f if and only if (syntax-
column stx) produces #f. See also §13.1.4 “Counting Positions, Lines, and Columns”.

(syntax-column stx) Ñ (or/c exact-nonnegative-integer? #f)
stx : syntax?

Returns the column number (non-negative exact integer) for the start of the syntax object in
its source, or #f if the source column is unknown. The result is #f if and only if (syntax-
line stx) produces #f. See also §13.1.4 “Counting Positions, Lines, and Columns”.

(syntax-position stx) Ñ (or/c exact-positive-integer? #f)
stx : syntax?

Returns the character position (positive exact integer) for the start of the syntax object in
its source, or #f if the source position is unknown. See also §13.1.4 “Counting Positions,
Lines, and Columns”.

(syntax-span stx) Ñ (or/c exact-nonnegative-integer? #f)
stx : syntax?

Returns the span (non-negative exact integer) in characters of the syntax object in its source,
or #f if the span is unknown.

(syntax-original? stx) Ñ boolean?
stx : syntax?

Returns #t if stx has the property that read-syntax attaches to the syntax objects that
they generate (see §12.7 “Syntax Object Properties”), and if stx ’s lexical information does
not include any macro-introduction scopes (which indicate that the object was introduced by
a syntax transformer; see §1.2.2 “Syntax Objects”). The result is #f otherwise.

This predicate can be used to distinguish syntax objects in an expanded expression that were
directly present in the original expression, as opposed to syntax objects inserted by macros.

799

The (hidden) property to represent original syntax is dropped for a syntax object that is
marshaled as part of compiled code; see also current-compile.

(syntax-source-module stx [source?])
Ñ (or/c module-path-index? symbol? path? resolved-module-path? #f)
stx : syntax?
source? : any/c = #f

Returns an indication of the module whose source contains stx , or #f if no source module
for stx can be inferred from its lexical context. If source? is #f, then result is a mod-
ule path index or symbol (see §14.4.2 “Compiled Modules and References”) or a resolved
module path; if source? is true, the result is a path or symbol corresponding to the loaded
module’s source in the sense of current-module-declare-source.

Note that syntax-source-module does not consult the source location of stx . The result
is based on the lexical information of stx .

(syntax-e stx) Ñ any
stx : syntax?

Unwraps the immediate datum structure from a syntax object, leaving nested syntax structure
(if any) in place. The result of (syntax-e stx) is one of the following:

• a symbol

• a syntax pair (described below)

• the empty list

• an immutable vector containing syntax objects

• an immutable box containing syntax objects

• an immutable hash table containing syntax object values (but not necessarily syntax
object keys)

• an immutable prefab structure containing syntax objects

• some other kind of datum—usually a number, boolean, or string—that is interned
when datum-intern-literal would convert the value

Examples:

> (syntax-e #'a)
'a
> (syntax-e #'(x . y))
'(#<syntax:eval:11:0 x> . #<syntax:eval:11:0 y>)

800

> (syntax-e #'#(1 2 (+ 3 4)))
'#(#<syntax:eval:12:0 1> #<syntax:eval:12:0 2> #<syntax:eval:12:0
(+ 3 4)>)
> (syntax-e #'#&"hello world")
'#&#<syntax:eval:13:0 "hello world">
> (syntax-e #'#hash((imperial . "yellow") (festival . "green")))
'#hash((festival . #<syntax:eval:14:0 "green">)

(imperial . #<syntax:eval:14:0 "yellow">))
> (syntax-e #'#(point 3 4))
'#(#<syntax:eval:15:0 point> #<syntax:eval:15:0 3>
#<syntax:eval:15:0 4>)
> (syntax-e #'3)
3
> (syntax-e #'"three")
"three"
> (syntax-e #'#t)
#t

A syntax pair is a pair containing a syntax object as its first element, and either the empty
list, a syntax pair, or a syntax object as its second element.

A syntax object that is the result of read-syntax reflects the use of delimited . in the input
by creating a syntax object for every pair of parentheses in the source, and by creating a
pair-valued syntax object only for parentheses in the source. See §1.3.6 “Reading Pairs and
Lists” for more information.

If stx is tainted or armed, then any syntax object in the result of (syntax-e stx) is
tainted, and multiple calls to syntax-e may return values that are not eq?. For a stx that
is not armed, the results from multiple calls to syntax-e of stx are eq?.

(syntax->list stx) Ñ (or/c list? #f)
stx : syntax?

Returns a list of syntax objects or #f. The result is a list of syntax objects when (syntax-
>datum stx) would produce a list. In other words, syntax pairs in (syntax-e stx) are
flattened.

If stx is tainted or armed, then any syntax object in the result of (syntax->list stx) is
tainted.

Examples:

> (syntax->list #'())
'()
> (syntax->list #'(1 (+ 3 4) 5 6))
'(#<syntax:eval:20:0 1>

801

#<syntax:eval:20:0 (+ 3 4)>
#<syntax:eval:20:0 5>
#<syntax:eval:20:0 6>)

> (syntax->list #'a)
#f

(syntax->datum stx) Ñ any
stx : syntax?

Returns a datum by stripping the lexical information, source-location information, proper-
ties, and tamper status from stx . Inside of pairs, (immutable) vectors, (immutable) boxes,
immutable hash table values (not keys), and immutable prefab structures, syntax objects are
recursively stripped.

The stripping operation does not mutate stx ; it creates new pairs, vectors, boxes, hash
tables, and prefab structures as needed to strip lexical and source-location information re-
cursively.

Examples:

> (syntax->datum #'a)
'a
> (syntax->datum #'(x . y))
'(x . y)
> (syntax->datum #'#(1 2 (+ 3 4)))
'#(1 2 (+ 3 4))
> (syntax->datum #'#&"hello world")
'#&"hello world"
> (syntax->datum #'#hash((imperial . "yellow") (festival .
"green")))
'#hash((festival . "green") (imperial . "yellow"))
> (syntax->datum #'#(point 3 4))
'#(point 3 4)
> (syntax->datum #'3)
3
> (syntax->datum #'"three")
"three"
> (syntax->datum #'#t)
#t

(datum->syntax ctxt v [srcloc prop ignored]) Ñ syntax?
ctxt : (or/c syntax? #f)
v : any/c

802

srcloc : (or/c syntax? #f
(list/c any/c

(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f))

(vector/c any/c
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)))

= #f
prop : (or/c syntax? #f) = #f
ignored : (or/c syntax? #f) = #f

Converts the datum v to a syntax object. The contents of pairs, vectors, and boxes, the fields
of prefab structures, and the values of immutable hash tables are recursively converted. The
keys of prefab structures and the keys of immutable hash tables are not converted. Mutable
vectors and boxes are replaced by immutable vectors and boxes. For any kind of value other
than a pair, vector, box, immutable hash table, immutable prefab structure, or syntax object,
conversion means wrapping the value with lexical information, source-location information,
and properties after the value is interned via datum-intern-literal.

Converted objects in v are given the lexical context information of ctxt and the source-
location information of srcloc . If v is not already a syntax object, then the resulting
immediate syntax object is given the properties (see §12.7 “Syntax Object Properties”) of
prop (even the hidden ones that would not be visible via syntax-property-symbol-
keys); if v is a pair, vector, box, immutable hash table, or immutable prefab structure,
recursively converted values are not given properties. If ctxt is tainted or armed, then the
resulting syntax object from datum->syntax is tainted. The code inspector of ctxt , if any,
is compared to the code inspector of the module for the macro currently being transformed,
if any; if both inspectors are available and if one is the same as or inferior to the other, then
the result syntax has the same/inferior inspector, otherwise it has no code inspector.

Any of ctxt , srcloc , or prop can be #f, in which case the resulting syntax has no lexical
context, source information, and/or new properties.

If srcloc is not #f or a syntax object, it must be a list or vector of five elements:

(list source-name line column position span)
or (vector source-name line column position span)

where source-name is an arbitrary value for the source name; line is an integer for the
source line, or #f; column is an integer for the source column, or #f; position is an integer
for the source position, or #f; and span is an integer for the source span, or #f. The line

803

and column values must both be numbers or both be #f, otherwise the exn:fail:contract
exception is raised.

Graph structure is not preserved by the conversion of v to a syntax object. Instead, v is
essentially unfolded into a tree. If v has a cycle through pairs, vectors, boxes, immutable
hash tables, and immutable prefab structures, then the exn:fail:contract exception is
raised.

The ignored argument is allowed for backward compatibility and has no effect on the
returned syntax object.

(syntax-binding-set? v) Ñ boolean?
v : any/c

(syntax-binding-set) Ñ syntax-binding-set?
(syntax-binding-set->syntax binding-set

datum) Ñ syntax?
binding-set : syntax-binding-set?
datum : any/c
(syntax-binding-set-extend
binding-set
symbol
phase
mpi

[#:source-symbol source-symbol
#:source-phase source-phase
#:nominal-module nominal-mpi
#:nominal-phase nominal-phase
#:nominal-symbol nominal-symbol
#:nominal-require-phase nominal-require-phase
#:inspector inspector])

Ñ syntax-binding-set?
binding-set : syntax-binding-set?
symbol : symbol?
phase : (or/c exact-integer? #f)
mpi : module-path-index?
source-symbol : symbol? = symbol
source-phase : (or/c exact-integer? #f) = phase
nominal-mpi : module-path-index? = mpi
nominal-phase : (or/c exact-integer? #f) = source-phase
nominal-symbol : symbol? = source-symbol
nominal-require-phase : (or/c exact-integer? #f) = 0
inspector : (or/c inspector? #f) = #f

A syntax binding set supports explicit construction of binding information for a syntax ob-
ject. Start by creating an empty binding set with syntax-binding-set, add bindings with
syntax-binding-set-extend, and create a syntax object that has the bindings as its lex-

804

ical information using syntax-binding-set->syntax.

The first three arguments to syntax-binding-set-extend establish a binding of symbol
at phase to an identifier that is defined in the module referenced by mpi . Supply source-
symbol to make the binding of symbol refer to a different provided variable from mpi , and
so on; the optional arguments correspond to the results of identifier-binding.

Added in version 7.0.0.12 of package base.

(datum-intern-literal v) Ñ any/c
v : any/c

Converts some values to be consistent with an interned result produced by the default reader
in read-syntax mode.

If v is a number, character, string, byte string, or regular expression, then the result is a value
that is equal? to v and eq? to a potential result of the default reader. (Note that mutable
strings and byte strings are interned as immutable strings and byte strings.)

If v is an uninterned or an unreadable symbol, the result is still v , since an interned symbol
would not be equal? to v .

The conversion process does not traverse compound values. For example, if v is a pair
containing strings, then the strings within v are not interned.

If v1 and v2 are equal? but not eq?, then it is possible that (datum-intern-literal
v1) will return v1 and—sometime after v1 becomes unreachable as determined by the
garbage collector (see §1.1.7 “Garbage Collection”)—(datum-intern-literal v2) can
still return v2 . In other words, datum-intern-literal may adopt a given value as an
interned representative, but if a former representative becomes otherwise unreachable, then
datum-intern-literal may adopt a new representative.

(syntax-shift-phase-level stx shift) Ñ syntax?
stx : syntax?
shift : (or/c exact-integer? #f)

Returns a syntax object that is like stx , but with all of its top-level and module bindings
shifted by shift phase levels. If shift is #f, then only bindings at phase level 0 are
shifted to the label phase level. If shift is 0, then the result is stx .

(generate-temporaries stx-pair) Ñ (listof identifier?)
stx-pair : (or syntax? list?)

Returns a list of identifiers that are distinct from all other identifiers. The list contains as
many identifiers as stx-pair contains elements. The stx-pair argument must be a syntax
pair that can be flattened into a list. The elements of stx-pair can be anything, but string,

805

symbol, keyword (possibly wrapped as syntax), and identifier elements will be embedded in
the corresponding generated name, which is useful for debugging purposes.

The generated identifiers are built with interned symbols (not gensyms); see also §1.4.16
“Printing Compiled Code”.

Examples:

> (generate-temporaries '(a b c d))
'(#<syntax a1> #<syntax b2> #<syntax c3> #<syntax d4>)
> (generate-temporaries #'(1 2 3 4))
'(#<syntax temp5> #<syntax temp6> #<syntax temp7> #<syntax temp8>)
> (define-syntax (set!-values stx)

(syntax-case stx ()
[(_ (id ...) expr)
(with-syntax ([(temp ...) (generate-

temporaries #'(id ...))])
#'(let-values ([(temp ...) expr])

(set! id temp) ... (void)))]))

(identifier-prune-lexical-context id-stx
[syms]) Ñ identifier?

id-stx : identifier?
syms : (listof symbol?) = (list (syntax-e id-stx))

Returns an identifier with the same binding as id-stx , but without possibly lexical informa-
tion from id-stx that does not apply to the symbols in syms , where even further extension
of the lexical information drops information for other symbols. In particular, transferring the
lexical context via datum->syntax from the result of this function to a symbol other than
one in syms may produce an identifier with no binding.

Currently, the result is always id-stx exactly. Pruning was intended primarily as a kind of
optimization in a previous version of Racket, but it is less useful and difficult to implement
efficiently in the current macro expander.

See also quote-syntax/prune.

Changed in version 6.5 of package base: Always return id-stx .

(identifier-prune-to-source-module id-stx) Ñ identifier?
id-stx : identifier?

Returns an identifier with its lexical context minimized to that needed for syntax-source-
module. The minimized lexical context does not include any bindings.

806

(syntax-recertify new-stx
old-stx
inspector
key) Ñ syntax?

new-stx : syntax?
old-stx : syntax?
inspector : inspector?
key : any/c

For backward compatibility only; returns new-stx .

(syntax-debug-info stx [phase all-bindings?]) Ñ hash?
stx : syntax?
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)
all-bindings? : any/c = #f

Produces a hash table that describes the lexical information of stx (not counting components
when (syntax-e stx) would return a compound value). The result can include—but is
not limited to—the following keys:

• 'name — the result of (syntax-e stx), if it is a symbol.

• 'context — a list of vectors, where each vector represents a scope attached to stx .

Each vector starts with a number that is distinct for every scope. A symbol afterward
provides a hint at the scope’s origin: 'module for a module scope, 'macro for a
macro-introduction scope, 'use-site for a macro use-site scope, or 'local for a
local binding form. In the case of a 'module scope that corresponds to the inside
edge, the module’s name and a phase (since an inside-edge scope is generated for
each phase) are shown.

• 'bindings — a list of bindings, each represented by a hash table. A binding table
can include—but is not limited to—the following keys:

– 'name — the symbolic name for the binding.
– 'context — the scopes, as a list of vectors, for the binding.
– 'local — a symbol representing a local binding; when this key is present,
'module is absent.

– 'module — an encoding of a import from another module; when this key is
present, 'local is absent.

– 'free-identifier=? — a hash table of debugging information from an iden-
tifier for which the binding is an alias.

• 'fallbacks — a list of hash tables like the one produced by syntax-debug-info
for cross-namespace binding fallbacks.

Added in version 6.3 of package base.

807

12.3 Syntax Object Bindings

(bound-identifier=? a-id b-id [phase-level]) Ñ boolean?
a-id : syntax?
b-id : syntax?
phase-level : (or/c exact-integer? #f)

= (syntax-local-phase-level)

Returns #t if the identifier a-id would bind b-id (or vice versa) if the identifiers were
substituted in a suitable expression context at the phase level indicated by phase-level ,
#f otherwise. A #f value for phase-level corresponds to the label phase level.

Examples:

> (define-syntax (check stx)
(syntax-case stx ()
[(_ x y)
(if (bound-identifier=? #'x #'y)

#'(let ([y 'wrong]) (let ([x 'binds]) y))
#'(let ([y 'no-binds]) (let ([x 'wrong]) y)))]))

> (check a a)
'binds
> (check a b)
'no-binds
> (define-syntax-rule (check-a x) (check a x))
> (check-a a)
'no-binds

(free-identifier=? a-id
b-id

[a-phase-level
b-phase-level]) Ñ boolean?

a-id : identifier?
b-id : identifier?
a-phase-level : (or/c exact-integer? #f)

= (syntax-local-phase-level)
b-phase-level : (or/c exact-integer? #f) = a-phase-level

Returns #t if a-id and b-id access the same local binding, module binding, or top-level
binding—perhaps via rename transformers—at the phase levels indicated by a-phase-
level and b-phase-level , respectively. A #f value for a-phase-level or b-phase-
level corresponds to the label phase level.

“Same module binding” means that the identifiers refer to the same original definition site,
and not necessarily to the same require or provide site. Due to renaming in require and

808

provide, or due to a transformer binding to a rename transformer, the identifiers may return
distinct results with syntax-e.

Examples:

> (define-syntax (check stx)
(syntax-case stx ()
[(_ x)
(if (free-identifier=? #'car #'x)

#'(list 'same: x)
#'(list 'different: x))]))

> (check car)
'(same: #<procedure:car>)
> (check mcar)
'(different: #<procedure:mcar>)
> (let ([car list])

(check car))
'(different: #<procedure:list>)
> (require (rename-in racket/base [car kar]))
> (check kar)
'(same: #<procedure:car>)

(free-transformer-identifier=? a-id b-id) Ñ boolean?
a-id : identifier?
b-id : identifier?

Same as (free-identifier=? a-id b-id (add1 (syntax-local-phase-
level))).

(free-template-identifier=? a-id b-id) Ñ boolean?
a-id : identifier?
b-id : identifier?

Same as (free-identifier=? a-id b-id (sub1 (syntax-local-phase-
level))).

(free-label-identifier=? a-id b-id) Ñ boolean?
a-id : identifier?
b-id : identifier?

Same as (free-identifier=? a-id b-id #f).

(check-duplicate-identifier ids) Ñ (or/c identifier? #f)
ids : (listof identifier?)

809

Compares each identifier in ids with every other identifier in the list with bound-
identifier=?. If any comparison returns #t, one of the duplicate identifiers is returned
(the first one in ids that is a duplicate), otherwise the result is #f.

(identifier-binding id-stx
[phase-level
top-level-symbol?])

Ñ (or/c 'lexical
#f
(list/c module-path-index?

symbol?
module-path-index?
symbol?
exact-nonnegative-integer?
(or/c exact-integer? #f)
(or/c exact-integer? #f))

(list/c symbol?))
id-stx : identifier?
phase-level : (or/c exact-integer? #f)

= (syntax-local-phase-level)
top-level-symbol? : any/c = #f

Returns one of three (if top-level-symbol? is #f) or four (if top-level-symbol? is
true) kinds of values, depending on the binding of id-stx at the phase level indicated by
phase-level (where a #f value for phase-level corresponds to the label phase level):

• The result is 'lexical if id-stx has a local binding.

• The result is a list of seven items when id-stx has a module binding:
(list source-mod source-id nominal-source-mod nominal-source-
id source-phase import-phase nominal-export-phase).

– source-mod is a module path index (see §14.4.2 “Compiled Modules and Ref-
erences”) that indicates the defining module.

– source-id is a symbol for the identifier’s name at its definition site in the source
module. This can be different from the local name returned by syntax->datum
for several reasons: the identifier is renamed on import, it is renamed on export,
or it is implicitly renamed because the identifier (or its import) was generated by
a macro invocation.

– nominal-source-mod is a module path index (see §14.4.2 “Compiled Mod-
ules and References”) that indicates the module required into the context of
id-stx to provide its binding. It can be different from source-mod due to
a re-export in nominal-source-mod of some imported identifier. If the same
binding is imported in multiple ways, an arbitrary representative is chosen.

810

– nominal-source-id is a symbol for the identifier’s name as exported by
nominal-source-mod . It can be different from source-id due to a renam-
ing provide, even if source-mod and nominal-source-mod are the same.

– source-phase is an exact non-negative integer representing the source phase.
For example, it is 1 if the source definition is for-syntax.

– import-phase is 0 if the binding import of nominal-source-mode is a plain
require, 1 if it is from a for-syntax import, etc.

– nominal-export-phase is the phase level of the export from nominal-
source-mod .

• The result is (list source-id) if id-stx has a top-level binding and top-level-
symbol? is true.

• The result is #f if id-stx has a top-level binding and top-level-symbol? is #f
or if id-stx is unbound. An unbound identifier is typically treated the same as an
identifier whose top-level binding is a variable.

If id-stx is bound to a rename-transformer, the result from identifier-binding is for
the identifier in the transformer, so that identifier-binding is consistent with free-
identifier=?.

Changed in version 6.6.0.4 of package base: Added the top-level-symbol? argument to report information on
top-level bindings.

(identifier-transformer-binding id-stx
[rt-phase-level])

Ñ (or/c 'lexical
#f
(listof module-path-index?

symbol?
module-path-index?
symbol?
exact-nonnegative-integer?
(or/c exact-integer? #f)
(or/c exact-integer? #f)))

id-stx : identifier?
rt-phase-level : (or/c exact-integer? #f)

= (syntax-local-phase-level)

Same as (identifier-binding id-stx (and rt-phase-level (add1 rt-phase-
level))).

(identifier-template-binding id-stx)

811

Ñ (or/c 'lexical
#f
(listof module-path-index?

symbol?
module-path-index?
symbol?
exact-nonnegative-integer?
(or/c exact-integer? #f)
(or/c exact-integer? #f)))

id-stx : identifier?

Same as (identifier-binding id-stx (sub1 (syntax-local-phase-level))).

(identifier-label-binding id-stx)
Ñ (or/c 'lexical

#f
(listof module-path-index?

symbol?
module-path-index?
symbol?
exact-nonnegative-integer?
(or/c exact-integer? #f)
(or/c exact-integer? #f)))

id-stx : identifier?

Same as (identifier-binding id-stx #f).

(identifier-binding-symbol id-stx
[phase-level]) Ñ symbol?

id-stx : identifier?
phase-level : (or/c exact-integer? #f)

= (syntax-local-phase-level)

Like identifier-binding, but produces a symbol that corresponds to the binding. The
symbol result is the same for any identifiers that are free-identifier=?, but the result
may also be the same for identifiers that are not free-identifier=? (i.e., different sym-
bols imply different bindings, but the same symbol does not imply the same binding).

When identifier-binding would produce a list, then the second element of that list is
the result that identifier-binding-symbol produces.

12.4 Syntax Transformers

(set!-transformer? v) Ñ boolean?
v : any/c

812

Returns #t if v is a value created by make-set!-transformer or an instance of a structure
type with the prop:set!-transformer property, #f otherwise.

(make-set!-transformer proc) Ñ set!-transformer?
proc : (syntax? . -> . syntax?)

Creates an assignment transformer that cooperates with set!. If the result of make-set!-
transformer is bound to id as a transformer binding, then proc is applied as a transformer
when id is used in an expression position, or when it is used as the target of a set! assign-
ment as (set! id expr). When the identifier appears as a set! target, the entire set!
expression is provided to the transformer.

Example:

> (let ([x 1]
[y 2])

(let-syntax ([x (make-set!-transformer
(lambda (stx)
(syntax-case stx (set!)
; Redirect mutation of x to y
[(set! id v) #'(set! y v)]
; Normal use of x really gets x
[id (identifier? #'id) #'x])))])

(begin
(set! x 3)
(list x y))))

'(1 3)

(set!-transformer-procedure transformer)
Ñ (syntax? . -> . syntax?)
transformer : set!-transformer?

Returns the procedure that was passed to make-set!-transformer to create trans-
former or that is identified by the prop:set!-transformer property of transformer .

prop:set!-transformer : struct-type-property?

A structure type property to identify structure types that act as assignment transformers like
the ones created by make-set!-transformer.

The property value must be an exact integer or procedure of one or two arguments. In
the former case, the integer designates a field within the structure that should contain a
procedure; the integer must be between 0 (inclusive) and the number of non-automatic fields
in the structure type (exclusive, not counting supertype fields), and the designated field must
also be specified as immutable.

813

If the property value is a procedure of one argument, then the procedure serves as a syntax
transformer and for set! transformations. If the property value is a procedure of two ar-
guments, then the first argument is the structure whose type has prop:set!-transformer
property, and the second argument is a syntax object as for a syntax transformer and for
set! transformations; set!-transformer-procedure applied to the structure produces a
new function that accepts just the syntax object and calls the procedure associated through
the property. Finally, if the property value is an integer, the target identifier is extracted from
the structure instance; if the field value is not a procedure of one argument, then a procedure
that always calls raise-syntax-error is used, instead.

If a value has both the prop:set!-transformer and prop:rename-transformer prop-
erties, then the latter takes precedence. If a structure type has the prop:set!-transformer
and prop:procedure properties, then the former takes precedence for the purposes of
macro expansion.

(rename-transformer? v) Ñ boolean?
v : any/c

Returns #t if v is a value created by make-rename-transformer or an instance of a struc-
ture type with the prop:rename-transformer property, #f otherwise.

Examples:

> (rename-transformer? (make-rename-transformer #'values))
#t
> (rename-transformer? 'not-a-rename-transformer)
#f

(make-rename-transformer id-stx) Ñ rename-transformer?
id-stx : syntax?

Creates a rename transformer that, when used as a transformer binding, acts as a transformer
that inserts the identifier id-stx in place of whatever identifier binds the transformer, in-
cluding in non-application positions, in set! expressions.

Such a transformer could be written manually, but the one created by make-rename-
transformer triggers special cooperation with the parser and other syntactic forms when
id is bound to the rename transformer:

• The parser installs a free-identifier=? and identifier-binding equivalence
between id and id-stx , as long as id-stx does not have a true value for the 'not-
free-identifier=? syntax property.

• A provide of id provides the binding indicated by id-stx instead of id , as long as
id-stx does not have a true value for the 'not-free-identifier=? syntax prop-
erty and as long as id-stx has a binding.

814

• If provide exports id , it uses a symbol-valued 'nominal-id property of id-stx
to specify the “nominal source identifier” of the binding as reported by identifier-
binding.

• If id-stx has a true value for the 'not-provide-all-defined syntax property,
then id (or its target) is not exported by all-defined-out.

• The syntax-local-value function recognizes rename-transformer bindings and
consult their targets.

Examples:

> (define-syntax my-or (make-rename-transformer #'or))
> (my-or #f #t)
#t
> (free-identifier=? #'my-or #'or)
#t

Changed in version 6.3 of package base: Removed an optional second argument.

(rename-transformer-target transformer) Ñ identifier?
transformer : rename-transformer?

Returns the identifier passed to make-rename-transformer to create transformer or as
indicated by a prop:rename-transformer property on transformer .

Example:

> (rename-transformer-target (make-rename-transformer #'or))
#<syntax:eval:8:0 or>

prop:rename-transformer : struct-type-property?

A structure type property to identify structure types that act as rename transformers like the
ones created by make-rename-transformer.

The property value must be an exact integer, an identifier syntax object, or a procedure that
takes one argument. In the former case, the integer designates a field within the structure
that should contain an identifier; the integer must be between 0 (inclusive) and the number
of non-automatic fields in the structure type (exclusive, not counting supertype fields), and
the designated field must also be specified as immutable.

If the property value is an identifier, the identifier serves as the target for renaming, just like
the first argument to make-rename-transformer. If the property value is an integer, the
target identifier is extracted from the structure instance; if the field value is not an identifier,
then an identifier ? with an empty context is used, instead.

815

If the property value is a procedure that takes one argument, then the procedure is called
to obtain the identifier that the rename transformer will use as a target identifier. The re-
turned identifier should probably have the 'not-free-identifier=? syntax property. If
the procedure returns any value that is not an identifier, the exn:fail:contract exception
is raised.

Examples:

; Example of a procedure argument for prop:rename-transformer
> (define-syntax slv-1 'first-transformer-binding)
> (define-syntax slv-2 'second-transformer-binding)
> (begin-for-syntax

(struct slv-cooperator (redirect-to-first?)
#:property prop:rename-transformer
(λ (inst)
(if (slv-cooperator-redirect-to-first? inst)

#'slv-1
#'slv-2))))

> (define-syntax (slv-lookup stx)
(syntax-case stx ()
[(_ id)
#`'#,(syntax-local-value #'id)]))

> (define-syntax slv-inst-1 (slv-cooperator #t))
> (define-syntax slv-inst-2 (slv-cooperator #f))
> (slv-lookup slv-inst-1)
'first-transformer-binding
> (slv-lookup slv-inst-2)
'second-transformer-binding

Changed in version 6.3 of package base: the property now accepts a procedure of one argument.

(local-expand stx
context-v
stop-ids

[intdef-ctx]) Ñ syntax?
stx : any/c
context-v : (or/c 'expression 'top-level 'module 'module-begin list?)
stop-ids : (or/c (listof identifier?) empty #f)
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

Expands stx in the lexical context of the expression currently being expanded. The
context-v argument is used as the result of syntax-local-context for immediate ex-
pansions; a list indicates an internal-definition context, and more information on the form of

816

the list is below. If stx is not already a syntax object, it is coerced with (datum->syntax
#f stx) before expansion.

The stop-ids argument controls how far local-expand expands stx :

• If stop-ids is an empty list, then stx is recursively expanded (i.e. expansion pro-
ceeds to sub-expressions). The result is guaranteed to be a fully-expanded form, which
can include the bindings listed in §1.2.3.1 “Fully Expanded Programs”, plus #%ex-
pression in any expression position.

• If stop-ids is a list containing just module*, then expansion proceeds as if stop-
ids were an empty list, except that expansion does not recur to submodules defined
with module* (which are left unexpanded in the result).

• If stop-ids is any other list, then begin, quote, set!, #%plain-lambda,
case-lambda, let-values, letrec-values, if, begin0, with-continuation-
mark, letrec-syntaxes+values, #%plain-app, #%expression, #%top, and
#%variable-reference are implicitly added to stop-ids . Expansion proceeds
recursively, stopping when the expander encounters any of the forms in stop-ids ,
and the result is the partially-expanded form.

When the expander would normally implicitly introduce a #%app, #%datum, or #%top
identifier as described in §1.2.3.2 “Expansion Steps”, it checks to see if an identifier
with the same binding as the one to be introduced appears in stop-ids . If so, the
identifier is not introduced; the result of expansion is the bare application, literal data
expression, or unbound identifier rather than one wrapped in the respective explicit
form.

When #%plain-module-begin is not in stop-ids , the #%plain-module-begin
transformer detects and expands sub-forms (such as define-values) regardless of
the identifiers presence in stop-ids .

Expansion does not replace the scopes in a local-variable reference to match the bind-
ing identifier.

• If stop-ids is #f instead of a list, then stx is expanded only as long as the outermost
form of stx is a macro (i.e. expansion does not proceed to sub-expressions, and it does
not replace the scopes in a local-variable reference to match the binding identifier).
The #%app, #%datum, and #%top identifiers are never introduced.

Independent of stop-ids , when local-expand encounters an identifier that has a local
binding but no binding in the current expansion context, the variable is left as-is (as opposed
to triggering an “out of context” syntax error).

When context-v is 'module-begin, and the result of expansion is a #%plain-module-
begin form, then a 'submodule syntax property is added to each enclosed module form
(but not module* forms) in the same way as by module expansion.

817

If the intdef-ctx argument is an internal-definition context, its bindings and bindings
from all parent internal-definition contexts are added to the local binding context during
the dynamic extent of the call to local-expand. Additionally, unless #f was provided
for the add-scope? argument to syntax-local-make-definition-context when the
internal-definition context was created, its scope (but not the scopes of any parent internal-
definition contexts) is added to the lexical information for both stx prior to its expansion
and the expansion result (because the expansion might introduce bindings or references to
internal-definition bindings). If intdef-ctx is a list, all bindings from all of the provided
internal-definition contexts and their parents are added to the local binding context, and the
scope from each context for which add-scope? was not #f is added in the same way. For
backwards compatibility, providing #f for intdef-ctx is treated the same as providing an
empty list.

For a particular internal-definition context, generate a unique value and put it into a list
for context-v . To allow liberal expansion of define forms, the generated value should
be an instance of a structure with a true value for prop:liberal-define-context. If
the internal-definition context is meant to be self-contained, the list for context-v should
contain only the generated value; if the internal-definition context is meant to splice into an
immediately enclosing context, then when syntax-local-context produces a list, cons
the generated value onto that list.

When expressions are expanded via local-expand with an internal-definition context
intdef-ctx , and when the expanded expressions are incorporated into an overall form
new-stx , then typically internal-definition-context-track should be applied to
intdef-ctx and new-stx to provide expansion history to external tools.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Examples:

> (define-syntax-rule (do-print x ...)
(printf x ...))

> (define-syntax-rule (hello x)
(do-print "hello „a" x))

> (define-syntax (show stx)
(syntax-case stx ()
[(_ x)
(let ([partly (local-expand #'(hello x)

'expression
(list #'do-print))]

[fully (local-expand #'(hello x)
'expression
#f)])

(printf "partly expanded: „s\n" (syntax->datum partly))
(printf "fully expanded: „s\n" (syntax->datum fully))

818

fully)]))
> (show 1)
partly expanded: (do-print "hello „a" 1)
fully expanded: (printf "hello „a" 1)
hello 1

Changed in version 6.0.1.3 of package base: Changed treatment of #%top so that it is never introduced as an
explicit wrapper.
Changed in version 6.0.90.27: Loosened the contract on the intdef-ctx argument to allow an empty list, which
is treated the same way as #f.

(syntax-local-expand-expression stx
[opaque-only?])

Ñ (if opaque-only? #f syntax?) syntax?
stx : any/c
opaque-only? : any/c = #f

Like local-expand given 'expression and an empty stop list, but with two results: a
syntax object for the fully expanded expression, and a syntax object whose content is opaque.

The latter can be used in place of the former (perhaps in a larger expression produced by a
macro transformer), and when the macro expander encounters the opaque object, it substi-
tutes the fully expanded expression without re-expanding it; the exn:fail:syntax excep-
tion is raised if the expansion context includes scopes that were not present for the original
expansion, in which case re-expansion might produce different results. Consistent use of
syntax-local-expand-expression and the opaque object thus avoids quadratic expan-
sion times when local expansions are nested.

If opaque-only? is true, then the first result is #f instead of the expanded expression.
Obtaining only the second, opaque result can be more efficient in some expansion contexts.

Unlike local-expand, syntax-local-expand-expression normally produces an ex-
panded expression that contains no #%expression forms. However, if syntax-local-
expand-expression is used within an expansion that is triggered by an enclosing local-
expand call, then the result of syntax-local-expand-expression can include #%ex-
pression forms.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Changed in version 6.90.0.13 of package base: Added the opaque-only? argument.

(local-transformer-expand stx
context-v
stop-ids

[intdef-ctx]) Ñ syntax?

819

stx : any/c
context-v : (or/c 'expression 'top-level list?)
stop-ids : (or/c (listof identifier?) #f)
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

Like local-expand, but stx is expanded as a transformer expression instead of a run-time
expression.

Any lifted expressions—from calls to syntax-local-lift-expression during the ex-
pansion of stx—are captured in the result. If context-v is 'top-level, then lifts are
captured in a begin form, otherwise lifts are captured in let-values forms. If no expres-
sions are lifted during expansion, then no begin or let-values wrapper is added.

Changed in version 6.5.0.3 of package base: Allow and capture lifts in a 'top-level context.

(local-expand/capture-lifts stx
context-v
stop-ids

[intdef-ctx
lift-ctx]) Ñ syntax?

stx : any/c
context-v : (or/c 'expression 'top-level 'module 'module-begin list?)
stop-ids : (or/c (listof identifier?) #f)
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

lift-ctx : any/c = (gensym 'lifts)

Like local-expand, but the result is a syntax object that represents a begin expression.
Lifted expressions—from calls to syntax-local-lift-expression during the expansion
of stx—appear with their identifiers in define-values forms, and the expansion of stx
is the last expression in the begin. The lift-ctx value is reported by syntax-local-
lift-context during local expansion. The lifted expressions are not expanded, but instead
left as provided in the begin form.

If context-v is 'top-level or 'module, then module forms can appear in the result as
added via syntax-local-lift-module. If context-v is 'module, then module* forms
can appear, too.

(local-transformer-expand/capture-lifts stx
context-v
stop-ids

[intdef-ctx
lift-ctx]) Ñ syntax?

820

stx : any/c
context-v : (or/c 'expression 'top-level list?)
stop-ids : (or/c (listof identifier?) #f)
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

lift-ctx : any/c = (gensym 'lifts)

Like local-expand/capture-lifts, but stx is expanded as a transformer expression
instead of a run-time expression. Lifted expressions are reported as define-values forms
(in the transformer environment).

(internal-definition-context? v) Ñ boolean?
v : any/c

Returns #t if v is an internal-definition context, #f otherwise.

(syntax-local-make-definition-context [parent-ctx
add-scope?])

Ñ internal-definition-context?
parent-ctx : (or/c internal-definition-context? #f) = #f
add-scope? : any/c = #t

Creates an opaque internal-definition context value to be used with local-expand and other
functions. A transformer should create one context for each set of internal definitions to be
expanded, and use it when expanding any form whose lexical context should include the
definitions. After discovering an internal define-values or define-syntaxes form, use
syntax-local-bind-syntaxes to add bindings to the context.

An internal-definition context internally creates a scope to represent the context. Unless
add-scope? is #f, the scope is added to any form that is expanded within the context or
that appears as the result of a (partial) expansion within the context.

If parent-ctx is not #f, then parent-ctx is made the parent internal-definition context
for the new internal-definition context. Whenever the new context’s bindings are added to
the local binding context (e.g. by providing the context to local-expand, syntax-local-
bind-syntaxes, or syntax-local-value), then the bindings from parent-ctx are also
added as well. If parent-ctx was also created with a parent internal-definition context,
bindings from its parent are also added, and so on recursively. Note that the scopes of parent
contexts are not added implicitly, only the bindings, even when the scope of the child context
would be implicitly added. If the scopes of parent definition contexts should be added, the
parent contexts must be provided explicitly.

Additionally, if the created definition context is intended to be spliced into a surrounding
definition context, the surrounding context should always be provided for the parent-ctx

821

argument to ensure the necessary use-site scopes are added to macros expanded in the con-
text. Otherwise, expansion of nested definitions can be inconsistent with the expansion of
definitions in the surrounding context.

The scope associated with a new definition context is pruned from quote-syntax forms
only when it is created during the dynamic extent of a syntax transformer application or in a
begin-for-syntax form (potentially nested) within a module being expanded.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Changed in version 6.3 of package base: Added the add-scope? argument, and made calling
internal-definition-context-seal no longer necessary.

(syntax-local-bind-syntaxes id-list
expr
intdef-ctx

[extra-intdef-ctxs]) Ñ void?
id-list : (listof identifier?)
expr : (or/c syntax? #f)
intdef-ctx : internal-definition-context?
extra-intdef-ctxs : (or/c internal-definition-context?

(listof internal-definition-context?))
= '()

Binds each identifier in id-list within the internal-definition context represented by
intdef-ctx , where intdef-ctx is the result of syntax-local-make-definition-
context. Supply #f for expr when the identifiers correspond to define-values bindings,
and supply a compile-time expression when the identifiers correspond to define-syntaxes
bindings; in the latter case, the number of values produced by the expression should match
the number of identifiers, otherwise the exn:fail:contract:arity exception is raised.

When expr is not #f, it is expanded in an expression context and evaluated in the cur-
rent transformer environment. In this case, the bindings and lexical information from both
intdef-ctx and extra-intdef-ctxs are used to enrich expr ’s lexical information and
extend the local binding context in the same way as the fourth argument to local-expand.
If expr is #f, the value provided for extra-intdef-ctxs is ignored.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Changed in version 6.90.0.27 of package base: Added the extra-intdef-ctxs argument.

(internal-definition-context-binding-identifiers intdef-ctx)
Ñ (listof identifier?)
intdef-ctx : internal-definition-context?

822

Returns a list of all binding identifiers registered for intdef-ctx through syntax-local-
bind-syntaxes. Each identifier in the returned list includes the internal-definition context’s
scope.

Added in version 6.3.0.4 of package base.

(internal-definition-context-introduce intdef-ctx
stx

[mode]) Ñ syntax?
intdef-ctx : internal-definition-context?
stx : syntax?
mode : (or/c 'flip 'add 'remove) = 'flip

Flips, adds, or removes (depending on mode) the scope for intdef-ctx for all parts of stx .

Added in version 6.3 of package base.

(internal-definition-context-seal intdef-ctx) Ñ void?
intdef-ctx : internal-definition-context?

For backward compatibility only; has no effect.

(identifier-remove-from-definition-context id-stx
intdef-ctx)

Ñ identifier?
id-stx : identifier?
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?))

Removes all of the scopes of intdef-ctx (or of each element in a list intdef-ctx) from
id-stx .

The identifier-remove-from-definition-context function is provided for back-
ward compatibility; the more general internal-definition-context-introduce func-
tion is preferred.

Changed in version 6.3 of package base: Simplified the operation to scope removal.

prop:expansion-contexts : struct-type-property?

A structure type property to constrain the use of macro transformers and rename transform-
ers. The property’s value must be a list of symbols, where the allowed symbols are 'ex-
pression, 'top-level, 'module, 'module-begin, and 'definition-context. Each
symbol corresponds to an expansion context in the same way as for local-expand or as
reported by syntax-local-context, except that 'definition-context is used (instead
of a list) to represent an internal-definition context.

823

If an identifier is bound to a transformer whose list does not include a symbol for a particular
use of the identifier, then the use is adjusted as follows:

• In a 'module-begin context, then the use is wrapped in a begin form.

• In a 'module, 'top-level, 'internal-definition or context, if 'expression
is present in the list, then the use is wrapped in an #%expression form.

• Otherwise, a syntax error is reported.

The prop:expansion-contexts property is most useful in combination with
prop:rename-transformer, since a general transformer procedure can use syntax-
local-context. Furthermore, a prop:expansion-contexts property makes the most
sense when a rename transformer’s identifier has the 'not-free-identifier=? property,
otherwise a definition of the binding creates a binding alias that effectively routes around the
prop:expansion-contexts property.

Added in version 6.3 of package base.

(syntax-local-value id-stx
[failure-thunk
intdef-ctx]) Ñ any

id-stx : identifier?
failure-thunk : (or/c (-> any) #f) = #f
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

Returns the transformer binding value of the identifier id-stx in the context of the current
expansion. If intdef-ctx is not #f, bindings from all provided definition contexts are also
considered. Unlike the fourth argument to local-expand, the scopes associated with the
provided definition contexts are not used to enrich id-stx ’s lexical information.

If id-stx is bound to a rename transformer created with make-rename-transformer,
syntax-local-value effectively calls itself with the target of the rename and returns that
result, instead of the rename transformer.

If id-stx has no transformer binding (via define-syntax, let-syntax, etc.) in that
environment, the result is obtained by applying failure-thunk if not #f. If failure-
thunk is false, the exn:fail:contract exception is raised.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Examples:

824

> (define-syntax swiss-cheeses? #t)
> (define-syntax (transformer stx)

(if (syntax-local-value #'swiss-cheeses?)
#''(gruyère emmental raclette)
#''(roquefort camembert boursin)))

> (transformer)
'(gruyère emmental raclette)

Examples:

> (define-syntax (transformer-2 stx)
(syntax-local-value #'something-else (λ () (error "no bind-

ing"))))
> (transformer-2)
no binding

Examples:

> (define-syntax nachos #'(printf "nachos„n"))
> (define-syntax chips (make-rename-transformer #'nachos))
> (define-syntax (transformer-3 stx)

(syntax-local-value #'chips))
> (transformer-3)
nachos

Changed in version 6.90.0.27 of package base: Changed intdef-ctx to accept a list of internal-definition contexts
in addition to a single internal-definition context or #f.

(syntax-local-value/immediate id-stx
[failure-thunk
intdef-ctx]) Ñ any

id-stx : syntax?
failure-thunk : (or/c (-> any) #f) = #f
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

Like syntax-local-value, but the result is normally two values. If id-stx is bound
to a rename transformer, the results are the rename transformer and the identifier in the
transformer. If id-stx is not bound to a rename transformer, then the results are the value Beware that

provide on an id
bound to a rename
transformer may
export the target of
the rename instead
of id . See
make-rename-transformer
for more
information.

that syntax-local-value would produce and #f.

If id-stx has no transformer binding, then failure-thunk is called (and it can return any
number of values), or an exception is raised if failure-thunk is #f.

Examples:

825

> (define-syntax agent-007 (make-rename-transformer #'james-bond))
> (define-syntax (show-secret-identity stx)

(syntax-parse stx
[(_ name:id)
(define-values [_ orig-name] (syntax-local-

value/immediate #'name))
#`'(name #,orig-name)]))

> (show-secret-identity agent-007)
'(agent-007 james-bond)

(syntax-local-lift-expression stx) Ñ identifier?
stx : syntax?

Returns a fresh identifier, and cooperates with the module, letrec-syntaxes+values,
define-syntaxes, begin-for-syntax, and top-level expanders to bind the generated
identifier to the expression stx .

A run-time expression within a module is lifted to the module’s top level, just before the
expression whose expansion requests the lift. Similarly, a run-time expression outside
of a module is lifted to a top-level definition. A compile-time expression in a letrec-
syntaxes+values or define-syntaxes binding is lifted to a let wrapper around the
corresponding right-hand side of the binding. A compile-time expression within begin-
for-syntax is lifted to a define declaration just before the requesting expression within
the begin-for-syntax.

Other syntactic forms can capture lifts by using local-expand/capture-lifts or
local-transformer-expand/capture-lifts.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

In addition, this procedure can be called only when a lift target is available, as indicated by
syntax-transforming-with-lifts?.

(syntax-local-lift-values-expression n stx)
Ñ (listof identifier?)
n : exact-nonnegative-integer?
stx : syntax?

Like syntax-local-lift-expression, but binds the result to n identifiers, and returns a
list of the n identifiers.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

826

(syntax-local-lift-context) Ñ any/c

Returns a value that represents the target for expressions lifted via syntax-local-lift-
expression. That is, for different transformer calls for which this procedure returns the
same value (as determined by eq?), lifted expressions for the two transformer are moved to
the same place. Thus, the result is useful for caching lift information to avoid redundant lifts.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

(syntax-local-lift-module stx) Ñ void?
stx : syntax?

Cooperates with the module form or top-level expansion to add stx as a module declaration
in the enclosing module or top-level. The stx form must start with module or module*,
where the latter is only allowed within the expansion of a module.

The module is not immediately declared when syntax-local-lift-module returns. In-
stead, the module declaration is recorded for processing when expansion returns to the en-
closing module body or top-level sequence.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form or within a top-
level expansion, then the exn:fail:contract exception is raised. If stx form does
not start with module or module*, or if it starts with module* in a top-level context, the
exn:fail:contract exception is raised.

Added in version 6.3 of package base.

(syntax-local-lift-module-end-declaration stx) Ñ void?
stx : syntax?

Cooperates with the module form to insert stx as a top-level declaration at the end of the
module currently being expanded. If the current expression being transformed is in phase
level 0 and not in the module top-level, then stx is eventually expanded in an expression
context. If the current expression being transformed is in a higher phase level (i.e., nested
within some number of begin-for-syntaxes within a module top-level), then the lifted
declaration is placed at the very end of the module (under a suitable number of begin-for-
syntaxes), instead of merely the end of the enclosing begin-for-syntax.

This procedure must be called during the dynamic extent of a syntax transformer application

827

by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form (see syntax-
transforming-module-expression?), then the exn:fail:contract exception is
raised.
(syntax-local-lift-require raw-require-spec

stx) Ñ syntax?
raw-require-spec : any/c
stx : syntax?

Lifts a #%require form corresponding to raw-require-spec (either as a syntax object
or datum) to the top-level or to the top of the module currently being expanded or to an
enclosing begin-for-syntax.

The resulting syntax object is the same as stx , except that a fresh scope is added. The same
scope is added to the lifted #%require form, so that the #%require form can bind uses of
imported identifiers in the resulting syntax object (assuming that the lexical information of
stx includes the binding environment into which the #%require is lifted).

If raw-require-spec and stx are part of the input to a transformer, then typically
syntax-local-introduce should be applied to each before passing them to syntax-
local-lift-require, and then syntax-local-introduce should be applied to the re-
sult of syntax-local-lift-require. Otherwise, marks added by the macro expander
can prevent access to the new imports.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Changed in version 6.90.0.27 of package base: Changed the scope added to inputs from a macro-introduction
scope to one that does not affect whether or not the resulting syntax is considered original as reported by
syntax-original?.

(syntax-local-lift-provide raw-provide-spec-stx) Ñ void?
raw-provide-spec-stx : syntax?

Lifts a #%provide form corresponding to raw-provide-spec-stx to the top of the mod-
ule currently being expanded or to an enclosing begin-for-syntax.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form (see syntax-
transforming-module-expression?), then the exn:fail:contract exception is
raised.

828

(syntax-local-name) Ñ any/c

Returns an inferred name for the expression position being transformed, or #f if no such
name is available. A name is normally a symbol or an identifier. See also §1.2.6 “Inferred
Value Names”.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

(syntax-local-context)
Ñ (or/c 'expression 'top-level 'module 'module-begin list?)

Returns an indication of the context for expansion that triggered a syntax transformer call.
See §1.2.3.3 “Expansion Context” for more information on contexts.

The symbol results indicate that the expression is being expanded for an expression context,
a top-level context, a module context, or a module-begin context.

A list result indicates expansion in an internal-definition context. The identity of the list’s
first element (i.e., its eq?ness) reflects the identity of the internal-definition context; in par-
ticular two transformer expansions receive the same first value if and only if they are invoked
for the same internal-definition context. Later values in the list similarly identify internal-
definition contexts that are still being expanded, and that required the expansion of nested
internal-definition contexts.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

(syntax-local-phase-level) Ñ exact-integer?

During the dynamic extent of a syntax transformer application by the expander, the result is
the phase level of the form being expanded. Otherwise, the result is 0.

Examples:

; a macro bound at phase 0
> (define-syntax (print-phase-level stx)

(printf "phase level: „a„n" (syntax-local-phase-level))
#'(void))

> (require (for-meta 2 racket/base))
> (begin-for-syntax

; a macro bound at phase 1
(define-syntax (print-phase-level stx)

829

(printf "phase level: „a„n" (syntax-local-phase-level))
#'(void)))

> (print-phase-level)
phase level: 0
> (begin-for-syntax (print-phase-level))
phase level: 1

(syntax-local-module-exports mod-path)
Ñ (listof (cons/c (or/c exact-integer? #f) (listof symbol?)))
mod-path : (or/c module-path?

(syntax/c module-path?))

Returns an association list from phase-level numbers (or #f for the label phase level) to lists
of symbols, where the symbols are the names of provided bindings from mod-path at the
corresponding phase level.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

(syntax-local-submodules) Ñ (listof symbol?)

Returns a list of submodule names that are declared via module (as opposed to module*) in
the current expansion context.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

(syntax-local-get-shadower id-stx
[only-generated?]) Ñ identifier?

id-stx : identifier?
only-generated? : any/c = #f

Adds scopes to id-stx so that it refers to bindings in the current expansion context or could
bind any identifier obtained via (syntax-local-get-shadower id-stx) in more nested
contexts. If only-generated? is true, the phase-spanning scope of the enclosing module
or namespace is omitted from the added scopes, however, which limits the bindings that can
be referenced (and therefore avoids certain ambiguous references).

This function is intended for the implementation of syntax-parameterize and local-
require.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

830

Changed in version 6.3 of package base: Simplified to the minimal functionality needed for
syntax-parameterize and local-require.

(syntax-local-make-delta-introducer id-stx) Ñ procedure?
id-stx : identifier?

For (limited) backward compatibility only; raises exn:fail:unsupported.

Changed in version 6.3 of package base: changed to raise exn:fail:supported.

(syntax-local-certifier [active?])
Ñ ((syntax?) (any/c (or/c procedure? #f))

. ->* . syntax?)
active? : boolean? = #f

For backward compatibility only; returns a procedure that returns its first argument.

(syntax-transforming?) Ñ boolean?

Returns #t during the dynamic extent of a syntax transformer application by the expander
and while a module is being visited, #f otherwise.

(syntax-transforming-with-lifts?) Ñ boolean?

Returns #t if (syntax-transforming?) produces #t and a target context is available for
lifting expressions (via syntax-local-lift-expression), #f otherwise.

Currently, (syntax-transforming?) implies (syntax-transforming-with-lifts?).

Added in version 6.3.0.9 of package base.

(syntax-transforming-module-expression?) Ñ boolean?

Returns #t during the dynamic extent of a syntax transformer application by the expander
for an expression within a module form, #f otherwise.

(syntax-local-identifier-as-binding id-stx) Ñ identifier?
id-stx : identifier?

Returns an identifier like id-stx , but without use-site scopes that were previously added to
the identifier as part of a macro expansion in the current definition context.

In a syntax transformer that runs in a non-expression context and forces the expansion of
subforms with local-expand, use syntax-local-identifier-as-binding on an iden-
tifier from the expansion before moving it into a binding position or comparing with with

831

bound-identifier=?. Otherwise, the results can be inconsistent with the way that define
works in the same definition context.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Added in version 6.3 of package base.

(syntax-local-introduce stx) Ñ syntax?
stx : syntax?

Produces a syntax object that is like stx , except that the presence of scopes for the current
expansion—both the macro-introduction scope and the use-site scope, if any—is flipped
on all parts of the syntax object. See §1.2.3.5 “Transformer Bindings” for information on
macro-introduction and use-site scopes.

This procedure must be called during the dynamic extent of a syntax transformer application
by the expander or while a module is visited (see syntax-transforming?), otherwise the
exn:fail:contract exception is raised.

Example:

> (module example racket
(define-syntax (require-math stx)
(syntax-local-introduce #'(require racket/math)))

(require-math)
pi)

(make-syntax-introducer [as-use-site?])
Ñ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
as-use-site? : any/c = #f

Produces a procedure that encapsulates a fresh scope and flips, adds, or removes it in a given
syntax object. By default, the fresh scope is a macro-introduction scope, but providing a true
value for as-use-site? creates a scope that is like a use-site scope; the difference is in how
the scopes are treated by syntax-original?.

The action of the generated procedure can be 'flip (the default) to flip the presence of a
scope in each part of a given syntax object, 'add to add the scope to each regardless of
whether it is present already, or 'remove to remove the scope when it is currently present in
any part.

Multiple applications of the same make-syntax-introducer result procedure use the same
scope, and different result procedures use distinct scopes.

Changed in version 6.3 of package base: Added the optional as-use-site? argument, and added the optional
operation argument in the result procedure.

832

(make-interned-syntax-introducer key)
Ñ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
key : symbol?

Like make-syntax-introducer, but the encapsulated scope is interned. Multiple calls
to make-interned-syntax-introducer with the same key will produce procedures that
flip, add, or remove the same scope, even across phases and module instantiations. Fur-
thermore, the scope remains consistent even when embedded in compiled code, so a scope
created with make-interned-syntax-introducer will retain its identity in syntax ob-
jects loaded from compiled code. (In this sense, the relationship between make-syntax-
introducer and make-interned-syntax-introducer is analogous to the relationship
between gensym and quote.)

This function is intended for the implementation of separate binding environments within a
single phase, for which the scope associated with each environment must be the same across
modules.

Unlike make-syntax-introducer, the scope added by a procedure created with make-
interned-syntax-introducer is always treated like a use-site scope, not a macro-
introduction scope, so it does not affect originalness as reported by syntax-original?.

Added in version 6.90.0.28 of package base.

(make-syntax-delta-introducer ext-stx
base-stx

[phase-level])
Ñ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
ext-stx : identifier?
base-stx : (or/c syntax? #f)
phase-level : (or/c #f exact-integer?)

= (syntax-local-phase-level)

Produces a procedure that behaves like the result of make-syntax-introducer, but using
a set of scopes from ext-stx and with a default action of 'add.

• If the scopes of base-stx are a subset of the scopes of ext-stx , then the result of
make-syntax-delta-introducer adds, removes, or flips scopes that are in the set
for ext-stx and not in the set for base-stx .

• If the scopes of base-stx are not a subset of the scopes of ext-stx , but if it has a
binding, then the set of scopes associated with the binding id subtracted from the set
of scopes for ext-stx , and the result of make-syntax-delta-introducer adds,
removes, or flips that difference.

A #f value for base-stx is equivalent to a syntax object with no scopes.

833

This procedure is potentially useful when some m-id has a transformer binding that records
some orig-id , and a use of m-id introduces a binding of orig-id . In that case, the scopes
one the use of m-id added since the binding of m-id should be transferred to the binding
instance of orig-id , so that it captures uses with the same lexical context as the use of
m-id .

If ext-stx is tainted or armed, then an identifier result from the created procedure is tainted.

(syntax-local-transforming-module-provides?) Ñ boolean?

Returns #t while a provide transformer is running (see make-provide-transformer) or
while an expand sub-form of #%provide is expanded, #f otherwise.

(syntax-local-module-defined-identifiers)
Ñ (and/c hash? immutable?)

Can be called only while syntax-local-transforming-module-provides? returns #t.

It returns a hash table mapping a phase-level number (such as 0) to a list of all definitions at
that phase level within the module being expanded. This information is used for implement-
ing provide sub-forms like all-defined-out.

Beware that the phase-level keys are absolute relative to the enclosing module, and not rela-
tive to the current transformer phase level as reported by syntax-local-phase-level.

(syntax-local-module-required-identifiers mod-path
phase-level)

Ñ (or/c (listof (cons/c (or/c exact-integer? #f)
(listof identifier?)))

#f)
mod-path : (or/c module-path? #f)
phase-level : (or/c exact-integer? #f #t)

Can be called only while syntax-local-transforming-module-provides? returns #t.

It returns an association list mapping phase levels to lists of identifiers. Each list of identifiers
includes all bindings imported (into the module being expanded) using the module path mod-
path , or all modules if mod-path is #f. The association list includes all identifiers imported
with a phase-level shift, or all shifts if phase-level is #t. If phase-level is not #t,
the result can be #f if no identifiers are exported at that phase.

When an identifier is renamed on import, the result association list includes the identifier
by its internal name. Use identifier-binding to obtain more information about the
identifier.

Beware that the phase-level keys are absolute relative to the enclosing module, and not rela-
tive to the current transformer phase level as reported by syntax-local-phase-level.

834

prop:liberal-define-context : struct-type-property?
(liberal-define-context? v) Ñ boolean?

v : any/c

An instance of a structure type with a true value for the prop:liberal-define-context
property can be used as an element of an internal-definition context representation in the
result of syntax-local-context or the second argument of local-expand. Such a value
indicates that the context supports liberal expansion of define forms into potentially mul-
tiple define-values and define-syntaxes forms. The 'module and 'module-body
contexts implicitly allow liberal expansion.

The liberal-define-context? predicate returns #t if v is an instance of a structure with
a true value for the prop:liberal-define-context property, #f otherwise.

12.4.1 require Transformers

(require racket/require-transform) package: base

The bindings documented in this section are provided by the racket/require-transform
library, not racket/base or racket.

A transformer binding whose value is a structure with the prop:require-transformer
property implements a derived require-spec for require as a require transformer.

A require transformer is called with the syntax object representing its use as a require-
spec within a require form, and the result must be two lists: a list of imports and a list
of import-sources.

If the derived form contains a sub-form that is a require-spec , then it can call expand-
import to transform the sub-require-spec to lists of imports and import sources.

See also define-require-syntax, which supports macro-style require transformers.

(expand-import require-spec)
Ñ (listof import?) (listof import-source?)
require-spec : syntax?

Expands the given require-spec to lists of imports and import sources. The latter specifies
modules to be instantiated or visited, so the modules that it represents should be a superset
of the modules represented in the former list (so that a module will be instantiated or visited
even if all of imports are eventually filtered from the former list).

(make-require-transformer proc) Ñ require-transformer?
proc : (syntax? . -> . (values

(listof import?)
(listof import-source?)))

835

https://pkgs.racket-lang.org/package/base

Creates a require transformer using the given procedure as the transformer. Often used in
combination with expand-import.

Examples:

> (require (for-syntax racket/require-transform))
> (define-syntax printing

(make-require-transformer
(lambda (stx)
(syntax-case stx ()
[(_ path)
(printf "Importing: „a„n" #'path)
(expand-import #'path)]))))

> (require (printing racket/match))
Importing: #<syntax:eval:37:0 racket/match>

prop:require-transformer : struct-type-property?

A property to identify require transformers. The property value must be a procedure that
takes the structure and returns a transformer procedure; the returned transformer procedure
takes a syntax object and returns import and import-source lists.

(require-transformer? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:require-transformer property, #f otherwise.

(struct import (local-id
src-sym
src-mod-path
mode
req-mode
orig-mode
orig-stx)

#:extra-constructor-name make-import)
local-id : identifier?
src-sym : symbol?
src-mod-path : (or/c module-path?

(syntax/c module-path?))
mode : (or/c exact-integer? #f)
req-mode : (or/c exact-integer? #f)
orig-mode : (or/c exact-integer? #f)
orig-stx : syntax?

A structure representing a single imported identifier:

836

• local-id — the identifier to be bound within the importing module.

• src-sym — the external name of the binding as exported from its source module.

• src-mod-path — a module path (relative to the importing module) for the source of
the imported binding.

• mode — the phase level of the binding in the importing module.

• req-mode — the phase level shift of the import relative to the exporting module.

• orig-mode — the phase level of the binding as exported by the exporting module.

• orig-stx — a syntax object for the source of the import, used for error reporting.

(struct import-source (mod-path-stx mode)
#:extra-constructor-name make-import-source)

mod-path-stx : (syntax/c module-path?)
mode : (or/c exact-integer? #f)

A structure representing an imported module, which must be instantiated or visited even if
no binding is imported into a module.

• mod-path-stx — a module path (relative to the importing module) for the source of
the imported binding.

• mode — the phase level shift of the import.

(current-require-module-path) Ñ (or/c #f module-path-index?)
(current-require-module-path module-path) Ñ void?

module-path : (or/c #f module-path-index?)

A parameter that determines how relative require-level module paths are expanded to
#%require-level module paths by convert-relative-module-path (which is used im-
plicitly by all built-in require sub-forms).

When the value of current-require-module-path is #f, relative module paths are left
as-is, which means that the require context determines the resolution of the module path.

The require form parameterizes current-require-module-path as #f while invok-
ing sub-form transformers, while relative-in parameterizes to a given module path.

(convert-relative-module-path module-path)
Ñ (or/c module-path?

(syntax/c module-path?))
module-path : (or/c module-path?

(syntax/c module-path?))

837

Converts module-path according to current-require-module-path.

If module-path is not relative or if the value of current-require-module-path is #f,
then module-path is returned. Otherwise, module-path is converted to an absolute mod-
ule path that is equivalent to module-path relative to the value of current-require-
module-path.

(syntax-local-require-certifier)
Ñ ((syntax?) (or/c #f (syntax? . -> . syntax?))

. ->* . syntax?)

For backward compatibility only; returns a procedure that returns its first argument.

12.4.2 provide Transformers

(require racket/provide-transform) package: base

The bindings documented in this section are provided by the racket/provide-transform
library, not racket/base or racket.

A transformer binding whose value is a structure with the prop:provide-transformer
property implements a derived provide-spec for provide as a provide transformer. A
provide transformer is applied as part of the last phase of a module’s expansion, after all
other declarations and expressions within the module are expanded.

A transformer binding whose value is a structure with the prop:provide-pre-
transformer property implements a derived provide-spec for provide as a provide
pre-transformer. A provide pre-transformer is applied as part of the first phase of a mod-
ule’s expansion. Since it is used in the first phase, a provide pre-transformer can use func-
tions such as syntax-local-lift-expression to introduce expressions and definitions
in the enclosing module.

An identifier can have a transformer binding to a value that acts both as a provide transformer
and provide pre-transformer. The result of a provide pre-transformer is not automatically re-
expanded, so a provide pre-transformer can usefully expand to itself in that case.

A transformer is called with the syntax object representing its use as a provide-spec within
a provide form and a list of symbols representing the export modes specified by enclosing
provide-specs. The result of a provide transformer must be a list of exports, while the
result of a provide pre-transformer is a syntax object to be used as a provide-spec in the
last phase of module expansion.

If a derived form contains a sub-form that is a provide-spec , then it can call expand-
export or pre-expand-export to transform the sub-provide-spec sub-form.

See also define-provide-syntax, which supports macro-style provide transformers.

838

https://pkgs.racket-lang.org/package/base

(expand-export provide-spec modes) Ñ (listof export?)
provide-spec : syntax?
modes : (listof (or/c exact-integer? #f))

Expands the given provide-spec to a list of exports. The modes list controls the expansion
of sub-provide-specs ; for example, an identifier refers to a binding in the phase level of
the enclosing provide form, unless the modes list specifies otherwise. Normally, modes is
either empty or contains a single element.

(pre-expand-export provide-spec modes) Ñ syntax?
provide-spec : syntax?
modes : (listof (or/c exact-integer? #f))

Expands the given provide-spec at the level of provide pre-transformers. The modes
argument is the same as for expand-export.

(make-provide-transformer proc) Ñ provide-transformer?
proc : (syntax? (listof (or/c exact-integer? #f))

. -> . (listof export?))
(make-provide-transformer proc pre-proc)
Ñ (and/c provide-transformer? provide-pre-transformer?)
proc : (syntax? (listof (or/c exact-integer? #f))

. -> . (listof export?))
pre-proc : (syntax? (listof (or/c exact-integer? #f))

. -> . syntax?)

Creates a provide transformer (i.e., a structure with the prop:provide-transformer prop-
erty) using the given procedure as the transformer. If a pre-proc is provided, then the result
is also a provide pre-transformer. Often used in combination with expand-export and/or
pre-expand-export.

(make-provide-pre-transformer pre-proc)
Ñ provide-pre-transformer?
pre-proc : (syntax? (listof (or/c exact-integer? #f))

. -> . syntax?)

Like make-provide-transformer, but for a value that is a provide pre-transformer, only.
Often used in combination with pre-expand-export.

Examples:

> (module m racket
(require
(for-syntax racket/provide-transform syntax/parse syntax/stx))

839

(define-syntax wrapped-out
(make-provide-pre-transformer
(lambda (stx modes)
(syntax-parse stx
[(_ f ...)
#:with (wrapped-f ...)

(stx-map
syntax-local-lift-expression
#'((lambda args

(printf "applying „a, args:
„a\n" 'f args)

(apply f args)) ...))
(pre-expand-export
#'(rename-out [wrapped-f f] ...) modes)]))))

(provide (wrapped-out + -)))
> (require 'm)
> (- 1 (+ 2 3))
applying +, args: (2 3)
applying -, args: (1 5)
-4

prop:provide-transformer : struct-type-property?

A property to identify provide transformers. The property value must be a procedure that
takes the structure and returns a transformer procedure; the returned transformer procedure
takes a syntax object and mode list and returns an export list.

prop:provide-pre-transformer : struct-type-property?

A property to identify provide pre-transformers. The property value must be a procedure that
takes the structure and returns a transformer procedure; the returned transformer procedure
takes a syntax object and mode list and returns a syntax object.

(provide-transformer? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:provide-transformer property, #f otherwise.

(provide-pre-transformer? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:provide-pre-transformer property, #f otherwise.

840

(struct export (local-id out-sym mode protect? orig-stx)
#:extra-constructor-name make-export)

local-id : identifier?
out-sym : symbol?
mode : (or/c exact-integer? #f)
protect? : any/c
orig-stx : syntax?

A structure representing a single imported identifier:

• local-id — the identifier that is bound within the exporting module.

• out-sym — the external name of the binding.

• mode — the phase level of the binding in the exporting module.

• protect? — indicates whether the identifier should be protected (see §14.10 “Code
Inspectors”).

• orig-stx — a syntax object for the source of the export, used for error reporting.

(syntax-local-provide-certifier)
Ñ ((syntax?) (or/c #f (syntax? . -> . syntax?))

. ->* . syntax?)

For backward compatibility only; returns a procedure that returns its first argument.

12.4.3 Keyword-Argument Conversion Introspection

(require racket/keyword-transform) package: base

The bindings documented in this section are provided by the racket/keyword-transform
library, not racket/base or racket.

(syntax-procedure-alias-property stx)
Ñ (or/c #f

(letrec ([val? (recursive-contract
(or/c (cons/c identifier? identifier?)

(cons/c val? val?)))])
val?))

stx : syntax?

841

https://pkgs.racket-lang.org/package/base

(syntax-procedure-converted-arguments-property stx)
Ñ (or/c #f

(letrec ([val? (recursive-contract
(or/c (cons/c identifier? identifier?)

(cons/c val? val?)))])
val?))

stx : syntax?

Reports the value of a syntax property that can be attached to an identifier by the expansion
of a keyword-application form. See lambda for more information about the property.

The property value is normally a pair consisting of the original identifier and an identifier that
appears in the expansion. Property-value merging via syntax-track-origin can make the
value a pair of such values, and so on.

12.5 Syntax Parameters

(require racket/stxparam) package: base

The bindings documented in this section are provided by the racket/stxparam library, not
racket/base or racket.

(define-syntax-parameter id expr)

Binds id as syntax to a syntax parameter. The expr is an expression in the transformer
environment that serves as the default value for the syntax parameter. The value is typically
obtained by a transformer using syntax-parameter-value.

The id can be used with syntax-parameterize or syntax-parameter-value (in
a transformer). If expr produces a procedure of one argument or a make-set!-
transformer result, then id can be used as a macro. If expr produces a make-rename-
transformer result, then id can be used as a macro that expands to a use of the target
identifier, but syntax-local-value of id does not produce the target’s value.

Examples:

> (define-syntax-parameter current-class #f)
> (define-syntax-parameter yield (make-rename-
transformer #'abort))
> (define-syntax-parameter define/public

(λ (stx)
(raise-syntax-error #f "use of a class keyword not in a

class" stx)))
> (begin-for-syntax (displayln (syntax-parameter-value #'current-
class)))

842

https://pkgs.racket-lang.org/package/base

#f
> (yield 5)
5

(syntax-parameterize ([id expr] ...) body-expr ...+)
See also
splicing-syntax-parameterize.

Each id must be bound to a syntax parameter using define-syntax-parameter. Each
expr is an expression in the transformer environment. During the expansion of the body-
exprs, the value of each expr is bound to the corresponding id .

If an expr produces a procedure of one argument or a make-set!-transformer result,
then its id can be used as a macro during the expansion of the body-exprs. If expr pro-
duces a make-rename-transformer result, then id can be used as a macro that expands to
a use of the target identifier, but syntax-local-value of id does not produce the target’s
value.

Examples:

> (define-syntax-parameter abort (syntax-rules ()))
> (define-syntax forever

(syntax-rules ()
[(forever body ...)
(call/cc (lambda (abort-k)
(syntax-parameterize

([abort (syntax-rules () [(_) (abort-k)])])
(let loop () body ... (loop)))))]))

> (define-syntax-parameter it (syntax-rules ()))
> (define-syntax aif

(syntax-rules ()
[(aif test then else)
(let ([t test])
(syntax-parameterize ([it (syntax-id-rules () [_ t])])
(if t then else)))]))

(define-rename-transformer-parameter id expr)

Binds id as syntax to a syntax parameter that must be bound to a make-rename-
transformer result and, unlike define-syntax-parameter, syntax-local-value of
id does produce the target’s value, including inside of syntax-parameterize.

Examples:

> (define-syntax (test stx)
(syntax-case stx ()
[(_ t)

843

#`#,(syntax-local-value #'t)]))
> (define-syntax one 1)
> (define-syntax two 2)
> (define-syntax-parameter not-num

(make-rename-transformer #'one))
> (test not-num)
#<procedure:syntax-parameter>
> (define-rename-transformer-parameter num

(make-rename-transformer #'one))
> (test num)
1
> (syntax-parameterize ([num (make-rename-transformer #'two)])

(test num))
2

Added in version 6.3.0.14 of package base.

12.5.1 Syntax Parameter Inspection

(require racket/stxparam-exptime) package: base

(syntax-parameter-value id-stx) Ñ any
id-stx : syntax?

This procedure is intended for use in a transformer environment, where id-stx is an iden-
tifier bound in the normal environment to a syntax parameter. The result is the current value
of the syntax parameter, as adjusted by syntax-parameterize form.

This binding is provided for-syntax by racket/stxparam, since it is normally used in a
transformer. It is provided normally by racket/stxparam-exptime.

(make-parameter-rename-transformer id-stx) Ñ any
id-stx : syntax?

This procedure is intended for use in a transformer, where id-stx is an identifier bound to
a syntax parameter. The result is a transformer that behaves as id-stx , but that cannot be
used with syntax-parameterize or syntax-parameter-value.

Using make-parameter-rename-transformer is analogous to defining a procedure that
calls a parameter. Such a procedure can be exported to others to allow access to the param-
eter value, but not to change the parameter value. Similarly, make-parameter-rename-
transformer allows a syntax parameter to be used as a macro, but not changed.

The result of make-parameter-rename-transformer is not treated specially by syntax-
local-value, unlike the result of make-rename-transformer.

844

https://pkgs.racket-lang.org/package/base

This binding is provided for-syntax by racket/stxparam, since it is normally used in a
transformer. It is provided normally by racket/stxparam-exptime.

12.6 Local Binding with Splicing Body

(require racket/splicing) package: base

The bindings documented in this section are provided by the racket/splicing library, not
racket/base or racket.

splicing-let
splicing-letrec
splicing-let-values
splicing-letrec-values
splicing-let-syntax
splicing-letrec-syntax
splicing-let-syntaxes
splicing-letrec-syntaxes
splicing-letrec-syntaxes+values
splicing-local
splicing-parameterize

Like let, letrec, let-values, letrec-values, let-syntax, letrec-syntax, let-
syntaxes, letrec-syntaxes, letrec-syntaxes+values, local, and parameterize,
except that in a definition context, the body forms are spliced into the enclosing definition
context (in the same way as for begin).

Examples:

> (splicing-let-syntax ([one (lambda (stx) #'1)])
(define o one))

> o
1
> one
one: undefined;

cannot reference an identifier before its definition
in module: top-level

When a splicing binding form occurs in a top-level context or module context, its local
bindings are treated similarly to definitions. In particular, syntax bindings are evaluated
every time the module is visited, instead of only once during compilation as in let-syntax,
etc.

Example:

845

https://pkgs.racket-lang.org/package/base

> (splicing-letrec ([x bad]
[bad 1])

x)
bad.1: undefined;

cannot reference an identifier before its definition
in module: top-level

If a definition within a splicing form is intended to be local to the splicing body, then the
identifier should have a true value for the 'definition-intended-as-local syntax prop-
erty. For example, splicing-let itself adds the property to locally-bound identifiers as it
expands to a sequence of definitions, so that nesting splicing-let within a splicing form
works as expected (without any ambiguous bindings).

Changed in version 6.12.0.2 of package base: Added splicing-parameterize.

splicing-syntax-parameterize

Like syntax-parameterize, except that in a definition context, the body forms are spliced
into the enclosing definition context (in the same way as for begin). In a definition context,
the body of splicing-syntax-parameterize can be empty.

Note that require transformers and provide transformers are not affected by syntax param-
eterization. While all uses of require and provide will be spliced into the enclosing
context, derived import or export specifications will expand as if they had not been inside of
the splicing-syntax-parameterize.

Additionally, submodules defined with module* that specify #f in place of a module path
are affected by syntax parameterization, but other submodules (those defined with module
or module* with a module path) are not.

Examples:

> (define-syntax-parameter place (lambda (stx) #'"Kansas"))
> (define-syntax-rule (where) `(at ,(place)))
> (where)
'(at "Kansas")
> (splicing-syntax-parameterize ([place (lambda (stx) #'"Oz")])

(define here (where)))
> here
'(at "Oz")

Changed in version 6.11.0.1 of package base: Modified to syntax parameterize module* submodules that specify
#f in place of a module path.

846

12.7 Syntax Object Properties

Every syntax object has an associated syntax property list, which can be queried or extended
with syntax-property. A property is set as preserved or not; a preserved property is
maintained for a syntax object in a compiled form that is marshaled to a byte string or
".zo" file, and other properties are discarded when marshaling.

In read-syntax, the reader attaches a preserved 'paren-shape property to any pair or
vector syntax object generated from parsing a pair [and] or { and }; the property value is
#\[in the former case, and #\{ in the latter case. The syntax form copies any 'paren-
shape property from the source of a template to corresponding generated syntax.

Both the syntax input to a transformer and the syntax result of a transformer may have
associated properties. The two sets of properties are merged by the syntax expander: each
property in the original and not present in the result is copied to the result, and the values of
properties present in both are combined with cons (result value first, original value second)
and the consed value is preserved if either of the values were preserved.

Before performing the merge, however, the syntax expander automatically adds a property
to the original syntax object using the key 'origin. If the source syntax has no 'origin
property, it is set to the empty list. Then, still before the merge, the identifier that triggered
the macro expansion (as syntax) is consed onto the 'origin property so far. The 'origin
property thus records (in reverse order) the sequence of macro expansions that produced
an expanded expression. Usually, the 'origin value is a list of identifiers. However, a
transformer might return syntax that has already been expanded, in which case an 'origin
list can contain other lists after a merge. The syntax-track-origin procedure implements
this tracking. The 'origin property is added as non-preserved.

Besides 'origin tracking for general macro expansion, Racket adds properties to expanded
syntax (often using syntax-track-origin) to record additional expansion details:

• When a begin form is spliced into a sequence with internal definitions (see §1.2.3.8
“Internal Definitions”), syntax-track-origin is applied to every spliced element
from the begin body. The second argument to syntax-track-origin is the begin
form, and the third argument is the begin keyword (extracted from the spliced form).

• When an internal define-values or define-syntaxes form is converted into
a letrec-syntaxes+values form (see §1.2.3.8 “Internal Definitions”), syntax-
track-origin is applied to each generated binding clause. The second argument to
syntax-track-origin is the converted form, and the third argument is the define-
values or define-syntaxes keyword form the converted form.

• When a letrec-syntaxes+values expression is fully expanded, syntax bindings
disappear, and the result is either a letrec-values form (if the unexpanded form
contained non-syntax bindings), or only the body of the letrec-syntaxes+values
form (wrapped with begin if the body contained multiple expressions). To record the

847

disappeared syntax bindings, a property is added to the expansion result: an immutable
list of identifiers from the disappeared bindings, as a 'disappeared-binding prop-
erty.

• When a subtyping struct form is expanded, the identifier used to reference the base
type does not appear in the expansion. Therefore, the struct transformer adds the
identifier to the expansion result as a 'disappeared-use property.

• When a reference to an unexported or protected identifier from a module is discovered,
the 'protected property is added to the identifier with a #t value.

• When read-syntax generates a syntax object, it attaches a property to the object
(using a private key) to mark the object as originating from a read. The syntax-
original? predicate looks for the property to recognize such syntax objects. (See
§12.2 “Syntax Object Content” for more information.)

See also Check Syntax for one client of the 'disappeared-use and 'disappeared-
binding properties.

See §12.9.1 “Information on Expanded Modules” for information about properties generated
by the expansion of a module declaration. See lambda and §1.2.6 “Inferred Value Names”
for information about properties recognized when compiling a procedure. See current-
compile for information on properties and byte codes.

(syntax-property stx key v [preserved?]) Ñ syntax?
stx : syntax?
key : (if preserved? (and/c symbol? symbol-interned?) any/c)
v : any/c
preserved? : any/c = (eq? key 'paren-shape)

(syntax-property stx key) Ñ any
stx : syntax?
key : any/c

The three- or four-argument form extends stx by associating an arbitrary property value v
with the key key ; the result is a new syntax object with the association (while stx itself is
unchanged). The property is added as preserved if preserved? is true, in which case key
must be an interned symbol, and v should be a value as described below that can be saved
in marshaled bytecode.

The two-argument form returns an arbitrary property value associated to stx with the key
key , or #f if no value is associated to stx for key .

To support marshaling to bytecode, a value for a preserved syntax property must be a non-
cyclic value that is either

• a pair containing allowed preserved-property values;

848

• a vector (unmarshaled as immutable) containing allowed preserved-property values;

• a box (unmarshaled as immutable) containing allowed preserved-property values;

• an immutable prefab structure containing allowed preserved-property values;

• an immutable hash table whose keys and values are allowed preserved-property val-
ues;

• a syntax object; or

• an empty list, symbol, number, character, string, byte string, or regexp value.

Any other value for a preserved property triggers an exception at an attempt to marshal the
owning syntax object to bytecode form.

Changed in version 6.4.0.14 of package base: Added the preserved? argument.

(syntax-property-remove stx key) Ñ syntax?
stx : syntax?
key : any/c

Returns a syntax object like stx , but without a property (if any) for key .

Added in version 6.90.0.20 of package base.

(syntax-property-preserved? stx key) Ñ boolean?
stx : syntax?
key : (and/c symbol? symbol-interned?)

Returns #t if stx has a preserved property value for key , #f otherwise.

Added in version 6.4.0.14 of package base.

(syntax-property-symbol-keys stx) Ñ list?
stx : syntax?

Returns a list of all symbols that as keys have associated properties in stx . Uninterned
symbols (see §4.6 “Symbols”) are not included in the result list.

(syntax-track-origin new-stx
orig-stx
id-stx) Ñ any

new-stx : syntax?
orig-stx : syntax?
id-stx : identifier?

849

Adds properties to new-stx in the same way that macro expansion adds properties to a
transformer result. In particular, it merges the properties of orig-stx into new-stx , first
adding id-stx as an 'origin property, and it returns the property-extended syntax object.
Use the syntax-track-origin procedure in a macro transformer that discards syntax (cor-
responding to orig-stx with a keyword id-stx) leaving some other syntax in its place
(corresponding to new-stx).

For example, the expression

(or x y)

expands to

(let ([or-part x]) (if or-part or-part (or y)))

which, in turn, expands to

(let-values ([(or-part) x]) (if or-part or-part y))

The syntax object for the final expression will have an 'origin property whose value is
(list (quote-syntax let) (quote-syntax or)).

12.8 Syntax Taints
§16.2.7 “Code
Inspectors and
Syntax Taints” in
The Racket Guide
introduces syntax
taints.

The tamper status of a syntax object is either tainted, armed, or clean:

• A tainted identifier is rejected by the macro expander for use as either a binding or ex-
pression. If a syntax object is tainted, then any syntax object in the result of (syntax-
e stx) is tainted, and datum->syntax with stx as its first argument produces a
tainted syntax object.

Other derived operations, such as pattern matching in syntax-case, also taint syntax
objects when extracting them from a tainted syntax object.

• An armed syntax object has a set of dye packs, which creates taints if the armed
syntax object is used without first disarming the dye packs. In particular, if a syntax
object is armed, syntax-e, datum->syntax, quote-syntax, and derived operations
effectively treat the syntax object as tainted. The macro expander, in contrast, disarms
dye packs before pulling apart syntax objects.

Each dye pack, which is added to a syntax object with the syntax-arm function, is
keyed by an inspector. A dye pack can be disarmed using syntax-disarm with an
inspector that is the same as or a superior of the dye pack’s inspector.

• A clean syntax object has no immediate taints or dye packs, although it may contain
syntax objects that are tainted or armed.

850

Taints cannot be removed, and attempting to arm a syntax object that is already tainted has
no effect on the resulting syntax object.

The macro expander disarms any syntax object that it encounters in an expression position
or as a module body. A syntax object is therefore disarmed when it is provided to a syntax
transformer. The transformer’s result, however, is rearmed by copying to it any dye packs
that were originally attached to the transformer’s input. The rearming process obeys the
following rules:

• If the result has a 'taint-mode property (see §12.7 “Syntax Object Properties”) that
is 'opaque, then dye packs are attached to the immediate syntax object.

• If the result has a 'taint-mode property that is 'none, then no dye pack is attached
to the syntax object. The 'none mode is rarely appropriate.

• If the result has a 'taint-mode property that is 'transparent, then the dye packs
are propagated recursively to syntax object that corresponds to elements of the syntax
object’s datum as a list (or, more precisely, to the cars of the datum as reached by
any number of cdrs), and the immediate syntax object loses its lexical context; If the
immediate syntax object is already armed, then recursive propagation taints the ele-
ments. Recursive propagation uses syntax properties and shapes, as for the immediate
rearming.

• If the result has a 'taint-mode property that is 'transparent-binding, then dye
packs are attached in a way similar to 'transparent, but further treating the syntax
object corresponding to the second list element as having a 'transparent value for
the 'taint-mode property if it does not already have a 'taint-mode property value.

• If the result has no 'taint-mode property value, but its datum is a pair, and if the
syntax object corresponding to the car of the pair is an identifier bound to begin,
begin-for-syntax, or #%plain-module-begin, then dye packs are propagated as
if the syntax object had the 'transparent property value.

• If the result has no 'taint-mode property value, but its datum is a pair, and if the
syntax object corresponding to the car of the pair is an identifier bound to define-
values or define-syntaxes, then dye packs are propagated as if the syntax object
had the 'transparent-binding property value.

For backward compatibility, a 'certify-mode property is treated the same as a 'taint-
mode property if the former is not attached. To avoid accidental transfer of a 'taint-mode
or 'certify-mode property value, the expander always removes any 'taint-mode and
'certify-mode property on a syntax object that is passed to a syntax transformer.

(syntax-tainted? stx) Ñ boolean?
stx : syntax?

Returns #t if stx is tainted, #f otherwise.

851

(syntax-arm stx [inspector use-mode?]) Ñ syntax?
stx : syntax?
inspector : (or/c inspector? #f) = #f
use-mode? : any/c = #f

Produces a syntax object like stx , but armed with a dye pack that is keyed by inspector .

A #f value for inspector is equivalent to an inspector that depends on the current dynamic
context:

• when a syntax transformer is being applied, the declaration-time code inspector of the
module in which a syntax transformer was bound;

• when a module is being visited, the module’s declaration-time code inspector;

• (current-code-inspector), otherwise.

If use-mode? is #f, then if stx is tainted or already armed with the key inspector , the
result is stx .

If use-mode? is a true value, then a dye pack is not necessarily added directly to stx .
Instead, the dye pack is pushed to interior syntax objects in the same way that the expander
pushes armings into a syntax transformer’s results when rearming (based on a 'taint-
mode syntax property or identifier bindings); see the expander’s rearming rules for more
information. To the degree that pushing dye packs into a syntax object must destructure
stx , existing taints or dye packs can lead to tainted results rather than armed results.

(syntax-protect stx) Ñ syntax?
stx : syntax?

Equivalent to (syntax-arm stx #f #t).

(syntax-disarm stx inspector) Ñ syntax?
stx : syntax?
inspector : (or/c inspector? #f)

Produces a disarmed version of stx , removing any immediate dye packs that match in-
spector . An inspector matches when it is either the same as or a super-inspector of the dye
pack’s inspector. A #f value for inspector is replaced by a specific inspector in the same
way as for syntax-arm.

(syntax-rearm stx from-stx [use-mode?]) Ñ syntax?
stx : syntax?
from-stx : syntax?
use-mode? : any/c = #f

852

Produces a rearmed or tainted version of stx by adding all immediate taints and dye packs
of from-stx .

If use-mode? is a true value, stx is not necessarily tainted or armed directly. Instead, taints
or dye packs are pushed to interior syntax objects in the same way as for syntax-arm or
rearming by the expander.

(syntax-taint stx) Ñ syntax?
stx : syntax?

Returns tainted version of stx—equivalent to (datum->syntax (syntax-arm stx)
(syntax-e stx) stx stx)—or stx if it is already tainted.

12.9 Expanding Top-Level Forms

(expand top-level-form) Ñ syntax?
top-level-form : any/c

Expands all non-primitive syntax in top-level-form , and returns a syntax object for the
expanded form that contains only core forms, matching the grammar specified by §1.2.3.1
“Fully Expanded Programs”.

Before top-level-form is expanded, its lexical context is enriched with namespace-
syntax-introduce, just as for eval. Use syntax->datum to convert the returned syntax
object into a printable datum.

Here’s an example of using expand on a module:

(parameterize ([current-namespace (make-base-namespace)])
(expand
(datum->syntax
#f
'(module foo scheme

(define a 3)
(+ a 4)))))

Here’s an example of using expand on a non-top-level form:

(define-namespace-anchor anchor)
(parameterize ([current-namespace

(namespace-anchor->namespace anchor)])
(expand
(datum->syntax
#f
'(delay (+ 1 2)))))

853

(expand-syntax stx) Ñ syntax?
stx : syntax?

Like (expand stx), except that the argument must be a syntax object, and its lexical con-
text is not enriched before expansion.

(expand-once top-level-form) Ñ syntax?
top-level-form : any/c

Partially expands top-level-form and returns a syntax object for the partially-expanded
expression. Due to limitations in the expansion mechanism, some context information may
be lost. In particular, calling expand-once on the result may produce a result that is different
from expansion via expand.

Before top-level-form is expanded, its lexical context is enriched with namespace-
syntax-introduce, as for eval.

(expand-syntax-once stx) Ñ syntax?
stx : syntax?

Like (expand-once stx), except that the argument must be a syntax object, and its lexical
context is not enriched before expansion.

(expand-to-top-form top-level-form) Ñ syntax?
top-level-form : any/c

Partially expands top-level-form to reveal the outermost syntactic form. This partial ex-
pansion is mainly useful for detecting top-level uses of begin. Unlike the result of expand-
once, expanding the result of expand-to-top-form with expand produces the same result
as using expand on the original syntax.

Before stx-or-sexpr is expanded, its lexical context is enriched with namespace-
syntax-introduce, as for eval.

(expand-syntax-to-top-form stx) Ñ syntax?
stx : syntax?

Like (expand-to-top-form stx), except that the argument must be a syntax object, and
its lexical context is not enriched before expansion.

12.9.1 Information on Expanded Modules

Information for an expanded module declaration is stored in a set of syntax properties (see
§12.7 “Syntax Object Properties”) attached to the syntax object:

854

• 'module-direct-requires — a list of module path indexes (or symbols) repre-
senting the modules explicitly imported into the module.

• 'module-direct-for-syntax-requires — a list of module path indexes (or sym-
bols) representing the modules explicitly for-syntax imported into the module.

• 'module-direct-for-template-requires — a list of module path indexes (or
symbols) representing the modules explicitly for-template imported into the module.

• 'module-direct-for-meta-requires — a list of lists: each list is an integer or
#f representing a phase level followed by a list of module path indexes (or symbols)
representing the modules explicitly imported into the module at the corresponding
phase.

Added in version 6.4.0.1 of package base.

• 'module-variable-provides — a list of provided items, where each item is one
of the following:

– symbol — represents a locally defined variable that is provided with its defined
name.

– (cons provided-sym defined-sym) — represents a locally defined vari-
able that is provided with renaming; the first symbol is the exported name, and
the second symbol is the defined name.

– (list* module-path-index provided-sym defined-sym) — represents
a re-exported and possibly re-named variable from the specified module;
module-path-index is either a module path index or symbol (see §14.4.2
“Compiled Modules and References”), indicating the source module for the
binding. The provided-sym is the external name for the re-export, and
defined-sym is the originally defined name in the module specified by
module-path-index.

• 'module-syntax-provides — like 'module-variable-provides, but for syntax
exports instead of variable exports.

• 'module-indirect-provides — a list of symbols for variables that are defined in
the module but not exported; they may be exported indirectly through macro expan-
sions. Definitions of macro-generated identifiers create uninterned symbols in this list.
The order of identifiers in the list corresponds to an order for access from bytecode.

• 'module-indirect-for-meta-provides — similar to 'module-indirect-
provides: an association list from a phase level to a list of symbols for variables
that are defined in the module at phases higher than 0 and not exported.

Added in version 6.5.0.5 of package base.

• 'module-body-context — a syntax object whose lexical information corresponds
to the inside of the module, so it includes the expansion’s outside-edge scope and its
inside-edge scope; that is, the syntax object simulates an identifier that is present in

855

the original module body and inaccessible to manipulation by any macro, so that its
lexical information includes bindings for the module’s imports and definitions.

Added in version 6.4.0.1 of package base.

• 'module-body-inside-context — a syntax object whose lexical information cor-
responds to an identifier that starts with no lexical context and is moved into the macro,
so that it includes only the expansions’s inside-edge scope.

Added in version 6.4.0.1 of package base.

• 'module-body-context-simple? — a boolean, where #t indicates that the bind-
ings of the module’s body (as recorded in the lexical information of the value
of the 'module-body-inside-context property) can be directly reconstructed
from the values of 'module-direct-requires, 'module-direct-for-syntax-
requires, 'module-direct-for-template-requires, and 'module-direct-
for-meta-requires.

Added in version 6.4.0.1 of package base.

12.10 File Inclusion

(require racket/include) package: base

The bindings documented in this section are provided by the racket/include and racket
libraries, but not racket/base.

(include path-spec)

path-spec = string
| (file string)
| (lib string ...+)

Inlines the syntax in the file designated by path-spec in place of the include expression.

A path-spec resembles a subset of the mod-path forms for require, but it specifies a
file whose content need not be a module. That is, string refers to a file using a platform-
independent relative path, (file string) refers to a file using platform-specific notation,
and (lib string ...) refers to a file within a collection.

If path-spec specifies a relative path, the path is resolved relative to the source for the in-
clude expression, if that source is a complete path string. If the source is not a complete path
string, then path-spec is resolved relative to (current-load-relative-directory) if
it is not #f, or relative to (current-directory) otherwise.

The included syntax is given the lexical context of the include expression, while the in-
cluded syntax’s source location refers to its actual source.

856

https://pkgs.racket-lang.org/package/base

(include-at/relative-to context source path-spec)

Like include, except that the lexical context of context is used for the included syntax,
and a relative path-spec is resolved with respect to the source of source . The context
and source elements are otherwise discarded by expansion.

(include/reader path-spec reader-expr)

Like include, except that the procedure produced by the expression reader-expr is used
to read the included file, instead of read-syntax.

The reader-expr is evaluated at expansion time in the transformer environment. Since it
serves as a replacement for read-syntax, the expression’s value should be a procedure that
consumes two inputs—a string representing the source and an input port—and produces a
syntax object or eof. The procedure will be called repeatedly until it produces eof.

The syntax objects returned by the procedure should have source location information, but
usually no lexical context; any lexical context in the syntax objects will be ignored.

(include-at/relative-to/reader context source path-spec reader-expr)

Combines include-at/relative-to and include/reader.

12.11 Syntax Utilities

(require racket/syntax) package: base

The bindings documented in this section are provided by the racket/syntax library, not
racket/base or racket.

12.11.1 Creating formatted identifiers

(format-id lctx
fmt
v ...

[#:source src
#:props props
#:cert ignored]) Ñ identifier?

lctx : (or/c syntax? #f)
fmt : string?
v : (or/c string? symbol? identifier? keyword? char? number?)
src : (or/c syntax? #f) = #f

857

https://pkgs.racket-lang.org/package/base

props : (or/c syntax? #f) = #f
ignored : (or/c syntax? #f) = #f

Like format, but produces an identifier using lctx for the lexical context, src for the
source location, and props for the properties. An argument supplied with #:cert is ig-
nored. (See datum->syntax.)

The format string must use only „a placeholders. Identifiers in the argument list are auto-
matically converted to symbols.

Examples:

> (define-syntax (make-pred stx)
(syntax-case stx ()
[(make-pred name)
(format-id #'name "„a?" (syntax-e #'name))]))

> (make-pred pair)
#<procedure:pair?>
> (make-pred none-such)
none-such?: undefined;

cannot reference an identifier before its definition
in module: top-level

> (define-syntax (better-make-pred stx)
(syntax-case stx ()
[(better-make-pred name)
(format-id #'name #:source #'name

"„a?" (syntax-e #'name))]))
> (better-make-pred none-such)
none-such?: undefined;

cannot reference an identifier before its definition
in module: top-level

(Scribble doesn’t show it, but the DrRacket pinpoints the location of the second error but not
of the first.)

(format-symbol fmt v ...) Ñ symbol?
fmt : string?
v : (or/c string? symbol? identifier? keyword? char? number?)

Like format, but produces a symbol. The format string must use only „a placeholders.
Identifiers in the argument list are automatically converted to symbols.

Example:

> (format-symbol "make-„a" 'triple)
'make-triple

858

12.11.2 Pattern variables

(define/with-syntax pattern stx-expr)

stx-expr : syntax?

Definition form of with-syntax. That is, it matches the syntax object result of expr against
pattern and creates pattern variable definitions for the pattern variables of pattern .

Examples:

> (define/with-syntax (px ...) #'(a b c))
> (define/with-syntax (tmp ...) (generate-temporaries #'(px ...)))
> #'([tmp px] ...)
#<syntax:eval:11:0 ((a9 a) (b10 b) (c11 c))>
> (define/with-syntax name #'Alice)
> #'(hello name)
#<syntax:eval:13:0 (hello Alice)>

12.11.3 Error reporting

(current-syntax-context) Ñ (or/c syntax? false/c)
(current-syntax-context stx) Ñ void?

stx : (or/c syntax? false/c)

The current contextual syntax object, defaulting to #f. It determines the special form name
that prefixes syntax errors created by wrong-syntax.

(wrong-syntax stx format-string v ...) Ñ any
stx : syntax?
format-string : string?
v : any/c

Raises a syntax error using the result of (current-syntax-context) as the “major” syn-
tax object and the provided stx as the specific syntax object. (The latter, stx , is usually
the one highlighted by DrRacket.) The error message is constructed using the format string
and arguments, and it is prefixed with the special form name as described under current-
syntax-context.

Examples:

> (wrong-syntax #'here "expected „s" 'there)
eval:14:0: ?: expected there

at: here

859

> (parameterize ([current-syntax-context #'(look over here)])
(wrong-syntax #'here "expected „s" 'there))

eval:15:0: look: expected there
at: here
in: (look over here)

A macro using wrong-syntax might set the syntax context at the very beginning of its
transformation as follows:

(define-syntax (my-macro stx)
(parameterize ([current-syntax-context stx])

(syntax-case stx ()
__)))

Then any calls to wrong-syntax during the macro’s transformation will refer to my-macro
(more precisely, the name that referred to my-macro where the macro was used, which may
be different due to renaming, prefixing, etc).

12.11.4 Recording disappeared uses

(current-recorded-disappeared-uses)
Ñ (or/c (listof identifier?) false/c)

(current-recorded-disappeared-uses ids) Ñ void?
ids : (or/c (listof identifier?) false/c)

Parameter for tracking disappeared uses. Tracking is “enabled” when the parameter has a
non-false value. This is done automatically by forms like with-disappeared-uses.

(with-disappeared-uses body-expr ... stx-expr)

stx-expr : syntax?

Evaluates the body-exprs and stx-expr , catching identifiers looked up using syntax-
local-value/record. Adds the caught identifiers to the 'disappeared-uses syntax
property of the syntax object produced by stx-expr .

Changed in version 6.5.0.7 of package base: Added the option to include body-exprs.

(syntax-local-value/record id predicate) Ñ any/c
id : identifier?
predicate : (-> any/c boolean?)

Looks up id in the syntactic environment (as syntax-local-value). If the lookup suc-
ceeds and returns a value satisfying the predicate, the value is returned and id is recorded

860

as a disappeared use by calling record-disappeared-uses. If the lookup fails or if the
value does not satisfy the predicate, #f is returned and the identifier is not recorded as a
disappeared use.

(record-disappeared-uses id [intro?]) Ñ void?
id : (or/c identifier? (listof identifier?))
intro? : boolean? = (syntax-transforming?)

Add id to (current-recorded-disappeared-uses). If id is a list, perform the same
operation on all the identifiers. If intro? is true, then syntax-local-introduce is first
called on the identifiers.

If not used within the extent of a with-disappeared-uses form or similar, has no effect.

Changed in version 6.5.0.7 of package base: Added the option to pass a single identifier instead of requiring a list.
Changed in version 7.2.0.11: Added the intro? argument.

12.11.5 Miscellaneous utilities

(generate-temporary [name-base]) Ñ identifier?
name-base : any/c = 'g

Generates one fresh identifier. Singular form of generate-temporaries. If name-base
is supplied, it is used as the basis for the identifier’s name.

(internal-definition-context-apply intdef-ctx
stx) Ñ syntax?

intdef-ctx : internal-definition-context?
stx : syntax?

Equivalent to (internal-definition-context-introduce intdef-ctx stx
'add). The internal-definition-context-apply function is provided for backwards
compatibility; the more general internal-definition-context-introduce function is
preferred.

(syntax-local-eval stx [intdef-ctx]) Ñ any
stx : syntax?
intdef-ctx : (or/c internal-definition-context?

(listof internal-definition-context?)
#f)

= '()

Evaluates stx as an expression in the current transformer environment (that is, at phase
level 1). If intdef-ctx is not #f, the value provided for intdef-ctx is used to enrich

861

stx ’s lexical information and extend the local binding context in the same way as the fourth
argument to local-expand.

Examples:

> (define-syntax (show-me stx)
(syntax-case stx ()
[(show-me expr)
(begin
(printf "at compile time produces „s\n"

(syntax-local-eval #'expr))
#'(printf "at run time produces „s\n"

expr))]))
> (show-me (+ 2 5))
at compile time produces 7
at run time produces 7
> (define-for-syntax fruit 'apple)
> (define fruit 'pear)
> (show-me fruit)
at compile time produces apple
at run time produces pear

Changed in version 6.90.0.27 of package base: Changed intdef-ctx to accept a list of internal-definition contexts
in addition to a single internal-definition context or #f.

(with-syntax* ([pattern stx-expr] ...)
body ...+)

stx-expr : syntax?

Similar to with-syntax, but the pattern variables of each pattern are bound in the stx-
exprs of subsequent clauses as well as the bodys, and the patterns need not bind distinct
pattern variables; later bindings shadow earlier bindings.

Example:

> (with-syntax* ([(x y) (list #'val1 #'val2)]
[nest #'((x) (y))])

#'nest)
#<syntax:eval:21:0 ((val1) (val2))>

862

13 Input and Output
§8 “Input and
Output” in The
Racket Guide
introduces Ports
and I/O.

13.1 Ports

Ports produce and/or consume bytes. An input port produces bytes, while an output port
consumes bytes (and some ports are both input ports and output ports). When an input port is
provided to a character-based operation, the bytes are decoded to a character, and character-
based output operations similarly encode the character to bytes; see §13.1.1 “Encodings and
Locales”. In addition to bytes and characters encoded as bytes, some ports can produce
and/or consume arbitrary values as special results.

When a port corresponds to a file, network connection, or some other system resource, it
must be explicitly closed via close-input-port or close-output-port (or indirectly
via custodian-shutdown-all) to release low-level resources associated with the port.
For any kind of port, after it is closed, attempting to read from or write to the port raises
exn:fail.

Data produced by a input port can be read or peeked. When data is read, it is considered
consumed and removed from the port’s stream. When data is peeked, it remains in the
port’s stream to be returned again by the next read or peek. Previously peeked data can be
committed, which causes the data to be removed from the port as for a read in a way that can
be synchronized with other attempts to peek or read through a synchronizable event. Both
read and peek operations are normally blocking, in the sense that the read or peek operation
does not complete until data is available from the port; non-blocking variants of read and
peek operations are also available.

The global variable eof is bound to the end-of-file value, and eof-object? returns #t only
when applied to this value. Reading from a port produces an end-of-file result when the port
has no more data, but some ports may also return end-of-file mid-stream. For example, a
port connected to a Unix terminal returns an end-of-file when the user types control-D; if the
user provides more input, the port returns additional bytes after the end-of-file.

Every port has a name, as reported by object-name. The name can be any value, and it is
used mostly for error-reporting purposes. The read-syntax procedure uses the name of an
input port as the default source location for the syntax objects that it produces.

A port can be used as a synchronizable event. An input port is ready for synchronization
when read-byte would not block, and an output port is ready for synchronization when
write-bytes-avail would not block or when the port contains buffered characters and
write-bytes-avail* can flush part of the buffer (although write-bytes-avail might
block). A value that can act as both an input port and an output port acts as an input port for
a synchronizable event. The synchronization result of a port is the port itself.

863

13.1.1 Encodings and Locales

When a port is provided to a character-based operation, such as read-char or read, the
port’s bytes are read and interpreted as a UTF-8 encoding of characters. Thus, reading a
single character may require reading multiple bytes, and a procedure like char-ready?
may need to peek several bytes into the stream to determine whether a character is available.
In the case of a byte stream that does not correspond to a valid UTF-8 encoding, functions
such as read-char may need to peek one byte ahead in the stream to discover that the
stream is not a valid encoding.

When an input port produces a sequence of bytes that is not a valid UTF-8 encoding in a
character-reading context, then bytes that constitute an invalid sequence are converted to the
character #\uFFFD. Specifically, bytes 255 and 254 are always converted to #\uFFFD, bytes
in the range 192 to 253 produce #\uFFFD when they are not followed by bytes that form a
valid UTF-8 encoding, and bytes in the range 128 to 191 are converted to #\uFFFD when
they are not part of a valid encoding that was started by a preceding byte in the range 192 to
253. To put it another way, when reading a sequence of bytes as characters, a minimal set of
bytes are changed to the encoding of #\uFFFD so that the entire sequence of bytes is a valid
UTF-8 encoding.

See §4.4 “Byte Strings” for procedures that facilitate conversions using UTF-8 or other en-
codings. See also reencode-input-port and reencode-output-port for obtaining a
UTF-8-based port from one that uses a different encoding of characters.

A locale captures information about a user’s language-specific interpretation of character se-
quences. In particular, a locale determines how strings are “alphabetized,” how a lowercase
character is converted to an uppercase character, and how strings are compared without re-
gard to case. String operations such as string-ci=? are not sensitive to the current locale,
but operations such as string-locale-ci=? (see §4.3 “Strings”) produce results consis-
tent with the current locale.

A locale also designates a particular encoding of code-point sequences into byte sequences.
Racket generally ignores this aspect of the locale, with a few notable exceptions: command-
line arguments passed to Racket as byte strings are converted to character strings using the
locale’s encoding; command-line strings passed as byte strings to other processes (through
subprocess) are converted to byte strings using the locale’s encoding; environment vari-
ables are converted to and from strings using the locale’s encoding; filesystem paths are
converted to and from strings (for display purposes) using the locale’s encoding; and, fi-
nally, Racket provides functions such as string->bytes/locale to specifically invoke a
locale-specific encoding.

A Unix user selects a locale by setting environment variables, such as LC_ALL. On Win-
dows and Mac OS, the operating system provides other mechanisms for setting the locale.
Within Racket, the current locale can be changed by setting the current-locale param-
eter. The locale name within Racket is a string, and the available locale names depend on
the platform and its configuration, but the "" locale means the current user’s default locale;

864

on Windows and Mac OS, the encoding for "" is always UTF-8, and locale-sensitive op-
erations use the operating system’s native interface. (In particular, setting the LC_ALL and
LC_CTYPE environment variables does not affect the locale "" on Mac OS. Use getenv and
current-locale to explicitly install the environment-specified locale, if desired.) Setting
the current locale to #f makes locale-sensitive operations locale-insensitive, which means
using the Unicode mapping for case operations and using UTF-8 for encoding.

(current-locale) Ñ (or/c string? #f)
(current-locale locale) Ñ void?

locale : (or/c string? #f)

A parameter that determines the current locale for procedures such as string-locale-
ci=?.

When locale sensitivity is disabled by setting the parameter to #f, strings are compared, etc.,
in a fully portable manner, which is the same as the standard procedures. Otherwise, strings
are interpreted according to a locale setting (in the sense of the C library’s setlocale). The
"" locale is always an alias for the current machine’s default locale, and it is the default. The
"C" locale is also always available; setting the locale to "C" is the same as disabling locale
sensitivity with #f only when string operations are restricted to the first 128 characters.
Other locale names are platform-specific.

String or character printing with write is not affected by the parameter, and neither are
symbol case or regular expressions (see §4.7 “Regular Expressions”).

13.1.2 Managing Ports

(input-port? v) Ñ boolean?
v : any/c

Returns #t if v is an input port, #f otherwise.

(output-port? v) Ñ boolean?
v : any/c

Returns #t if v is an output port, #f otherwise.

(port? v) Ñ boolean?
v : any/c

Returns #t if either (input-port? v) or (output-port? v) is #t, #f otherwise.

(close-input-port in) Ñ void?
in : input-port?

865

Closes the input port in . For some kinds of ports, closing the port releases lower-level
resources, such as a file handle. If the port is already closed, close-input-port has no
effect.

(close-output-port out) Ñ void?
out : output-port?

Closes the output port out . For some kinds of ports, closing the port releases lower-level
resources, such as a file handle. Also, if the port is buffered, closing may first flush the
port before closing it, and this flushing process can block. If the port is already closed,
close-output-port has no effect.

(port-closed? port) Ñ boolean?
port : port?

Returns #t if the input or output port port is closed, #f otherwise.

(port-closed-evt port) Ñ evt?
port : port?

Return a synchronizable event that becomes ready for synchronization when port is closed.
The synchronization result of a port-closed event is the port-closed event itself.

(current-input-port) Ñ input-port?
(current-input-port in) Ñ void?

in : input-port?

A parameter that determines a default input port for many operations, such as read.

(current-output-port) Ñ output-port?
(current-output-port out) Ñ void?

out : output-port?

A parameter that determines a default output port for many operations, such as write.

(current-error-port) Ñ output-port?
(current-error-port out) Ñ void?

out : output-port?

A parameter that determines an output port that is typically used for errors and logging. For
example, the default error display handler writes to this port.

(file-stream-port? v) Ñ boolean?
v : any/c

866

Returns #t if v is a file-stream port (see §13.1.5 “File Ports”), #f otherwise.

Changed in version 7.2.0.5 of package base: Extended file-stream-port? to any value, instead of resticting
the domain to ports

(terminal-port? v) Ñ boolean?
v : any/c

Returns #t if v is a port that is attached to an interactive terminal, #f otherwise.

Changed in version 7.2.0.5 of package base: Extended terminal-port? to any value, instead of resticting the
domain to ports

eof : eof-object?

A value (distinct from all other values) that represents an end-of-file.

(eof-object? v) Ñ boolean?
v : any/c

Returns #t if v is eof, #f otherwise.

13.1.3 Port Buffers and Positions

Some ports—especially those that read from and write to files—are internally buffered:

• An input port is typically block-buffered by default, which means that on any read,
the buffer is filled with immediately-available bytes to speed up future reads. Thus, if
a file is modified between a pair of reads to the file, the second read can produce stale
data. Calling file-position to set an input port’s file position flushes its buffer.

• An output port is typically block-buffered by default, though a terminal output port is
line-buffered, and the initial error output port is unbuffered. An output buffer is filled
with a sequence of written bytes to be committed as a group, either when the buffer is
full (in block mode), when a newline is written (in line mode), when the port is closed
via close-output-port, or when a flush is explicitly requested via a procedure like
flush-output.

If a port supports buffering, its buffer mode can be changed via file-stream-buffer-
mode (even if the port is not a file-stream port).

For an input port, peeking always places peeked bytes into the port’s buffer, even when the
port’s buffer mode is 'none; furthermore, on some platforms, testing the port for input (via

867

char-ready? or sync) may be implemented with a peek. If an input port’s buffer mode
is 'none, then at most one byte is read for read-bytes-avail!*, read-bytes-avail!,
peek-bytes-avail!*, or peek-bytes-avail!; if any bytes are buffered in the port (e.g.,
to satisfy a previous peek), the procedures may access multiple buffered bytes, but no further
bytes are read.

In addition, the initial current output and error ports are automatically flushed when read,
read-line, read-bytes, read-string, etc., are performed on the initial standard input
port; more precisely, flushing is performed by the default port read handler (see port-read-
handler).

(flush-output [out]) Ñ void?
out : output-port? = (current-output-port)

Forces all buffered data in the given output port to be physically written. Only file-stream
ports, TCP ports, and custom ports (see §13.1.9 “Custom Ports”) use buffers; when called
on a port without a buffer, flush-output has no effect.

(file-stream-buffer-mode port) Ñ (or/c 'none 'line 'block #f)
port : port?

(file-stream-buffer-mode port mode) Ñ void?
port : port?
mode : (or/c 'none 'line 'block)

Gets or sets the buffer mode for port , if possible. File-stream ports support setting the buffer
mode, TCP ports (see §15.3 “Networking”) support setting and getting the buffer mode, and
custom ports (see §13.1.9 “Custom Ports”) may support getting and setting buffer modes.

If mode is provided, it must be one of 'none, 'line (output only), or 'block, and the port’s
buffering is set accordingly. If the port does not support setting the mode, the exn:fail
exception is raised.

If mode is not provided, the current mode is returned, or #f is returned if the mode cannot
be determined. If port is an input port and mode is 'line, the exn:fail:contract
exception is raised.

(file-position port) Ñ exact-nonnegative-integer?
port : port?

(file-position port pos) Ñ void?
port : port?
pos : (or/c exact-nonnegative-integer? eof-object?)

Returns or sets the current read/write position of port .

Calling file-position without a position on a port other than a file-stream port or
string port returns the number of bytes that have been read from that port if the po-
sition is known (see §13.1.4 “Counting Positions, Lines, and Columns”), otherwise the
exn:fail:filesystem exception is raised.

868

For file-stream ports and string ports, the position-setting variant sets the read/write position
to pos relative to the beginning of the file or (byte) string if pos is a number, or to the current
end of the file or (byte) string if pos is eof. In position-setting mode, file-position raises
the exn:fail:contract exception for port kinds other than file-stream ports and string
ports. Furthermore, not all file-stream ports support setting the position; if file-position
is called with a position argument on such a file-stream port, the exn:fail:filesystem
exception is raised.

When file-position sets the position pos beyond the current size of an output file or
(byte) string, the file/string is enlarged to size pos and the new region is filled with 0 bytes;
in the case of a file. In the case of a file output port, the file might not be enlarged until more
data is written to the file; in that case, beware that writing to a file opened in 'append mode
on Unix and Mac OS will reset the file pointer to the end of a file before each write, which
defeats file enlargement via file-position. If pos is beyond the end of an input file or
(byte) string, then reading thereafter returns eof without changing the port’s position.

When changing the file position for an output port, the port is first flushed if its buffer is
not empty. Similarly, setting the position for an input port clears the port’s buffer (even if
the new position is the same as the old position). However, although input and output ports
produced by open-input-output-file share the file position, setting the position via one
port does not flush the other port’s buffer.

(file-position* port) Ñ (or/c exact-nonnegative-integer? #f)
port : port?

Like file-position on a single argument, but returns #f if the position is not known.

(file-truncate port size) Ñ void?
port : (and/c output-port? file-stream-port?)
size : exact-nonnegative-integer?

Sets the size of the file written by port to size , assuming that the port is associated to a
file whose size can be set.

The new file size can be either larger or smaller than its current size, but “truncate” in this
function’s name reflects that it is normally used to decrease the size of a file, since writing
to a file or using file-position can extend a file’s size.

13.1.4 Counting Positions, Lines, and Columns

By default, Racket keeps track of the position in a port as the number of bytes that have been
read from or written to any port (independent of the read/write position, which is accessed
or changed with file-position). Optionally, however, Racket can track the position in
terms of characters (after UTF-8 decoding), instead of bytes, and it can track line locations

869

and column locations; this optional tracking must be specifically enabled for a port via port-
count-lines! or the port-count-lines-enabled parameter. Position, line, and column
locations for a port are used by read-syntax. Position and line locations are numbered
from 1; column locations are numbered from 0.

When counting lines, Racket treats linefeed, return, and return-linefeed combinations as a
line terminator and as a single position (on all platforms). Each tab advances the column
count to one before the next multiple of 8. When a sequence of bytes in the range 128 to 253
forms a UTF-8 encoding of a character, the position/column is incremented once for each
byte, and then decremented appropriately when a complete encoding sequence is discovered.
See also §13.1 “Ports” for more information on UTF-8 decoding for ports.

A position is known for any port as long as its value can be expressed as a fixnum (which
is more than enough tracking for realistic applications in, say, syntax-error reporting). If
the position for a port exceeds the value of the largest fixnum, then the position for the port
becomes unknown, and line and column tacking is disabled. Return-linefeed combinations
are treated as a single character position only when line and column counting is enabled.

Custom ports can define their own counting functions, which are not subject to the rules
above, except that the counting functions are invoked only when tracking is specifically
enabled with port-count-lines!.

(port-count-lines! port) Ñ void?
port : port?

Turns on line location and column location counting for a port. Counting can be turned on at
any time, though generally it is turned on before any data is read from or written to a port. At
the point that line counting is turned on, port-next-location typically starts reporting as
its last result (one more than) the number of characters read since line counting was enabled,
instead of (one more than) bytes read since the port was opened.

When a port is created, if the value of the port-count-lines-enabled parameter is true,
then line counting is automatically enabled for the port. Line counting cannot be disabled
for a port after it is enabled.

(port-counts-lines? port) Ñ boolean?
port : port?

Returns #t if line location and column location counting has been enabled for port , #f
otherwise.

(port-next-location port)
Ñ (or/c exact-positive-integer? #f)

(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)

port : port?

870

Returns three values: an integer or #f for the line number of the next read/written item, an
integer or #f for the next item’s column, and an integer or #f for the next item’s position.
The next column and position normally increase as bytes are read from or written to the
port, but if line/character counting is enabled for port , the column and position results can
decrease after reading or writing a byte that ends a UTF-8 encoding sequence.

If line counting is not enabled for a port, than the first two results are #f, and the last result is
one more than the number of bytes read so far. At the point when line counting is enabled, the
first two results typically become non-#f, and last result starts reporting characters instead
of bytes, typically starting from the point when line counting is enabled.

Even with line counting enabled, a port may return #f values if it somehow cannot keep
track of lines, columns, or positions.

(set-port-next-location! port
line
column
position) Ñ void?

port : port?
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : (or/c exact-positive-integer? #f)

Sets the next line, column, and position for port . If line counting has not been enabled for
port or if port is a custom port that defines its own counting function, then set-port-
next-location! has no effect.

(port-count-lines-enabled) Ñ boolean?
(port-count-lines-enabled on?) Ñ void?

on? : any/c

A parameter that determines whether line counting is enabled automatically for newly cre-
ated ports. The default value is #f.

13.1.5 File Ports

A port created by open-input-file, open-output-file, subprocess, and related func-
tions is a file-stream port. The initial input, output, and error ports in racket are also file-
stream ports. The file-stream-port? predicate recognizes file-stream ports.

When an input or output file-stream port is created, it is placed into the management of the
current custodian (see §14.7 “Custodians”). In the case of an output port, a flush callback is
registered with the current plumber to flush the port.

871

(open-input-file path
[#:mode mode-flag
#:for-module? for-module?]) Ñ input-port?

path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
for-module? : any/c = #f

Opens the file specified by path for input. The mode-flag argument specifies how the
file’s bytes are translated on input:

• 'binary — bytes are returned from the port exactly as they are read from the file.

• 'text — return and linefeed bytes (10 and 13) as read from the file are filtered by the
port in a platform specific manner:

– Unix and Mac OS: no filtering occurs.
– Windows: a return-linefeed combination from a file is returned by the port as

a single linefeed; no filtering occurs for return bytes that are not followed by a
linefeed, or for a linefeed that is not preceded by a return.

On Windows, 'text mode works only with regular files; attempting to use 'text with other
kinds of files triggers an exn:fail:filesystem exception.

Otherwise, the file specified by path need not be a regular file. It might be a device that is
connected through the filesystem, such as "aux" on Windows or "/dev/null" on Unix. In
all cases, the port is buffered by default.

The port produced by open-input-file should be explicitly closed, either though close-
input-port or indirectly via custodian-shutdown-all, to release the OS-level file han-
dle. The input port will not be closed automatically if it is otherwise available for garbage
collection (see §1.1.7 “Garbage Collection”); a will could be associated with an input port
to close it more automatically (see §16.3 “Wills and Executors”).

A path value that is the cleansed version of path is used as the name of the opened port.

If opening the file fails due to an error in the filesystem, then
exn:fail:filesystem:errno exception is raised—as long as for-module? is #f,
current-module-path-for-load has a non-#f value, or the filesystem error is not
recognized as a file-not-found error. Otherwise, when for-module? is true, current-
module-path-for-load has a non-#f value, and the filesystem error is recognized as
a file-not-found error, then the raised exception is either exn:fail:syntax:missing-
module (if the value of current-module-path-for-load is a syntax object) or
exn:fail:filesystem:missing-module (otherwise).

Changed in version 6.0.1.6 of package base: Added #:for-module?.

Examples:

872

> (with-output-to-file some-file
(lambda () (printf "hello world")))

> (define in (open-input-file some-file))
> (read-string 11 in)
"hello world"
> (close-input-port in)

(open-output-file path
[#:mode mode-flag
#:exists exists-flag]) Ñ output-port?

path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update 'can-update

'replace 'truncate
'must-truncate 'truncate/replace)

= 'error

Opens the file specified by path for output. The mode-flag argument specifies how bytes
written to the port are translated when written to the file:

• 'binary — bytes are written to the file exactly as written to the port.

• 'text — on Windows, a linefeed byte (10) written to the port is translated to a return-
linefeed combination in the file; no filtering occurs for returns.

On Windows, 'text mode works only with regular files; attempting to use 'text with other
kinds of files triggers an exn:fail:filesystem exception.

The exists-flag argument specifies how to handle/require files that already exist:

• 'error — raise exn:fail:filesystem if the file exists.

• 'replace — remove the old file, if it exists, and write a new one.

• 'truncate — remove all old data, if the file exists.

• 'must-truncate — remove all old data in an existing file; if the file does not exist,
the exn:fail:filesystem exception is raised.

• 'truncate/replace — try 'truncate; if it fails (perhaps due to file permissions),
try 'replace.

• 'update — open an existing file without truncating it; if the file does not exist, the
exn:fail:filesystem exception is raised. Use file-position to change the cur-
rent read/write position.

873

• 'can-update — open an existing file without truncating it, or create the file if it does
not exist.

• 'append — append to the end of the file, whether it already exists or not; on Windows,
'append is equivalent to 'update, except that the file is not required to exist, and the
file position is immediately set to the end of the file after opening it.

The file specified by path need not be a regular file. It might be a device that is connected
through the filesystem, such as "aux" on Windows or "/dev/null" on Unix. The output
port is block-buffered by default, unless the file corresponds to a terminal, in which case it
is line-buffered by default.

The port produced by open-output-file should be explicitly closed, either though
close-output-port or indirectly via custodian-shutdown-all, to release the OS-level
file handle. The output port will not be closed automatically if it is otherwise available for
garbage collection (see §1.1.7 “Garbage Collection”); a will could be associated with an
output port to close it more automatically (see §16.3 “Wills and Executors”).

A path value that is the cleansed version of path is used as the name of the opened port.

If opening the file fails due to an error in the underlying filesystem then
exn:fail:filesystem:errno exception is raised.

Examples:

> (define out (open-output-file some-file))
> (write "hello world" out)
> (close-output-port out)

Changed in version 6.9.0.6 of package base: On Unix and Mac OS, make 'truncate/replace replace on a
permission error. On Windows, make 'replace always replace instead truncating like 'truncate/replace.

(open-input-output-file path
[#:mode mode-flag
#:exists exists-flag])

Ñ input-port? output-port?
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update 'can-update

'replace 'truncate 'truncate/replace)
= 'error

Like open-output-file, but producing two values: an input port and an output port. The
two ports are connected in that they share the underlying file descriptor. This procedure
is intended for use with special devices that can be opened by only one process, such as
"COM1" in Windows. For regular files, sharing the file descriptor can be confusing. For

874

example, using one port does not automatically flush the other port’s buffer, and reading or
writing in one port moves the file position (if any) for the other port. For regular files, use
separate open-input-file and open-output-file calls to avoid confusion.

(call-with-input-file path
proc

[#:mode mode-flag]) Ñ any
path : path-string?
proc : (input-port? . -> . any)
mode-flag : (or/c 'binary 'text) = 'binary

Calls open-input-filewith the path and mode-flag arguments, and passes the resulting
port to proc . The result of proc is the result of the call-with-input-file call, but the
newly opened port is closed when proc returns.

Examples:

> (with-output-to-file some-file
(lambda () (printf "text in a file")))

> (call-with-input-file some-file
(lambda (in) (read-string 14 in)))

"text in a file"

(call-with-output-file path
proc

[#:mode mode-flag
#:exists exists-flag]) Ñ any

path : path-string?
proc : (output-port? . -> . any)
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Analogous to call-with-input-file, but passing path , mode-flag and exists-flag
to open-output-file.

Examples:

> (call-with-output-file some-file
(lambda (out)
(write 'hello out)))

> (call-with-input-file some-file
(lambda (in)
(read-string 5 in)))

"hello"

875

(call-with-input-file* path
proc

[#:mode mode-flag]) Ñ any
path : path-string?
proc : (input-port? . -> . any)
mode-flag : (or/c 'binary 'text) = 'binary

Like call-with-input-file, but the newly opened port is closed whenever control es-
capes the dynamic extent of the call-with-input-file* call, whether through proc ’s
return, a continuation application, or a prompt-based abort.

(call-with-output-file* path
proc

[#:mode mode-flag
#:exists exists-flag]) Ñ any

path : path-string?
proc : (output-port? . -> . any)
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Like call-with-output-file, but the newly opened port is closed whenever control es-
capes the dynamic extent of the call-with-output-file* call, whether through proc ’s
return, a continuation application, or a prompt-based abort.

(with-input-from-file path
thunk

[#:mode mode-flag]) Ñ any
path : path-string?
thunk : (-> any)
mode-flag : (or/c 'binary 'text) = 'binary

Like call-with-input-file*, but instead of passing the newly opened port to the given
procedure argument, the port is installed as the current input port (see current-input-
port) using parameterize around the call to thunk .

Examples:

> (with-output-to-file some-file
(lambda () (printf "hello")))

> (with-input-from-file some-file
(lambda () (read-string 5)))

"hello"

876

(with-output-to-file path
thunk

[#:mode mode-flag
#:exists exists-flag]) Ñ any

path : path-string?
thunk : (-> any)
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Like call-with-output-file*, but instead of passing the newly opened port to the given
procedure argument, the port is installed as the current output port (see current-output-
port) using parameterize around the call to thunk .

Examples:

> (with-output-to-file some-file
(lambda () (printf "hello")))

> (with-input-from-file some-file
(lambda () (read-string 5)))

"hello"

(port-try-file-lock? port mode) Ñ boolean?
port : file-stream-port?
mode : (or/c 'shared 'exclusive)

Attempts to acquire a lock on the file using the current platform’s facilities for file locking.
Multiple processes can acquire a 'shared lock on a file, but at most one process can hold
an 'exclusive lock, and 'shared and 'exclusive locks are mutually exclusive. When
mode is 'shared, then port must be an input port; when mode is 'exclusive, then port
must be an output port.

The result is #t if the requested lock is acquired, #f otherwise. When a lock is acquired,
it is held until either it is released with port-file-unlock or the port is closed (perhaps
because the process terminates).

Depending on the platform, locks may be merely advisory (i.e., locks affect only the ability
of processes to acquire locks) or they may correspond to mandatory locks that prevent reads
and writes to the locked file. Specifically, locks are mandatory on Windows and advisory on
other platforms. Multiple tries for a 'shared lock on a single port can succeed; on Unix and
Mac OS, a single port-file-unlock release the lock, while on other Windows, a port-
file-unlock is needed for each successful port-try-file-lock?. On Unix and Mac
OS, multiple tries for a 'exclusive lock can succeed and a single port-file-unlock

877

releases the lock, while on Windows, a try for an 'exclusive lock fails for a given port if
the port already holds the lock.

A lock acquired for an input port from open-input-output-file can be released through
port-file-unlock on the corresponding output port, and vice versa. If the output port
from open-input-output-file holds an 'exclusive lock, the corresponding input port
can still acquire a 'shared lock, even multiple times; on Windows, a port-file-unlock
is needed for each successful lock try, while a single port-file-unlock balances the lock
tries on Unix and Mac OS. A 'shared lock on an input port can be upgraded to an 'ex-
clusive lock through the corresponding output port on Unix and Mac OS, in which case
a single port-file-unlock (on either port) releases the lock, while such upgrades are not
allowed on Windows.

Locking is normally supported only for file ports, and attempting to acquire a lock with other
kinds of file-stream ports raises an exn:fail:filesystem exception.

(port-file-unlock port) Ñ void?
port : file-stream-port?

Releases a lock held by the current process on the file of port .

(port-file-identity port) Ñ exact-positive-integer?
port : file-stream-port?

Returns a number that represents the identity of the device and file read or written by port .
For two ports whose open times overlap, the result of port-file-identity is the same
for both ports if and only if the ports access the same device and file. For ports whose open
times do not overlap, no guarantee can be provided for the port identities (even if the ports
actually access the same file)—except as can be inferred through relationships with other
ports. If port is closed, the exn:fail exception is raised. On Windows 95, 98, and Me,
if port is connected to a pipe instead of a file, the exn:fail:filesystem exception is
raised.

Examples:

> (define file1 (open-output-file some-file))
> (define file2 (open-output-file some-other-file))
> (port-file-identity file1)
1194795613654167663161152
> (port-file-identity file2)
1194795613654167663161153
> (close-output-port file1)
> (close-output-port file2)

878

13.1.6 String Ports

A string port reads or writes from a byte string. An input string port can be created from
either a byte string or a string; in the latter case, the string is effectively converted to a byte
string using string->bytes/utf-8. An output string port collects output into a byte string,
but get-output-string conveniently converts the accumulated bytes to a string.

Input and output string ports do not need to be explicitly closed. The file-position
procedure works for string ports in position-setting mode. §4.4 “Byte Strings”

also provides
information on
bytestrings.

(string-port? p) Ñ boolean?
p : port?

Returns #t if p is a string port, #f otherwise.

Added in version 6.0.1.6 of package base.

(open-input-bytes bstr [name]) Ñ (and/c input-port? string-port?)
bstr : bytes?
name : any/c = 'string

Creates an input string port that reads characters from bstr (see §4.4 “Byte Strings”). Mod-
ifying bstr afterward does not affect the byte stream produced by the port. The optional
name argument is used as the name for the returned port.

Examples:

> (define sp (open-input-bytes #"(apples 42 day)"))
> (define sexp1 (read sp))
> (first sexp1)
'apples
> (rest sexp1)
'(42 day)
> (read-line (open-input-bytes

#"the cow jumped over the moon\nthe little dog\n"))
"the cow jumped over the moon"

§4.3 “Strings” also
provides
information on
strings.

(open-input-string str [name]) Ñ (and/c input-port? string-port?)
str : string?
name : any/c = 'string

Creates an input string port that reads bytes from the UTF-8 encoding (see §13.1.1 “Encod-
ings and Locales”) of str . The optional name argument is used as the name for the returned
port.

Examples:

879

> (define sp (open-input-string "(λ (x) x)"))
> (read sp)
'(λ (x) x)
> (define names (open-input-string "Günter Harder\nFrédéric
Paulin\n"))
> (read-line names)
"Günter Harder"
> (read-line names)
"Frédéric Paulin"

(open-output-bytes [name]) Ñ (and/c output-port? string-port?)
name : any/c = 'string

Creates an output string port that accumulates the output into a byte string. The optional
name argument is used as the name for the returned port.

Examples:

> (define op1 (open-output-bytes))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op1)
> (get-output-bytes op1)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (define op2 (open-output-bytes))
> (write "Hi " op2)
> (write "there" op2)
> (get-output-bytes op2)
#"\"Hi \"\"there\""
> (define op3 (open-output-bytes))
> (write-bytes #"Hi " op3)
3
> (write-bytes #"there" op3)
5
> (get-output-bytes op3)
#"Hi there"

(open-output-string [name]) Ñ (and/c output-port? string-port?)
name : any/c = 'string

The same as open-output-bytes.

Examples:

> (define op1 (open-output-string))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op1)
> (get-output-string op1)

880

"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (define op2 (open-output-string))
> (write "Hi " op2)
> (write "there" op2)
> (get-output-string op2)
"\"Hi \"\"there\""
> (define op3 (open-output-string))
> (write-string "Hi " op3)
3
> (write-string "there" op3)
5
> (get-output-string op3)
"Hi there"

(get-output-bytes out
[reset?
start-pos
end-pos]) Ñ bytes?

out : (and/c output-port? string-port?)
reset? : any/c = #f
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = #f

Returns the bytes accumulated in the string port out so far in a freshly allocated byte string
(including any bytes written after the port’s current position, if any). The out port must be
an output string port produced by open-output-bytes (or open-output-string) or a
structure whose prop:output-port property refers to such an output port (transitively).

If reset? is true, then all bytes are removed from the port, and the port’s position is reset
to 0; if reset? is #f, then all bytes remain in the port for further accumulation (so they
are returned for later calls to get-output-bytes or get-output-string), and the port’s
position is unchanged.

The start-pos and end-pos arguments specify the range of bytes in the port to return;
supplying start-pos and end-pos is the same as using subbytes on the result of get-
output-bytes, but supplying them to get-output-bytes can avoid an allocation. The
end-pos argument can be #f, which corresponds to not passing a second argument to sub-
bytes.

Examples:

> (define op (open-output-bytes))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op)
> (get-output-bytes op)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (get-output-bytes op #f 3 16)

881

#" 2 3) (\"Tom\" "
> (get-output-bytes op #t)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (get-output-bytes op)
#""

(get-output-string out) Ñ string?
out : (and/c output-port? string-port?)

Returns (bytes->string/utf-8 (get-output-bytes out) #\?).

Examples:

> (define i (open-input-string "hello world"))
> (define o (open-output-string))
> (write (read i) o)
> (get-output-string o)
"hello"

13.1.7 Pipes

A Racket pipe is internal to Racket, and not related to OS-level pipes for communicating
between different processes. OS-level pipes may

be created by
subprocess,
opening an existing
named file on a
Unix filesystem, or
starting Racket with
pipes for its original
input, output, or
error port. Such
pipes are file-stream
ports, unlike the
pipes produced by
make-pipe.

(make-pipe [limit input-name output-name])
Ñ input-port? output-port?
limit : exact-positive-integer? = #f
input-name : any/c = 'pipe
output-name : any/c = 'pipe

Returns two port values: the first port is an input port and the second is an output port. Data
written to the output port is read from the input port, with no intermediate buffering. Unlike
some other kinds of ports, pipe ports do not need to be explicitly closed to be reclaimed by
garbage collection.

If limit is #f, the new pipe holds an unlimited number of unread bytes (i.e., limited only
by the available memory). If limit is a positive number, then the pipe will hold at most
limit unread/unpeeked bytes; writing to the pipe’s output port thereafter will block until a
read or peek from the input port makes more space available. (Peeks effectively extend the
port’s capacity until the peeked bytes are read.)

The optional input-name and output-name are used as the names for the returned input
and output ports, respectively.

882

(pipe-content-length pipe-port) Ñ exact-nonnegative-integer?
pipe-port : port?

Returns the number of bytes contained in a pipe, where pipe-port is either of the pipe’s
ports produced by make-pipe. The pipe’s content length counts all bytes that have been
written to the pipe and not yet read (though possibly peeked).

13.1.8 Structures as Ports

prop:input-port : struct-type-property?

prop:output-port : struct-type-property?

The prop:input-port and prop:output-port structure type properties identify structure
types whose instances can serve as input and output ports, respectively.

Each property value can be either of the following:

• An input port (for prop:input-port) or output port (for prop:output-port): In
this case, using the structure as port is equivalent to using the given input or output
port.

• An exact, non-negative integer between 0 (inclusive) and the number of non-automatic
fields in the structure type (exclusive, not counting supertype fields): The integer
identifies a field in the structure, and the field must be designated as immutable.
If the field contains an input port (for prop:input-port) or output port (for
prop:output-port), the port is used. Otherwise, an empty string input port is used
for prop:input-port, and a port that discards all data is used for prop:output-
port.

Some procedures, such as file-position, work on both input and output ports. When
given an instance of a structure type with both the prop:input-port and prop:output-
port properties, the instance is used as an input port.

13.1.9 Custom Ports

The make-input-port and make-output-port procedures create custom ports with arbi-
trary control procedures (much like implementing a device driver). Custom ports are mainly
useful to obtain fine control over the action of committing bytes as read or written.

883

(make-input-port name
read-in
peek
close

[get-progress-evt
commit
get-location
count-lines!
init-position
buffer-mode]) Ñ input-port?

name : any/c
read-in : (or/c

(bytes?
. -> . (or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?))

input-port?)
peek : (or/c

(bytes? exact-nonnegative-integer? (or/c evt? #f)
. -> . (or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?
#f))

input-port?)
close : (-> any)
get-progress-evt : (or/c (-> evt?) #f) = #f
commit : (or/c (exact-positive-integer? evt? evt? . -> . any)

#f)
= #f

get-location : (or/c
(->
(values (or/c exact-positive-integer? #f)

(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)))

#f)
= #f

count-lines! : (-> any) = void
init-position : (or/c exact-positive-integer?

port?
#f
(-> (or/c exact-positive-integer? #f)))

= 1

884

buffer-mode : (or/c (case-> ((or/c 'block 'none) . -> . any)
(-> (or/c 'block 'none #f)))

#f)
= #f

Creates an input port, which is immediately open for reading. If close procedure has no
side effects, then the port need not be explicitly closed. See also make-input-port/read-
to-peek.

The arguments implement the port as follows:

• name — the name for the input port.

• read-in — either an input port, in which case reads are redirected to the given port,
or a procedure that takes a single argument: a mutable byte string to receive read bytes.
The procedure’s result is one of the following:

– the number of bytes read, as an exact, non-negative integer;

– eof;

– a procedure of arity four (representing a “special” result, as discussed further
below), but a procedure result is allowed only when peek is not #f;

– a pipe input port that supplies bytes to be used as long as the pipe has content
(see pipe-content-length) or until read-in or peek is called again; or

– a synchronizable event (see §11.2.1 “Events”) other than a pipe input port or
procedure of arity four; the event becomes ready when the read is complete
(roughly): the event’s value can be one of the above three results or another
event like itself; in the last case, a reading process loops with sync until it gets a
non-event result.

The read-in procedure must not block indefinitely. If no bytes are immediately
available for reading, the read-in must return 0 or an event, and preferably an event
(to avoid busy waits). The read-in should not return 0 (or an event whose value is 0)
when data is available in the port, otherwise polling the port will behave incorrectly.
An event result from an event can also break polling.

If the result of a read-in call is not one of the above values, the
exn:fail:contract exception is raised. If a returned integer is larger than the sup-
plied byte string’s length, the exn:fail:contract exception is raised. If peek is #f
and a procedure for a special result is returned, the exn:fail:contract exception is
raised.

The read-in procedure can report an error by raising an exception, but only if no
bytes are read. Similarly, no bytes should be read if eof, an event, or a procedure
is returned. In other words, no bytes should be lost due to spurious exceptions or
non-byte data.

885

A port’s reading procedure may be called in multiple threads simultaneously (if the
port is accessible in multiple threads), and the port is responsible for its own internal
synchronization. Note that improper implementation of such synchronization mecha-
nisms might cause a non-blocking read procedure to block indefinitely.

If the result is a pipe input port, then previous get-progress-evt calls whose
event is not yet ready must have been the pipe input port itself. Furthermore, get-
progress-evt must continue to return the pipe as long as it contains data, or until
the read-in or peek-in procedure is called again (instead of using the pipe, for
whatever reason). If read-in or peek-in is called, any previously associated pipe
(as returned by a previous call) is disassociated from the port and is not in use by any
other thread as a result of the previous association.

If peek , get-progress-evt , and commit are all provided and non-#f, then the
following is an acceptable implementation of read-in :

(lambda (bstr)
(let* ([progress-evt (get-progress-evt)]

[v (peek bstr 0 progress-evt)])
(cond
[(sync/timeout 0 progress-evt) 0] ; try again
[(evt? v) (wrap-evt v (lambda (x) 0))] ; sync, try again
[(and (number? v) (zero? v)) 0] ; try again
[else
(if (commit (if (number? v) v 1)

progress-evt
always-evt)

v ; got a result
0)]))) ; try again

An implementor may choose not to implement the peek , get-progress-evt , and
commit procedures, however, and even an implementor who does supply them may
provide a different read-in that uses a fast path for non-blocking reads.

In an input port is provided for read-in , then an input port must also be provided for
peek .

• peek — either #f, an input port (in which case peeks are redirected to the given port),
or a procedure that takes three arguments:

– a mutable byte string to receive peeked bytes;

– a non-negative number of bytes (or specials) to skip before peeking; and

– either #f or a progress event produced by get-progress-evt .

The results and conventions for peek are mostly the same as for read-in . The main
difference is in the handling of the progress event, if it is not #f. If the given progress
event becomes ready, the peek must abort any skip attempts and not peek any values.
In particular, peek must not peek any values if the progress event is initially ready.

886

If the port has been closed, the progress event should be ready, in which case peek
should complete (instead of failing because the port is closed).

Unlike read-in , peek should produce #f (or an event whose value is #f) if no bytes
were peeked because the progress event became ready. Like read-in , a 0 result
indicates that another attempt is likely to succeed, so 0 is inappropriate when the
progress event is ready. Also like read-in , peek must not block indefinitely.

The skip count provided to peek is a number of bytes (or specials) that must re-
main present in the port—in addition to the peek results—when the peek results are
reported. If a progress event is supplied, then the peek is effectively canceled when
another process reads data before the given number can be skipped. If a progress event
is not supplied and data is read, then the peek must effectively restart with the original
skip count.

The system does not check that multiple peeks return consistent results, or that peeking
and reading produce consistent results.

If peek is #f, then peeking for the port is implemented automatically in terms of
reads, but with several limitations. First, the automatic implementation is not thread-
safe. Second, the automatic implementation cannot handle special results (non-byte
and non-eof), so read-in cannot return a procedure for a special when peek is #f.
Finally, the automatic peek implementation is incompatible with progress events, so
if peek is #f, then get-progress-evt and commit must be #f. See also make-
input-port/read-to-peek, which implements peeking in terms of read-in with-
out these constraints.

In an input port is provided for peek , then an input port must also be provided for
read-in .

• close — a procedure of zero arguments that is called to close the port. The port is
not considered closed until the closing procedure returns. The port’s procedures will
never be used again via the port after it is closed. However, the closing procedure
can be called simultaneously in multiple threads (if the port is accessible in multiple
threads), and it may be called during a call to the other procedures in another thread;
in the latter case, any outstanding reads and peeks should be terminated with an error.

• get-progress-evt — either #f (the default), or a procedure that takes no arguments
and returns an event. The event must become ready only after data is next read from
the port or the port is closed. If the port is already closed, the event must be ready.
After the event becomes ready, it must remain so. See the description of read-in for
information about the allowed results of this function when read-in returns a pipe
input port. See also semaphore-peek-evt, which is sometimes useful for imple-
menting get-progress-evt .

If get-progress-evt is #f, then port-provides-progress-evts? applied to the
port will produce #f, and the port will not be a valid argument to port-progress-
evt.

The result event will not be exposed directly by port-progress-evt. Instead, it will
be wrapped in an event for which progress-evt? returns true.

887

• commit — either #f (the default), or a procedure that takes three arguments:

– an exact, positive integer kr;

– a progress event produced by get-progress-evt ;

– an event, done , that is either a channel-put event, channel, semaphore,
semaphore-peek event, always event, or never event.

A commit corresponds to removing data from the stream that was previously peeked,
but only if no other process removed data first. (The removed data does not need to be
reported, because it has been peeked already.) More precisely, assuming that kp bytes,
specials, and mid-stream eofs have been previously peeked or skipped at the start of
the port’s stream, commit must satisfy the following constraints:

– It must return only when the commit is complete or when the given progress
event becomes ready.

– It must commit only if kp is positive.

– If it commits, then it must do so with either kr items or kp items, whichever is
smaller, and only if kp is positive.

– It must never choose done in a synchronization after the given progress event is
ready, or after done has been synchronized once.

– It must not treat any data as read from the port unless done is chosen in a syn-
chronization.

– It must not block indefinitely if done is ready; it must return soon after the read
completes or soon after the given progress event is ready, whichever is first.

– It can report an error by raising an exception, but only if no data has been com-
mitted. In other words, no data should be lost due to an exception, including a
break exception.

– It must return a true value if data has been committed, #f otherwise. When it
returns a value, the given progress event must be ready (perhaps because data
has just been committed).

– It should return a byte string as a true result when line counting is enabled and
get-location is #f (so that line counting is implemented the default way);
the result byte string represents the data that was committed for the purposes
of character and line counting. If any other true result is returned when a byte
string is expected, it is treated like a byte string where each byte corresponds to
a non-newline character.

– It must raise an exception if no data (including eof) has been peeked from the
beginning of the port’s stream, or if it would have to block indefinitely to wait
for the given progress event to become ready.

A call to commit is parameterize-breaked to disable breaks.

• get-location — either #f (the default), or a procedure that takes no arguments
and returns three values: the line number for the next item in the port’s stream (a

888

positive number or #f), the column number for the next item in the port’s stream (a
non-negative number or #f), and the position for the next item in the port’s stream (a
positive number or #f). See also §13.1.4 “Counting Positions, Lines, and Columns”.

This procedure is called to implement port-next-location, but only if line count-
ing is enabled for the port via port-count-lines! (in which case count-lines!
is called). The read and read-syntax procedures assume that reading a non-
whitespace character increments the column and position by one.

• count-lines!— a procedure of no arguments that is called if and when line counting
is enabled for the port. The default procedure is void.

• init-position — normally an exact, positive integer that determines the position
of the port’s first item, which is used by file-position or when line counting is not
enabled for the port. The default is 1. If init-position is #f, the port is treated
as having an unknown position. If init-position is a port, then the given port’s
position is always used for the new port’s position. If init-position is a procedure,
it is called as needed to obtain the port’s position.

• buffer-mode — either #f (the default) or a procedure that accepts zero or one argu-
ments. If buffer-mode is #f, then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol argument ('block or
'none) to set the buffer mode, and it is called with zero arguments to get the current
buffer mode. In the latter case, the result must be 'block, 'none, or #f (unknown).
See §13.1.3 “Port Buffers and Positions” for more information on buffer modes.

“Special” results: When read-in or peek (or an event produced by one of these) returns
a procedure, the procedure is used to obtain a non-byte result. (This non-byte result is not
intended to return a character or eof; in particular, read-char raises an exception if it en-
counters a special-result procedure, even if the procedure produces a byte.) A special-result
procedure must accept four arguments that represent a source location. The first argument is
#f when the special read is triggered by read or read/recursive.

The special-value procedure can return an arbitrary value, and it will be called zero or one
times (not necessarily before further reads or peeks from the port). See §13.7.2 “Reader-
Extension Procedures” for more details on the procedure’s result.

If read-in or peek returns a special procedure when called by any reading procedure other
than read, read-syntax, read-char-or-special, peek-char-or-special, read-
byte-or-special, or peek-byte-or-special, then the exn:fail:contract exception
is raised.

Examples:

; A port with no input...
; Easy: (open-input-bytes #"")
; Hard:

889

> (define /dev/null-in
(make-input-port 'null

(lambda (s) eof)
(lambda (skip s progress-evt) eof)
void
(lambda () never-evt)
(lambda (k progress-evt done-evt)
(error "no successful peeks!"))))

> (read-char /dev/null-in)
#<eof>
> (peek-char /dev/null-in)
#<eof>
> (read-byte-or-special /dev/null-in)
#<eof>
> (peek-byte-or-special /dev/null-in 100)
#<eof>
; A port that produces a stream of 1s:
> (define infinite-ones

(make-input-port
'ones
(lambda (s)
(bytes-set! s 0 (char->integer #\1)) 1)

#f
void))

> (read-string 5 infinite-ones)
"11111"
; But we can't peek ahead arbitrarily far, because the
; automatic peek must record the skipped bytes, so
; we'd run out of memory.
; An infinite stream of 1s with a specific peek procedure:
> (define infinite-ones

(let ([one! (lambda (s)
(bytes-set! s 0 (char->integer #\1)) 1)])

(make-input-port
'ones
one!
(lambda (s skip progress-evt) (one! s))
void)))

> (read-string 5 infinite-ones)
"11111"
; Now we can peek ahead arbitrarily far:
> (peek-string 5 (expt 2 5000) infinite-ones)
"11111"
; The port doesn't supply procedures to implement progress events:
> (port-provides-progress-evts? infinite-ones)
#f

890

> (port-progress-evt infinite-ones)
port-progress-evt: port does not provide progress evts

port: #ăinput-port:onesą
; Non-byte port results:
> (define infinite-voids

(make-input-port
'voids
(lambda (s) (lambda args 'void))
(lambda (skip s evt) (lambda args 'void))
void))

> (read-char infinite-voids)
read-char: non-character in an unsupported context

port: #ăinput-port:voidsą
> (read-char-or-special infinite-voids)
'void
; This port produces 0, 1, 2, 0, 1, 2, etc., but it is not
; thread-safe, because multiple threads might read and change n.
> (define mod3-cycle/one-thread

(let* ([n 2]
[mod! (lambda (s delta)

(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)])

(make-input-port
'mod3-cycle/not-thread-safe
(lambda (s)
(set! n (modulo (add1 n) 3))
(mod! s 0))

(lambda (s skip evt)
(mod! s skip))

void)))
> (read-string 5 mod3-cycle/one-thread)
"01201"
> (peek-string 5 (expt 2 5000) mod3-cycle/one-thread)
"20120"
; Same thing, but thread-safe and kill-safe, and with progress
; events. Only the server thread touches the stateful part
; directly. (See the output port examples for a simpler thread-
safe
; example, but this one is more general.)
> (define (make-mod3-cycle)

(define read-req-ch (make-channel))
(define peek-req-ch (make-channel))
(define progress-req-ch (make-channel))
(define commit-req-ch (make-channel))
(define close-req-ch (make-channel))
(define closed? #f)

891

(define n 0)
(define progress-sema #f)
(define (mod! s delta)
(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)

; –-–-–-–-–-–-–-–-–-–-–-–-–--
; The server has a list of outstanding commit requests,
; and it also must service each port operation (read,
; progress-evt, etc.)
(define (serve commit-reqs response-evts)
(apply
sync
(handle-evt read-req-ch

(handle-read commit-reqs response-evts))
(handle-evt progress-req-ch

(handle-progress commit-reqs response-evts))
(handle-evt commit-req-ch

(add-commit commit-reqs response-evts))
(handle-evt close-req-ch

(handle-close commit-reqs response-evts))
(append
(map (make-handle-response commit-reqs response-evts)

response-evts)
(map (make-handle-commit commit-reqs response-evts)

commit-reqs))))
; Read/peek request: fill in the string and commit
(define ((handle-read commit-reqs response-evts) r)
(let ([s (car r)]

[skip (cadr r)]
[ch (caddr r)]
[nack (cadddr r)]
[evt (car (cddddr r))]
[peek? (cdr (cddddr r))])

(let ([fail? (and evt
(sync/timeout 0 evt))])

(unless (or closed? fail?)
(mod! s skip)
(unless peek?
(commit! 1)))

; Add an event to respond:
(serve commit-reqs

(cons (choice-evt
nack
(channel-put-evt ch (if closed?

0
(if fail? #f 1))))

892

response-evts)))))
; Progress request: send a peek evt for the current
; progress-sema
(define ((handle-progress commit-reqs response-evts) r)
(let ([ch (car r)]

[nack (cdr r)])
(unless progress-sema
(set! progress-sema (make-semaphore (if closed? 1 0))))

; Add an event to respond:
(serve commit-reqs

(cons (choice-evt
nack
(channel-put-evt
ch
(semaphore-peek-evt progress-sema)))

response-evts))))
; Commit request: add the request to the list
(define ((add-commit commit-reqs response-evts) r)
(serve (cons r commit-reqs) response-evts))

; Commit handling: watch out for progress, in which case
; the response is a commit failure; otherwise, try
; to sync for a commit. In either event, remove the
; request from the list
(define ((make-handle-commit commit-reqs response-evts) r)
(let ([k (car r)]

[progress-evt (cadr r)]
[done-evt (caddr r)]
[ch (cadddr r)]
[nack (cddddr r)])

; Note: we don't check that k is <= the sum of
; previous peeks, because the entire stream is actually
; known, but we could send an exception in that case.
(choice-evt
(handle-evt progress-evt

(lambda (x)
(sync nack (channel-put-evt ch #f))
(serve (remq r commit-reqs) response-

evts)))
; Only create an event to satisfy done-evt if progress-

evt
; isn't already ready.
; Afterward, if progress-evt becomes ready, then this
; event-making function will be called again, because
; the server controls all posts to progress-evt.
(if (sync/timeout 0 progress-evt)

never-evt

893

(handle-evt done-evt
(lambda (v)
(commit! k)
(sync nack (channel-put-evt ch #t))
(serve (remq r commit-reqs)

response-evts)))))))
; Response handling: as soon as the respondee listens,
; remove the response
(define ((make-handle-response commit-reqs response-evts) evt)
(handle-evt evt

(lambda (x)
(serve commit-reqs

(remq evt response-evts)))))
; Close handling: post the progress sema, if any, and set
; the closed? flag
(define ((handle-close commit-reqs response-evts) r)
(let ([ch (car r)]

[nack (cdr r)])
(set! closed? #t)
(when progress-sema
(semaphore-post progress-sema))

(serve commit-reqs
(cons (choice-evt nack

(channel-put-evt ch (void)))
response-evts))))

; Helper for reads and post-peek commits:
(define (commit! k)
(when progress-sema
(semaphore-post progress-sema)
(set! progress-sema #f))

(set! n (+ n k)))
; Start the server thread:
(define server-thread (thread (lambda () (serve null null))))
; –-–-–-–-–-–-–-–-–-–-–-–-–--
; Client-side helpers:
(define (req-evt f)
(nack-guard-evt
(lambda (nack)
; Be sure that the server thread is running:
(thread-resume server-thread (current-thread))
; Create a channel to hold the reply:
(let ([ch (make-channel)])
(f ch nack)
ch))))

(define (read-or-peek-evt s skip evt peek?)
(req-evt (lambda (ch nack)

894

(channel-put read-req-ch
(list* s skip ch nack evt peek?)))))

; Make the port:
(make-input-port 'mod3-cycle

; Each handler for the port just sends
; a request to the server
(lambda (s) (read-or-peek-evt s 0 #f #f))
(lambda (s skip evt)
(read-or-peek-evt s skip evt #t))

(lambda () ; close
(sync (req-evt

(lambda (ch nack)
(channel-put progress-req-ch

(list* ch nack))))))
(lambda () ; progress-evt
(sync (req-evt

(lambda (ch nack)
(channel-put progress-req-ch

(list* ch nack))))))
(lambda (k progress-evt done-evt) ; commit
(sync (req-evt

(lambda (ch nack)
(channel-put
commit-req-ch
(list* k progress-evt done-evt ch

nack))))))))
> (define mod3-cycle (make-mod3-cycle))
> (let ([result1 #f]

[result2 #f])
(let ([t1 (thread

(lambda ()
(set! result1 (read-string 5 mod3-cycle))))]

[t2 (thread
(lambda ()
(set! result2 (read-string 5 mod3-cycle))))])

(thread-wait t1)
(thread-wait t2)
(string-append result1 "," result2)))

"12012,00120"
> (define s (make-bytes 1))
> (define progress-evt (port-progress-evt mod3-cycle))
> (peek-bytes-avail! s 0 progress-evt mod3-cycle)
1
> s
#"1"
> (port-commit-peeked 1 progress-evt (make-semaphore 1)

895

mod3-cycle)
#t
> (sync/timeout 0 progress-evt)
#<progress-evt>
> (peek-bytes-avail! s 0 progress-evt mod3-cycle)
0
> (port-commit-peeked 1 progress-evt (make-semaphore 1)

mod3-cycle)
#f
> (close-input-port mod3-cycle)

(make-output-port name
evt
write-out
close

[write-out-special
get-write-evt
get-write-special-evt
get-location
count-lines!
init-position
buffer-mode]) Ñ output-port?

name : any/c
evt : evt?
write-out : (or/c

(bytes? exact-nonnegative-integer?
exact-nonnegative-integer?
boolean?
boolean?
. -> .
(or/c exact-nonnegative-integer?

#f
evt?))

output-port?)
close : (-> any)
write-out-special : (or/c (any/c boolean? boolean?

. -> .
(or/c any/c

#f
evt?))

output-port?
#f)

= #f

896

get-write-evt : (or/c
(bytes? exact-nonnegative-integer?

exact-nonnegative-integer?
. -> .
evt?)

#f)

= #f

get-write-special-evt : (or/c
(any/c . -> . evt?)
#f)

= #f

get-location : (or/c
(->
(values (or/c exact-positive-integer? #f)

(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)))

#f)
= #f

count-lines! : (-> any) = void
init-position : (or/c exact-positive-integer?

port?
#f
(-> (or/c exact-positive-integer? #f)))

= 1
buffer-mode : (or/c (case->

((or/c 'block 'line 'none) . -> . any)
(-> (or/c 'block 'line 'none #f)))
#f)

= #f

Creates an output port, which is immediately open for writing. If close procedure has no
side effects, then the port need not be explicitly closed. The port can buffer data within its
write-out and write-out-special procedures.

• name — the name for the output port.

• evt — a synchronization event (see §11.2.1 “Events”; e.g., a semaphore or another
port). The event is used in place of the output port when the port is supplied to syn-
chronization procedures like sync. Thus, the event should be unblocked when the
port is ready for writing at least one byte without blocking, or ready to make progress
in flushing an internal buffer without blocking. The event must not unblock unless
the port is ready for writing; otherwise, the guarantees of sync will be broken for the
output port. Use always-evt if writes to the port always succeed without blocking.

• write-out — either an output port, which indicates that writes should be redirected
to the given port, or a procedure of five arguments:

– an immutable byte string containing bytes to write;

897

– a non-negative exact integer for a starting offset (inclusive) into the byte string;

– a non-negative exact integer for an ending offset (exclusive) into the byte string;

– a boolean; #f indicates that the port is allowed to keep the written bytes in a
buffer, and that it is allowed to block indefinitely; #t indicates that the write
should not block, and that the port should attempt to flush its buffer and com-
pletely write new bytes instead of buffering them;

– a boolean; #t indicates that if the port blocks for a write, then it should en-
able breaks while blocking (e.g., using sync/enable-break); this argument is
always #f if the fourth argument is #t.

The procedure returns one of the following:

– a non-negative exact integer representing the number of bytes written or
buffered;

– #f if no bytes could be written, perhaps because the internal buffer could not be
completely flushed;

– a pipe output port (when buffering is allowed and not when flushing) for buffer-
ing bytes as long as the pipe is not full and until write-out or write-out-
special is called; or

– a synchronizable event (see §11.2.1 “Events”) other than a pipe output port that
acts like the result of write-bytes-avail-evt to complete the write.

Since write-out can produce an event, an acceptable implementation of write-
out is to pass its first three arguments to the port’s get-write-evt . Some port im-
plementors, however, may choose not to provide get-write-evt (perhaps because
writes cannot be made atomic), or may implement write-out to enable a fast path
for non-blocking writes or to enable buffering.

From a user’s perspective, the difference between buffered and completely written
data is (1) buffered data can be lost in the future due to a failed write, and (2) flush-
output forces all buffered data to be completely written. Under no circumstances is
buffering required.

If the start and end indices are the same, then the fourth argument to write-out will
be #f, and the write request is actually a flush request for the port’s buffer (if any),
and the result should be 0 for a successful flush (or if there is no buffer).

The result should never be 0 if the start and end indices are different, otherwise the
exn:fail:contract exception is raised. Similarly, the exn:fail:contract ex-
ception is raised if write-out returns a pipe output port when buffering is disal-
lowed or when it is called for flushing. If a returned integer is larger than the supplied
byte-string range, the exn:fail:contract exception is raised.

The #f result should be avoided, unless the next write attempt is likely to work. Oth-
erwise, if data cannot be written, return an event instead.

An event returned by write-out can return #f or another event like itself, in contrast
to events produced by write-bytes-avail-evt or get-write-evt . A writing
process loops with sync until it obtains a non-event result.

898

The write-out procedure is always called with breaks disabled, independent of
whether breaks were enabled when the write was requested by a client of the port. If
breaks were enabled for a blocking operation, then the fifth argument to write-out
will be #t, which indicates that write-out should re-enable breaks while blocking.

If the writing procedure raises an exception, due to write or commit operations, it must
not have committed any bytes (though it may have committed previously buffered
bytes).

A port’s writing procedure may be called in multiple threads simultaneously (if the
port is accessible in multiple threads). The port is responsible for its own internal
synchronization. Note that improper implementation of such synchronization mecha-
nisms might cause a non-blocking write procedure to block.

• close — a procedure of zero arguments that is called to close the port. The port is
not considered closed until the closing procedure returns. The port’s procedures will
never be used again via the port after it is closed. However, the closing procedure
can be called simultaneously in multiple threads (if the port is accessible in multiple
threads), and it may be called during a call to the other procedures in another thread;
in the latter case, any outstanding writes or flushes should be terminated immediately
with an error.

• write-out-special — either #f (the default), an output port (which indicates that
special writes should be redirected to the given port), or a procedure to handle write-
special calls for the port. If #f, then the port does not support special output, and
port-writes-special? will return #f when applied to the port.

If a procedure is supplied, it takes three arguments: the special value to write, a
boolean that is #f if the procedure can buffer the special value and block indefinitely,
and a boolean that is #t if the procedure should enable breaks while blocking. The
result is one of the following:

– a non-event true value, which indicates that the special is written;

– #f if the special could not be written, perhaps because an internal buffer could
not be completely flushed;

– a synchronizable event (see §11.2.1 “Events”) that acts like the result of get-
write-special-evt to complete the write.

Since write-out-special can return an event, passing the first argument to an im-
plementation of get-write-special-evt is acceptable as a write-out-special .

As for write-out , the #f result is discouraged, since it can lead to busy waiting. Also
as for write-out , an event produced by write-out-special is allowed to produce
#f or another event like itself. The write-out-special procedure is always called
with breaks disabled, independent of whether breaks were enabled when the write was
requested by a client of the port.

• get-write-evt — either #f (the default) or a procedure of three arguments:

– an immutable byte string containing bytes to write;

899

– a non-negative exact integer for a starting offset (inclusive) into the byte string;
and

– a non-negative exact integer for an ending offset (exclusive) into the byte string.

The result is a synchronizable event (see §11.2.1 “Events”) to act as the result of
write-bytes-avail-evt for the port (i.e., to complete a write or flush), which be-
comes available only as data is committed to the port’s underlying device, and whose
result is the number of bytes written.

If get-write-evt is #f, then port-writes-atomic? will produce #f when applied
to the port, and the port will not be a valid argument to procedures such as write-
bytes-avail-evt. Otherwise, an event returned by get-write-evt must not cause
data to be written to the port unless the event is chosen in a synchronization, and it
must write to the port if the event is chosen (i.e., the write must appear atomic with
respect to the synchronization).

If the event’s result integer is larger than the supplied byte-string range, the
exn:fail:contract exception is raised by a wrapper on the event. If the start and
end indices are the same (i.e., no bytes are to be written), then the event should pro-
duce 0 when the buffer is completely flushed. (If the port has no buffer, then it is
effectively always flushed.)

If the event raises an exception, due to write or commit operations, it must not have
committed any new bytes (though it may have committed previously buffered bytes).

Naturally, a port’s events may be used in multiple threads simultaneously (if the port
is accessible in multiple threads). The port is responsible for its own internal synchro-
nization.

• get-write-special-evt — either #f (the default), or a procedure to handle
write-special-evt calls for the port. This argument must be #f if either write-
out-special or get-write-evt is #f, and it must be a procedure if both of those
arguments are procedures.

If it is a procedure, it takes one argument: the special value to write. The resulting
event (with its constraints) is analogous to the result of get-write-evt .

If the event raises an exception, due to write or commit operations, it must not have
committed the special value (though it may have committed previously buffered bytes
and values).

• get-location — either #f (the default), or a procedure that takes no arguments and
returns three values: the line number for the next item written to the port’s stream (a
positive number or #f), the column number for the next item written to port’s stream
(a non-negative number or #f), and the position for the next item written to port’s
stream (a positive number or #f). See also §13.1.4 “Counting Positions, Lines, and
Columns”.

This procedure is called to implement port-next-location for the port, but only if
line counting is enabled for the port via port-count-lines! (in which case count-
lines! is called).

900

• count-lines!— a procedure of no arguments that is called if and when line counting
is enabled for the port. The default procedure is void.

• init-position — normally an exact, positive integer that determines the position
of the port’s first item, which is used by file-position or when line counting is not
enabled for the port. The default is 1. If init-position is #f, the port is treated
as having an unknown position. If init-position is a port, then the given port’s
position is always used for the new port’s position. If init-position is a procedure,
it is called as needed to obtain the port’s position.

• buffer-mode — either #f (the default) or a procedure that accepts zero or one ar-
guments. If buffer-mode is #f, then the resulting port does not support a buffer-
mode setting. Otherwise, the procedure is called with one symbol argument ('block,
'line, or 'none) to set the buffer mode, and it is called with zero arguments to get
the current buffer mode. In the latter case, the result must be 'block, 'line, 'none,
or #f (unknown). See §13.1.3 “Port Buffers and Positions” for more information on
buffer modes.

Examples:

; A port that writes anything to nowhere:
> (define /dev/null-out

(make-output-port
'null
always-evt
(lambda (s start end non-block? breakable?) (- end start))
void
(lambda (special non-block? breakable?) #t)
(lambda (s start end) (wrap-evt

always-evt
(lambda (x)
(- end start))))

(lambda (special) always-evt)))
> (display "hello" /dev/null-out)
> (write-bytes-avail #"hello" /dev/null-out)
5
> (write-special 'hello /dev/null-out)
#t
> (sync (write-bytes-avail-evt #"hello" /dev/null-out))
5
; A port that accumulates bytes as characters in a list,
; but not in a thread-safe way:
> (define accum-list null)
> (define accumulator/not-thread-safe

(make-output-port
'accum/not-thread-safe

901

always-evt
(lambda (s start end non-block? breakable?)
(set! accum-list

(append accum-list
(map integer->char

(bytes->list (subbytes s start end)))))
(- end start))

void))
> (display "hello" accumulator/not-thread-safe)
> accum-list
'(#\h #\e #\l #\l #\o)
; Same as before, but with simple thread-safety:
> (define accum-list null)
> (define accumulator

(let* ([lock (make-semaphore 1)]
[lock-peek-evt (semaphore-peek-evt lock)])

(make-output-port
'accum
lock-peek-evt
(lambda (s start end non-block? breakable?)
(if (semaphore-try-wait? lock)

(begin
(set! accum-list

(append accum-list
(map integer->char

(bytes->list
(subbytes s start end)))))

(semaphore-post lock)
(- end start))

; Cheap strategy: block until the list is unlocked,
; then return 0, so we get called again
(wrap-evt
lock-peek
(lambda (x) 0))))

void)))
> (display "hello" accumulator)
> accum-list
'(#\h #\e #\l #\l #\o)
; A port that transforms data before sending it on
; to another port. Atomic writes exploit the
; underlying port's ability for atomic writes.
> (define (make-latin-1-capitalize port)

(define (byte-upcase s start end)
(list->bytes
(map (lambda (b) (char->integer

(char-upcase

902

(integer->char b))))
(bytes->list (subbytes s start end)))))

(make-output-port
'byte-upcase
; This port is ready when the original is ready:
port
; Writing procedure:
(lambda (s start end non-block? breakable?)
(let ([s (byte-upcase s start end)])
(if non-block?

(write-bytes-avail* s port)
(begin
(display s port)
(bytes-length s)))))

; Close procedure –- close original port:
(lambda () (close-output-port port))
#f
; Write event:
(and (port-writes-atomic? port)

(lambda (s start end)
(write-bytes-avail-evt
(byte-upcase s start end)
port)))))

> (define orig-port (open-output-string))
> (define cap-port (make-latin-1-capitalize orig-port))
> (display "Hello" cap-port)
> (get-output-string orig-port)
"HELLO"
> (sync (write-bytes-avail-evt #"Bye" cap-port))
3
> (get-output-string orig-port)
"HELLOBYE"

13.1.10 More Port Constructors, Procedures, and Events

(require racket/port) package: base

The bindings documented in this section are provided by the racket/port and racket
libraries, but not racket/base.

Port String and List Conversions

(port->list [r in]) Ñ (listof any/c)
r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)

903

https://pkgs.racket-lang.org/package/base

Returns a list whose elements are produced by calling r on in until it produces eof.

Examples:

> (define (read-number input-port)
(define char (read-char input-port))
(if (eof-object? char)
char
(string->number (string char))))

> (port->list read-number (open-input-string "12345"))
'(1 2 3 4 5)

(port->string [in #:close? close?]) Ñ string?
in : input-port? = (current-input-port)
close? : any/c = #f

Reads all characters from in and returns them as a string. The input port is closed unless
close? is #f.

Example:

> (port->string (open-input-string "hello world"))
"hello world"

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

(port->bytes [in #:close? close?]) Ñ bytes?
in : input-port? = (current-input-port)
close? : any/c = #f

Reads all bytes from in and returns them as a byte string. The input port is closed unless
close? is #f.

Example:

> (port->bytes (open-input-string "hello world"))
#"hello world"

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

(port->lines [in
#:line-mode line-mode
#:close? close?]) Ñ (listof string?)

in : input-port? = (current-input-port)
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any
close? : any/c = #f

904

Read all characters from in , breaking them into lines. The line-mode argument is the
same as the second argument to read-line, but the default is 'any instead of 'linefeed.
The input port is closed unless close? is #f.

Example:

> (port->lines
(open-input-string "line 1\nline 2\n line 3\nline 4"))

'("line 1" "line 2" " line 3" "line 4")

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

(port->bytes-lines [in
#:line-mode line-mode
#:close? close?]) Ñ (listof bytes?)

in : input-port? = (current-input-port)
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any
close? : any/c = #f

Like port->lines, but reading bytes and collecting them into lines like read-bytes-
line. The input port is closed unless close? is #f.

Example:

> (port->bytes-lines
(open-input-string "line 1\nline 2\n line 3\nline 4"))

'(#"line 1" #"line 2" #" line 3" #"line 4")

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

(display-lines lst
[out
#:separator separator]) Ñ void?

lst : list?
out : output-port? = (current-output-port)
separator : any/c = #"\n"

Uses display on each element of lst to out , adding separator after each element.

(call-with-output-string proc) Ñ string?
proc : (output-port? . -> . any)

Calls proc with an output port that accumulates all output into a string, and returns the
string.

905

The port passed to proc is like the one created by open-output-string, except that it is
wrapped via dup-output-port, so that proc cannot access the port’s content using get-
output-string. If control jumps back into proc , the port continues to accumulate new
data, and call-with-output-string returns both the old data and newly accumulated
data.

(call-with-output-bytes proc) Ñ bytes?
proc : (output-port? . -> . any)

Like call-with-output-string, but returns the accumulated result in a byte string in-
stead of a string. Furthermore, the port’s content is emptied when call-with-output-
bytes returns, so that if control jumps back into proc and returns a second time, only the
newly accumulated bytes are returned.

(with-output-to-string proc) Ñ string?
proc : (-> any)

Equivalent to

(call-with-output-string
(lambda (p) (parameterize ([current-output-port p])

(proc))))

(with-output-to-bytes proc) Ñ bytes?
proc : (-> any)

Equivalent to

(call-with-output-bytes
(lambda (p) (parameterize ([current-output-port p])

(proc))))

(call-with-input-string str proc) Ñ any
str : string?
proc : (input-port? . -> . any)

Equivalent to (proc (open-input-string str)).

(call-with-input-bytes bstr proc) Ñ any
bstr : bytes?
proc : (input-port? . -> . any)

Equivalent to (proc (open-input-bytes bstr)).

906

(with-input-from-string str proc) Ñ any
str : string?
proc : (-> any)

Equivalent to

(parameterize ([current-input-port (open-input-string str)])
(proc))

(with-input-from-bytes bstr proc) Ñ any
bstr : bytes?
proc : (-> any)

Equivalent to

(parameterize ([current-input-port (open-input-bytes str)])
(proc))

Creating Ports

(input-port-append close-at-eof?
in ...

[#:name name]) Ñ input-port?
close-at-eof? : any/c
in : input-port?
name : any/c = (map object-name in)

Takes any number of input ports and returns an input port. Reading from the input port draws
bytes (and special non-byte values) from the given input ports in order. If close-at-eof?
is true, then each port is closed when an end-of-file is encountered from the port, or when
the result input port is closed. Otherwise, data not read from the returned input port remains
available for reading in its original input port.

The name argument determines the name as reported by object-name for the returned input
port.

See also merge-input, which interleaves data from multiple input ports as it becomes avail-
able.

Changed in version 6.90.0.19 of package base: Added the name argument.

907

(make-input-port/read-to-peek name
read-in
fast-peek
close

[get-location
count-lines!
init-position
buffer-mode
buffering?
on-consumed]) Ñ input-port?

name : any/c
read-in : (bytes?

. -> . (or/c exact-nonnegative-integer?
eof-object?
procedure?
evt?))

fast-peek : (or/c #f
(bytes? exact-nonnegative-integer?
(bytes? exact-nonnegative-integer?
. -> . (or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?
#f))

. -> . (or/c exact-nonnegative-integer?
eof-object?
procedure?
evt?
#f)))

close : (-> any)
get-location : (or/c

(->
(values
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)))

#f)

= #f

count-lines! : (-> any) = void
init-position : exact-positive-integer? = 1
buffer-mode : (or/c (case-> ((or/c 'block 'none) . -> . any)

(-> (or/c 'block 'none #f)))
#f)

= #f
buffering? : any/c = #f

908

on-consumed : (or/c ((or/c exact-nonnegative-integer? eof-object?
procedure? evt?)

. -> . any)
#f)

= #f

Similar to make-input-port, but if the given read-in returns an event, the event’s value
must be 0. The resulting port’s peek operation is implemented automatically (in terms of
read-in) in a way that can handle special non-byte values. The progress-event and commit
operations are also implemented automatically. The resulting port is thread-safe, but not kill-
safe (i.e., if a thread is terminated or suspended while using the port, the port may become
damaged).

The read-in , close , get-location , count-lines!, init-position , and buffer-
mode procedures are the same as for make-input-port.

The fast-peek argument can be either #f or a procedure of three arguments: a byte string
to receive a peek, a skip count, and a procedure of two arguments. The fast-peek pro-
cedure can either implement the requested peek, or it can dispatch to its third argument to
implement the peek. The fast-peek is not used when a peek request has an associated
progress event.

The buffering? argument determines whether read-in can be called to read more char-
acters than are immediately demanded by the user of the new port. If buffer-mode is not
#f, then buffering? determines the initial buffer mode, and buffering? is enabled after
a buffering change only if the new mode is 'block.

If on-consumed is not #f, it is called when data is read (or committed) from the port, as
opposed to merely peeked. The argument to on-consumed is the result value of the port’s
reading procedure, so it can be an integer or any result from read-in .

(make-limited-input-port in
limit

[close-orig?]) Ñ input-port?
in : input-port?
limit : exact-nonnegative-integer?
close-orig? : any/c = #t

Returns a port whose content is drawn from in , but where an end-of-file is reported after
limit bytes (and non-byte special values) have been read. If close-orig? is true, then the
original port is closed if the returned port is closed.

Bytes are consumed from in only when they are consumed from the returned port. In
particular, peeking into the returned port peeks into the original port.

If in is used directly while the resulting port is also used, then the limit bytes provided by
the port need not be contiguous parts of the original port’s stream.

909

(make-pipe-with-specials [limit
in-name
out-name]) Ñ input-port? output-port?

limit : exact-nonnegative-integer? = #f
in-name : any/c = 'pipe
out-name : any/c = 'pipe

Returns two ports: an input port and an output port. The ports behave like those returned by
make-pipe, except that the ports support non-byte values written with procedures such as
write-special and read with procedures such as get-byte-or-special.

The limit argument determines the maximum capacity of the pipe in bytes, but this limit
is disabled if special values are written to the pipe before limit is reached. The limit is
re-enabled after the special value is read from the pipe.

The optional in-name and out-name arguments determine the names of the result ports.

(merge-input a-in b-in [buffer-limit]) Ñ input-port?
a-in : input-port?
b-in : input-port?
buffer-limit : (or/c exact-nonnegative-integer? #f) = 4096

Accepts two input ports and returns a new input port. The new port merges the data from
two original ports, so data can be read from the new port whenever it is available from either
of the two original ports. The data from the original ports are interleaved. When an end-of-
file has been read from an original port, it no longer contributes characters to the new port.
After an end-of-file has been read from both original ports, the new port returns end-of-file.
Closing the merged port does not close the original ports.

The optional buffer-limit argument limits the number of bytes to be buffered from a-
in and b-in , so that the merge process does not advance arbitrarily beyond the rate of
consumption of the merged data. A #f value disables the limit. As for make-pipe-with-
specials, buffer-limit does not apply when a special value is produced by one of the
input ports before the limit is reached.

See also input-port-append, which concatenates input streams instead of interleaving
them.

(open-output-nowhere [name special-ok?]) Ñ output-port?
name : any/c = 'nowhere
special-ok? : any/c = #t

Creates and returns an output port that discards all output sent to it (without blocking). The
name argument is used as the port’s name. If the special-ok? argument is true, then the
resulting port supports write-special, otherwise it does not.

910

(peeking-input-port in
[name
skip
#:init-position init-position]) Ñ input-port

in : input-port?
name : any/c = (object-name in)
skip : exact-nonnegative-integer? = 0
init-position : exact-positive-integer? = 1

Returns an input port whose content is determined by peeking into in . In other words, the
resulting port contains an internal skip count, and each read of the port peeks into in with
the internal skip count, and then increments the skip count according to the amount of data
successfully peeked.

The optional name argument is the name of the resulting port. The skip argument is the
port initial skip count, and it defaults to 0.

The resulting port’s initial position (as reported by file-position) is (- init-
position 1), no matter the position of in .

The resulting port supports buffering, and a 'block buffer mode allows the port to peek
further into in than requested. The resulting port’s initial buffer mode is 'block, unless in
supports buffer mode and its mode is initially 'none (i.e., the initial buffer mode is taken
from in when it supports buffering). If in supports buffering, adjusting the resulting port’s
buffer mode via file-stream-buffer-mode adjusts in ’s buffer mode.

For example, when you read from a peeking port, you see the same answers as when you
read from the original port:

Examples:

> (define an-original-port (open-input-string "123456789"))
> (define a-peeking-port (peeking-input-port an-original-port))
> (file-stream-buffer-mode a-peeking-port 'none)
> (read-string 3 a-peeking-port)
"123"
> (read-string 3 an-original-port)
"123"

Beware that the read from the original port is invisible to the peeking port, which keeps
its own separate internal counter, and thus interleaving reads on the two ports can produce
confusing results. Continuing the example before, if we read three more characters from the
peeking port, we end up skipping over the 456 in the port (but only because we disabled
buffering above):

Example:

911

> (read-string 3 a-peeking-port)
"789"

If we had left the buffer mode of a-peeking-port alone, that last read-string would
have likely produced "456" as a result of buffering bytes from an-original-port earlier.

Changed in version 6.1.0.3 of package base: Enabled buffering and buffer-mode adjustments via
file-stream-buffer-mode, and set the port’s initial buffer mode to that of in .

(reencode-input-port in
encoding

[error-bytes
close?
name
convert-newlines?
enc-error]) Ñ input-port?

in : input-port?
encoding : string?
error-bytes : (or/c #f bytes?) = #f
close? : any/c = #f
name : any/c = (object-name in)
convert-newlines? : any/c = #f
enc-error : (string? input-port? . -> . any)

= (lambda (msg port) (error ...))

Produces an input port that draws bytes from in , but converts the byte stream using (bytes-
open-converter encoding-str "UTF-8"). In addition, if convert-newlines? is
true, then decoded sequences that correspond to UTF-8 encodings of "\r\n", "\r\u0085",
"\r", "\u0085", and "\u2028" are all converted to the UTF-8 encoding of "\n".

If error-bytes is provided and not #f, then the given byte sequence is used in place of
bytes from in that trigger conversion errors. Otherwise, if a conversion is encountered,
enc-error is called, which must raise an exception.

If close? is true, then closing the result input port also closes in . The name argument is
used as the name of the result input port.

In non-buffered mode, the resulting input port attempts to draw bytes from in only as needed
to satisfy requests. Toward that end, the input port assumes that at least n bytes must be read
to satisfy a request for n bytes. (This is true even if the port has already drawn some bytes,
as long as those bytes form an incomplete encoding sequence.)

912

(reencode-output-port out
encoding

[error-bytes
close?
name
newline-bytes
enc-error]) Ñ output-port?

out : output-port?
encoding : string?
error-bytes : (or/c #f bytes?) = #f
close? : any/c = #f
name : any/c = (object-name out)
newline-bytes : (or/c #f bytes?) = #f
enc-error : (string? output-port? . -> . any)

= (lambda (msg port) (error ...))

Produces an output port that directs bytes to out , but converts its byte stream using (bytes-
open-converter "UTF-8" encoding-str). In addition, if newline-bytes is not #f,
then bytes written to the port that are the UTF-8 encoding of "\n" are first converted to
newline-bytes (before applying the convert from UTF-8 to encoding-str).

If error-bytes is provided and not #f, then the given byte sequence is used in place of
bytes that have been sent to the output port and that trigger conversion errors. Otherwise,
enc-error is called, which must raise an exception.

If close? is true, then closing the result output port also closes out . The name argument is
used as the name of the result output port.

The resulting port supports buffering, and the initial buffer mode is (or (file-stream-
buffer-mode out) 'block). In 'block mode, the port’s buffer is flushed only when it
is full or a flush is requested explicitly. In 'line mode, the buffer is flushed whenever a
newline or carriage-return byte is written to the port. In 'none mode, the port’s buffer is
flushed after every write. Implicit flushes for 'line or 'none leave bytes in the buffer when
they are part of an incomplete encoding sequence.

The resulting output port does not support atomic writes. An explicit flush or special-write
to the output port can hang if the most recently written bytes form an incomplete encoding
sequence.

When the port is buffered, a flush callback is registered with the current plumber to flush the
buffer.
(dup-input-port in [close?]) Ñ input-port?

in : input-port?
close? : any/c = #f

Returns an input port that draws directly from in . Closing the resulting port closes in only

913

if close? is #t.

The new port is initialized with the port read handler of in , but setting the handler on the
result port does not affect reading directly from in .

(dup-output-port out [close?]) Ñ output-port?
out : output-port?
close? : any/c = #f

Returns an output port that propagates data directly to out . Closing the resulting port closes
out only if close? is #t.

The new port is initialized with the port display handler and port write handler of out , but
setting the handlers on the result port does not affect writing directly to out .

(relocate-input-port in
line
column
position

[close?]
#:name name) Ñ input-port?

in : input-port?
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : exact-positive-integer?
close? : any/c = #t
name : (object-name out)

Produces an input port that is equivalent to in except in how it reports location information
(and possibly its name). The resulting port’s content starts with the remaining content of in ,
and it starts at the given line, column, and position. A #f for the line or column means that
the line and column will always be reported as #f.

The line and column values are used only if line counting is enabled for in and for the
resulting port, typically through port-count-lines!. The column value determines the
column for the first line (i.e., the one numbered line), and later lines start at column 0. The
given position is used even if line counting is not enabled.

When line counting is on for the resulting port, reading from in instead of the resulting port
increments location reports from the resulting port. Otherwise, the resulting port’s position
does not increment when data is read from in .

If close? is true, then closing the resulting port also closes in . If close? is #f, then closing
the resulting port does not close in .

The name argument is used as the name for the resulting port; the default value keeps the
same name as in .

914

(relocate-output-port out
line
column
position

[close?]
#:name name) Ñ output-port?

out : output-port?
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : exact-positive-integer?
close? : any/c = #t
name : (object-name out)

Like relocate-input-port, but for output ports.

(transplant-input-port in
get-location
init-pos

[close?
count-lines!]
#:name name) Ñ input-port?

in : input-port?
get-location : (or/c

(->
(values
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)))

#f)
init-pos : exact-positive-integer?
close? : any/c = #t
count-lines! : (-> any) = void
name : (object-name out)

Like relocate-input-port, except that arbitrary position information can be produced
(when line counting is enabled) via get-location , which is used as for make-input-
port. If get-location is #f, then the port counts lines in the usual way starting from
init-pos , independent of locations reported by in .

If count-lines! is supplied, it is called when line counting is enabled for the resulting
port. The default is void.

915

(transplant-output-port out
get-location
init-pos

[close?
count-lines!]
#:name name) Ñ output-port?

out : output-port?
get-location : (or/c

(->
(values
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)))

#f)
init-pos : exact-positive-integer?
close? : any/c = #t
count-lines! : (-> any) = void
name : (object-name out)

Like transplant-input-port, but for output ports.

(filter-read-input-port in
read-wrap
peek-wrap

[close?]) Ñ input-port?
in : input-port?
read-wrap : (bytes? (or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?)

. -> .
(or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?))

peek-wrap : (bytes? exact-nonnegative-integer? (or/c evt? #f)
(or/c exact-nonnegative-integer?
eof-object?
procedure?
evt?
#f)

. -> . (or/c exact-nonnegative-integer?
eof-object?
procedure?
evt?
#f))

916

close? : any/c = #t

Creates a port that draws from in , but each result from the port’s read and peek procedures
(in the sense of make-input-port) is filtered by read-wrap and peek-wrap . The filtering
procedures each receive both the arguments and results of the read and peek procedures on
in for each call.

If close? is true, then closing the resulting port also closes in .

(special-filter-input-port in proc [close?]) Ñ input-port?
in : input-port?
proc : (procedure? bytes? . -> . (or/c exact-nonnegative-integer?

eof-object?
procedure?
evt?))

close? : any/c = #t

Produces an input port that is equivalent to in , except that when in produces a procedure
to access a special value, proc is applied to the procedure to allow the special value to be
replaced with an alternative. The proc is called with the special-value procedure and the
byte string that was given to the port’s read or peek function (see make-input-port), and
the result is used as the read or peek function’s result. The proc can modify the byte string
to substitute a byte for the special value, but the byte string is guaranteed only to hold at least
one byte.

If close? is true, then closing the resulting input port also closes in .

Port Events

(eof-evt in) Ñ evt?
in : input-port?

Returns a synchronizable event that is ready when in produces an eof. If in produces a
mid-stream eof, the eof is consumed by the event only if the event is chosen in a synchro-
nization.

(read-bytes-evt k in) Ñ evt?
k : exact-nonnegative-integer?
in : input-port?

Returns a synchronizable event that is ready when k bytes can be read from in , or when
an end-of-file is encountered in in . If k is 0, then the event is ready immediately with "".
For non-zero k , if no bytes are available before an end-of-file, the event’s result is eof.
Otherwise, the event’s result is a byte string of up to k bytes, which contains as many bytes
as are available (up to k) before an available end-of-file. (The result is a byte string on less
than k bytes only when an end-of-file is encountered.)

917

Bytes are read from the port if and only if the event is chosen in a synchronization, and the
returned bytes always represent contiguous bytes in the port’s stream.

The event can be synchronized multiple times—event concurrently—and each synchroniza-
tion corresponds to a distinct read request.

The in must support progress events, and it must not produce a special non-byte value
during the read attempt.

(read-bytes!-evt bstr in progress-evt) Ñ evt?
bstr : (and/c bytes? (not/c immutable?))
in : input-port?
progress-evt : (or/c progress-evt? #f)

Like read-bytes-evt, except that the read bytes are placed into bstr , and the number of
bytes to read corresponds to (bytes-length bstr). The event’s result is either eof or
the number of read bytes.

The bstr may be mutated any time after the first synchronization attempt on the event and
until either the event is selected, a non-#f progress-evt is ready, or the current custodian
(at the time of synchronization) is shut down. Note that there is no time bound otherwise on
when bstr might be mutated if the event is not selected by a synchronzation; nevertheless,
multiple synchronization attempts can use the same result from read-bytes!-evt as long
as there is no intervening read on in until one of the synchronization attempts selects the
event.
(read-bytes-avail!-evt bstr in) Ñ evt?

bstr : (and/c bytes? (not/c immutable?))
in : input-port?

Like read-bytes!-evt, except that the event reads only as many bytes as are immediately
available, after at least one byte or one eof becomes available.

(read-string-evt k in) Ñ evt?
k : exact-nonnegative-integer?
in : input-port?

Like read-bytes-evt, but for character strings instead of byte strings.

(read-string!-evt str in) Ñ evt?
str : (and/c string? (not/c immutable?))
in : input-port?

Like read-bytes!-evt, but for a character string instead of a byte string.

(read-line-evt in mode) Ñ evt?
in : input-port?
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

918

Returns a synchronizable event that is ready when a line of characters or end-of-file can be
read from in . The meaning of mode is the same as for read-line. The event result is the
read line of characters (not including the line separator).

A line is read from the port if and only if the event is chosen in a synchronization, and the
returned line always represents contiguous bytes in the port’s stream.

(read-bytes-line-evt in mode) Ñ evt?
in : input-port?
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

Like read-line-evt, but returns a byte string instead of a string.

(peek-bytes-evt k skip progress-evt in) Ñ evt?
k : exact-nonnegative-integer?
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?

(peek-bytes!-evt bstr skip progress-evt in) Ñ evt?
bstr : (and/c bytes? (not/c immutable?))
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?

(peek-bytes-avail!-evt bstr
skip
progress-evt
in) Ñ evt?

bstr : (and/c bytes? (not/c immutable?))
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?

(peek-string-evt k skip progress-evt in) Ñ evt?
k : exact-nonnegative-integer?
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?

(peek-string!-evt str skip progress-evt in) Ñ evt?
str : (and/c string? (not/c immutable?))
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?

Like the read-...-evt functions, but for peeking. The skip argument indicates the num-
ber of bytes to skip, and progress-evt indicates an event that effectively cancels the peek
(so that the event never becomes ready). The progress-evt argument can be #f, in which
case the event is never canceled.

919

(regexp-match-evt pattern in) Ñ any
pattern : (or/c string? bytes? regexp? byte-regexp?)
in : input-port?

Returns a synchronizable event that is ready when pattern matches the stream of
bytes/characters from in ; see also regexp-match. The event’s value is the result of the
match, in the same form as the result of regexp-match.

If pattern does not require a start-of-stream match, then bytes skipped to complete the
match are read and discarded when the event is chosen in a synchronization.

Bytes are read from the port if and only if the event is chosen in a synchronization, and the
returned match always represents contiguous bytes in the port’s stream. If not-yet-available
bytes from the port might contribute to the match, the event is not ready. Similarly, if pat-
tern begins with a start-of-stream ^ and the pattern does not initially match, then the
event cannot become ready until bytes have been read from the port.

The event can be synchronized multiple times—even concurrently—and each synchroniza-
tion corresponds to a distinct match request.

The in port must support progress events. If in returns a special non-byte value during the
match attempt, it is treated like eof.

Copying Streams

(convert-stream from-encoding
in
to-encoding
out) Ñ void?

from-encoding : string?
in : input-port?
to-encoding : string?
out : output-port?

Reads data from in , converts it using (bytes-open-converter from-encoding to-
encoding) and writes the converted bytes to out . The convert-stream procedure returns
after reaching eof in in .

If opening the converter fails, the exn:fail exception is raised. Similarly, if a conversion
error occurs at any point while reading from in , then exn:fail exception is raised.

(copy-port in out ...+) Ñ void?
in : input-port?
out : output-port?

Reads data from in and writes it back out to out , returning when in produces eof. The

920

copy is efficient, and it is without significant buffer delays (i.e., a byte that becomes available
on in is immediately transferred to out , even if future reads on in must block). If in
produces a special non-byte value, it is transferred to out using write-special.

This function is often called from a “background” thread to continuously pump data from
one stream to another.

If multiple outs are provided, data from in is written to every out . The different outs
block output to each other, because each block of data read from in is written completely
to one out before moving to the next out . The outs are written in the provided order, so
non-blocking ports (e.g., file output ports) should be placed first in the argument list.

13.2 Byte and String Input

(read-char [in]) Ñ (or/c char? eof-object?)
in : input-port? = (current-input-port)

Reads a single character from in—which may involve reading several bytes to UTF-8-
decode them into a character (see §13.1 “Ports”); a minimal number of bytes are read/peeked
to perform the decoding. If no bytes are available before an end-of-file, then eof is returned.

Examples:

> (let ([ip (open-input-string "S2")])
(print (read-char ip))
(newline)
(print (read-char ip))
(newline)
(print (read-char ip)))

#\S
#\2
#<eof>
> (let ([ip (open-input-bytes #"\316\273")])

; The byte string contains UTF-8-encoded content:
(print (read-char ip)))

#\λ

(read-byte [in]) Ñ (or/c byte? eof-object?)
in : input-port? = (current-input-port)

Reads a single byte from in . If no bytes are available before an end-of-file, then eof is
returned.

Examples:

921

> (let ([ip (open-input-string "a")])
; The two values in the following list should be the same.
(list (read-byte ip) (char->integer #\a)))

'(97 97)
> (let ([ip (open-input-string (string #\λ))])

; This string has a two byte-encoding.
(list (read-byte ip) (read-byte ip) (read-byte ip)))

'(206 187 #<eof>)

(read-line [in mode]) Ñ (or/c string? eof-object?)
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'linefeed

Returns a string containing the next line of bytes from in .

Characters are read from in until a line separator or an end-of-file is read. The line separator
is not included in the result string (but it is removed from the port’s stream). If no characters
are read before an end-of-file is encountered, eof is returned.

The mode argument determines the line separator(s). It must be one of the following sym-
bols:

• 'linefeed breaks lines on linefeed characters.

• 'return breaks lines on return characters.

• 'return-linefeed breaks lines on return-linefeed combinations. If a return charac-
ter is not followed by a linefeed character, it is included in the result string; similarly,
a linefeed that is not preceded by a return is included in the result string.

• 'any breaks lines on any of a return character, linefeed character, or return-linefeed
combination. If a return character is followed by a linefeed character, the two are
treated as a combination.

• 'any-one breaks lines on either a return or linefeed character, without recognizing
return-linefeed combinations.

Return and linefeed characters are detected after the conversions that are automatically per-
formed when reading a file in text mode. For example, reading a file in text mode on Win-
dows automatically changes return-linefeed combinations to a linefeed. Thus, when a file is
opened in text mode, 'linefeed is usually the appropriate read-line mode.

Examples:

> (let ([ip (open-input-string "x\ny\n")])
(read-line ip))

"x"

922

> (let ([ip (open-input-string "x\ny\n")])
(read-line ip 'return))

"x\ny\n"
> (let ([ip (open-input-string "x\ry\r")])

(read-line ip 'return))
"x"
> (let ([ip (open-input-string "x\r\ny\r\n")])

(read-line ip 'return-linefeed))
"x"
> (let ([ip (open-input-string "x\r\ny\nz")])

(list (read-line ip 'any) (read-line ip 'any)))
'("x" "y")
> (let ([ip (open-input-string "x\r\ny\nz")])

(list (read-line ip 'any-one) (read-line ip 'any-one)))
'("x" "")

(read-bytes-line [in mode]) Ñ (or/c bytes? eof-object?)
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'linefeed

Like read-line, but reads bytes and produces a byte string.

(read-string amt [in]) Ñ (or/c string? eof-object?)
amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)

To read an entire
port as a string, use
port->string.Returns a string containing the next amt characters from in .

If amt is 0, then the empty string is returned. Otherwise, if fewer than amt characters are
available before an end-of-file is encountered, then the returned string will contain only those
characters before the end-of-file; that is, the returned string’s length will be less than amt .
(A temporary string of size amt is allocated while reading the input, even if the size of the
result is less than amt characters.) If no characters are available before an end-of-file, then
eof is returned.

If an error occurs during reading, some characters may be lost; that is, if read-string
successfully reads some characters before encountering an error, the characters are dropped.

Example:

> (let ([ip (open-input-string "supercalifragilisticexpialidocious")])
(read-string 5 ip))

"super"

923

(read-bytes amt [in]) Ñ (or/c bytes? eof-object?)
amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)

To read an entire
port as bytes, use
port->bytes.Like read-string, but reads bytes and produces a byte string.

Example:

> (let ([ip (open-input-bytes
(bytes 6

115 101 99 114 101
116))])

(define length (read-byte ip))
(bytes->string/utf-8 (read-bytes length ip)))

"secret"

(read-string! str [in start-pos end-pos])
Ñ (or/c exact-positive-integer? eof-object?)
str : (and/c string? (not/c immutable?))
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (string-length str)

Reads characters from in like read-string, but puts them into str starting from
index start-pos (inclusive) up to end-pos (exclusive). Like substring, the
exn:fail:contract exception is raised if start-pos or end-pos is out-of-range for
str .

If the difference between start-pos and end-pos is 0, then 0 is returned and str is not
modified. If no bytes are available before an end-of-file, then eof is returned. Otherwise,
the return value is the number of characters read. If m characters are read and măend-pos -
start-pos , then str is not modified at indices start-pos+m through end-pos .

Example:

> (let ([buffer (make-string 10 #_)]
[ip (open-input-string "cketRa")])

(printf "„s\n" buffer)
(read-string! buffer ip 2 6)
(printf "„s\n" buffer)
(read-string! buffer ip 0 2)
(printf "„s\n" buffer))

"__________"
"__cket____"
"Racket____"

924

(read-bytes! bstr [in start-pos end-pos])
Ñ (or/c exact-positive-integer? eof-object?)
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-string!, but reads bytes, puts them into a byte string, and returns the number
of bytes read.

Example:

> (let ([buffer (make-bytes 10 (char->integer #_))]
[ip (open-input-string "cketRa")])

(printf "„s\n" buffer)
(read-bytes! buffer ip 2 6)
(printf "„s\n" buffer)
(read-bytes! buffer ip 0 2)
(printf "„s\n" buffer))

#"__________"
#"__cket____"
#"Racket____"

(read-bytes-avail! bstr [in start-pos end-pos])
Ñ (or/c exact-positive-integer? eof-object? procedure?)
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes!, but returns without blocking after having read the immediately avail-
able bytes, and it may return a procedure for a “special” result. The read-bytes-avail!
procedure blocks only if no bytes (or specials) are yet available. Also unlike read-bytes!,
read-bytes-avail! never drops bytes; if read-bytes-avail! successfully reads some
bytes and then encounters an error, it suppresses the error (treating it roughly like an end-of-
file) and returns the read bytes. (The error will be triggered by future reads.) If an error is
encountered before any bytes have been read, an exception is raised.

When in produces a special value, as described in §13.1.9 “Custom Ports”, the result is a
procedure of four arguments. The four arguments correspond to the location of the special
value within the port, as described in §13.1.9 “Custom Ports”. If the procedure is called more
than once with valid arguments, the exn:fail:contract exception is raised. If read-
bytes-avail! returns a special-producing procedure, then it does not place characters in
bstr . Similarly, read-bytes-avail! places only as many bytes into bstr as are available
before a special value in the port’s stream.

925

(read-bytes-avail!* bstr
[in
start-pos
end-pos])

Ñ (or/c exact-nonnegative-integer? eof-object? procedure?)
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes-avail!, but returns 0 immediately if no bytes (or specials) are available
for reading and the end-of-file is not reached.

(read-bytes-avail!/enable-break bstr
[in
start-pos
end-pos])

Ñ (or/c exact-positive-integer? eof-object? procedure?)
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes-avail!, but breaks are enabled during the read (see also §10.6
“Breaks”). If breaking is disabled when read-bytes-avail!/enable-break is called,
and if the exn:break exception is raised as a result of the call, then no bytes will have been
read from in .

(peek-string amt skip-bytes-amt [in]) Ñ (or/c string? eof-object?)
amt : exact-nonnegative-integer?
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)

Similar to read-string, except that the returned characters are peeked: preserved in the
port for future reads and peeks. (More precisely, undecoded bytes are left for future reads
and peeks.) The skip-bytes-amt argument indicates a number of bytes (not characters)
in the input stream to skip before collecting characters to return; thus, in total, the next
skip-bytes-amt bytes plus amt characters are inspected.

For most kinds of ports, inspecting skip-bytes-amt bytes and amt characters requires at
least skip-bytes-amt+amt bytes of memory overhead associated with the port, at least
until the bytes/characters are read. No such overhead is required when peeking into a string
port (see §13.1.6 “String Ports”), a pipe port (see §13.1.7 “Pipes”), or a custom port with a
specific peek procedure (depending on how the peek procedure is implemented; see §13.1.9
“Custom Ports”).

926

If a port produces eof mid-stream, attempts to skip beyond the eof for a peek always pro-
duce eof until the eof is read.

(peek-bytes amt skip-bytes-amt [in]) Ñ (or/c bytes? eof-object?)
amt : exact-nonnegative-integer?
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)

Like peek-string, but peeks bytes and produces a byte string.

(peek-string! str
skip-bytes-amt

[in
start-pos
end-pos])

Ñ (or/c exact-positive-integer? eof-object?)
str : (and/c string? (not/c immutable?))
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (string-length str)

Like read-string!, but for peeking, and with a skip-bytes-amt argument like peek-
string.

(peek-bytes! bstr
skip-bytes-amt

[in
start-pos
end-pos])

Ñ (or/c exact-positive-integer? eof-object?)
bstr : (and/c bytes? (not/c immutable?))
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like peek-string!, but peeks bytes, puts them into a byte string, and returns the number
of bytes read.

(peek-bytes-avail! bstr
skip-bytes-amt

[progress
in
start-pos
end-pos])

927

Ñ (or/c exact-nonnegative-integer? eof-object? procedure?)
bstr : (and/c bytes? (not/c immutable?))
skip-bytes-amt : exact-nonnegative-integer?
progress : (or/c progress-evt? #f) = #f
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes-avail!, but for peeking, and with two extra arguments. The skip-
bytes-amt argument is as in peek-bytes. The progress argument must be either #f or
an event produced by port-progress-evt for in .

To peek, peek-bytes-avail! blocks until finding an end-of-file, at least one byte (or spe-
cial) past the skipped bytes, or until a non-#f progress becomes ready. Furthermore, if
progress is ready before bytes are peeked, no bytes are peeked or skipped, and progress
may cut short the skipping process if it becomes available during the peek attempt. Further-
more, progress is checked even before determining whether the port is still open.

The result of peek-bytes-avail! is 0 only in the case that progress becomes ready
before bytes are peeked.

(peek-bytes-avail!* bstr
skip-bytes-amt

[progress
in
start-pos
end-pos])

Ñ (or/c exact-nonnegative-integer? eof-object? procedure?)
bstr : (and/c bytes? (not/c immutable?))
skip-bytes-amt : exact-nonnegative-integer?
progress : (or/c progress-evt? #f) = #f
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes-avail!*, but for peeking, and with skip-bytes-amt and progress
arguments like peek-bytes-avail!. Since this procedure never blocks, it may return be-
fore even skip-bytes-amt bytes are available from the port.

(peek-bytes-avail!/enable-break bstr
skip-bytes-amt

[progress
in
start-pos
end-pos])

Ñ (or/c exact-nonnegative-integer? eof-object? procedure?)

928

bstr : (and/c bytes? (not/c immutable?))
skip-bytes-amt : exact-nonnegative-integer?
progress : (or/c progress-evt? #f) = #f
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like read-bytes-avail!/enable-break, but for peeking, and with skip-bytes-amt
and progress arguments like peek-bytes-avail!.

(read-char-or-special [in
special-wrap
source-name])

Ñ (or/c char? eof-object? any/c)
in : input-port? = (current-input-port)
special-wrap : (or/c (any/c -> any/c) #f) = #f
source-name : any/c = #f

Like read-char, but if the input port returns a special value (through a value-generating
procedure in a custom port, where source-name is provided to the procedure; see §13.1.9
“Custom Ports” and §13.7.3 “Special Comments” for details), then the result of applying
special-wrap to the special value is returned. A #f value for special-wrap is treated
the same as the identity function.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.

(read-byte-or-special [in
special-wrap
source-name])

Ñ (or/c byte? eof-object? any/c)
in : input-port? = (current-input-port)
special-wrap : (or/c (any/c -> any/c) #f) = #f
source-name : any/c = #f

Like read-char-or-special, but reads and returns a byte instead of a character.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.

(peek-char [in skip-bytes-amt]) Ñ (or/c char? eof-object?)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0

Like read-char, but peeks instead of reading, and skips skip-bytes-amt bytes (not char-
acters) at the start of the port.

929

(peek-byte [in skip-bytes-amt]) Ñ (or/c byte? eof-object?)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0

Like peek-char, but peeks and returns a byte instead of a character.

(peek-char-or-special [in
skip-bytes-amt
special-wrap
source-name])

Ñ (or/c char? eof-object? any/c)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0
special-wrap : (or/c (any/c -> any/c) #f 'special) = #f
source-name : any/c = #f

Like peek-char, but if the input port returns a non-byte value after skip-bytes-amt byte
positions, then the result depends on special-wrap :

• If special-wrap is #f, then the special value is returned (as for read-char-or-
special).

• If special-wrap is a procedure, then it is applied the special value to produce the
result (as for read-char-or-special).

• If special-wrap is 'special, then 'special is returned in place of the special
value—without calling the special-value procedure that is returned by the input-port
implementation.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.
Changed in version 6.90.0.16: Added 'special as an option for special-wrap .

(peek-byte-or-special [in
skip-bytes-amt
progress
special-wrap
source-name])

Ñ (or/c byte? eof-object? any/c)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0
progress : (or/c progress-evt? #f) = #f
special-wrap : (or/c (any/c -> any/c) #f 'special) = #f
source-name : any/c = #f

930

Like peek-char-or-special, but peeks and returns a byte instead of a character, and it
supports a progress argument like peek-bytes-avail!.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.
Changed in version 6.90.0.16: Added 'special as an option for special-wrap .

(port-progress-evt [in]) Ñ progress-evt?
in : (and/c input-port? port-provides-progress-evts?)

= (current-input-port)

Returns a synchronizable event (see §11.2.1 “Events”) that becomes ready for synchroniza-
tion after any subsequent read from in or after in is closed. After the event becomes ready,
it remains ready. The synchronization result of a progress event is the progress event itself.

(port-provides-progress-evts? in) Ñ boolean
in : input-port?

Returns #t if port-progress-evt can return an event for in . All built-in kinds of ports
support progress events, but ports created with make-input-port (see §13.1.9 “Custom
Ports”) may not.

(port-commit-peeked amt progress evt [in]) Ñ boolean?
amt : exact-nonnegative-integer?
progress : progress-evt?
evt : evt?
in : input-port? = (current-input-port)

Attempts to commit as read the first amt previously peeked bytes, non-byte specials, and
eofs from in , or the first eof or special value peeked from in . Mid-stream eofs can be
committed, but an eof when the port is exhausted does not necessarily commit, since it does
not correspond to data in the stream.

The read commits only if progress does not become ready first (i.e., if no other process
reads from in first), and only if evt is chosen by a sync within port-commit-peeked (in
which case the event result is ignored); the evt must be either a channel-put event, channel,
semaphore, semaphore-peek event, always event, or never event. Suspending the thread that
calls port-commit-peeked may or may not prevent the commit from proceeding.

The result from port-commit-peeked is #t if data has been committed, and #f otherwise.

If no data has been peeked from in and progress is not ready, then exn:fail:contract
exception is raised. If fewer than amt items have been peeked at the current start of in ’s
stream, then only the peeked items are committed as read. If in ’s stream currently starts at
an eof or a non-byte special value, then only the eof or special value is committed as read.

If progress is not a result of port-progress-evt applied to in , then
exn:fail:contract exception is raised.

931

(byte-ready? [in]) Ñ boolean?
in : input-port? = (current-input-port)

Returns #t if (read-byte in) would not block (at the time that byte-ready? was called,
at least). Equivalent to (and (sync/timeout 0 in) #t).

(char-ready? [in]) Ñ boolean?
in : input-port? = (current-input-port)

Returns #t if (read-char in) would not block (at the time that char-ready? was called,
at least). Depending on the initial bytes of the stream, multiple bytes may be needed to form
a UTF-8 encoding.

(progress-evt? v) Ñ boolean?
v : any/c

(progress-evt? evt in) Ñ boolean?
evt : progress-evt?
in : input-port?

With one argument, returns #t is v is a progress evt for some input port, #f otherwise.

With two arguments, returns #t if evt is a progress event for in , #f otherwise.

13.3 Byte and String Output

(write-char char [out]) Ñ void?
char : char?
out : output-port? = (current-output-port)

Writes a single character to out ; more precisely, the bytes that are the UTF-8 encoding of
char are written to out .

(write-byte byte [out]) Ñ void?
byte : byte?
out : output-port? = (current-output-port)

Writes a single byte to out .

(newline [out]) Ñ void?
out : output-port? = (current-output-port)

The same as (write-char #\newline out).

932

(write-string str [out start-pos end-pos])
Ñ exact-nonnegative-integer?
str : string?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (string-length str)

Writes characters to out from str starting from index start-pos (inclusive) up to end-
pos (exclusive). Like substring, the exn:fail:contract exception is raised if start-
pos or end-pos is out-of-range for str .

The result is the number of characters written to out , which is always (- end-pos start-
pos).

If str is mutable, mutations after write-string returns do not affect the characters written
to out . (This independence from mutation is not a special property of write-string, but
instead generally true of output functions.)

(write-bytes bstr [out start-pos end-pos])
Ñ exact-nonnegative-integer?
bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like write-string, but writes bytes instead of characters.

(write-bytes-avail bstr
[out
start-pos
end-pos]) Ñ exact-nonnegative-integer?

bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like write-bytes, but returns without blocking after writing as many bytes as it can imme-
diately flush. It blocks only if no bytes can be flushed immediately. The result is the number
of bytes written and flushed to out ; if start-pos is the same as end-pos , then the result
can be 0 (indicating a successful flush of any buffered data), otherwise the result is between
1 and (- end-pos start-pos), inclusive.

The write-bytes-avail procedure never drops bytes; if write-bytes-avail success-
fully writes some bytes and then encounters an error, it suppresses the error and returns
the number of written bytes. (The error will be triggered by future writes.) If an error is
encountered before any bytes have been written, an exception is raised.

933

(write-bytes-avail* bstr
[out
start-pos
end-pos])

Ñ (or/c exact-nonnegative-integer? #f)
bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like write-bytes-avail, but never blocks, returns #f if the port contains buffered data
that cannot be written immediately, and returns 0 if the port’s internal buffer (if any) is
flushed but no additional bytes can be written immediately.

(write-bytes-avail/enable-break bstr
[out
start-pos
end-pos])

Ñ exact-nonnegative-integer?
bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like write-bytes-avail, except that breaks are enabled during the write. The procedure
provides a guarantee about the interaction of writing and breaks: if breaking is disabled
when write-bytes-avail/enable-break is called, and if the exn:break exception is
raised as a result of the call, then no bytes will have been written to out . See also §10.6
“Breaks”.

(write-special v [out]) Ñ boolean?
v : any/c
out : output-port? = (current-output-port)

Writes v directly to out if the port supports special writes, or raises exn:fail:contract
if the port does not support special write. The result is always #t, indicating that the write
succeeded.

(write-special-avail* v [out]) Ñ boolean?
v : any/c
out : output-port? = (current-output-port)

Like write-special, but without blocking. If v cannot be written immediately, the result
is #f without writing v , otherwise the result is #t and v is written.

934

(write-bytes-avail-evt bstr
[out
start-pos
end-pos]) Ñ evt?

bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Similar to write-bytes-avail, but instead of writing bytes immediately, it returns a syn-
chronizable event (see §11.2.1 “Events”). The out must support atomic writes, as indicated
by port-writes-atomic?.

Synchronizing on the object starts a write from bstr , and the event becomes ready when
bytes are written (unbuffered) to the port. If start-pos and end-pos are the same, then
the synchronization result is 0 when the port’s internal buffer (if any) is flushed, otherwise
the result is a positive exact integer. If the event is not selected in a synchronization, then no
bytes will have been written to out .

(write-special-evt v [out]) Ñ evt?
v : any/c
out : output-port? = (current-output-port)

Similar to write-special, but instead of writing the special value immediately, it returns
a synchronizable event (see §11.2.1 “Events”). The out must support atomic writes, as
indicated by port-writes-atomic?.

Synchronizing on the object starts a write of the special value, and the event becomes ready
when the value is written (unbuffered) to the port. If the event is not selected in a synchro-
nization, then no value will have been written to out .

(port-writes-atomic? out) Ñ boolean?
out : output-port?

Returns #t if write-bytes-avail/enable-break can provide an exclusive-or guarantee
(break or write, but not both) for out , and if the port can be used with procedures like
write-bytes-avail-evt. Racket’s file-stream ports, pipes, string ports, and TCP ports
all support atomic writes; ports created with make-output-port (see §13.1.9 “Custom
Ports”) may support atomic writes.

(port-writes-special? out) Ñ boolean?
out : output-port?

Returns #t if procedures like write-special can write arbitrary values to the port.
Racket’s file-stream ports, pipes, string ports, and TCP ports all reject special values, but
ports created with make-output-port (see §13.1.9 “Custom Ports”) may support them.

935

13.4 Reading

(read [in]) Ñ any
in : input-port? = (current-input-port)

Reads and returns a single datum from in . If in has a handler associated to it via port-
read-handler, then the handler is called. Otherwise, the default reader is used, as param-
eterized by the current-readtable parameter, as well as many other parameters.

See §1.3 “The Reader” for information on the default reader and §1.3.18 “Reading via an
Extension” for the protocol of read.

(read-syntax [source-name in]) Ñ (or/c syntax? eof-object?)
source-name : any/c = (object-name in)
in : input-port? = (current-input-port)

Like read, but produces a syntax object with source-location information. The source-
name is used as the source field of the syntax object; it can be an arbitrary value, but it
should generally be a path for the source file.

See §1.3 “The Reader” for information on the default reader in read-syntax mode and
§1.3.18 “Reading via an Extension” for the protocol of read-syntax.

(read/recursive [in start readtable graph?]) Ñ any
in : input-port? = (current-input-port)
start : (or/c char? #f) = #f
readtable : (or/c readtable? #f) = (current-readtable)
graph? : any/c = #t

Similar to calling read, but normally used during the dynamic extent of read within a
reader-extension procedure (see §13.7.2 “Reader-Extension Procedures”). The main effect
of using read/recursive instead of read is that graph-structure annotations (see §1.3.17
“Reading Graph Structure”) in the nested read are considered part of the overall read, at least
when the graph? argument is true; since the result is wrapped in a placeholder, however, it
is not directly inspectable.

If start is provided and not #f, it is effectively prefixed to the beginning of in ’s stream
for the read. (To prefix multiple characters, use input-port-append.)

The readtable argument is used for top-level parsing to satisfy the read request, includ-
ing various delimiters of a built-in top-level form (such as parentheses and . for reading a
hash table); recursive parsing within the read (e.g., to read the elements of a list) instead
uses the current readtable as determined by the current-readtable parameter. A reader
macro might call read/recursive with a character and readtable to effectively invoke the
readtable’s behavior for the character. If readtable is #f, the default readtable is used for
top-level parsing.

936

When graph? is #f, graph structure annotations in the read datum are local to the datum.

When called within the dynamic extent of read, the read/recursive procedure can pro-
duce a special-comment value (see §13.7.3 “Special Comments”) when the input stream’s
first non-whitespace content parses as a comment.

See §13.7.1 “Readtables” for an extended example that uses read/recursive.

Changed in version 6.2 of package base: Adjusted use of readtable to more consistently apply to the delimiters
of a built-in form.

(read-syntax/recursive [source-name
in
start
readtable
graph?]) Ñ any

source-name : any/c = (object-name in)
in : input-port? = (current-input-port)
start : (or/c char? #f) = #f
readtable : (or/c readtable? #f) = (current-readtable)
graph? : any/c = #t

Analogous to calling read/recursive, but the resulting value encapsulates S-expression
structure with source-location information. As with read/recursive, when read-
syntax/recursive is used within the dynamic extent of read-syntax, the result from
read-syntax/recursive is either a special-comment value, end-of-file, or opaque graph-
structure placeholder (not a syntax object). The placeholder can be embedded in an S-
expression or syntax object returned by a reader macro, etc., and it will be replaced with the
actual syntax object before the outermost read-syntax returns.

Using read/recursive within the dynamic extent of read-syntax does not allow graph
structure for reading to be included in the outer read-syntax parsing, and neither does
using read-syntax/recursive within the dynamic extent of read. In those cases,
read/recursive and read-syntax/recursive produce results like read and read-
syntax, except that a special-comment value is returned when the input stream starts with a
comment (after whitespace).

See §13.7.1 “Readtables” for an extended example that uses read-syntax/recursive.

Changed in version 6.2 of package base: Adjusted use of readtable in the same way as for read/recursive.

(read-language [in fail-thunk])
Ñ (or/c (any/c any/c . -> . any) #f)
in : input-port? = (current-input-port)
fail-thunk : (-> any) = (lambda () (error ...))

Reads from in in the same way as read, but stopping as soon as a reader language (or its

937

absence) is determined, and using the current namespace to load a reader module instead of
its root namespace (if those are different).

A reader language is specified by #lang or #! (see §1.3.18 “Reading via an Extension”)
at the beginning of the input, though possibly after comment forms. The default readtable
is used by read-language (instead of the value of current-readtable), and #reader
forms (which might produce comments) are not allowed before #lang or #!. See also §17.3.5

“Source-Handling
Configuration” in
The Racket Guide.

When it finds a #lang or #! specification, instead of dispatching to a read or read-syntax
function as read and read-syntax do, read-language dispatches to the get-info func-
tion (if any) exported by the same module. The arguments to get-info are the same as
for read as described in §1.3.18 “Reading via an Extension”. The result of the get-info
function is the result of read-language if it is a function of two arguments; if get-info
produces any other kind of result, the exn:fail:contract exception is raised. If no get-
info function is exported, read-language returns #f.

The function produced by get-info reflects information about the expected syntax of the
input stream. The first argument to the function serves as a key on such information; accept-
able keys and the interpretation of results is up to external tools, such as DrRacket (see the
DrRacket documentation). If no information is available for a given key, the result should be
the second argument.

Examples:

> (define scribble-manual-info
(read-language (open-input-string "#lang scribble/manual")))

> (scribble-manual-info 'color-lexer #f)
#<procedure:scribble-inside-lexer>
> (scribble-manual-info 'something-else #f)
#f

The get-info function itself is applied to five arguments: the input port being read, the
module path from which the get-info function was extracted, and the source line (positive
exact integer or #f), column (non-negative exact integer or #f), and position (positive exact
integer or #f) of the start of the #lang or #! form. The get-info function may further read
from the given input port to determine its result, but it should read no further than necessary.
The get-info function should not read from the port after returning a function.

If in starts with a reader language specification but the relevant module does not export get-
info (but perhaps does export read and read-syntax), then the result of read-language
is #f.

If in has a #lang or #! specification, but parsing and resolving the specification raises an
exception, the exception is propagated by read-language. Having at least #l or #! (after
comments and whitespace) counts as starting a #lang or #! specification.

If in does not specify a reader language with #lang or #!, then fail-thunk is called. The

938

default fail-thunk raises exn:fail:read or exn:fail:read:eof.

(read-case-sensitive) Ñ boolean?
(read-case-sensitive on?) Ñ void?

on? : any/c

A parameter that controls parsing and printing of symbols. When this parameter’s value
is #f, the reader case-folds symbols (e.g., producing 'hi when the input is any one of hi,
Hi, HI, or hI). The parameter also affects the way that write prints symbols containing
uppercase characters; if the parameter’s value is #f, then symbols are printed with upper-
case characters quoted by a \ or |. The parameter’s value is overridden by quoting \ or |
vertical-bar quotes and the #cs and #ci prefixes; see §1.3.2 “Reading Symbols” for more
information. While a module is loaded, the parameter is set to #t (see current-load).

(read-square-bracket-as-paren) Ñ boolean?
(read-square-bracket-as-paren on?) Ñ void?

on? : any/c

A parameter that controls whether [and] are treated as parentheses. See §1.3.6 “Reading
Pairs and Lists” for more information.

(read-curly-brace-as-paren) Ñ boolean?
(read-curly-brace-as-paren on?) Ñ void?

on? : any/c

A parameter that controls whether { and } are treated as parentheses. See §1.3.6 “Reading
Pairs and Lists” for more information.

(read-square-bracket-with-tag) Ñ boolean?
(read-square-bracket-with-tag on?) Ñ void?

on? : any/c

A parameter that controls whether [and] are treated as parentheses, but the resulting list
tagged with #%brackets. See §1.3.6 “Reading Pairs and Lists” for more information.

Added in version 6.3.0.5 of package base.

(read-curly-brace-with-tag) Ñ boolean?
(read-curly-brace-with-tag on?) Ñ void?

on? : any/c

A parameter that controls whether { and } are treated as parentheses, but the resulting list
tagged with #%braces. See §1.3.6 “Reading Pairs and Lists” for more information.

Added in version 6.3.0.5 of package base.

939

(read-accept-box) Ñ boolean?
(read-accept-box on?) Ñ void?

on? : any/c

A parameter that controls parsing #& input. See §1.3.13 “Reading Boxes” for more informa-
tion.

(read-accept-compiled) Ñ boolean?
(read-accept-compiled on?) Ñ void?

on? : any/c

A parameter that controls parsing #„ compiled input. See §1.3 “The Reader” and current-
compile for more information.

(read-accept-bar-quote) Ñ boolean?
(read-accept-bar-quote on?) Ñ void?

on? : any/c

A parameter that controls parsing and printing of | in symbols. See §1.3.2 “Reading Sym-
bols” and §1.4 “The Printer” for more information.

(read-accept-graph) Ñ boolean?
(read-accept-graph on?) Ñ void?

on? : any/c

A parameter value that controls parsing input with sharing. See §1.3.17 “Reading Graph
Structure” for more information.

(read-decimal-as-inexact) Ñ boolean?
(read-decimal-as-inexact on?) Ñ void?

on? : any/c

A parameter that controls parsing input numbers with a decimal point or exponent (but no
explicit exactness tag). See §1.3.3 “Reading Numbers” for more information.

(read-single-flonum) Ñ boolean?
(read-single-flonum on?) Ñ void?

on? : any/c

A parameter that controls parsing input numbers that have a f, F, s, or S precision character.
See §1.3.3 “Reading Numbers” for more information.

Added in version 7.3.0.5 of package base.

940

(read-accept-dot) Ñ boolean?
(read-accept-dot on?) Ñ void?

on? : any/c

A parameter that controls parsing input with a dot, which is normally used for literal cons
cells. See §1.3.6 “Reading Pairs and Lists” for more information.

(read-accept-infix-dot) Ñ boolean?
(read-accept-infix-dot on?) Ñ void?

on? : any/c

A parameter that controls parsing input with two dots to trigger infix conversion. See §1.3.6
“Reading Pairs and Lists” for more information.

(read-cdot) Ñ boolean?
(read-cdot on?) Ñ void?

on? : any/c

A parameter that controls parsing input with a dot, in a C structure accessor style. See
§1.3.19 “Reading with C-style Infix-Dot Notation” for more information.

Added in version 6.3.0.5 of package base.

(read-accept-quasiquote) Ñ boolean?
(read-accept-quasiquote on?) Ñ void?

on? : any/c

A parameter that controls parsing input with ` or , which is normally used for quasiquote,
unquote, and unquote-splicing abbreviations. See §1.3.8 “Reading Quotes” for more
information.

(read-accept-reader) Ñ boolean?
(read-accept-reader on?) Ñ void?

on? : any/c

A parameter that controls whether #reader, #lang, or #! are allowed for selecting a parser.
See §1.3.18 “Reading via an Extension” for more information.

(read-accept-lang) Ñ boolean?
(read-accept-lang on?) Ñ void?

on? : any/c

A parameter that (along with read-accept-reader) controls whether #lang and #! are
allowed for selecting a parser. See §1.3.18 “Reading via an Extension” for more information.

941

(current-readtable) Ñ (or/c readtable? #f)
(current-readtable readtable) Ñ void?

readtable : (or/c readtable? #f)

A parameter whose value determines a readtable that adjusts the parsing of S-expression in-
put, where #f implies the default behavior. See §13.7.1 “Readtables” for more information.

(call-with-default-reading-parameterization thunk) Ñ any
thunk : (-> any)

Calls thunk in tail position of a parameterize to set all reader parameters above to their
default values.

Using the default parameter values ensures consistency, and it also provides safety when
reading from untrusted sources, since the default values disable evaluation of arbitrary code
via #lang or #reader.

(current-reader-guard) Ñ (any/c . -> . any)
(current-reader-guard proc) Ñ void?

proc : (any/c . -> . any)

A parameter whose value converts or rejects (by raising an exception) a module-path datum
following #reader. See §1.3.18 “Reading via an Extension” for more information.

(read-on-demand-source)
Ñ (or/c #f #t (and/c path? complete-path?))

(read-on-demand-source mode) Ñ void?
mode : (or/c #f #t (and/c path? complete-path?))

A parameter that enables lazy parsing of compiled code, so that closure bodies and syntax
objects are extracted (and validated) from marshaled compiled code on demand. Normally,
this parameter is set by the default load handler when load-on-demand-enabled is #t.

A #f value for read-on-demand-source disables lazy parsing of compiled code. A #t
value enables lazy parsing. A path value furthers enable lazy retrieval from disk—instead of
keeping unparsed compiled code in memory—when the PLT_DELAY_FROM_ZO environment
variable is set (to any value) on start-up.

If the file at mode as a path changes before the delayed code is parsed when lazy retrieval
from disk is enabled, then the on-demand parse most likely will encounter garbage, leading
to an exception.

(port-read-handler in) Ñ (case->
(input-port? . -> . any)
(input-port? any/c . -> . any))

942

in : input-port?
(port-read-handler in proc) Ñ void?

in : input-port?
proc : (case->

(input-port? . -> . any)
(input-port? any/c . -> . any))

Gets or sets the port read handler for in . The handler called to read from the port when the
built-in read or read-syntax procedure is applied to the port. (The port read handler is not
used for read/recursive or read-syntax/recursive.)

A port read handler is applied to either one argument or two arguments:

• A single argument is supplied when the port is used with read; the argument is the
port being read. The return value is the value that was read from the port (or end-of-
file).

• Two arguments are supplied when the port is used with read-syntax; the first argu-
ment is the port being read, and the second argument is a value indicating the source.
The return value is a syntax object that was read from the port (or end-of-file).

The default port read handler reads standard Racket expressions with Racket’s built-in parser
(see §1.3 “The Reader”). It handles a special result from a custom input port (see make-
custom-input-port) by treating it as a single expression, except that special-comment
values (see §13.7.3 “Special Comments”) are treated as whitespace.

The default port read handler itself can be customized through a readtable; see §13.7.1
“Readtables” for more information.

13.5 Writing

(write datum [out]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)

Writes datum to out , normally in such a way that instances of core datatypes can be read
back in. If out has a handler associated to it via port-write-handler, then the handler
is called. Otherwise, the default printer is used (in write mode), as configured by various
parameters.

See §1.4 “The Printer” for more information about the default printer. In particular, note that
write may require memory proportional to the depth of the value being printed, due to the
initial cycle check.

943

Examples:

> (write 'hi)
hi
> (write (lambda (n) n))
#<procedure>
> (define o (open-output-string))
> (write "hello" o)
> (get-output-string o)
"\"hello\""

(display datum [out]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)

Displays datum to out , similar to write, but usually in such a way that byte- and character-
based datatypes are written as raw bytes or characters. If out has a handler associated to
it via port-display-handler, then the handler is called. Otherwise, the default printer is
used (in display mode), as configured by various parameters.

See §1.4 “The Printer” for more information about the default printer. In particular, note that
display may require memory proportional to the depth of the value being printed, due to
the initial cycle check.

(print datum [out quote-depth]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)
quote-depth : (or/c 0 1) = 0

Prints datum to out . If out has a handler associated to it via port-print-handler, then
the handler is called. Otherwise, the handler specified by global-port-print-handler
is called; the default handler uses the default printer in print mode.

The optional quote-depth argument adjusts printing when the print-as-expression
parameter is set to #t. In that case, quote-depth specifies the starting quote depth for
printing datum .

The rationale for providing print is that display and write both have specific output
conventions, and those conventions restrict the ways that an environment can change the
behavior of display and write procedures. No output conventions should be assumed for
print, so that environments are free to modify the actual output generated by print in any
way.

(writeln datum [out]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)

944

The same as (write datum out) followed by (newline out).

Added in version 6.1.1.8 of package base.

(displayln datum [out]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)

The same as (display datum out) followed by (newline out), which is similar to
println in Pascal or Java.

(println datum [out quote-depth]) Ñ void?
datum : any/c
out : output-port? = (current-output-port)
quote-depth : (or/c 0 1) = 0

The same as (print datum out quote-depth) followed by (newline out).

The println function is not equivalent to println in other languages, because println
uses printing conventions that are closer to write than to display. For a closer analog to
println in other languages, use displayln.

Added in version 6.1.1.8 of package base.

(fprintf out form v ...) Ñ void?
out : output-port?
form : string?
v : any/c

Prints formatted output to out , where form is a string that is printed directly, except for
special formatting escapes:

• „n or „% prints a newline character (which is equivalent to \n in a literal format
string)

• „a or „A displays the next argument among the vs

• „s or „S writes the next argument among the vs

• „v or „V prints the next argument among the vs

• „.xcy where xcy is a, A, s, S, v, or V: truncates display, write, or print output
to (error-print-width) characters, using ... as the last three characters if the
untruncated output would be longer

• „e or „E outputs the next argument among the vs using the current error value con-
version handler (see error-value->string-handler) and current error printing
width

945

• „c or „C write-chars the next argument in vs; if the next argument is not a char-
acter, the exn:fail:contract exception is raised

• „b or„B prints the next argument among the vs in binary; if the next argument is not
an exact number, the exn:fail:contract exception is raised

• „o or „O prints the next argument among the vs in octal; if the next argument is not
an exact number, the exn:fail:contract exception is raised

• „x or„X prints the next argument among the vs in hexadecimal; if the next argument
is not an exact number, the exn:fail:contract exception is raised

• „„ prints a tilde.

• „xwy, where xwy is a whitespace character (see char-whitespace?), skips charac-
ters in form until a non-whitespace character is encountered or until a second end-of-
line is encountered (whichever happens first). On all platforms, an end-of-line can be
#\return, #\newline, or #\return followed immediately by #\newline.

The form string must not contain any „ that is not one of the above escapes, otherwise the
exn:fail:contract exception is raised. When the format string requires more vs than
are supplied, the exn:fail:contract exception is raised. Similarly, when more vs are
supplied than are used by the format string, the exn:fail:contract exception is raised.

Example:

> (fprintf (current-output-port)
"„a as a string is „s.\n"
'(3 4)
"(3 4)")

(3 4) as a string is "(3 4)".

(printf form v ...) Ñ void?
form : string?
v : any/c

The same as (fprintf (current-output-port) form v ...).

(eprintf form v ...) Ñ void?
form : string?
v : any/c

The same as (fprintf (current-error-port) form v ...).

(format form v ...) Ñ string?
form : string?
v : any/c

946

Formats to a string. The result is the same as

(let ([o (open-output-string)])
(fprintf o form v ...)
(get-output-string o))

Example:

> (format "„a as a string is „s.\n" '(3 4) "(3 4)")
"(3 4) as a string is \"(3 4)\".\n"

(print-pair-curly-braces) Ñ boolean?
(print-pair-curly-braces on?) Ñ void?

on? : any/c

A parameter that controls pair printing. If the value is true, then pairs print using { and }
instead of (and). The default is #f.

(print-mpair-curly-braces) Ñ boolean?
(print-mpair-curly-braces on?) Ñ void?

on? : any/c

A parameter that controls pair printing. If the value is true, then mutable pairs print using {
and } instead of (and). The default is #t.

(print-unreadable) Ñ boolean?
(print-unreadable on?) Ñ void?

on? : any/c

A parameter that enables or disables printing of values that have no readable form (using the
default reader), including structures that have a custom-write procedure (see prop:custom-
write), but not including uninterned symbols and unreadable symbols (which print the same
as interned symbols). If the parameter value is #f, an attempt to print an unreadable value
raises exn:fail. The parameter value defaults to #t. See §1.4 “The Printer” for more
information.

(print-graph) Ñ boolean?
(print-graph on?) Ñ void?

on? : any/c

A parameter that controls printing data with sharing; defaults to #f. See §1.4 “The Printer”
for more information.

(print-struct) Ñ boolean?
(print-struct on?) Ñ void?

on? : any/c

947

A parameter that controls printing structure values in vector or prefab form; defaults to #t.
See §1.4 “The Printer” for more information. This parameter has no effect on the printing of
structures that have a custom-write procedure (see prop:custom-write).

(print-box) Ñ boolean?
(print-box on?) Ñ void?

on? : any/c

A parameter that controls printing box values; defaults to #t. See §1.4.10 “Printing Boxes”
for more information.

(print-vector-length) Ñ boolean?
(print-vector-length on?) Ñ void?

on? : any/c

A parameter that controls printing vectors; defaults to #f. See §1.4.7 “Printing Vectors” for
more information.

(print-hash-table) Ñ boolean?
(print-hash-table on?) Ñ void?

on? : any/c

A parameter that controls printing hash tables; defaults to #t. See §1.4.9 “Printing Hash
Tables” for more information.

(print-boolean-long-form) Ñ boolean?
(print-boolean-long-form on?) Ñ void?

on? : any/c

A parameter that controls printing of booleans. When the parameter’s value is true, #t and
#f print as #true and #false, otherwise they print as #t and #f. The default is #f.

(print-reader-abbreviations) Ñ boolean?
(print-reader-abbreviations on?) Ñ void?

on? : any/c

A parameter that controls printing of two-element lists that start with quote, 'quasiquote,
'unquote, 'unquote-splicing, 'syntax, 'quasisyntax, 'unsyntax, or 'unsyntax-
splicing; defaults to #f. See §1.4.5 “Printing Pairs and Lists” for more information.

(print-as-expression) Ñ boolean?
(print-as-expression on?) Ñ void?

on? : any/c

A parameter that controls printing in print mode (as opposed to write or display); de-
faults to #t. See §1.4 “The Printer” for more information.

948

(print-syntax-width)
Ñ (or/c +inf.0 0 (and/c exact-integer? (>/c 3)))

(print-syntax-width width) Ñ void?
width : (or/c +inf.0 0 (and/c exact-integer? (>/c 3)))

A parameter that controls printing of syntax objects. Up to width characters are used to
show the datum form of a syntax object within #<syntax...> (after the syntax object’s source
location, if any).

(current-write-relative-directory)
Ñ (or/c (and/c path? complete-path?)

(cons/c (and/c path? complete-path?)
(and/c path? complete-path?))

#f)
(current-write-relative-directory path) Ñ void?

path : (or/c (and/c path-string? complete-path?)
(cons/c (and/c path-string? complete-path?)

(and/c path-string? complete-path?))
#f)

A parameter that is used when writing compiled code (see §1.4.16 “Printing Compiled
Code”) that contains pathname literals, including source-location pathnames for procedure
names. When the parameter’s value is a path , paths that syntactically extend path are con-
verted to relative paths; when the resulting compiled code is read, relative paths are converted
back to complete paths using the current-load-relative-directory parameter (if it is
not #f; otherwise, the path is left relative). When the parameter’s value is (cons rel-
to-path base-path), then paths that syntactically extend base-path are converted as
relative to rel-to-path ; the rel-to-path must extend base-path , in which case 'up
path elements (in the sense of build-path) may be used to make a path relative to rel-
to-path .

(port-write-handler out) Ñ (any/c output-port? . -> . any)
out : output-port?

(port-write-handler out proc) Ñ void?
out : output-port?
proc : (any/c output-port? . -> . any)

(port-display-handler out) Ñ (any/c output-port? . -> . any)
out : output-port?

(port-display-handler out proc) Ñ void?
out : output-port?
proc : (any/c output-port? . -> . any)

949

(port-print-handler out)
Ñ ((any/c output-port?) ((or/c 0 1)) . ->* . any)
out : output-port?

(port-print-handler out proc) Ñ void?
out : output-port?
proc : (any/c output-port? . -> . any)

Gets or sets the port write handler, port display handler, or port print handler for out . This
handler is called to output to the port when write, display, or print (respectively) is
applied to the port. Each handler must accept two arguments: the value to be printed and the
destination port. The handler’s return value is ignored.

A port print handler optionally accepts a third argument, which corresponds to the optional
third argument to print; if a procedure given to port-print-handler does not accept a
third argument, it is wrapped with a procedure that discards the optional third argument.

The default port display and write handlers print Racket expressions with Racket’s built-in
printer (see §1.4 “The Printer”). The default print handler calls the global port print handler
(the value of the global-port-print-handler parameter); the default global port print
handler is the same as the default write handler.

(global-port-print-handler)
Ñ (->* (any/c output-port?) ((or/c 0 1)) any)

(global-port-print-handler proc) Ñ void?
proc : (or/c (->* (any/c output-port?) ((or/c 0 1)) any)

(any/c output-port? . -> . any))

A parameter that determines global port print handler, which is called by the default port
print handler (see port-print-handler) to print values into a port. The default value
uses the built-in printer (see §1.4 “The Printer”) in print mode.

A global port print handler optionally accepts a third argument, which corresponds to the
optional third argument to print. If a procedure given to global-port-print-handler
does not accept a third argument, it is wrapped with a procedure that discards the optional
third argument.

13.6 Pretty Printing

(require racket/pretty) package: base

The bindings documented in this section are provided by the racket/pretty and racket
libraries, but not racket/base.

950

https://pkgs.racket-lang.org/package/base

(pretty-print v
[port
quote-depth
#:newline? newline?]) Ñ void?

v : any/c
port : output-port? = (current-output-port)
quote-depth : (or/c 0 1) = 0
newline? : boolean? = #t

Pretty-prints the value v using the same printed form as the default print mode, but with
newlines and whitespace inserted to avoid lines longer than (pretty-print-columns),
as controlled by (pretty-print-current-style-table). The printed form ends in a
newline by default, unless the newline? argument is supplied with false or the pretty-
print-columns parameter is set to 'infinity. When port has line counting enabled (see
§13.1.4 “Counting Positions, Lines, and Columns”), then printing is sensitive to the column
when printing starts—both for determining an initial line break and indenting subsequent
lines.

In addition to the parameters defined in this section, pretty-print conforms to the print-
graph, print-struct, print-hash-table, print-vector-length, print-box, and
print-as-expression parameters.

The pretty printer detects structures that have the prop:custom-write property and calls
the corresponding custom-write procedure. The custom-write procedure can check the pa-
rameter pretty-printing to cooperate with the pretty-printer. Recursive printing to the
port automatically uses pretty printing, but if the structure has multiple recursively printed
sub-expressions, a custom-write procedure may need to cooperate more to insert explicit
newlines. Use port-next-location to determine the current output column, use pretty-
print-columns to determine the target printing width, and use pretty-print-newline
to insert a newline (so that the function in the pretty-print-print-line parameter can
be called appropriately). Use make-tentative-pretty-print-output-port to obtain a
port for tentative recursive prints (e.g., to check the length of the output).

If the newline? argument is omitted or supplied with true, the pretty-print-print-
line callback is called with false as the first argument to print the last newline after the
printed value. If it is supplied with false, the pretty-print-print-line callback is not
called after the printed value.

Changed in version 6.6.0.3 of package base: Added newline? argument.

(pretty-write v [port #:newline? newline?]) Ñ void?
v : any/c
port : output-port? = (current-output-port)
newline? : boolean? = #t

Same as pretty-print, but v is printed like write instead of like print.

951

Changed in version 6.6.0.3 of package base: Added newline? argument.

(pretty-display v [port #:newline? newline?]) Ñ void?
v : any/c
port : output-port? = (current-output-port)
newline? : boolean? = #t

Same as pretty-print, but v is printed like display instead of like print.

Changed in version 6.6.0.3 of package base: Added newline? argument.

(pretty-format v [columns #:mode mode]) Ñ string?
v : any/c
columns : exact-nonnegative-integer? = (pretty-print-columns)
mode : (or/c 'print 'write 'display) = 'print

Like pretty-print, except that it returns a string containing the pretty-printed value, rather
than sending the output to a port.

The optional argument columns argument is used to parameterize pretty-print-
columns.

The keyword argument mode controls whether printing is done like either pretty-print
(the default), pretty-write or pretty-display.

Changed in version 6.3 of package base: Added a mode argument.

(pretty-print-handler v) Ñ void?
v : any/c

Pretty-prints v if v is not #<void>, or prints nothing if v is #<void>. Pass this procedure
to current-print to install the pretty printer into the REPL run by read-eval-print-
loop.

13.6.1 Basic Pretty-Print Options

(pretty-print-columns)
Ñ (or/c exact-positive-integer? 'infinity)

(pretty-print-columns width) Ñ void?
width : (or/c exact-positive-integer? 'infinity)

A parameter that determines the default width for pretty printing.

If the display width is 'infinity, then pretty-printed output is never broken into lines, and
a newline is not added to the end of the output.

952

(pretty-print-depth) Ñ (or/c exact-nonnegative-integer? #f)
(pretty-print-depth depth) Ñ void?

depth : (or/c exact-nonnegative-integer? #f)

Parameter that controls the default depth for recursive pretty printing. Printing to depth
means that elements nested more deeply than depth are replaced with “...”; in particular, a
depth of 0 indicates that only simple values are printed. A depth of #f (the default) allows
printing to arbitrary depths.

(pretty-print-exact-as-decimal) Ñ boolean?
(pretty-print-exact-as-decimal as-decimal?) Ñ void?

as-decimal? : any/c

A parameter that determines how exact non-integers are printed. If the parameter’s value is
#t, then an exact non-integer with a decimal representation is printed as a decimal number
instead of a fraction. The initial value is #f.

(pretty-print-.-symbol-without-bars) Ñ boolean?
(pretty-print-.-symbol-without-bars on?) Ñ void?

on? : any/c

A parameter that controls the printing of the symbol whose print name is just a period. If set
to a true value, then such a symbol is printed as only the period. If set to a false value, it is
printed as a period with vertical bars surrounding it.

(pretty-print-show-inexactness) Ñ boolean?
(pretty-print-show-inexactness show?) Ñ void?

show? : any/c

A parameter that determines how inexact numbers are printed. If the parameter’s value is
#t, then inexact numbers are always printed with a leading #i. The initial value is #f.

13.6.2 Per-Symbol Special Printing

(pretty-print-abbreviate-read-macros) Ñ boolean?
(pretty-print-abbreviate-read-macros abbrev?) Ñ void?

abbrev? : any/c

A parameter that controls whether or not quote, unquote, unquote-splicing, etc., are
abbreviated with ', ,, ,@, etc. By default, the abbreviations are enabled.

See also pretty-print-remap-stylable.

953

(pretty-print-style-table? v) Ñ boolean?
v : any/c

Returns #t if v is a style table for use with pretty-print-current-style-table, #f
otherwise.

(pretty-print-current-style-table) Ñ pretty-print-style-table?
(pretty-print-current-style-table style-table) Ñ void?

style-table : pretty-print-style-table?

A parameter that holds a table of style mappings. See pretty-print-extend-style-
table.

(pretty-print-extend-style-table style-table
symbol-list
like-symbol-list)

Ñ pretty-print-style-table?
style-table : pretty-print-style-table?
symbol-list : (listof symbol?)
like-symbol-list : (listof symbol?)

Creates a new style table by extending an existing style-table , so that the style mapping
for each symbol of like-symbol-list in the original table is used for the corresponding
symbol of symbol-list in the new table. The symbol-list and like-symbol-list
lists must have the same length. The style-table argument can be #f, in which case the
default mappings are used from the original table (see below).

The style mapping for a symbol controls the way that whitespace is inserted when printing
a list that starts with the symbol. In the absence of any mapping, when a list is broken
across multiple lines, each element of the list is printed on its own line, each with the same
indentation.

The default style mapping includes mappings for the following symbols, so that the output
follows popular code-formatting rules:

'lambda 'case-lambda
'define 'define-macro 'define-syntax
'let 'letrec 'let*
'let-syntax 'letrec-syntax
'let-values 'letrec-values 'let*-values
'let-syntaxes 'letrec-syntaxes
'begin 'begin0 'do
'if 'set! 'set!-values
'unless 'when
'cond 'case 'and 'or

954

'module
'syntax-rules 'syntax-case 'letrec-syntaxes+values
'import 'export 'link
'require 'require-for-syntax 'require-for-template 'provide
'public 'private 'override 'rename 'inherit 'field 'init
'shared 'send 'class 'instantiate 'make-object

(pretty-print-remap-stylable)
Ñ (any/c . -> . (or/c symbol? #f))

(pretty-print-remap-stylable proc) Ñ void?
proc : (any/c . -> . (or/c symbol? #f))

A parameter that controls remapping for styles and for the determination of the reader short-
hands.

This procedure is called with each sub-expression that appears as the first element in a se-
quence. If it returns a symbol, the style table is used, as if that symbol were at the head of the
sequence. If it returns #f, the style table is treated normally. Similarly, when determining
whether to abbreviate reader macros, this parameter is consulted.

13.6.3 Line-Output Hook

(pretty-print-newline port width) Ñ void?
port : output-port?
width : exact-nonnegative-integer?

Calls the procedure associated with the pretty-print-print-line parameter to print a
newline to port , if port is the output port that is redirected to the original output port for
printing, otherwise a plain newline is printed to port . The width argument should be the
target column width, typically obtained from pretty-print-columns.

(pretty-print-print-line)
Ñ ((or/c exact-nonnegative-integer? #f)

output-port?
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'infinity)
. -> .
exact-nonnegative-integer?)

(pretty-print-print-line proc) Ñ void?
proc : ((or/c exact-nonnegative-integer? #f)

output-port?
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'infinity)
. -> .
exact-nonnegative-integer?)

955

A parameter that determines a procedure for printing the newline separator between lines of
a pretty-printed value. The procedure is called with four arguments: a new line number, an
output port, the old line’s length, and the number of destination columns. The return value
from proc is the number of extra characters it printed at the beginning of the new line.

The proc procedure is called before any characters are printed with 0 as the line number
and 0 as the old line length. Whenever the pretty-printer starts a new line, proc is called
with the new line’s number (where the first new line is numbered 1) and the just-finished
line’s length. The destination-columns argument to proc is always the total width of the
destination printing area, or 'infinity if pretty-printed values are not broken into lines.

If the #:newline? argument was omitted or supplied with a true value, proc is also called
after the last character of the value has been printed, with #f as the line number and with the
length of the last line.

The default proc procedure prints a newline whenever the line number is not 0 and the
column count is not 'infinity, always returning 0. A custom proc procedure can be
used to print extra text before each line of pretty-printed output; the number of characters
printed before each line should be returned by proc so that the next line break can be chosen
correctly.

The destination port supplied to proc is generally not the port supplied to pretty-print or
pretty-display (or the current output port), but output to this port is ultimately redirected
to the port supplied to pretty-print or pretty-display.

13.6.4 Value Output Hook

(pretty-print-size-hook)
Ñ (any/c boolean? output-port?

. -> .
(or/c #f exact-nonnegative-integer?))

(pretty-print-size-hook proc) Ñ void?
proc : (any/c boolean? output-port?

. -> .
(or/c #f exact-nonnegative-integer?))

A parameter that determines a sizing hook for pretty-printing.

The sizing hook is applied to each value to be printed. If the hook returns #f, then printing is
handled internally by the pretty-printer. Otherwise, the value should be an integer specifying
the length of the printed value in characters; the print hook will be called to actually print
the value (see pretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The
second argument is a boolean: #t for printing like display and #f for printing like write.

956

The third argument is the destination port; the port is the one supplied to pretty-print or
pretty-display (or the current output port). The sizing hook may be applied to a single
value multiple times during pretty-printing.

(pretty-print-print-hook)
Ñ (any/c boolean? output-port? . -> . void?)

(pretty-print-print-hook proc) Ñ void?
proc : (any/c boolean? output-port? . -> . void?)

A parameter that determines a print hook for pretty-printing. The print-hook procedure
is applied to a value for printing when the sizing hook (see pretty-print-size-hook)
returns an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second
argument is a boolean: #t for printing like display and #f for printing like write. The
third argument is the destination port; this port is generally not the port supplied to pretty-
print or pretty-display (or the current output port), but output to this port is ultimately
redirected to the port supplied to pretty-print or pretty-display.

(pretty-print-pre-print-hook)
Ñ (any/c output-port? . -> . void)

(pretty-print-pre-print-hook proc) Ñ void?
proc : (any/c output-port? . -> . void)

A parameter that determines a hook procedure to be called just before an object is printed.
The hook receives two arguments: the object and the output port. The port is the one supplied
to pretty-print or pretty-display (or the current output port).

(pretty-print-post-print-hook)
Ñ (any/c output-port? . -> . void)

(pretty-print-post-print-hook proc) Ñ void?
proc : (any/c output-port? . -> . void)

A parameter that determines a hook procedure to be called just after an object is printed. The
hook receives two arguments: the object and the output port. The port is the one supplied to
pretty-print or pretty-display (or the current output port).

13.6.5 Additional Custom-Output Support

(pretty-printing) Ñ boolean?
(pretty-printing on?) Ñ void?

on? : any/c

A parameter that is set to #t when the pretty printer calls a custom-write procedure (see
prop:custom-write) for output in a mode that supports line breaks. When pretty printer

957

calls a custom-write procedure merely to detect cycles or to try to print on a single line, it
sets this parameter to #f.

(make-tentative-pretty-print-output-port out
width
overflow-thunk)

Ñ output-port?
out : output-port?
width : exact-nonnegative-integer?
overflow-thunk : (-> any)

Produces an output port that is suitable for recursive pretty printing without actually pro-
ducing output. Use such a port to tentatively print when proper output depends on the size
of recursive prints. After printing, determine the size of the tentative output using file-
position.

The out argument should be a pretty-printing port, such as the one supplied to a custom-
write procedure when pretty-printing is set to true, or another tentative output port. The
width argument should be a target column width, usually obtained from pretty-print-
columns, possibly decremented to leave room for a terminator. The overflow-thunk
procedure is called if more than width items are printed to the port or if a newline is printed
to the port via pretty-print-newline; it can escape from the recursive print through a
continuation as a shortcut, but overflow-thunk can also return, in which case it is called
every time afterward that additional output is written to the port.

After tentative printing, either accept the result with tentative-pretty-print-port-
transfer or reject it with tentative-pretty-print-port-cancel. Failure to accept
or cancel properly interferes with graph-structure printing, calls to hook procedures, etc.
Explicitly cancel the tentative print even when overflow-thunk escapes from a recursive
print.

(tentative-pretty-print-port-transfer tentative-out
orig-out) Ñ void?

tentative-out : output-port?
orig-out : output-port?

Causes the data written to tentative-out to be transferred as if written to orig-out .
The tentative-out argument should be a port produced by make-tentative-pretty-
print-output-port, and orig-out should be either a pretty-printing port (provided to a
custom-write procedure) or another tentative output port.

(tentative-pretty-print-port-cancel tentative-out) Ñ void?
tentative-out : output-port?

Cancels the content of tentative-out , which was produced by make-tentative-
pretty-print-output-port. The main effect of canceling is that graph-reference def-

958

initions are undone, so that a future print of a graph-referenced object includes the defining
#xny=.

13.7 Reader Extension

Racket’s reader can be extended in three ways: through a reader-macro procedure in a
readtable (see §13.7.1 “Readtables”), through a #reader form (see §1.3.18 “Reading via
an Extension”), or through a custom-port byte reader that returns a “special” result proce-
dure (see §13.1.9 “Custom Ports”). All three kinds of reader extension procedures accept
similar arguments, and their results are treated in the same way by read and read-syntax
(or, more precisely, by the default read handler; see port-read-handler).

13.7.1 Readtables

The dispatch table in §1.3.1 “Delimiters and Dispatch” corresponds to the default readtable.
By creating a new readtable and installing it via the current-readtable parameter, the
reader’s behavior can be extended.

A readtable is consulted at specific times by the reader:

• when looking for the start of a datum;

• when determining how to parse a datum that starts with #;

• when looking for a delimiter to terminate a symbol or number;

• when looking for an opener (such as (), closer (such as)), or . after the first character
parsed as a sequence for a pair, list, vector, or hash table; or

• when looking for an opener after #xny in a vector of specified length xny.

The readtable is ignored at other times. In particular, after parsing a character that is mapped
to the default behavior of ;, the readtable is ignored until the comment’s terminating newline
is discovered. Similarly, the readtable does not affect string parsing until a closing double-
quote is found. Meanwhile, if a character is mapped to the default behavior of (, then it
starts sequence that is closed by any character that is mapped to a closing parenthesis). An
apparent exception is that the default parsing of | quotes a symbol until a matching character
is found, but the parser is simply using the character that started the quote; it does not consult
the readtable.

For many contexts, #f identifies the default readtable. In particular, #f is the initial value
for the current-readtable parameter, which causes the reader to behave as described in
§1.3 “The Reader”.

959

(readtable? v) Ñ boolean?
v : any/c

Returns #t if v is a readtable, #f otherwise.

(make-readtable readtable
key
mode
action ...+) Ñ readtable?

readtable : (or/c readtable? #f)
key : (or/c char? #f)
mode : (or/c (or/c 'terminating-macro

'non-terminating-macro
'dispatch-macro)

char?)
action : (or/c procedure?

readtable?)

Creates a new readtable that is like readtable (which can be #f to indicate the default
readtable), except that the reader’s behavior is modified for each key according to the given
mode and action . The ...+ for make-readtable applies to all three of key , mode , and
action ; in other words, the total number of arguments to make-readtable must be 1
modulo 3.

The possible combinations for key , mode , and action are as follows:

• char 'terminating-macro proc — causes char to be parsed as a delimiter, and
an unquoted/uncommented char in the input string triggers a call to the reader macro
proc ; the activity of proc is described further below. Conceptually, characters like
;, (, and) are mapped to terminating reader macros in the default readtable.

• char 'non-terminating-macro proc — like the 'terminating-macro variant,
but char is not treated as a delimiter, so it can be used in the middle of an identi-
fier or number. Conceptually, # is mapped to a non-terminating macro in the default
readtable.

• char 'dispatch-macro proc — like the 'non-terminating-macro variant, but
for char only when it follows a # (or, more precisely, when the character follows one
that has been mapped to the behavior of # in the default readtable).

• char like-char readtable — causes char to be parsed in the same way that
like-char is parsed in readtable , where readtable can be #f to indicate the
default readtable. Mapping a character to the same actions as | in the default reader
means that the character starts quoting for symbols, and the same character terminates
the quote; in contrast, mapping a character to the same action as a " means that the

960

character starts a string, but the string is still terminated with a closing ". Finally, map-
ping a character to an action in the default readtable means that the character’s behav-
ior is sensitive to parameters that affect the original character; for example, mapping a
character to the same action as a curly brace { in the default readtable means that the
character is disallowed when the read-curly-brace-as-paren parameter is set to
#f.

• #f 'non-terminating-macro proc — replaces the macro used to parse characters
with no specific mapping: i.e., the characters (other than # or |) that can start a symbol
or number with the default readtable.

If multiple 'dispatch-macro mappings are provided for a single char , all but the last
one are ignored. Similarly, if multiple non-'dispatch-macro mappings are provided for a
single char , all but the last one are ignored.

A reader macro proc must accept six arguments, and it can optionally accept two arguments.
The first two arguments are always the character that triggered the reader macro and the
input port for reading. When the reader macro is triggered by read-syntax (or read-
syntax/recursive), the procedure is passed four additional arguments that represent a
source location for already-consumed character(s): the source name, a line number or #f, a
column number or #f, and a position or #f. When the reader macro is triggered by read (or
read/recursive), the procedure is passed only two arguments if it accepts two arguments,
otherwise it is passed six arguments where the third is always #f. See §13.7.2 “Reader-
Extension Procedures” for information on the procedure’s results.

A reader macro normally reads characters from the given input port to produce a value to
be used as the “reader macro-expansion” of the consumed characters. The reader macro
might produce a special-comment value (see §13.7.3 “Special Comments”) to cause the
consumed character to be treated as whitespace, and it might use read/recursive or read-
syntax/recursive.

(readtable-mapping readtable char)

Ñ

(or/c char?
(or/c 'terminating-macro

'non-terminating-macro))
(or/c #f procedure?)
(or/c #f procedure?)

readtable : readtable?
char : char?

Produces information about the mappings in readtable for char . The result is three val-
ues:

• either a character (mapping to the same behavior as the character in the default
readtable), 'terminating-macro, or 'non-terminating-macro; this result re-
ports the main (i.e., non-'dispatch-macro) mapping for char . When the result

961

is a character, then char is mapped to the same behavior as the returned character in
the default readtable.

• either #f or a reader-macro procedure; the result is a procedure when the first result is
'terminating-macro or 'non-terminating-macro.

• either #f or a reader-macro procedure; the result is a procedure when the character
has a 'dispatch-macro mapping in readtable to override the default dispatch
behavior.

Note that reader-macro procedures for the default readtable are not directly accessible. To
invoke default behaviors, use read/recursive or read-syntax/recursive with a char-
acter and the #f readtable.

Examples:

; Provides raise-read-error and raise-read-eof-error
> (require syntax/readerr)
> (define (skip-whitespace port)

; Skips whitespace characters, sensitive to the current
; readtable's definition of whitespace
(let ([ch (peek-char port)])
(unless (eof-object? ch)
; Consult current readtable:
(let-values ([(like-ch/sym proc dispatch-proc)

(readtable-mapping (current-readtable) ch)])
; If like-ch/sym is whitespace, then ch is whitespace
(when (and (char? like-ch/sym)

(char-whitespace? like-ch/sym))
(read-char port)
(skip-whitespace port))))))

> (define (skip-comments read-one port src)
; Recursive read, but skip comments and detect EOF
(let loop ()
(let ([v (read-one)])
(cond
[(special-comment? v) (loop)]
[(eof-object? v)
(let-values ([(l c p) (port-next-location port)])
(raise-read-eof-error
"unexpected EOF in tuple" src l c p 1))]

[else v]))))
> (define (parse port read-one src)

; First, check for empty tuple
(skip-whitespace port)
(if (eq? #\> (peek-char port))

null

962

(let ([elem (read-one)])
(if (special-comment? elem)

; Found a comment, so look for > again
(parse port read-one src)
; Non-empty tuple:
(cons elem

(parse-nonempty port read-one src))))))
> (define (parse-nonempty port read-one src)

; Need a comma or closer
(skip-whitespace port)
(case (peek-char port)
[(#\>) (read-char port)
; Done
null]
[(#\,) (read-char port)
; Read next element and recur
(cons (skip-comments read-one port src)

(parse-nonempty port read-one src))]
[else
; Either a comment or an error; grab location (in case
; of error) and read recursively to detect comments
(let-values ([(l c p) (port-next-location port)]

[(v) (read-one)])
(cond
[(special-comment? v)
; It was a comment, so try again
(parse-nonempty port read-one src)]
[else
; Wasn't a comment, comma, or closer; error
((if (eof-object? v)

raise-read-eof-error
raise-read-error)

"expected `,` or `>`" src l c p 1)]))]))
> (define (make-delims-table)

; Table to use for recursive reads to disallow delimiters
; (except those in sub-expressions)
(letrec ([misplaced-delimiter

(case-lambda
[(ch port) (misplaced-delimiter ch port #f #f #f #f)]
[(ch port src line col pos)
(raise-read-error
(format "misplaced `„a` in tuple" ch)
src line col pos 1)])])

(make-readtable (current-readtable)
#\, 'terminating-macro misplaced-delimiter
#\> 'terminating-macro misplaced-

963

delimiter)))
> (define (wrap l)

`(make-tuple (list ,@l)))
> (define parse-open-tuple

(case-lambda
[(ch port)
; ‘read‘ mode
(wrap (parse port

(lambda ()
(read/recursive port #f

(make-delims-table)))
(object-name port)))]

[(ch port src line col pos)
; ‘read-syntax‘ mode
(datum->syntax
#f
(wrap (parse port

(lambda ()
(read-syntax/recursive src port #f

(make-delims-table)))
src))

(let-values ([(l c p) (port-next-location port)])
(list src line col pos (and pos (- p pos)))))]))

> (define tuple-readtable
(make-readtable #f #\< 'terminating-macro parse-open-tuple))

> (parameterize ([current-readtable tuple-readtable])
(read (open-input-string "<1 , 2 , \"a\">")))

'(make-tuple (list 1 2 "a"))
> (parameterize ([current-readtable tuple-readtable])

(read (open-input-string
"< #||# 1 #||# , #||# 2 #||# , #||# \"a\" #||# >")))

'(make-tuple (list 1 2 "a"))
> (define tuple-readtable+

(make-readtable tuple-readtable
#* 'terminating-macro (lambda a

(make-special-
comment #f))

#_ #\space #f))
> (parameterize ([current-readtable tuple-readtable+])

(read (open-input-string "< * 1 __,__ 2 __,__ * \"a\" * >")))
'(make-tuple (list 1 2 "a"))

964

13.7.2 Reader-Extension Procedures

Calls to reader extension procedures can be triggered through read, read/recursive, or
read-syntax. In addition, a special-read procedure can be triggered by calls to read-
char-or-special, or by the context of read-bytes-avail!, peek-bytes-avail!*,
read-bytes-avail!, and peek-bytes-avail!*.

Optional arities for reader-macro and special-result procedures allow them to distinguish
reads via read, etc., from reads via read-syntax, etc. (where the source value is #f and no
other location information is available).

When a reader-extension procedure is called in syntax-reading mode (via read-syntax,
etc.), it should generally return a syntax object that has no lexical context (e.g., a syntax
object created using datum->syntax with #f as the first argument and with the given loca-
tion information as the third argument). Another possible result is a special-comment value
(see §13.7.3 “Special Comments”). If the procedure’s result is not a syntax object and not a
special-comment value, it is converted to one using datum->syntax.

When a reader-extension procedure is called in non-syntax-reading modes, it should gener-
ally not return a syntax object. If a syntax object is returned, it is converted to a plain value
using syntax->datum.

In either context, when the result from a reader-extension procedure is a special-comment
value (see §13.7.3 “Special Comments”), then read, read-syntax, etc. treat the value as a
delimiting comment and otherwise ignore it.

Also, in either context, the result may be copied to prevent mutation to vectors or boxes be-
fore the read result is completed, and to support the construction of graphs with cycles. Mu-
table boxes, vectors, and prefab structures are copied, along with any pairs, boxes, vectors,
prefab structures that lead to such mutable values, to placeholders produced by a recursive
read (see read/recursive), or to references of a shared value. Graph structure (including
cycles) is preserved in the copy.

13.7.3 Special Comments

(make-special-comment v) Ñ special-comment?
v : any/c

Creates a special-comment value that encapsulates v . The read, read-syntax, etc., proce-
dures treat values constructed with make-special-comment as delimiting whitespace when
returned by a reader-extension procedure (see §13.7.2 “Reader-Extension Procedures”).

(special-comment? v) Ñ boolean?
v : any/c

965

Returns #t if v is the result of make-special-comment, #f otherwise.

(special-comment-value sc) Ñ any
sc : special-comment?

Returns the value encapsulated by the special-comment value sc . This value is never used
directly by a reader, but it might be used by the context of a read-char-or-special, etc.,
call that detects a special comment.

13.8 Printer Extension

gen:custom-write : any/c

A generic interface (see §5.4 “Generic Interfaces”) that supplies a method, write-proc
used by the default printer to display, write, or print instances of the structure type.

A write-proc method takes three arguments: the structure to be printed, the target port,
and an argument that is #t for write mode, #f for display mode, or 0 or 1 indicating the
current quoting depth for print mode. The procedure should print the value to the given
port using write, display, print, fprintf, write-special, etc.

The port write handler, port display handler, and print handler are specially configured for
a port given to a custom-write procedure. Printing to the port through display, write, or
print prints a value recursively with sharing annotations. To avoid a recursive print (i.e., to
print without regard to sharing with a value currently being printed), print instead to a string
or pipe and transfer the result to the target port using write-string or write-special.
To print recursively to a port other than the one given to the custom-write procedure, copy
the given port’s write handler, display handler, and print handler to the other port.

The port given to a custom-write handler is not necessarily the actual target port. In partic-
ular, to detect cycles and sharing, the printer invokes a custom-write procedure with a port
that records recursive prints, and does not retain any other output.

Recursive print operations may trigger an escape from the call to the custom-write procedure
(e.g., for pretty-printing where a tentative print attempt overflows the line, or for printing
error output of a limited width).

The following example definition of a tuple type includes custom-write procedures that
print the tuple’s list content using angle brackets in write and print mode and no brackets
in display mode. Elements of the tuple are printed recursively, so that graph and cycle
structure can be represented.

Examples:

(define (tuple-print tuple port mode)

966

(when mode (write-string "<" port))
(let ([l (tuple-ref tuple)]

[recur (case mode
[(#t) write]
[(#f) display]
[else (lambda (p port) (print p port mode))])])

(unless (zero? (vector-length l))
(recur (vector-ref l 0) port)
(for-each (lambda (e)

(write-string ", " port)
(recur e port))

(cdr (vector->list l)))))
(when mode (write-string ">" port)))

(struct tuple (ref)
#:methods gen:custom-write
[(define write-proc tuple-print)])

> (display (tuple #(1 2 "a")))
1, 2, a
> (print (tuple #(1 2 "a")))
<1, 2, "a">
> (let ([t (tuple (vector 1 2 "a"))])

(vector-set! (tuple-ref t) 0 t)
(write t))

#0=<#0#, 2, "a">

This function is often used in conjunction with make-constructor-style-printer.

Examples:

(require racket/struct)

(struct point (x y)
#:methods gen:custom-write
[(define write-proc

(make-constructor-style-printer
(lambda (obj) 'point)
(lambda (obj) (list (point-x obj) (point-y obj)))))])

> (print (point 1 2))
(point 1 2)
> (write (point 1 2))
#<point: 1 2>

prop:custom-write : struct-type-property?

967

A deprecated structure type property (see §5.3 “Structure Type Properties”) that supplies
a procedure that corresponds to gen:custom-write’s write-proc. Use gen:custom-
write, instead.

(custom-write? v) Ñ boolean?
v : any/c

Returns #t if v has the prop:custom-write property, #f otherwise.

(custom-write-accessor v)
Ñ (custom-write? output-port? (or/c #t #f 0 1) . -> . any)
v : custom-write?

Returns the custom-write procedure associated with v .

prop:custom-print-quotable : struct-type-property?
custom-print-quotable? : struct-type-property?
custom-print-quotable-accessor : struct-type-property?

A property and associated predicate and accessor. The property value is one of 'self,
'never, 'maybe, or 'always. When a structure has this property in addition to a
prop:custom-write property value, then the property value affects printing in print
mode; see §1.4 “The Printer”. When a value does not have the prop:custom-print-
quotable, it is equivalent to having the 'self property value, which is suitable both for
self-quoting forms and printed forms that are unreadable.

13.9 Serialization

(require racket/serialize) package: base

The bindings documented in this section are provided by the racket/serialize library,
not racket/base or racket.

(serializable? v) Ñ boolean?
v : any/c

Returns #t if v appears to be serializable, without checking the content of compound values,
and #f otherwise. See serialize for an enumeration of serializable values.

(serialize
v

[#:relative-directory relative-to
#:deserialize-relative-directory deserialize-relative-to])

Ñ any

968

https://pkgs.racket-lang.org/package/base

v : serializable?
relative-to : (or/c (and/c path? complete-path?)

(cons/c (and/c path? complete-path?)
(and/c path? complete-path?))

#f)

= #f

deserialize-relative-to : (or/c (and/c path? complete-path?)
(cons/c (and/c path? complete-path?)

(and/c path? complete-path?))
#f)

= relative-to

Returns a value that encapsulates the value v . This value includes only readable values, so
it can be written to a stream with write or s-exp->fasl, later read from a stream using
read or fasl->s-exp, and then converted to a value like the original using deserialize.
Serialization followed by deserialization produces a value with the same graph structure and
mutability as the original value, but the serialized value is a plain tree (i.e., no sharing).

The following kinds of values are serializable:

• structures created through serializable-struct or serializable-
struct/versions, or more generally structures with the prop:serializable
property (see prop:serializable for more information);

• prefab structures;

• instances of classes defined with define-serializable-class or define-
serializable-class*;

• booleans, numbers, characters, interned symbols, unreadable symbols, keywords,
strings, byte strings, paths (for a specific convention), regexp values, #<void>, and
the empty list;

• pairs, mutable pairs, vectors, flvectors, fxvectors, boxes, hash tables, and sets;

• date, date*, arity-at-least and srcloc structures; and

• module path index values.

Serialization succeeds for a compound value, such as a pair, only if all content of the
value is serializable. If a value given to serialize is not completely serializable, the
exn:fail:contract exception is raised.

If v contains a cycle (i.e., a collection of objects that are all reachable from each other),
then v can be serialized only if the cycle includes a mutable value, where a prefab structure
counts as mutable only if all of its fields are mutable.

969

If relative-to is not #f, then paths to serialize that extend the path in relative-to are
recorded in relative and platform-independent form. The possible values and treatment of
relative-to are the same as for current-write-relative-directory.

If deserialize-relative-to is not #f, then any paths to deserializers as extracted
via prop:serializable are recorded in relative form. Note that relative-to and
deserialize-relative-to are independent, but deserialize-relative-to defaults
to relative-to . The serialize

and deserialize
functions currently
do not handle
certain cyclic values
that read and
write can handle,
such as
'#0=(#0#).

See deserialize for information on the format of serialized data.

Changed in version 6.5.0.4 of package base: Added keywords and regexp values as serializable.
Changed in version 7.0.0.6: Added the #:relative-directory and #:deserialize-relative-directory
arguments.

(deserialize v) Ñ any
v : any/c

Given a value v that was produced by serialize, produces a value like the one given to
serialize, including the same graph structure and mutability.

A serialized representation v is a list of six or seven elements:

• An optional list '(1), '(2), '(3), or '(4) that represents the version of the serial-
ization format. If the first element of a representation is not a list, then the version
is 0. Version 1 adds support for mutable pairs, version 2 adds support for unreadable
symbols, version 3 adds support for date* structures, and version 4 adds support for
paths that are meant to be relative to the deserialization directory.

• A non-negative exact integer s-count that represents the number of distinct structure
types represented in the serialized data.

• A list s-types of length s-count , where each element represents a structure type.
Each structure type is encoded as a pair. The car of the pair is #f for a struc-
ture whose deserialization information is defined at the top level, otherwise it is a
quoted module path, a byte string (to be converted into a platform-specific path us-
ing bytes->path) for a module that exports the structure’s deserialization infor-
mation, or a relative path element list for a module to be resolved with respect to
current-load-relative-directory or (as a fallback) current-directory; the
list-of-relative-elements form is produced by serialize when the #:deserialize-
relative-directory argument is not #f. The cdr of the pair is the name of a
binding (at the top level or exported from a module) for deserialization information,
either a symbol or a string representing an unreadable symbol. These two are used
with either namespace-variable-binding or dynamic-require to obtain dese-
rialization information. See make-deserialize-info for more information on the
binding’s value. See also deserialize-module-guard.

970

• A non-negative exact integer, g-count that represents the number of graph points
contained in the following list.

• A list graph of length g-count , where each element represents a serialized value to
be referenced during the construction of other serialized values. Each list element is
either a box or not:

– A box represents a value that is part of a cycle, and for deserialization, it must
be allocated with #f for each of its fields. The content of the box indicates the
shape of the value:

* a non-negative exact integer i for an instance of a structure type that is
represented by the i th element of the s-types list;

* 'c for a pair, which fails on deserialization (since pairs are immutable; this
case does not appear in output generated by serialize);

* 'm for a mutable pair;

* 'b for a box;

* a pair whose car is 'v and whose cdr is a non-negative exact integer s for
a vector of length s ;

* a list whose first element is 'h and whose remaining elements are symbols
that determine the hash-table type:

· 'equal — (make-hash)
· 'equal 'weak — (make-weak-hash)
· 'weak — (make-weak-hasheq)
· no symbols — (make-hasheq)

* 'date* for a date* structure, which fails on deserialization (since dates are
immutable; this case does not appear in output generated by serialize);

* 'date for a date structure, which fails on deserialization (since dates are
immutable; this case does not appear in output generated by serialize);

* 'arity-at-least for an arity-at-least structure, which fails on de-
serialization (since arity-at-least are immutable; this case does not appear in
output generated by serialize); or

* 'mpi for a module path index, which fails on deserialization (since a module
path index is immutable; this case does not appear in output generated by
serialize).

* 'srcloc for a srcloc structure, which fails on deserialization (since sr-
clocs are immutable; this case does not appear in output generated by se-
rialize).

The #f-filled value will be updated with content specified by the fifth element of
the serialization list v .

– A non-box represents a serial value to be constructed immediately, and it is one
of the following:

* a boolean, number, character, interned symbol, or empty list, representing
itself.

971

* a string, representing an immutable string.

* a byte string, representing an immutable byte string.

* a pair whose car is '? and whose cdr is a non-negative exact integer i ; it
represents the value constructed for the i th element of graph , where i is
less than the position of this element within graph .

* a pair whose car is a number i ; it represents an instance of a structure type
that is described by the i th element of the s-types list. The cdr of the
pair is a list of serials representing arguments to be provided to the structure
type’s deserializer.

* a pair whose car is 'q and whose cdr is an immutable value; it represents
the quoted value.

* a pair whose car is 'f; it represents an instance of a prefab structure type.
The cadr of the pair is a prefab structure type key, and the cddr is a list of
serials representing the field values.

* a pair whose car is 'void, representing #<void>.

* a pair whose car is 'su and whose cdr is a character string; it represents
an unreadable symbol.

* a pair whose car is 'u and whose cdr is either a byte string or character
string; it represents a mutable byte or character string.

* a pair whose car is 'p and whose cdr is a byte string; it represents a path
using the serializer’s path convention (deprecated in favor of 'p+).

* a pair whose car is 'p+, whose cadr is a byte string, and whose cddr is
one of the possible symbol results of system-path-convention-type; it
represents a path using the specified convention.

* a pair whose car is 'p* and whose cdr is a list of byte strings represents
a relative path; it will be converted by deserialization based on current-
load-relative-directory, falling back to current-directory.

* a pair whose car is 'c and whose cdr is a pair of serials; it represents an
immutable pair.

* a pair whose car is 'c! and whose cdr is a pair of serials; it represents a
pair (but formerly represented a mutable pair), and does not appear in output
generated by serialize.

* a pair whose car is 'm and whose cdr is a pair of serials; it represents a
mutable pair.

* a pair whose car is 'v and whose cdr is a list of serials; it represents an
immutable vector.

* a pair whose car is 'v! and whose cdr is a list of serials; it represents a
mutable vector.

* a pair whose car is 'vl and whose cdr is a list of serials; it represents a
flvector.

* a pair whose car is 'vx and whose cdr is a list of serials; it represents a
fxvector.

972

* a pair whose car is 'b and whose cdr is a serial; it represents an immutable
box.

* a pair whose car is 'b! and whose cdr is a serial; it represents a mutable
box.

* a pair whose car is 'h, whose cadr is either '! or '- (mutable or
immutable, respectively), whose caddr is a list of symbols (containing
'equal, 'weak, both, or neither) that determines the hash table type, and
whose cdddr is a list of pairs, where the car of each pair is a serial for a
hash-table key and the cdr is a serial for the corresponding value.

* a pair whose car is 'date* and whose cdr is a list of serials; it represents
a date* structure.

* a pair whose car is 'date and whose cdr is a list of serials; it represents a
date structure.

* a pair whose car is 'arity-at-least and whose cdr is a serial; it repre-
sents an arity-at-least structure.

* a pair whose car is 'mpi and whose cdr is a pair; it represents a module
path index that joins the paired values.

* a pair whose car is 'srcloc and whose cdr is a list of serials; it represents
a srcloc structure.

• A list of pairs, where the car of each pair is a non-negative exact integer i and the
cdr is a serial (as defined in the previous bullet). Each element represents an update
to an i th element of graph that was specified as a box, and the serial describes how
to construct a new value with the same shape as specified by the box. The content of
this new value must be transferred into the value created for the box in graph .

• A final serial (as defined in the two bullets back) representing the result of deseri-
alize.

The result of deserialize shares no mutable values with the argument to deserialize.

If a value provided to serialize is a simple tree (i.e., no sharing), then the fourth and fifth
elements in the serialized representation will be empty.

(serialized=? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Returns #t if v1 and v2 represent the same serialization information.

More precisely, it returns the same value that (equal? (deserialize v1) (deserial-
ize v2)) would return if

• all structure types whose deserializers are accessed with distinct module paths are
actually distinct types;

973

• all structure types are transparent; and

• all structure instances contain only the constituent values recorded in each of v1 and
v2 .

(deserialize-module-guard)
Ñ (-> module-path? symbol?

(or/c void? (cons/c module-path? symbol?)))
(deserialize-module-guard guard) Ñ void?

guard : (-> module-path? symbol?
(or/c void? (cons/c module-path? symbol?)))

A parameter whose value is called by deserialize before dynamically loading a module
via dynamic-require. The two arguments provided to the procedure are the same as the
arguments to be passed to dynamic-require. The procedure can raise an exception to
disallow the dynamic-require.

The procedure can optionally return a pair containing a module-path and symbol. If returned,
deserialize will use them as arguments to dynamic-require instead.

Changed in version 6.90.0.30 of package base: Adds optional return values for bindings.

(serializable-struct id maybe-super (field ...)
struct-option ...)

Like struct, but instances of the structure type are serializable with serialize. This form
is allowed only at the top level or in a module’s top level (so that deserialization information
can be found later).

Serialization supports cycles involving the created structure type only when all fields are
mutable (or when the cycle can be broken through some other mutable value).

In addition to the bindings generated by struct, serializable-struct binds
deserialize-info:id-v0 to deserialization information. Furthermore, in a module con-
text, it automatically provides this binding in a deserialize-info submodule using
module+.

The serializable-struct form enables the construction of structure instances from
places where id is not accessible, since deserialization must construct instances. Fur-
thermore, serializable-struct provides limited access to field mutation, but only
for instances generated through the deserialization information bound to deserialize-
info:id-v0. See make-deserialize-info for more information.

Beware that the previous paragraph means that if a serializable struct is exported via
contract-out, for example, the contracts are not checked during deserialization. Consider
using struct-guard/c instead.

974

The -v0 suffix on the deserialization enables future versioning on the structure type through
serializable-struct/versions.

When a supertype is supplied as maybe-super , compile-time information bound to the
supertype identifier must include all of the supertype’s field accessors. If any field mutator
is missing, the structure type will be treated as immutable for the purposes of marshaling (so
cycles involving only instances of the structure type cannot be handled by the deserializer).

Examples:

> (serializable-struct point (x y))
> (point-x (deserialize (serialize (point 1 2))))
1

(define-serializable-struct id-maybe-super (field ...)
struct-option ...)

Like serializable-struct, but with the supertype syntax and default constructor name
of define-struct.

(serializable-struct/versions id maybe-super vers (field ...)
(other-version-clause ...)
struct-option ...)

other-version-clause = (other-vers make-proc-expr
cycle-make-proc-expr)

Like serializable-struct, but the generated deserializer binding is deserialize-
info:id-vvers . In addition, deserialize-info:id-vother-vers is bound for each
other-vers . The vers and each other-vers must be a literal, exact, nonnegative integer.

Each make-proc-expr should produce a procedure, and the procedure should accept as
many argument as fields in the corresponding version of the structure type, and it produce
an instance of id . Each cycle-make-proc-expr should produce a procedure of no argu-
ments; this procedure should return two values: an instance x of id (typically with #f for
all fields) and a procedure that accepts another instance of id and copies its field values into
x.

Examples:

> (serializable-struct point (x y) #:mutable #:transparent)
> (define ps (serialize (point 1 2)))
> (deserialize ps)
(point 1 2)
> (define x (point 1 10))
> (set-point-x! x x)

975

> (define xs (serialize x))
> (deserialize xs)
#0=(point #0# 10)
> (serializable-struct/versions point 1 (x y z)

([0
; Constructor for simple v0 instances:
(lambda (x y) (point x y 0))
; Constructor for v0 instance in a cycle:
(lambda ()
(let ([p0 (point #f #f 0)])
(values
p0
(lambda (p)
(set-point-x! p0 (point-x p))
(set-point-y! p0 (point-y p))))))])

#:mutable #:transparent)
> (deserialize (serialize (point 4 5 6)))
(point 4 5 6)
> (deserialize ps)
(point 1 2 0)
> (deserialize xs)
#0=(point #0# 10 0)

(define-serializable-struct/versions id-maybe-super vers (field ...)
(other-version-clause ...)
struct-option ...)

Like serializable-struct/versions, but with the supertype syntax and default con-
structor name of define-struct.
(make-deserialize-info make cycle-make) Ñ any

make : procedure?
cycle-make : (-> (values any/c procedure?))

Produces a deserialization information record to be used by deserialize. This information
is normally tied to a particular structure because the structure has a prop:serializable
property value that points to a top-level variable or module-exported variable that is bound
to deserialization information.

The make procedure should accept as many arguments as the structure’s serializer put into
a vector; normally, this is the number of fields in the structure. It should return an instance
of the structure.

The cycle-make procedure should accept no arguments, and it should return two values: a
structure instance x (with dummy field values) and an update procedure. The update proce-
dure takes another structure instance generated by the make , and it transfers the field values
of this instance into x.

976

prop:serializable : property?

This property identifies structures and structure types that are serializable. The property
value should be constructed with make-serialize-info.

(make-serialize-info to-vector
deserialize-id
can-cycle?
dir) Ñ any

to-vector : (any/c . -> . vector?)
deserialize-id : (or identifier?

symbol?
(cons/c symbol?

module-path-index?)
(-> any/c))

can-cycle? : any/c
dir : path-string?

Produces a value to be associated with a structure type through the prop:serializable
property. This value is used by serialize.

The to-vector procedure should accept a structure instance and produce a vector for the
instance’s content.

The deserialize-id value indicates a binding for deserialize information, to either a mod-
ule export or a top-level definition. It must be one of the following:

• If deserialize-id is an identifier, and if (identifier-binding deserialize-
id) produces a list, then the third element is used for the exporting mod-
ule, otherwise the top-level is assumed. Before trying an exporting module di-
rectly, its deserialize-info submodule is tried; the module itself is tried if no
deserialize-info submodule is available or if the export is not found. In either
case, syntax-e is used to obtain the name of an exported identifier or top-level defi-
nition.

• If deserialize-id is a symbol, it indicates a top-level variable that is named by the
symbol.

• If deserialize-id is a pair, the carmust be a symbol to name an exported identifier,
and the cdr must be a module path index to specify the exporting module.

• If deserialize-id is a procedure, then it is applied during serialization and its result
is used for deserialize-id .

See make-deserialize-info and deserialize for more information.

977

The can-cycle? argument should be false if instances should not be serialized in such a
way that deserialization requires creating a structure instance with dummy field values and
then updating the instance later.

The dir argument should be a directory path that is used to resolve a module reference
for the binding of deserialize-id . This directory path is used as a last resort when
deserialize-id indicates a module that was loaded through a relative path with re-
spect to the top level. Usually, it should be (or (current-load-relative-directory)
(current-directory)).

Changed in version 7.0.0.6 of package base: Allow deserialize-id to be a procedure.

Examples:

> (struct pie (type)
#:mutable
#:property prop:serializable
(make-serialize-info
(λ (this)
(vector (pie-type this)))

'pie-beam
#t
(or (current-load-relative-directory) (current-directory))))

> (define pie-beam
(make-deserialize-info
(λ (type)
(pie type))

(λ ()
(define pie-pattern (pie 'transporter-error))
(values pie-pattern

(λ (type)
(set-pie-type! pie-pattern type))))))

> (define original-pie
(pie 'apple))

> original-pie
#<pie>
> (define pie-in-transit

(serialize original-pie))
> pie-in-transit
'((3) 1 ((#f . pie-beam)) 0 () () (0 apple))
> (define beamed-up-pie

(deserialize pie-in-transit))
> beamed-up-pie
#<pie>
> (pie-type beamed-up-pie)
'apple
> (equal? beamed-up-pie original-pie)

978

#f

13.10 Fast-Load Serialization

(require racket/fasl) package: base

The bindings documented in this section are provided by the racket/fasl library, not
racket/base or racket.

(s-exp->fasl v
[out
#:keep-mutable? keep-mutable?])

Ñ (or/c (void) bytes?)
v : any/c
out : (or/c output-port? #f) = #f
keep-mutable? : any/c = #f

(fasl->s-exp in
[#:datum-intern? datum-intern?]) Ñ any/c

in : (or/c input-port? bytes?)
datum-intern? : any/c = #t

The s-exp->fasl function serializes v to a byte string, printing it directly to out if out is
an output port or returning the byte string otherwise. The fasl->s-exp function decodes a
value from a byte string (supplied either directly or as an input port) that was encoded with
s-exp->fasl.

The v argument must be a value that could be quoted as a literal—that is, a value without
syntax objects for which (compile `',v) would work and be readable after write—
or it can include correlated objects mixed with those values. The byte string produced by
s-exp->fasl does not use the same format as compiled code, however.

Like (compile `',v), s-exp->fasl does not preserve graph structure, support cycles, or
handle non-prefab structures. Compose s-exp->fasl with serialize to preserve graph
structure, handle cyclic data, and encode serializable structures. The s-exp->fasl and
fasl->s-exp functions consult current-write-relative-directory and current-
load-relative-directory, respectively, in the same way as bytecode saving and loading
to store paths in relative form, and they similarly allow and convert constrained srcloc
values (see §1.4.16 “Printing Compiled Code”).

Unless keep-mutable? is provided as true to s-exp->fasl, then mutable values in v are
replaced by immutable values when the result is decoded by fasl->s-exp. Unless datum-
intern? is provided as #f, then any immutable value produced by fasl->s-exp is filtered
by datum-intern-literal. The defaults make the composition of s-exp->fasl and
fasl->s-exp behave like the composition of write and read.

The byte-string encoding produced by s-exp->fasl is independent of the Racket version,

979

https://pkgs.racket-lang.org/package/base

except as future Racket versions introduce extensions that are not currently recognized. In
particular, the result of s-exp->fasl will be valid as input to any future version of fasl-
>s-exp.

Examples:

> (define fasl (s-exp->fasl (list #("speed") 'racer #\!)))
> fasl
#"racket/fasl:\0\24\34\3 \1\23\5speed\16\5racer\r!"
> (fasl->s-exp fasl)
'(#("speed") racer #\!)

Changed in version 6.90.0.21 of package base: Made s-exp->fasl format version-independent and added the
#:keep-mutable? and #:datum-intern? arguments.
Changed in version 7.3.0.7: Added support for correlated objects.

13.11 Cryptographic Hashing

(sha1-bytes in [start end]) Ñ bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f

(sha224-bytes in [start end]) Ñ bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f

(sha256-bytes in [start end]) Ñ bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f

Computes the SHA-1, SHA-224, or SHA-256 hash of a byte sequence and returns the hash
as a byte string with 20 bytes, 28 bytes, or 32 bytes, respectively.

The start and end arguments determine the range of bytes of the input that are used to
compute the hash. An end value of #f corresponds to the end of the byte string or an end-
of-file position for an input port. When in is a byte string, the start and end values (when
non #f) must be no greater than the length of the byte string, and start must be no greater
than end . When in is an input port, start must be no greater than end ; if in supplies
less than start or end bytes before an end-of-file, then start and/or end is effectively
changed to the number of supplied bytes (so that an empty or truncated byte sequence is
hashed). When in is an input port and end is a number, then at most end bytes are read
from the input port.

980

For security purposes, favor sha224-bytes and sha256-bytes (which are part of the
SHA-2 family) over sha1-bytes.

Use bytes->hex-string from file/sha1 to convert a byte string hash to a human-
readable string.

Examples:

> (sha1-bytes #"abc")
#"\251\231>6G\6\201j\272>%qxP\302l\234\320\330\235"
> (require file/sha1)
> (bytes->hex-string (sha1-bytes #"abc"))
"a9993e364706816aba3e25717850c26c9cd0d89d"
> (bytes->hex-string (sha224-bytes #"abc"))
"23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7"
> (bytes->hex-string (sha224-bytes (open-input-
string "xabcy") 1 4))
"23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7"

Added in version 7.0.0.5 of package base.

981

14 Reflection and Security

14.1 Namespaces

See §1.2.5 “Namespaces” for basic information on the namespace model.

A new namespace is created with procedures like make-empty-namespace, and make-
base-namespace, which return a first-class namespace value. A namespace is used by
setting the current-namespace parameter value, or by providing the namespace to proce-
dures such as eval and eval-syntax.

(namespace? v) Ñ boolean?
v : any/c

Returns #t if v is a namespace value, #f otherwise.

(make-empty-namespace) Ñ namespace?

Creates a new namespace that is empty, and whose module registry contains only mappings
for some internal, predefined modules, such as '#%kernel. The namespace’s base phase
is the same as the base phase of the current namespace. Attach modules from an existing
namespace to the new one with namespace-attach-module.

The new namespace is associated with a new root namespace, which has the same module
registry as the returned namespace and has a base phase of 0. The new root namespace is
the same as the returned namespace if both have base phase 0.

(make-base-empty-namespace) Ñ namespace?

Creates a new empty namespace like make-empty-namespace, but with racket/base at-
tached. The namespace’s base phase is the same as the phase in which the make-base-
empty-namespace function was created.

(make-base-namespace) Ñ namespace?

Creates a new namespace like make-empty-namespace, but with racket/base attached
and required into the top-level environment. The namespace’s base phase is the same as
the phase in which the make-base-namespace function was created.

(define-namespace-anchor id)

Binds id to a namespace anchor that can be used with namespace-anchor->empty-
namespace and namespace-anchor->namespace.

This form can be used only in a top-level context or in a module-context.

982

(namespace-anchor? v) Ñ boolean?
v : any/c

Returns #t if v is a namespace-anchor value, #f otherwise.

(namespace-anchor->empty-namespace a) Ñ namespace?
a : namespace-anchor?

Returns an empty namespace that shares a module registry and root namespace with the
source of the anchor, and whose base phase is the phase in which the anchor was created.

If the anchor is from a define-namespace-anchor form in a module context, then the
source is the namespace in which the containing module is instantiated. If the anchor is from
a define-namespace-anchor form in a top-level content, then the source is the namespace
in which the anchor definition was evaluated.

(namespace-anchor->namespace a) Ñ namespace?
a : namespace-anchor?

Returns a namespace corresponding to the source of the anchor.

If the anchor is from a define-namespace-anchor form in a module context, then the
result is a namespace for the module’s body in the anchor’s phase. The result is the same as
a namespace obtained via module->namespace, and the module is similarly made available
if it is not available already.

If the anchor is from a define-namespace-anchor form in a top-level content, then the
result is the namespace in which the anchor definition was evaluated.

(current-namespace) Ñ namespace?
(current-namespace n) Ñ void?

n : namespace?

A parameter that determines the current namespace.

(namespace-symbol->identifier sym) Ñ identifier?
sym : symbol?

Similar to datum->syntax restricted to symbols. The lexical information of the resulting
identifier corresponds to the top-level environment of the current namespace; the identifier
has no source location or properties.

(namespace-base-phase [namespace]) Ñ exact-integer?
namespace : namespace? = (current-namespace)

983

Returns the base phase of namespace .

(namespace-module-identifier [where]) Ñ identifier?
where : (or/c namespace? exact-integer? #f)

= (current-namespace)

Returns an identifier whose binding is module in the base phase of where if it is a names-
pace, or in the where phase level otherwise.

The lexical information of the identifier includes bindings (in the same phase level) for
all syntactic forms that appear in fully expanded code (see §1.2.3.1 “Fully Expanded Pro-
grams”), but using the name reported by the second element of identifier-binding for
the binding; the lexical information may also include other bindings.

(namespace-variable-value sym
[use-mapping?
failure-thunk
namespace]) Ñ any

sym : symbol?
use-mapping? : any/c = #t
failure-thunk : (or/c (-> any) #f) = #f
namespace : namespace? = (current-namespace)

Returns a value for sym in namespace , using namespace ’s base phase. The returned value
depends on use-mapping?:

• If use-mapping? is true (the default), and if sym maps to a top-level variable or an
imported variable (see §1.2.5 “Namespaces”), then the result is the same as evaluating
sym as an expression. If sym maps to syntax or imported syntax, then failure-
thunk is called or the exn:fail:syntax exception is raised. If sym is mapped to
an undefined variable or an uninitialized module variable, then failure-thunk is
called or the exn:fail:contract:variable exception is raised.

• If use-mapping? is #f, the namespace’s syntax and import mappings are ig-
nored. Instead, the value of the top-level variable named sym in namespace
is returned. If the variable is undefined, then failure-thunk is called or the
exn:fail:contract:variable exception is raised.

If failure-thunk is not #f, namespace-variable-value calls failure-thunk to
produce the return value in place of raising an exn:fail:contract:variable or
exn:fail:syntax exception.

(namespace-set-variable-value! sym
v

[map?
namespace
as-constant?]) Ñ void?

984

sym : symbol?
v : any/c
map? : any/c = #f
namespace : namespace? = (current-namespace)
as-constant? : any/c = #f

Sets the value of sym in the top-level environment of namespace in the base phase, defining
sym if it is not already defined.

If map? is supplied as true, then the namespace’s identifier mapping is also adjusted (see
§1.2.5 “Namespaces”) in the phase level corresponding to the base phase, so that sym maps
to the variable.

If as-constant? is true, then the variable is made a constant (so future assignments are
rejected) after v is installed as the value.

Changed in version 6.90.0.14 of package base: Added the as-constant? argument.

(namespace-undefine-variable! sym
[namespace]) Ñ void?

sym : symbol?
namespace : namespace? = (current-namespace)

Removes the sym variable, if any, in the top-level environment of namespace in its base
phase. The namespace’s identifier mapping (see §1.2.5 “Namespaces”) is unaffected.

(namespace-mapped-symbols [namespace]) Ñ (listof symbol?)
namespace : namespace? = (current-namespace)

Returns a list of all symbols that are mapped to variables, syntax, and imports in namespace
for the phase level corresponding to the namespace’s base phase.

(namespace-require quoted-raw-require-spec
[namespace]) Ñ void?

quoted-raw-require-spec : any/c
namespace : namespace? = (current-namespace)

Performs the import corresponding to quoted-raw-require-spec in the top-level envi-
ronment of namespace , like a top-level #%require. The quoted-raw-require-spec
argument must be either a datum that corresponds to a quoted raw-require-spec for
#%require, which includes module paths, or it can be a resolved module path.

Module paths in quoted-raw-require-spec are resolved with respect to current-
load-relative-directory or current-directory (if the former is #f), even if the
current namespace corresponds to a module body.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

985

(namespace-require/copy quoted-raw-require-spec
[namespace]) Ñ void?

quoted-raw-require-spec : any/c
namespace : namespace? = (current-namespace)

Like namespace-require for syntax exported from the module, but exported variables at
the namespace’s base phase are treated differently: the export’s current value is copied to a
top-level variable in namespace .

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

(namespace-require/constant quoted-raw-require-spec
[namespace]) Ñ void?

quoted-raw-require-spec : any/c
namespace : namespace? = (current-namespace)

Like namespace-require, but for each exported variable at the namespace’s base phase,
the export’s value is copied to a corresponding top-level variable that is made immutable.
Despite setting the top-level variable, the corresponding identifier is bound as imported.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

(namespace-require/expansion-time quoted-raw-require-spec
[namespace])

Ñ void?
quoted-raw-require-spec : any/c
namespace : namespace? = (current-namespace)

Like namespace-require, but only the transformer part of the module is executed relative
to namespace ’s base phase; that is, the module is merely visited, and not instantiated (see
§1.2.3.9 “Module Expansion, Phases, and Visits”). If the required module has not been
instantiated before, the module’s variables remain undefined.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

(namespace-attach-module src-namespace
modname

[dest-namespace]) Ñ void?
src-namespace : namespace?
modname : (or module-path? resolved-module-path?)
dest-namespace : namespace? = (current-namespace)

Attaches the instantiated module named by modname in src-namespace (at its base phase)
to the module registry of dest-namespace .

986

In addition to modname , every module that it imports (directly or indirectly) is also recorded
in the current namespace’s module registry, and instances at the same phase are also attached
to dest-namespace (while visits at the module’s phase and instances at higher or lower
phases are not attached, nor even made available for on-demand visits). The inspector of
the module invocation in dest-namespace is the same as inspector of the invocation in
src-namespace .

If modname is not a symbol, the current module name resolver is called to resolve the path,
but no module is loaded; the resolved form of modname is used as the module name in
dest-namespace .

If modname refers to a submodule or a module with submodules, unless the module was
loaded from bytecode (i.e., a ".zo" file) independently from submodules within the same
top-level module, then declarations for all submodules within the module’s top-level module
are also attached to dest-namespace .

If modname does not refer to an instantiated module in src-namespace , or if the name
of any module to be attached already has a different declaration or same-phase instance in
dest-namespace , then the exn:fail:contract exception is raised.

If src-namespace and dest-namespace do not have the same base phase, then the
exn:fail:contract exception is raised.

Unlike namespace-require, namespace-attach-module does not instantiate the mod-
ule, but copies the module instance from the source namespace to the target namespace.

Examples:

> (module food racket/base
(provide apple)
(define apple (list "pie")))

> (namespace-require ''food)
> (define ns (current-namespace))
> (parameterize ([current-namespace (make-base-namespace)])

(namespace-require ''food))
require: unknown module

module name: #ăresolved-module-path:'foodą
> (parameterize ([current-namespace (make-base-namespace)])

(namespace-attach-module ns ''food)
(namespace-require ''food)
(eq? (eval 'apple) apple))

#t
> (parameterize ([current-namespace (make-base-namespace)])

(namespace-attach-module-declaration ns ''food)
(namespace-require ''food)
(eq? (eval 'apple) apple))

#f

987

(namespace-attach-module-declaration src-namespace
modname

[dest-namespace]) Ñ void?
src-namespace : namespace?
modname : module-path?
dest-namespace : namespace? = (current-namespace)

Like namespace-attach-module, but the module specified by modname need only be de-
clared (and not necessarily instantiated) in src-namespace , and the module is merely de-
clared in dest-namespace .

(namespace-unprotect-module inspector
modname

[namespace]) Ñ void?
inspector : inspector?
modname : module-path?
namespace : namespace? = (current-namespace)

Changes the inspector for the instance of the module referenced by modname in names-
pace ’s module registry so that it is controlled by the current code inspector. The given
inspector must currently control the invocation of the module in namespace ’s module
registry, otherwise the inspector is not changed. See also §14.10 “Code Inspectors”.

(namespace-module-registry namespace) Ñ any
namespace : namespace?

Returns the module registry of the given namespace. This value is useful only for identifica-
tion via eq?.

(module->namespace mod [src-namespace]) Ñ namespace?
mod : (or/c module-path?

resolved-module-path?
module-path-index?)

src-namespace : namespace? = (current-namespace)

Returns a namespace that corresponds to the body of an instantiated module in src-
namespace ’s module registry and in the src-namespace ’s base phase, making the module
available for on-demand visits at src-namespace ’s base phase. The returned namespace
has the same module registry as src-namespace . Modifying a binding in the resulting
namespace changes the binding seen in modules that require the namespace’s module.

Module paths in a top-level require expression are resolved with respect to the names-
pace’s module. New provide declarations are not allowed.

988

If the current code inspector does not control the invocation of the module in src-
namespace ’s module registry, the exn:fail:contract exception is raised; see also
§14.10 “Code Inspectors”.

Bindings in the result namespace cannot be modified if the compile-enforce-module-
constants parameter was true when the module was declared, unless the module declara-
tion itself included assignments to the binding via set!.

Changed in version 6.90.0.16 of package base: Added the src-namespace optional argument.

(namespace-syntax-introduce stx [namespace]) Ñ syntax?
stx : syntax?
namespace : namespace? = (current-namespace)

Returns a syntax object like stx , except that namespace ’s bindings are included in the
syntax object’s lexical information (see §1.2.2 “Syntax Objects”). The additional context is
overridden by any existing top-level bindings in the syntax object’s lexical information, or
by any existing or future module bindings in the lexical information.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

(module-provide-protected? module-path-index
sym) Ñ boolean?

module-path-index : (or/c symbol? module-path-index?)
sym : symbol?

Returns #f if the module declaration for module-path-index defines sym and exports it
unprotected, #t otherwise (which may mean that the symbol corresponds to an unexported
definition, a protected export, or an identifier that is not defined at all within the module).

The module-path-index argument can be a symbol; see §14.4.2 “Compiled Modules and
References” for more information on module path indices.

Typically, the arguments to module-provide-protected? correspond to the first two ele-
ments of a list produced by identifier-binding.

(variable-reference? v) Ñ boolean?
v : any/c

Return #t if v is a variable reference produced by #%variable-reference, #f otherwise.

(variable-reference-constant? varref) Ñ boolean?
varref : variable-reference?

Returns #t if the variable represented by varref will retain its current value (i.e., varref
refers to a variable that cannot be further modified by set! or define), #f otherwise.

989

(variable-reference->empty-namespace varref) Ñ namespace?
varref : variable-reference?

Returns an empty namespace that shares module declarations and instances with the names-
pace in which varref is instantiated, and with the same phase as varref .

(variable-reference->namespace varref) Ñ namespace?
varref : variable-reference?

If varref refers to a module-level variable, then the result is a namespace for the module’s
body in the referenced variable’s phase; the result is the same as a namespace obtained
via module->namespace, and the module is similarly made available if it is not available
already.

If varref refers to a top-level variable, then the result is the namespace in which the refer-
enced variable is defined.

(variable-reference->resolved-module-path varref)
Ñ (or/c resolved-module-path? #f)
varref : variable-reference?

If varref refers to a module-level variable, the result is a resolved module path naming the
module.

If varref refers to a top-level variable, then the result is #f.

(variable-reference->module-path-index varref)
Ñ (or/c module-path-index? #f)
varref : variable-reference?

If varref refers to a module-level variable, the result is a module path index naming the
module.

If varref refers to a top-level variable, then the result is #f.

(variable-reference->module-source varref)
Ñ (or/c symbol? (and/c path? complete-path?) #f)
varref : variable-reference?

If varref refers to a module-level variable, the result is a path or symbol naming the mod-
ule’s source (which is typically, but not always, the same as in the resolved module path). If
the relevant module is a submodule, the result corresponds to the enclosing top-level mod-
ule’s source.

If varref refers to a top-level variable, then the result is #f.

990

(variable-reference->phase varref) Ñ exact-nonnegative-integer?
varref : variable-reference?

Returns the phase of the variable referenced by varref .

(variable-reference->module-base-phase varref) Ñ exact-integer?
varref : variable-reference?

Returns the phase in which the module is instantiated for the variable referenced by varref ,
or 0 if the variable for varref is not within a module.

For a variable with a module, the result is less than the result of (variable-reference-
>phase varref) by n when the variable is bound at phase level n within the module.

(variable-reference->module-declaration-inspector varref)
Ñ inspector?
varref : variable-reference?

Returns the declaration inspector (see §14.10 “Code Inspectors”) for the module of varref ,
where varref must refer to an anonymous module variable as produced by (#%variable-
reference).

(variable-reference-from-unsafe? varref) Ñ boolean?
varref : variable-reference?

Returns #t if the module of the variable reference itself (not necessarily a referenced vari-
able) is compiled in unsafe mode, #f otherwise.

The variable-reference-from-unsafe? procedure is intended for use as

(variable-reference-from-unsafe? (#%variable-reference))

which the compiler can optimize to a literal #t or #f (since the enclosing module is being
compiled in unsafe mode or not).

Currently unsafe mode can be controlled only through the linklet interface, but future
changes may make unsafe mode more accessible at the module level.

Added in version 6.12.0.4 of package base.

14.2 Evaluation and Compilation

(current-eval) Ñ (any/c . -> . any)
(current-eval proc) Ñ void?

proc : (any/c . -> . any)

991

A parameter that determines the current evaluation handler. The evaluation handler is a
procedure that takes a top-level form and evaluates it, returning the resulting values. The
evaluation handler is called by eval, eval-syntax, the default load handler, and read-
eval-print-loop to evaluate a top-level form. The handler should evaluate its argument
in tail position.

The top-level-form provided to the handler can be a syntax object, a compiled form, a
compiled form wrapped as a syntax object, or an arbitrary datum.

The default handler converts an arbitrary datum to a syntax object using datum->syntax,
and then enriches its lexical information in the same way as eval. (If top-level-form is
a syntax object, then its lexical information is not enriched.) The default evaluation handler
partially expands the form to splice the body of top-level begin forms into the top level (see
expand-to-top-form), and then individually compiles and evaluates each spliced form
before continuing to expand, compile, and evaluate later forms.

(eval top-level-form [namespace]) Ñ any
top-level-form : any/c
namespace : namespace? = (current-namespace)

See also §15.1.2
“Namespaces” in
The Racket Guide.Calls the current evaluation handler to evaluate top-level-form . The evaluation handler

is called in tail position with respect to the eval call, and parameterized to set current-
namespace to namespace .

If top-level-form is a syntax object whose datum is not a compiled form, then its lexical
information is enriched before it is sent to the evaluation handler:

• If top-level-form is a pair whose car is a symbol or identifier, and if applying
namespace-syntax-introduce to the (datum->syntax-converted) identifier pro-
duces an identifier bound to module in a phase level that corresponds to namespace ’s
base phase, then only that identifier is enriched.

• For any other top-level-form , namespace-syntax-introduce is applied to the
entire syntax object.

For interactive evaluation in the style of read-eval-print-loop and load, wrap each
expression with #%top-interaction, which is normally bound to #%top-interaction,
before passing it to eval.

(eval-syntax stx [namespace]) Ñ any
stx : syntax?
namespace : namespace? = (current-namespace)

Like eval, except that stx must be a syntax object, and its lexical context is not enriched
before it is passed to the evaluation handler.

992

(current-load)
Ñ (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> .
any)

(current-load proc) Ñ void?
proc : (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> .
any)

A parameter that determines the current load handler to load top-level forms from a file. The
load handler is called by load, load-relative, load/cd, and the default compiled-load
handler.

A load handler takes two arguments: a path (see §15.1 “Paths”) and an expected module
name. The expected module name is a symbol or a list when the call is to load a mod-
ule declaration in response to a require (in which case the file should contain a module
declaration), or #f for any other load.

When loading a module from a stream that starts with a compiled module that contains
submodules, the load handler should load only the requested module, where a symbol as the
load handler’s indicates the root module and a list indicates a submodule whose path relative
to the root module is given by the cdr of the list. The list starts with #f when a submodule
should be loaded only if it can be loaded independently (i.e., from compiled form—never
from source); if the submodule cannot be loaded independently, the load handler should
return without loading from a file. When the expected module name is a list that starts with
a symbol, the root module and any other submodules can be loaded from the given file,
which might be from source, and the load handler still should not complain if the expected
submodule is not found. When loading modules from a nonexistent source file, the load
handler may raise an exception regardless of whether submodules are requested or not.

The default load handler reads forms from the file in read-syntax mode with line-counting
enabled for the file port, unless the path has a ".zo" suffix. It also parameterizes each
read to set read-accept-compiled, read-accept-reader, and read-accept-lang to
#t. In addition, if load-on-demand-enabled is #t, then read-on-demand-source is
set to the cleansed, absolute form of path during the read-syntax call. After reading a
single form, the form is passed to the current evaluation handler, wrapping the evaluation in a
continuation prompt (see call-with-continuation-prompt) for the default continuation
prompt tag with handler that propagates the abort to the continuation of the load call.

993

If the second argument to the load handler is a symbol, then:

• The read-syntax from the file is additionally parameterized as follows (to provide
consistent reading of module source):

(current-readtable #f)
(read-case-sensitive #t)
(read-square-bracket-as-paren #t)
(read-curly-brace-as-paren #t)
(read-accept-box #t)
(read-accept-compiled #t)
(read-accept-bar-quote #t)
(read-accept-graph #t)
(read-decimal-as-inexact #t)
(read-accept-dot #t)
(read-accept-infix-dot #t)
(read-accept-quasiquote #t)
(read-accept-reader #t)
(read-accept-lang #t)

• If the read result is not a module form, or if a second read-syntax does not produce
an end-of-file, then the exn:fail exception is raised without evaluating the form that
was read from the file. (In previous versions, the module declaration was checked to
match the name given as the second argument to the load handler, but this check is no
longer performed.)

• The lexical information of the initial module identifier is enriched with a binding
for module, so that the form corresponds to a module declaration independent of the
current namespace’s bindings.

If the second argument to the load handler is #f, then each expression read from the file
is wrapped with #%top-interaction, which is normally bound to #%top-interaction,
before passing it to the evaluation handler.

The return value from the default load handler is the value of the last form from the loaded
file, or #<void> if the file contains no forms. If the given path is a relative path, then it is
resolved using the value of current-directory.

(load file) Ñ any
file : path-string?

See also §15.1.2
“Namespaces” in
The Racket Guide.Calls the current load handler in tail position. The call is parameterized to set current-

load-relative-directory to the directory of file , which is resolved relative to the
value of current-directory.

(load-relative file) Ñ any
file : path-string?

994

Like load/use-compiled, but when file is a relative path, it is resolved using the value
of current-load-relative-directory instead of the value of current-directory if
the former is not #f, otherwise current-directory is used.

(load/cd file) Ñ any
file : path-string?

Like load, but load/cd sets both current-directory and current-load-relative-
directory before calling the load handler.

(current-load-extension)
Ñ (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> .
any)

(current-load-extension proc) Ñ void?
proc : (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> .
any)

A parameter that determines a extension-load handler, which is called by load-extension
and the default compiled-load handler.

An extension-load handler takes the same arguments as a load handler, but the file should be
a platform-specific dynamic extension, typically with the file suffix ".so" (Unix), ".dll"
(Windows), or ".dylib" (Mac OS). The file is loaded using internal, OS-specific primitives.
See Inside: Racket C API for more information on dynamic extensions.

Extensions are supported only when (system-type 'vm) returns 'racket.

(load-extension file) Ñ any
file : path-string?

Sets current-load-relative-directory like load, and calls the extension-load han-
dler in tail position.

Extensions are supported only when (system-type 'vm) returns 'racket.

(load-relative-extension file) Ñ any
file : path-string?

995

Like load-extension, but resolves file using current-load-relative-directory
like load-relative.

Extensions are supported only when (system-type 'vm) returns 'racket.

(current-load/use-compiled)
Ñ (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> . any)

(current-load/use-compiled proc) Ñ void?
proc : (path? (or/c #f

symbol?
(cons/c (or/c #f symbol?)

(non-empty-listof symbol?)))
. -> . any)

A parameter that determines the current compiled-load handler to load from a file that may
have a compiled form. The compiled-load handler is called by load/use-compiled.

The protocol for a compiled-load handler is the same as for the load handler (see current-
load), except that a compiled-load handler is expected to set current-load-relative-
directory itself. Additionally, the default compiled-load handler does the following:

• When the given path ends with ".rkt", no ".rkt" file exists, and when the handler’s
second argument is not #f, the default compiled-load handler checks for a ".ss" file.

• The default compiled-load handler checks for the opportunity to load from ".zo"
(bytecode) files and, when (system-type 'vm) returns 'racket, for ".so" (native
Unix), ".dll" (native Windows), or ".dylib" (native Mac OS) files.

• When the default compiled-load handler needs to load from the given path, the given
path does not exist, and when the handler’s second argument is not #f, the default
compiled-load handler returns without raising an exception.

The check for a compiled file occurs whenever the given path file ends with any exten-
sion (e.g., ".rkt" or ".scrbl"), and the check consults the subdirectories indicated by
the current-compiled-file-roots and use-compiled-file-paths parameters rela-
tive to file , where the former supplies “roots” for compiled files and the latter provides
subdirectories. A “root” can be an absolute path, in which case file ’s directory is com- See also

compiler/compilation-path.bined with reroot-path and the root as the second argument; if the “root” is a relative
path, then the relative path is instead suffixed onto the directory of file . The roots are tried
in order, and the subdirectories are checked in order within each root. A ".zo" version of
the file (whose name is formed by passing file and #".zo" to path-add-extension) is
loaded if it exists directly in one of the indicated subdirectories, or when (system-type

996

'vm) returns 'racket, then a ".so"/".dll"/".dylib" version of the file is loaded if it ex-
ists within a "native" subdirectory of a use-compiled-file-paths directory, in an even
deeper subdirectory as named by system-library-subpath. A compiled file is loaded
only if it checks out according to (use-compiled-file-check); with the default param-
eter value of 'modify-seconds, a compiled file is used only if its modification date is not
older than the date for file . If both ".zo" and ".so"/".dll"/".dylib" files are available
when (system-type 'vm) returns 'racket, the ".so"/".dll"/".dylib" file is used. If
file ends with ".rkt", no such file exists, the handler’s second argument is a symbol,
and a ".ss" file exists, then ".zo" and ".so"/".dll"/".dylib" files are used only with
names based on file with its suffixed replaced by ".ss".

While a ".zo", ".so", ".dll", or ".dylib" file is loaded, the current load-relative
directory is set to the directory of the original file . If the file to be loaded has the suffix
".ss" while the requested file has the suffix ".rkt", then the current-module-declare-
source parameter is set to the full path of the loaded file, otherwise the current-module-
declare-source parameter is set to #f.

If the original file is loaded or a ".zo" variant is loaded, the load handler is called to load
the file. If any other kind of file is loaded, the extension-load handler is called.

When the default compiled-load handler loads a module from a bytecode (i.e., ".zo") file,
the handler records the bytecode file path in the current namespace’s module registry. More
specifically, the handler records the path for the top-level module of the loaded module,
which is an enclosing module if the loaded module is a submodule. Thereafter, loads via
the default compiled-load handler for modules within the same top-level module use the
recorded file, independent of the file that otherwise would be selected by the compiled-
load handler (e.g., even if the use-compiled-file-paths parameter value changes). The
default module name resolver transfers bytecode-file information when a module declaration
is attached to a new namespace. This protocol supports independent but consistent loading
of submodules from bytecode files.

(load/use-compiled file) Ñ any
file : path-string?

Calls the current compiled-load handler in tail position.

(current-load-relative-directory)
Ñ (or/c (and/c path-string? complete-path?) #f)

(current-load-relative-directory path) Ñ void?
path : (or/c (and/c path-string? complete-path?) #f)

A parameter that is set by load, load-relative, load-extension, load-relative-
extension, and the default compiled-load handler, and used by load-relative, load-
relative-extension, and the default compiled-load handler.

When a new path or string is provided as the parameter’s value, it is immediately expanded
(see §15.1 “Paths”) and converted to a path. (The directory need not exist.)

997

(use-compiled-file-paths)
Ñ (listof (and/c path? relative-path?))

(use-compiled-file-paths paths) Ñ void?
paths : (listof (and/c path-string? relative-path?))

A list of relative paths, which defaults to (list (string->path "compiled")). It is
used by the compiled-load handler (see current-load/use-compiled).

(current-compiled-file-roots) Ñ (listof (or/c path? 'same))
(current-compiled-file-roots paths) Ñ void?

paths : (listof (or/c path-string? 'same))

A list of paths and 'sames that is is used by the default compiled-load handler (see current-
load/use-compiled).

The parameter is normally initialized to (list 'same), but the parameter’s initial value
can be adjusted by the PLTCOMPILEDROOTS environment variable or the --compiled or -R
command-line flag for racket. If the environment variable is defined and not overridden
by a command-line flag, it is parsed by first replacing any @(version) with the result of
(version), then using path-list-string->path-list with a default path list (list
(build-path 'same)) to arrive at the parameter’s initial value.

(use-compiled-file-check) Ñ (or/c 'modify-seconds 'exists)
(use-compiled-file-check check) Ñ void?

check : (or/c 'modify-seconds 'exists)

A parameter that determines how a compiled file is checked against its source to enable use
of the compiled file. By default, the file-check mode is 'modify-seconds, which uses a
compiled file when its filesystem modification date is at least as new as the source file’s.
The 'exists mode causes a compiled file to be used in place of its source as long as the
compiled file exists.

If the PLT_COMPILED_FILE_CHECK environment variable is set to modify-seconds or
exists, then the environment variable’s value configures the parameter when Racket starts.

Added in version 6.6.0.3 of package base.

(read-eval-print-loop) Ñ any

Starts a new REPL using the current input, output, and error ports. The REPL wraps each
expression to evaluate with #%top-interaction, which is normally bound to #%top-
interaction, and it wraps each evaluation with a continuation prompt using the default
continuation prompt tag and prompt handler (see call-with-continuation-prompt).
The REPL also wraps the read and print operations with a prompt for the default tag whose

998

handler ignores abort arguments and continues the loop. The read-eval-print-loop pro-
cedure does not return until eof is read, at which point it returns #<void>.

The read-eval-print-loop procedure can be configured through the current-prompt-
read, current-eval, and current-print parameters.

(current-prompt-read) Ñ (-> any)
(current-prompt-read proc) Ñ void?

proc : (-> any)

A parameter that determines a prompt read handler, which is a procedure that takes no ar-
guments, displays a prompt string, and returns a top-level form to evaluate. The prompt
read handler is called by read-eval-print-loop, and after printing a prompt, the handler
typically should call the read interaction handler (as determined by the current-read-
interaction parameter) with the port produced by the interaction port handler (as deter-
mined by the current-get-interaction-input-port parameter).

The default prompt read handler prints > and returns the result of

(let ([in ((current-get-interaction-input-port))])
((current-read-interaction) (object-name in) in))

If the input and output ports are both terminals (in the sense of terminal-port?) and if the
output port appears to be counting lines (because port-next-location returns a non-#f
line and column), then the output port’s line is incremented and its column is reset to 0 via
set-port-next-location! before returning the read result.

(current-get-interaction-input-port) Ñ (-> input-port?)
(current-get-interaction-input-port proc) Ñ void?

proc : (-> input-port?)

A parameter that determines the interaction port handler, which returns a port to use for
read-eval-print-loop inputs.

The default interaction port handler returns the current input port. In addition, if that port is
the initial current input port, the initial current output and error ports are flushed.

The racket/gui/base library adjusts this parameter’s value by extending the current value.
The extension wraps the result port so that GUI events can be handled when reading from
the port blocks.

(current-read-interaction) Ñ (any/c input-port? -> any)
(current-read-interaction proc) Ñ void?

proc : (any/c input-port? -> any)

A parameter that determines the current read interaction handler, which is procedure that
takes an arbitrary value and an input port and returns an expression read from the input port.

999

The default read interaction handler accepts src and in and returns

(parameterize ([read-accept-reader #t]
[read-accept-lang #f])

(read-syntax src in))

(current-print) Ñ (any/c -> any)
(current-print proc) Ñ void?

proc : (any/c -> any)

A parameter that determines the print handler that is called by read-eval-print-loop to
print the result of an evaluation (and the result is ignored).

The default print handler prints the value to the current output port (as determined by the
current-output-port parameter) and then outputs a newline, except that it prints nothing
when the value is #<void>.

(current-compile)
Ñ (any/c boolean? . -> . compiled-expression?)

(current-compile proc) Ñ void?
proc : (any/c boolean? . -> . compiled-expression?)

A parameter that determines the current compilation handler. The compilation handler is a
procedure that takes a top-level form and returns a compiled form; see §1.2.4 “Compilation”
for more information on compilation.

The compilation handler is called by compile, and indirectly by the default evaluation han-
dler and the default load handler.

The handler’s second argument is #t if the compiled form will be used only for immediate
evaluation, or #f if the compiled form may be saved for later use; the default compilation
handler is optimized for the special case of immediate evaluation.

When a compiled form is written to an output port, the written form starts with #„. See
§1.4.16 “Printing Compiled Code” for more information.

For internal testing purposes, when the PLT_VALIDATE_COMPILE environment variable is
set, the default compilation handler runs a bytecode validator immediately on its own com-
pilation results (instead of relying only on validation when compiled bytecode is loaded).

(compile top-level-form) Ñ compiled-expression?
top-level-form : any/c

Like eval, but calls the current compilation handler in tail position with top-level-form .

(compile-syntax stx) Ñ compiled-expression?
stx : syntax?

1000

Like eval-syntax, but calls the current compilation handler in tail position with stx .

(compiled-expression-recompile ce) Ñ compiled-expression?
ce : compiled-expression?

Recompiles ce . If ce was compiled as machine-independent and current-compile-
target-machine is not set to #f, then recompiling effectively converts to the current ma-
chine format. Otherwise, recompiling effectively re-runs optimization passes to produce an
equivalent compiled form with potentially different performance characteristics.

Added in version 6.3 of package base.

(compiled-expression? v) Ñ boolean?
v : any/c

Returns #t if v is a compiled form, #f otherwise.

(compile-enforce-module-constants) Ñ boolean?
(compile-enforce-module-constants on?) Ñ void?

on? : any/c

A parameter that determines how a module declaration is compiled.

When constants are enforced, and when the macro-expanded body of a module contains
no set! assignment to a particular variable defined within the module, then the variable is
marked as constant when the definition is evaluated. Afterward, the variable’s value can-
not be assigned or undefined through module->namespace, and it cannot be defined by
redeclaring the module.

Enforcing constants allows the compiler to inline some variable values, and it allows the
native-code just-in-time compiler to generate code that skips certain run-time checks.

(compile-allow-set!-undefined) Ñ boolean?
(compile-allow-set!-undefined allow?) Ñ void?

allow? : any/c

A parameter that determines how a set! expression is compiled when it mutates a global
variable. If the value of this parameter is a true value, set! expressions for global
variables are compiled so that the global variable is set even if it was not previously
defined. Otherwise, set! expressions for global variables are compiled to raise the
exn:fail:contract:variable exception if the global variable is not defined at the time
the set! is performed. Note that this parameter is used when an expression is compiled, not
when it is evaluated.

(compile-context-preservation-enabled) Ñ boolean?
(compile-context-preservation-enabled on?) Ñ void?

on? : any/c

1001

A parameter that determines whether compilation should avoid function-call inlining and
other optimizations that may cause information to be lost from stack traces (as reported by
continuation-mark-set->context). The default is #f, which allows such optimiza-
tions.

(current-compile-target-machine)
Ñ (or/c #f (and/c symbol? compile-target-machine?))

(current-compile-target-machine target) Ñ void?
target : (or/c #f (and/c symbol? compile-target-machine?))

A parameter that determines the platform and/or virtual machine target for a newly compiled
expression.

If the target is #f, the the compiled expression writes in a machine-independent format
(usually in ".zo" files). Machine-independent compiled code works for any platform and
any Racket virtual machine. When the machine-independent compiled expression is read
back in, it is subject to further compilation for the current platform and virtual machine,
which can be considerably slower than reading a format that is fully compiled for a platform
and virtual machine.

The default is something other than #f, unless machine-independent mode is enabled
through the -M/--compile-any command-line flag to stand-alone Racket (or GRacket) or
through the PLT_COMPILE_ANY environment variable (set to any value).

Added in version 7.1.0.6 of package base.

(compile-target-machine? sym) Ñ boolean?
sym : symbol?

Reports whether sym is a supported compilation target for the currently running Racket.

When (system-type 'vm) reports 'racket, then the only target symbol is 'racket.
When (system-type 'vm) reports 'chez-scheme, then a symbol corresponding to the
current platform is a target, and other targets may also be supported. The 'target-machine
mode of system-type reports the running Racket’s native target machine.

Added in version 7.1.0.6 of package base.

(eval-jit-enabled) Ñ boolean?
(eval-jit-enabled on?) Ñ void?

on? : any/c
See also §19.3 “The
Bytecode and
Just-in-Time (JIT)
Compilers” in The
Racket Guide.

A parameter that determines whether the native-code just-in-time compiler (JIT) is enabled
for code (compiled or not) that is passed to the default evaluation handler. A true parameter
value is effective only on platforms for which the JIT is supported and for Racket virtual
machines that rely on a JIT.

1002

The default is #t, unless the JIT is not supported by the current platform but is supported on
the same virtual machine for other platforms, unless it is disabled through the -j/--no-jit
command-line flag to stand-alone Racket (or GRacket), and unless it is disabled through the
PLTNOMZJIT environment variable (set to any value).

(load-on-demand-enabled) Ñ boolean?
(load-on-demand-enabled on?) Ñ void?

on? : any/c

A parameter that determines whether the default load handler sets read-on-demand-
source. See current-load for more information. The default is #t, unless it is disabled
through the -d/--no-delay command-line flag.

14.3 The racket/load Language

#lang racket/load package: base

The racket/load language supports evaluation where each top-level form in the module
body is separately passed to eval in the same way as for load.

The namespace for evaluation shares the module registry with the racket/load module
instance, but it has a separate top-level environment, and it is initialized with the bind-
ings of racket. A single namespace is created for each instance of the racket/load
module (i.e., multiple modules using the racket/load language share a namespace). The
racket/load library exports only #%module-begin and #%top-interaction forms that
effectively swap in the evaluation namespace and call eval.

For example, the body of a module using racket/load can include module forms, so that
running the following module prints 5:

#lang racket/load

(module m racket/base
(provide x)
(define x 5))

(module n racket/base
(require 'm)
(display x))

(require 'n)

Definitions in a module using racket/load are evaluated in the current namespace, which
means that load and eval can see the definitions. For example, running the following
module prints 6:

1003

https://pkgs.racket-lang.org/package/base

#lang racket/load

(define x 6)
(display (eval 'x))

Since all forms within a racket/load module are evaluated in the top level, bindings cannot
be exported from the module using provide. Similarly, since evaluation of the module-body
forms is inherently dynamic, compilation of the module provides essentially no benefit. For
these reasons, use racket/load for interactive exploration of top-level forms only, and not
for constructing larger programs.

14.4 Module Names and Loading

14.4.1 Resolving Module Names
The
syntax/modresolve
library provides
additional
operations for
resolving and
manipulating
module names.

The name of a declared module is represented by a resolved module path, which encapsulates
either a symbol or a complete filesystem path (see §15.1 “Paths”). A symbol normally
refers to a predefined module or module declared through reflective evaluation (e.g., eval).
A filesystem path normally refers to a module declaration that was loaded on demand via
require or other forms.

A module path is a datum that matches the grammar for module-path for require. A
module path is relative to another module.

(resolved-module-path? v) Ñ boolean?
v : any/c

Returns #t if v is a resolved module path, #f otherwise.

(make-resolved-module-path path) Ñ resolved-module-path?
path : (or/c symbol?

(and/c path? complete-path?)
(cons/c (or/c symbol?

(and/c path? complete-path?))
(non-empty-listof symbol?)))

Returns a resolved module path that encapsulates path , where a list path corresponds to
a submodule path. If path is a path or starts with a path, the path normally should be
cleansed (see cleanse-path) and simplified (see simplify-path, including consulting
the file system).

A resolved module path is interned. That is, if two resolved module path values encapsulate
paths that are equal?, then the resolved module path values are eq?.

1004

(resolved-module-path-name module-path)
Ñ (or/c symbol?

(and/c path? complete-path?)
(cons/c (or/c symbol?

(and/c path? complete-path?))
(non-empty-listof symbol?)))

module-path : resolved-module-path?

Returns the path or symbol encapsulated by a resolved module path. A list result corresponds
to a submodule path.

(module-path? v) Ñ boolean?
v : any/c

Returns #t if v corresponds to a datum that matches the grammar for module-path for
require, #f otherwise. Note that a path (in the sense of path?) is a module path.

(current-module-name-resolver)
Ñ (case->

(resolved-module-path? (or/c #f namespace?) . -> . any)
(module-path?
(or/c #f resolved-module-path?)
(or/c #f syntax?)
boolean?
. -> .
resolved-module-path?))

(current-module-name-resolver proc) Ñ void?
proc : (case->

(resolved-module-path? (or/c #f namespace?) . -> . any)
(module-path?
(or/c #f resolved-module-path?)
(or/c #f syntax?)
boolean?
. -> .
resolved-module-path?))

A parameter that determines the current module name resolver, which manages the con-
version from other kinds of module references to a resolved module path. For example,
when the expander encounters (require module-path) where module-path is not an
identifier, then the expander passes 'module-path to the module name resolver to obtain a
symbol or resolved module path. When such a require appears within a module, the mod-
ule path resolver is also given the name of the enclosing module, so that a relative reference
can be converted to an absolute symbol or resolved module path.

1005

The default module name resolver uses collection-file-path to convert lib and
symbolic-shorthand module paths to filesystem paths. The collection-file-path func-
tion, in turn, uses the current-library-collection-links and current-library-
collection-paths parameters.

A module name resolver takes two and four arguments:

• When given two arguments, the first is a name for a module that is now declared
in the current namespace, and the second is optionally a namespace from which the
declaration was copied. The module name resolver’s result in this case is ignored.

The current module name resolver is called with two arguments by namespace-
attach-module or namespace-attach-module-declaration to notify the re-
solver that a module declaration was attached to the current namespace (and should
not be loaded in the future for the namespace’s module registry). Evaluation of a
module declaration also calls the current module name resolver with two arguments,
where the first is the declared module and the second is #f. No other Racket opera-
tion invokes the module name resolver with two arguments, but other tools (such as
DrRacket) might call this resolver in this mode to avoid redundant module loads.

• When given four arguments, the first is a module path, equivalent to a quoted module-
path for require. The second is name for the source module, if any, to which
the path is relative; if the second argument is #f, the module path is relative to (or
(current-load-relative-directory) (current-directory)). The third ar-
gument is a syntax object that can be used for error reporting, if it is not #f. If the
last argument is #t, then the module declaration should be loaded (if it is not already),
otherwise the module path should be simply resolved to a name. The result is the
resolved name.

For the second case, the standard module name resolver keeps a table per module registry
containing loaded module name. If a resolved module path is not in the table, and #f is not
provided as the fourth argument to the module name resolver, then the name is put into the
table and the corresponding file is loaded with a variant of load/use-compiled that passes
the expected module name to the compiled-load handler.

While loading a file, the default module name resolver sets the current-module-
declare-name parameter to the resolved module name (while the compiled-load handler
sets current-module-declare-source). Also, the default module name resolver records
in a private continuation mark the module being loaded, and it checks whether such a mark
already exists; if such a continuation mark does exist in the current continuation, then the
exn:fail exception is raised with a message about a dependency cycle.

The default module name resolver cooperates with the default compiled-load handler: on a
module-attach notification, bytecode-file information recorded by the compiled-load handler
for the source namespace’s module registry is transferred to the target namespace’s module
registry.

1006

The default module name resolver also maintains a small, module registry-specific cache
that maps lib and symbolic module paths to their resolutions. This cache is consulted be-
fore checking parameters such as current-library-collection-links and current-
library-collection-paths, so results may “stick” even if those parameter values
change. An entry is added to the cache only when the fourth argument to the module name
resolver is true (indicating that a module should be loaded) and only when loading succeeds.

Finally, the default module name resolver potentially treats a submod path specially. If the
module path as the first element of the submod form refers to non-existent collection, then
instead of raising an exception, the default module name resolver synthesizes an uninterned
symbol module name for the resulting resolved module path. This special treatment of
submodule paths is consistent with the special treatment of nonexistent submodules by the
compiled-load handler, so that module-declared? can be used more readily to check for
the existence of a submodule.

Module loading is suppressed (i.e., #f is supplied as a fourth argument to the module name
resolver) when resolving module paths in syntax objects (see §1.2.2 “Syntax Objects”).
When a syntax object is manipulated, the current namespace might not match the origi-
nal namespace for the syntax object, and the module should not necessarily be loaded in the
current namespace.

For historical reasons, the default module name resolver currently accepts three arguments,
in addition to two and four. Three arguments are treated the same as four arguments with the
fourth argument as #t, except that an error is also logged. Support for three arguments will
be removed in a future version.

Changed in version 6.0.1.12 of package base: Added error logging to the default module name resolver when
called with three arguments.
Changed in version 7.0.0.17: Added special treatment of submod forms with a nonexistent collection by the default
module name resolver.

(current-module-declare-name)
Ñ (or/c resolved-module-path? #f)

(current-module-declare-name name) Ñ void?
name : (or/c resolved-module-path? #f)

A parameter that determines a module name that is used when evaluating a module declara-
tion (when the parameter value is not #f). In that case, the id from the module declaration
is ignored, and the parameter’s value is used as the name of the declared module.

When declaring submodules, current-module-declare-name determines the name used
for the submodule’s root module, while its submodule path relative to the root module is
unaffected.

(current-module-declare-source)
Ñ (or/c symbol? (and/c path? complete-path?) #f)

(current-module-declare-source src) Ñ void?
src : (or/c symbol? (and/c path? complete-path?) #f)

1007

A parameter that determines source information to be associated with a module when eval-
uating a module declaration. Source information is used in error messages and reflected by
variable-reference->module-source. When the parameter value is #f, the module’s
name (as determined by current-module-declare-name) is used as the source name in-
stead of the parameter value.

(current-module-path-for-load)
Ñ (or/c #f module-path?

(and/c syntax?
(lambda (stx)
(module-path? (syntax->datum s)))))

(current-module-path-for-load path) Ñ void?
path : (or/c #f module-path?

(and/c syntax?
(lambda (stx)
(module-path? (syntax->datum s)))))

A parameter that determines a module path used for exn:fail:syntax:missing-module
and exn:fail:filesystem:missing-module exceptions as raised by the default load
handler. The parameter is normally set by a module name resolver.

14.4.2 Compiled Modules and References

While expanding a module declaration, the expander resolves module paths for imports to
load module declarations as necessary and to determine imported bindings, but the compiled
form of a module declaration preserves the original module path. Consequently, a compiled
module can be moved to another filesystem, where the module name resolver can resolve
inter-module references among compiled code.

When a module reference is extracted from compiled form (see module-compiled-
imports) or from syntax objects in macro expansion (see §12.2 “Syntax Object Content”),
the module reference is reported in the form of a module path index. A module path index
is a semi-interned (multiple references to the same relative module tend to use the same
module path index value, but not always) opaque value that encodes a module path (see
module-path?) and either a resolved module path or another module path index to which
it is relative.

A module path index that uses both #f for its path and base module path index represents
“self”—i.e., the module declaration that was the source of the module path index—and such
a module path index can be used as the root for a chain of module path indexes at compile
time. For example, when extracting information about an identifier’s binding within a mod-
ule, if the identifier is bound by a definition within the same module, the identifier’s source
module is reported using the “self” module path index. If the identifier is instead defined
in a module that is imported via a module path (as opposed to a literal module name), then
the identifier’s source module will be reported using a module path index that contains the

1008

required module path and the “self” module path index. A “self” module path index has a
submodule path when the module that it refers to is a submodule.

A module path index has state. When it is resolved to a resolved module path, then the
resolved module path is stored with the module path index. In particular, when a module
is loaded, its root module path index is resolved to match the module’s declaration-time
name. This resolved path is forgotten, however, in identifiers that the module contributes to
the compiled and marshaled form of other modules. The transient nature of resolved names
allows the module code to be loaded with a different resolved name than the name when it
was compiled.

Two module path index values are equal? when they have equal? path and base values
(even if they have different resolved values).

(module-path-index? v) Ñ boolean?
v : any/c

Returns #t if v is a module path index, #f otherwise.

(module-path-index-resolve mpi [load?]) Ñ resolved-module-path?
mpi : module-path-index?
load? : any/c = #f

Returns a resolved module path for the resolved module name, computing the resolved name
(and storing it in mpi) if it has not been computed before.

Resolving a module path index uses the current module name resolver (see current-
module-name-resolver). Depending on the kind of module paths encapsulated by mpi ,
the computed resolved name can depend on the value of current-load-relative-
directory or current-directory. The load? argument is propagated as the last ar-
gument to the module name resolver.

See resolve-module-path-index.

Changed in version 6.90.0.16 of package base: Added the load? optional argument.

(module-path-index-split mpi)
Ñ (or/c module-path? #f)

(or/c module-path-index? resolved-module-path? #f)
mpi : module-path-index?

Returns two values: a module path, and a base path—either a module path index, resolved
module path, or #f—to which the first path is relative.

A #f second result means that the path is relative to an unspecified directory (i.e., its res-
olution depends on the value of current-load-relative-directory and/or current-
directory).

1009

A #f for the first result implies a #f for the second result, and means that mpi represents
“self” (see above). Such a module path index may have a non-#f submodule path as reported
by module-path-index-submodule.

(module-path-index-submodule mpi)
Ñ (or/c #f (non-empty-listof symbol?))
mpi : module-path-index?

Returns a non-empty list of symbols if mpi is a “self” (see above) module path index that
refers to a submodule. The result is always #f if either result of (module-path-index-
split mpi) is non-#f.

(module-path-index-join path base [submod]) Ñ module-path-index?
path : (or/c module-path? #f)
base : (or/c module-path-index? resolved-module-path? #f)
submod : (or/c #f (non-empty-listof symbol?)) = #f

Combines path , base , and submod to create a new module path index. The path argument
can be #f only if base is also #f. The submod argument can be a list only when path and
base are both #f.

(compiled-module-expression? v) Ñ boolean?
v : any/c

Returns #t if v is a compiled module declaration, #f otherwise. See also current-
compile.

(module-compiled-name compiled-module-code)
Ñ (or/c symbol? (cons/c symbol? (non-empty-listof symbol?)))
compiled-module-code : compiled-module-expression?

(module-compiled-name compiled-module-code
name)

Ñ compiled-module-expression?
compiled-module-code : compiled-module-expression?
name : (or/c symbol? (cons/c symbol? (non-empty-listof symbol?)))

Takes a module declaration in compiled form and either gets the module’s declared name
(when name is not provided) or returns a revised module declaration with the given name .

The name is a symbol for a top-level module, or a symbol paired with a list of symbols
where the list reflects the submodule path to the module starting with the top-level module’s
declared name.

(module-compiled-submodules compiled-module-code
non-star?)

Ñ (listof compiled-module-expression?)

1010

compiled-module-code : compiled-module-expression?
non-star? : any/c

(module-compiled-submodules compiled-module-code
non-star?
submodules)

Ñ compiled-module-expression?
compiled-module-code : compiled-module-expression?
non-star? : any/c
submodules : (listof compiled-module-expression?)

Takes a module declaration in compiled form and either gets the module’s submodules (when
submodules is not provided) or returns a revised module declaration with the given sub-
modules . The non-star? argument determines whether the result or new submodule list
corresponds to module declarations (when non-star? is true) or module* declarations
(when non-star? is #f).

(module-compiled-imports compiled-module-code)
Ñ (listof (cons/c (or/c exact-integer? #f)

(listof module-path-index?)))
compiled-module-code : compiled-module-expression?

Takes a module declaration in compiled form and returns an association list mapping phase
level shifts (where #f corresponds to a shift into the label phase level) to module references
for the module’s explicit imports.

(module-compiled-exports compiled-module-code)
Ñ (listof (cons/c (or/c exact-integer? #f) list?))

(listof (cons/c (or/c exact-integer? #f) list?))
compiled-module-code : compiled-module-expression?

Returns two association lists mapping phase level values (where #f corresponds to the label
phase level) to exports at the corresponding phase. The first association list is for exported
variables, and the second is for exported syntax. Beware however, that value bindings re-
exported though a rename transformer are in the syntax list instead of the value list.

Each associated list, which is represented by list? in the result contracts above, more
precisely matches the contract

(listof (list/c symbol?
(listof
(or/c module-path-index?

(list/c module-path-index?
(or/c exact-integer? #f)
symbol?
(or/c exact-integer? #f))))))

1011

For each element of the list, the leading symbol is the name of the export.

The second part—the list of module path index values, etc.—describes the origin of the
exported identifier. If the origin list is null, then the exported identifier is defined in the
module. If the exported identifier is re-exported, instead, then the origin list provides infor-
mation on the import that was re-exported. The origin list has more than one element if the
binding was imported multiple times from (possibly) different sources.

For each origin, a module path index by itself means that the binding was imported with
a phase level shift of 0 (i.e., a plain require without for-meta, for-syntax, etc.), and
imported identifier has the same name as the re-exported name. An origin represented with
a list indicates explicitly the import, the import phase level shift (where #f corresponds to a
for-label import), the import name of the re-exported binding, and the phase level of the
import.}

(module-compiled-indirect-exports compiled-module-code)
Ñ (listof (cons/c exact-integer? (listof symbol?)))
compiled-module-code : compiled-module-expression?

Returns an association list mapping phase level values to symbols that represent variables
within the module. These definitions are not directly accessible from source, but they are
accessible from bytecode, and the order of the symbols in each list corresponds to an order
for bytecode access.

Added in version 6.5.0.5 of package base.

(module-compiled-language-info compiled-module-code)
Ñ (or/c #f (vector/c module-path? symbol? any/c))
compiled-module-code : compiled-module-expression?

See also §17.3.6
“Module-Handling
Configuration” in
The Racket Guide.

Returns information intended to reflect the “language” of the module’s implementation as
originally attached to the syntax of the module’s declaration though the 'module-language
syntax property. See also module.

If no information is available for the module, the result is #f. Otherwise, the result is
(vector mp name val) such that ((dynamic-require mp name) val) should re-
turn function that takes two arguments. The function’s arguments are a key for reflected
information and a default value. Acceptable keys and the interpretation of results is up to
external tools, such as DrRacket. If no information is available for a given key, the result
should be the given default value.

See also module->language-info and racket/language-info.

(module-compiled-cross-phase-persistent? compiled-module-code)
Ñ boolean?
compiled-module-code : compiled-module-expression?

1012

Return #t if compiled-module-code represents a cross-phase persistent module, #f oth-
erwise.

14.4.3 Dynamic Module Access

(dynamic-require mod provided [fail-thunk]) Ñ (or/c void? any/c)
mod : (or/c module-path?

resolved-module-path?
module-path-index?)

provided : (or/c symbol? #f 0 void?)
fail-thunk : (-> any) = (lambda ())

Because
dynamic-require
is a procedure,
giving a plain
S-expression for
mod the same way
as you would for a
require
expression likely
won’t give you
expected results.
What you need
instead is something
that evaluates to an
S-expression; using
quote is one way
to do it.

Dynamically instantiates the module specified by mod in the current namespace’s registry at
the namespace’s base phase, if it is not yet instantiated. The current module name resolver
may load a module declaration to resolve mod (see current-module-name-resolver);
the path is resolved relative to current-load-relative-directory and/or current-
directory.

If provided is #f, then the result is #<void>, and the module is not visited (see §1.2.3.9
“Module Expansion, Phases, and Visits”) or even made available (for on-demand visits) in
phases above the base phase.

Examples:

> (module a racket/base (displayln "hello"))
> (dynamic-require ''a #f)
hello

The double quoted
''a evaluates to the
root-module-path
'a (see the
grammar for
require). Using
'a or a for mod
won’t work because
the former evaluates
to
root-module-path
a which fails since
the example is not a
module installed in
a collection, the
latter is an
undefined variable.

When provided is a symbol, the value of the module’s export with the given name is
returned, and still the module is not visited or made available in higher phases.

Examples:

> (module b racket/base
(provide dessert)
(define dessert "gulab jamun"))

> (dynamic-require ''b 'dessert)
"gulab jamun"

If the module exports provided as syntax, then a use of the binding is expanded and evalu-
ated in a fresh namespace to which the module is attached, which means that the module is
visited in the fresh namespace. The expanded syntax must return a single value.

Examples:

1013

> (module c racket/base
(require (for-syntax racket/base))
(provide dessert2)
(define dessert "nanaimo bar")
(define-syntax dessert2
(make-rename-transformer #'dessert)))

> (dynamic-require ''c 'dessert2)
"nanaimo bar"

If the module has no such exported variable or syntax, then fail-thunk is called; the de-
fault fail-thunk raises exn:fail:contract. If the variable named by provided is ex-
ported protected (see §14.10 “Code Inspectors”), then the exn:fail:contract exception
is raised.

If provided is 0, then the module is instantiated but not visited, the same as when pro-
vided is #f. With 0, however, the module is made available in higher phases.

If provided is #<void>, then the module is visited but not instantiated (see §1.2.3.9 “Mod-
ule Expansion, Phases, and Visits”), and the result is #<void>.

More examples using different module-path grammar expressions are given below:

Example:

> (dynamic-require 'racket/base #f)

Example:

> (dynamic-require (list 'lib "racket/base") #f)

Examples:

> (module a racket/base
(module b racket/base
(provide inner-dessert)
(define inner-dessert "tiramisu")))

> (dynamic-require '(submod 'a b) 'inner-dessert)
"tiramisu"

The last line in the above example could instead have been written as

Example:

> (dynamic-require ((lambda () (list 'submod ''a 'b))) 'inner-
dessert)
"tiramisu"

1014

which is equivalent.

(dynamic-require-for-syntax mod
provided

[fail-thunk]) Ñ any
mod : module-path?
provided : (or/c symbol? #f)
fail-thunk : (-> any) = (lambda ())

Like dynamic-require, but in a phase that is 1 more than the namespace’s base phase.

(module-declared? mod [load?]) Ñ boolean?
mod : (or/c module-path? module-path-index?

resolved-module-path?)
load? : any/c = #f

Returns #t if the module indicated by mod is declared (but not necessarily instantiated or
visited) in the current namespace, #f otherwise.

If load? is #t and mod is not a resolved module path, the module is loaded in the process of
resolving mod (as for dynamic-require and other functions). Checking for the declaration
of a submodule does not trigger an exception if the submodule cannot be loaded because it
does not exist, either within a root module that does exist or because the root module does
not exist.

(module->language-info mod [load?])
Ñ (or/c #f (vector/c module-path? symbol? any/c))
mod : (or/c module-path? module-path-index?

resolved-module-path?)
load? : any/c = #f

Returns information intended to reflect the “language” of the implementation of mod . If
mod is a resolved module path or load? is #f, the module named by mod must be declared
(but not necessarily instantiated or visited) in the current namespace; otherwise, mod may
be loaded (as for dynamic-require and other functions). The information returned by
module->language-info is the same as would have been returned by module-compiled-
language-info applied to the module’s implementation as compiled code.

A module can be declared by using dynamic-require.

Examples:

> (dynamic-require 'racket/dict (void))
> (module->language-info 'racket/dict)
#f

1015

(module->imports mod)
Ñ (listof (cons/c (or/c exact-integer? #f)

(listof module-path-index?)))
mod : (or/c module-path? module-path-index?

resolved-module-path?)

Like module-compiled-imports, but produces the imports of mod , which must be de-
clared (but not necessarily instantiated or visited) in the current namespace. See module-
>language-info for an example of declaring an existing module.

Examples:

> (module banana racket/base
(require (only-in racket/math pi))
(provide peel)
(define peel pi)
(define bush (* 2 pi)))

> (module->imports ''banana)
'((0 #<module-path-index:racket/base> #<module-path-
index:racket/math>))

(module->exports mod)
Ñ (listof (cons/c (or/c exact-integer? #f) list?))

(listof (cons/c (or/c exact-integer? #f) list?))
mod : (or/c module-path? resolved-module-path?)

Like module-compiled-exports, but produces the exports of mod , which must be de-
clared (but not necessarily instantiated or visited) in the current namespace. See module-
>language-info for an example of declaring an existing module.

Examples:

> (module banana racket/base
(require (only-in racket/math pi))
(provide peel)
(define peel pi)
(define bush (* 2 pi)))

> (module->exports ''banana)
'((0 (peel ())))
'()

(module->indirect-exports mod)
Ñ (listof (cons/c exact-integer? (listof symbol?)))
mod : (or/c module-path? resolved-module-path?)

1016

Like module-compiled-indirect-exports, but produces the exports of mod , which
must be declared (but not necessarily instantiated or visited) in the current namespace. See
module->language-info for an example of declaring an existing module.

Examples:

> (module banana racket/base
(require (only-in racket/math pi))
(provide peel)
(define peel pi)
(define bush (* 2 pi)))

> (module->indirect-exports ''banana)
'((0 bush))

Added in version 6.5.0.5 of package base.

(module-predefined? mod) Ñ boolean?
mod : (or/c module-path? resolved-module-path?)

Reports whether mod refers to a module that is predefined for the running Racket instance.
Predefined modules always have a symbolic resolved module path, and they may be prede-
fined always or specifically within a particular executable (such as one created by raco exe
or create-embedding-executable).

14.5 Impersonators and Chaperones

An impersonator is a wrapper for a value where the wrapper redirects some of the value’s
operations. Impersonators apply only to procedures, structures for which an accessor or
mutator is available, structure types, hash tables, vectors, boxes, channels, and prompt tags.
An impersonator is equal? to the original value, but not eq? to the original value.

A chaperone is a kind of impersonator whose refinement of a value’s operation is restricted
to side effects (including, in particular, raising an exception) or chaperoning values supplied
to or produced by the operation. For example, a vector chaperone can redirect vector-ref
to raise an exception if the accessed vector slot contains a string, or it can cause the result of
vector-ref to be a chaperoned variant of the value that is in the accessed vector slot, but it
cannot redirect vector-ref to produce a value that is arbitrarily different from the value in
the vector slot.

A non-chaperone impersonator, in contrast, can refine an operation to swap one value for any
other. An impersonator cannot be applied to an immutable value or refine the access to an
immutable field in an instance of a structure type, since arbitrary redirection of an operation
amounts to mutation of the impersonated value.

1017

Beware that each of the following operations can be redirected to an arbitrary procedure
through an impersonator on the operation’s argument—assuming that the operation is avail-
able to the creator of the impersonator:

• a structure-field accessor

• a structure-field mutator

• a structure type property accessor

• application of a procedure

• unbox

• set-box!

• vector-ref

• vector-set!

• hash-ref

• hash-set

• hash-set!

• hash-remove

• hash-remove!

• channel-get

• channel-put

• call-with-continuation-prompt

• abort-current-continuation

Derived operations, such as printing a value, can be redirected through impersonators due to
their use of accessor functions. The equal?, equal-hash-code, and equal-secondary-
hash-code operations, in contrast, may bypass impersonators (but they are not obliged to).

In addition to redirecting operations that work on a value, a impersonator can include im-
personator properties for an impersonated value. An impersonator property is similar to a
structure type property, but it applies to impersonators instead of structure types and their
instances.

(impersonator? v) Ñ boolean?
v : any/c

1018

Returns #t if v is an impersonator created by procedures like impersonate-procedure or
impersonate-struct, #f otherwise.

Programs and libraries generally should avoid impersonator? and treat impersonators the
same as non-impersonator values. In rare cases, impersonator? may be needed to guard
against redirection by an impersonator of an operation to an arbitrary procedure.

A limitation of impersonator? is that it does not recognize an impersonator that is created
by instantiating a structure type with the prop:impersonator-of property. The limitation
reflects how those impersonators cannot redirect structure access and mutation operations to
arbitrary procedures.

(chaperone? v) Ñ boolean?
v : any/c

Returns #t if v is a chaperone, #f otherwise.

Programs and libraries generally should avoid chaperone? for the same reason that they
should avoid impersonator?. A true value for chaperone? implies a true value of
impersonator?.

(impersonator-of? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Indicates whether v1 can be considered equivalent modulo impersonators to v2 .

Any two values that are eq? to one another are also impersonator-of?. For values that
include no impersonators, v1 and v2 are considered impersonators of each other if they are
equal?.

If at least one of v1 or v2 is an impersonator:

• If v1 impersonates v1* then (impersonator-of? v1 v2) is #t if and only if
(impersonator-of? v1* v2) is #t.

• If v2 is a non-interposing impersonator that impersonates v2* , i.e., all of its inter-
position procedures are #f, then (impersonator-of? v1 v2) is #t if and only if
(impersonator-of? v1 v2*) is #t.

• When v2 is an impersonator constructed with at least one non-#f interposition proce-
dure, but v1 is not an impersonator then (impersonator-of? v1 v2) is #f.

Otherwise, if neither v1 or v2 is an impersonator, but either of them contains an imper-
sonator as a subpart (e.g., v1 is a list with an impersonator as one of its elements), then

1019

(impersonator-of? v1 v2) proceeds by comparing v1 and v2 recursively (as with
equal?), returning true if all subparts are impersonator-of?.

Examples:

> (impersonator-of? (impersonate-procedure add1 (λ (x) x))
add1)

#t
> (impersonator-of? (impersonate-procedure add1 (λ (x) x))

sub1)
#f
> (impersonator-of? (impersonate-procedure

(impersonate-procedure add1 (λ (x) x)) (λ (x) x))
add1)

#t
> (impersonator-of? (impersonate-procedure add1 (λ (x) x))

(impersonate-procedure add1 #f))
#t
> (impersonator-of? (impersonate-procedure add1 (λ (x) x))

(impersonate-procedure add1 (λ (x) x)))
#f
> (impersonator-of? (list 1 2)

(list 1 2))
#t
> (impersonator-of? (list (impersonate-procedure add1 (λ (x) x)) sub1)

(list add1 sub1))
#t

(chaperone-of? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

Indicates whether v1 can be considered equivalent modulo chaperones to v2 .

For values that include no chaperones or other impersonators, v1 and v2 can be considered
chaperones of each other if they are equal?, except that corresponding mutable vectors,
boxes, strings, byte strings, and mutable structures within v1 and v2 must be eq?.

Otherwise, chaperones and other impersonators within v2 must be intact within v1 analo-
gous to way that impersonator-of? requires that impersonators are preserved. Further-
more, v1 must not have any non-chaperone impersonators whose corresponding value in v2
is not the same impersonator. Note that chaperone-of? implies impersonator-of?, but
not vice-versa.

(impersonator-ephemeron v) Ñ ephemeron?
v : any/c

1020

Produces an ephemeron that can be used to connect the reachability of v (in the sense of
garbage collection; see §1.1.7 “Garbage Collection”) with the reachability of any value for
which v is an impersonator. That is, the value v will be considered reachable as long as the
result ephemeron is reachable in addition to any value that v impersonates (including itself).

(procedure-impersonator*? v) Ñ boolean?
v : any/c

Returns #t for any procedure impersonator that either was produced by impersonate-
procedure* or chaperone-procedure*, or is an impersonator/chaperone of a value that
was created with impersonate-procedure* or chaperone-procedure* (possibly tran-
sitively).

14.5.1 Impersonator Constructors

(impersonate-procedure proc
wrapper-proc
prop
prop-val ...
...)

Ñ (and/c procedure? impersonator?)
proc : procedure?
wrapper-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

Returns an impersonator procedure that has the same arity, name, and other attributes as
proc . When the impersonator procedure is applied, the arguments are first passed to
wrapper-proc (when it is not #f), and then the results from wrapper-proc are passed
to proc . The wrapper-proc can also supply a procedure that processes the results of
proc .

The arity of wrapper-proc must include the arity of proc . The allowed keyword argu-
ments of wrapper-proc must be a superset of the allowed keywords of proc . The required
keyword arguments of wrapper-proc must be a subset of the required keywords of proc .

For applications without keywords, the result of wrapper-proc must be at least the same
number of values as supplied to it. Additional results can be supplied—before the values
that correspond to the supplied values—in the following pattern:

• An optional procedure, result-wrapper-proc , which will be applied to the results
of proc ; followed by

• any number of repetitions of 'mark key val (i.e., three values), where the call proc
is wrapped to install a continuation mark key and val .

1021

If result-wrapper-proc is produced, it must be a procedure that accepts as many results
as produced by proc ; it must return the same number of results. If result-wrapper-proc
is not supplied, then proc is called in tail position with respect to the call to the impersonator.

For applications that include keyword arguments, wrapper-proc must return an additional
value before any other values but after result-wrapper-proc and 'mark key val se-
quences (if any). The additional value must be a list of replacements for the keyword argu-
ments that were supplied to the impersonator (i.e., not counting optional arguments that were
not supplied). The arguments must be ordered according to the sorted order of the supplied
arguments’ keywords.

If wrapper is #f, then applying the resulting impersonator is the same as applying proc . If
wrapper is #f and no prop is provided, then proc is returned and is not impersonated.

Pairs of prop and prop-val (the number of arguments to procedure-impersonator
must be even) add impersonator properties or override impersonator-property values of
proc .

If any prop is impersonator-prop:application-mark and if the associated prop-val
is a pair, then the call to proc is wrapped with with-continuation-mark using (car
prop-val) as the mark key and (cdr prop-val) as the mark value. In addition, if the
immediate continuation frame of the call to the impersonated procedure includes a value for
(car prop-val)—that is, if call-with-immediate-continuation-mark would pro-
duce a value for (car prop-val) in the call’s continuation—then the value is also installed
as an immediate value for (car prop-val) as a mark during the call to wrapper-proc
(which allows tail-calls of impersonators with respect to wrapping impersonators to be de-
tected within wrapper-proc).

Changed in version 6.3.0.5 of package base: Added support for 'mark key val results from wrapper-proc .

Examples:

> (define (add15 x) (+ x 15))
> (define add15+print

(impersonate-procedure add15
(λ (x)
(printf "called with „s\n" x)
(values (λ (res)

(printf "returned
„s\n" res)

res)
x))))

> (add15 27)
42
> (add15+print 27)
called with 27
returned 42

1022

42
> (define-values (imp-prop:p1 imp-prop:p1? imp-prop:p1-get)

(make-impersonator-property 'imp-prop:p1))
> (define-values (imp-prop:p2 imp-prop:p2? imp-prop:p2-get)

(make-impersonator-property 'imp-prop:p2))
> (define add15.2 (impersonate-procedure add15 #f imp-prop:p1 11))
> (add15.2 2)
17
> (imp-prop:p1? add15.2)
#t
> (imp-prop:p1-get add15.2)
11
> (imp-prop:p2? add15.2)
#f
> (define add15.3 (impersonate-procedure add15.2 #f imp-
prop:p2 13))
> (add15.3 3)
18
> (imp-prop:p1? add15.3)
#t
> (imp-prop:p1-get add15.3)
11
> (imp-prop:p2? add15.3)
#t
> (imp-prop:p2-get add15.3)
13
> (define add15.4 (impersonate-procedure add15.3 #f imp-
prop:p1 101))
> (add15.4 4)
19
> (imp-prop:p1? add15.4)
#t
> (imp-prop:p1-get add15.4)
101
> (imp-prop:p2? add15.4)
#t
> (imp-prop:p2-get add15.4)
13

(impersonate-procedure* proc
wrapper-proc
prop
prop-val ...
...)

Ñ (and/c procedure? impersonator?)
proc : procedure?

1023

wrapper-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

Like impersonate-procedure, except that wrapper-proc receives an additional argu-
ment before all other arguments. The additional argument is the procedure orig-proc that
was originally applied.

If the result of impersonate-procedure* is applied directly, then orig-proc is that re-
sult. If the result is further impersonated before being applied, however, orig-proc is the
further impersonator.

An orig-proc argument might be useful so that wrapper-proc can extract impersonator
properties that are overridden by further impersonators, for example.

Added in version 6.1.1.5 of package base.

(impersonate-struct v
[struct-type]
orig-proc
redirect-proc ...
...
prop
prop-val ...
...) Ñ any/c

v : any/c
struct-type : struct-type? = unspecified
orig-proc : (or/c struct-accessor-procedure?

struct-mutator-procedure?
struct-type-property-accessor-procedure?)

redirect-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

Returns an impersonator of v , which redirects certain operations on the impersonated value.
The orig-procs indicate the operations to redirect, and the corresponding redirect-
procs supply the redirections. The optional struct-type argument, when provided, acts
as a witness for the representation of v , which must be an instance of struct-type .

The protocol for a redirect-proc depends on the corresponding orig-proc , where self
refers to the value to which orig-proc is originally applied:

• A structure-field accessor: redirect-proc must accept two arguments, self and
the value field-v that orig-proc produces for v ; it must return a replacement
for field-v . The corresponding field must not be immutable, and either the field’s

1024

structure type must be accessible via the current inspector or one of the other orig-
procs must be a structure-field mutator for the same field.

• A structure-field mutator: redirect-proc must accept two arguments, self and the
value field-v supplied to the mutator; it must return a replacement for field-v to
be propagated to orig-proc and v .

• A property accessor: redirect-proc uses the same protocol as for a structure-field
accessor. The accessor’s property must have been created with 'can-impersonate
as the second argument to make-struct-type-property.

When a redirect-proc is #f, the corresponding orig-proc is unaffected. Supplying
#f for a redirect-proc is useful to allow its orig-proc to act as a “witness” of v ’s
representation and enable the addition of props.

Pairs of prop and prop-val (the number of arguments to impersonate-struct must be
odd) add impersonator properties or override impersonator-property values of v .

Each orig-proc must indicate a distinct operation. If no struct-type and no orig-
procs are supplied, then no props must be supplied. If orig-procs are supplied only with
#f redirect-procs and no props are supplied, then v is returned and is not impersonated.

If any orig-proc is itself an impersonator, then a use of the accessor or mutator that orig-
proc impersonates is redirected for the resulting impersonated structure to use orig-proc
on v before redirect-proc (in the case of accessor) or after redirect-proc (in the case
of a mutator).

Changed in version 6.1.1.2 of package base: Changed first argument to an accessor or mutator redirect-proc
from v to self .
Changed in version 6.1.1.8: Added optional struct-type argument.

(impersonate-vector vec
ref-proc
set-proc
prop
prop-val ...
...)

Ñ (and/c vector? impersonator?)
vec : (and/c vector? (not/c immutable?))
ref-proc : (or/c (vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
set-proc : (or/c (vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
prop : impersonator-property?
prop-val : any

Returns an impersonator of vec , which redirects the vector-ref and vector-set! oper-
ations.

1025

The ref-proc and set-proc arguments must either both be procedures or both be #f. If
they are #f then impersonate-vector does not interpose on vec , but still allows attaching
impersonator properties.

If ref-proc is a procedure it must accept vec , an index passed to vector-ref, and the
value that vector-ref on vec produces for the given index; it must produce a replacement
for the value, which is the result of vector-ref on the impersonator.

If set-proc is a procedure it must accept vec , an index passed to vector-set!, and the
value passed to vector-set!; it must produce a replacement for the value, which is used
with vector-set! on the original vec to install the value.

Pairs of prop and prop-val (the number of arguments to impersonate-vector must be
odd) add impersonator properties or override impersonator-property values of vec .

Changed in version 6.9.0.2 of package base: Added non-interposing vector impersonators.

(impersonate-vector* vec
ref-proc
set-proc
prop
prop-val ...
...)

Ñ (and/c vector? impersonator?)
vec : (and/c vector? (not/c immutable?))
ref-proc : (or/c (vector? vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
set-proc : (or/c (vector? vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
prop : impersonator-property?
prop-val : any

Like impersonate-vector, except that ref-proc and set-proc each receive an addi-
tional vector as argument before other arguments. The additional argument is the original
impersonated vector, access to which triggered interposition in the first place.

The additional vector argument might be useful so that ref-proc or set-proc can extract
impersonator properties that are overridden by further impersonators, for example.

Added in version 6.9.0.2 of package base.

(impersonate-box box
unbox-proc
set-proc
prop
prop-val ...
...) Ñ (and/c box? impersonator?)

box : (and/c box? (not/c immutable?))
unbox-proc : (box? any/c . -> . any/c)

1026

set-proc : (box? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Returns an impersonator of box , which redirects the unbox and set-box! operations.

The unbox-proc must accept box and the value that unbox produces on box ; it must
produce a replacement value, which is the result of unbox on the impersonator.

The set-proc must accept box and the value passed to set-box!; it must produce a re-
placement value, which is used with set-box! on the original box to install the value.

Pairs of prop and prop-val (the number of arguments to impersonate-box must be odd)
add impersonator properties or override impersonator-property values of box .

(impersonate-hash hash
ref-proc
set-proc
remove-proc
key-proc

[clear-proc
equal-key-proc]
prop
prop-val ...
...) Ñ (and/c hash? impersonator?)

hash : (and/c hash? (not/c immutable?))
ref-proc : (hash? any/c . -> . (values

any/c
(hash? any/c any/c . -> . any/c)))

set-proc : (hash? any/c any/c . -> . (values any/c any/c))
remove-proc : (hash? any/c . -> . any/c)
key-proc : (hash? any/c . -> . any/c)
clear-proc : (or/c #f (hash? . -> . any)) = #f
equal-key-proc : (or/c #f (hash? any/c . -> . any/c)) = #f
prop : impersonator-property?
prop-val : any

Returns an impersonator of hash , which redirects the hash-ref, hash-set! or hash-set
(as applicable), hash-remove or hash-remove! (as applicable), hash-clear or hash-
clear! (as applicable and if clear-proc is not #f) operations. When hash-set, hash-
remove or hash-clear is used on an impersonator of a hash table, the result is an imper-
sonator with the same redirecting procedures. In addition, operations like hash-iterate-
key or hash-map, which extract keys from the table, use key-proc to replace keys ex-
tracted from the table. Operations like hash-iterate-value or hash-values implicitly
use hash-ref and therefore redirect through ref-proc .

1027

The ref-proc must accept hash and a key passed to hash-ref. It must return a replace-
ment key as well as a procedure. The returned procedure is called only if the returned
key is found in hash via hash-ref, in which case the procedure is called with hash , the
previously returned key, and the found value. The returned procedure must itself return a
replacement for the found value.

The set-proc must accept hash , a key passed to hash-set! or hash-set, and the value
passed to hash-set! or hash-set; it must produce two values: a replacement for the key
and a replacement for the value. The returned key and value are used with hash-set! or
hash-set on the original hash to install the value.

The remove-proc must accept hash and a key passed to hash-remove! or hash-remove;
it must produce a replacement for the key, which is used with hash-remove! or hash-
remove on the original hash to remove any mapping using the (impersonator-replaced) key.

The key-proc must accept hash and a key that has been extracted from hash (by hash-
iterate-key or other operations that use hash-iterate-key internally); it must produce
a replacement for the key, which is then reported as a key extracted from the table.

If clear-proc is not #f, it must accept hash as an argument, and its result is ignored. The
fact that clear-proc returns (as opposed to raising an exception or otherwise escaping)
grants the capability to remove all keys from hash . If clear-proc is #f, then hash-
clear or hash-clear! on the impersonator is implemented using hash-iterate-key
and hash-remove or hash-remove!.

If equal-key-proc is not #f, it effectively interposes on calls to equal?, equal-hash-
code, and equal-secondary-hash-code for the keys of hash . The equal-key-proc
must accept as its arguments hash and a key that is either mapped by hash or passed to
hash-ref, etc., where the latter has potentially been adjusted by the corresponding ref-
proc , etc. The result is a value that is passed to equal?, equal-hash-code, and equal-
secondary-hash-code as needed to hash and compare keys. In the case of hash-set! or
hash-set, the key that is passed to equal-key-proc is the one stored in the hash table for
future lookup.

The hash-iterate-value, hash-map, or hash-for-each functions use a combination of
hash-iterate-key and hash-ref. If a key produced by key-proc does not yield a value
through hash-ref, then the exn:fail:contract exception is raised.

Pairs of prop and prop-val (the number of arguments to impersonate-hash must be
odd) add impersonator properties or override impersonator-property values of hash .

In the case of an immutable hash table, two impersonated hash tables count as “the same
value” (for purposes of impersonator-of?) when their redirection procedures were origi-
nally attached to a hash table by the same call to impersonate-hash or chaperone-hash
(and potentially propagated by hash-set, hash-remove, or hash-clear), as long as the
content of the first hash table is impersonator-of? of the second hash table.

1028

Changed in version 6.3.0.11 of package base: Added the equal-key-proc argument.

(impersonate-channel channel
get-proc
put-proc
prop
prop-val ...
...)

Ñ (and/c channel? impersonator?)
channel : channel?
get-proc : (channel? . -> . (values channel? (any/c . -> . any/c)))
put-proc : (channel? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Returns an impersonator of channel , which redirects the channel-get and channel-put
operations.

The get-proc generator is called on channel-get or any other operation that fetches
results from the channel (such as a sync on the channel). The get-proc must return two
values: a channel that is an impersonator of channel , and a procedure that is used to check
the channel’s contents.

The put-proc must accept channel and the value passed to channel-put; it must pro-
duce a replacement value, which is used with channel-put on the original channel to
send the value over the channel.

Pairs of prop and prop-val (the number of arguments to impersonate-channel must be
odd) add impersonator properties or override impersonator-property values of channel .

(impersonate-prompt-tag prompt-tag
handle-proc
abort-proc

[cc-guard-proc
callcc-impersonate-proc]
prop
prop-val ...
...)

Ñ (and/c continuation-prompt-tag? impersonator?)
prompt-tag : continuation-prompt-tag?
handle-proc : procedure?
abort-proc : procedure?
cc-guard-proc : procedure? = values
callcc-impersonate-proc : (procedure? . -> . procedure?)

= (lambda (p) p)
prop : impersonator-property?
prop-val : any

1029

Returns an impersonator of prompt-tag , which redirects the call-with-continuation-
prompt and abort-current-continuation operations.

The handle-proc must accept the values that the handler of a continuation prompt would
take and it must produce replacement values, which will be passed to the handler.

The abort-proc must accept the values passed to abort-current-continuation; it
must produce replacement values, which are aborted to the appropriate prompt.

The cc-guard-proc must accept the values produced by call-with-continuation-
prompt in the case that a non-composable continuation is applied to replace the continuation
that is delimited by the prompt, but only if abort-current-continuation is not later used
to abort the continuation delimited by the prompt (in which case abort-proc is used).

The callcc-impersonate-proc must accept a procedure that guards the result of a con-
tinuation captured by call-with-current-continuation with the impersonated prompt
tag. The callcc-impersonate-proc is applied (under a continuation barrier) when the
captured continuation is applied to refine a guard function (initially values) that is specific
to the delimiting prompt; this prompt-specific guard is ultimately composed with any cc-
guard-proc that is in effect at the delimiting prompt, and it is not used in the same case
that a cc-guard-proc is not used (i.e., when abort-current-continuation is used to
abort to the prompt). In the special case where the delimiting prompt at application time
is a thread’s built-in initial prompt, callcc-impersonate-proc is ignored (partly on the
grounds that the initial prompt’s result is ignored).

Pairs of prop and prop-val (the number of arguments to impersonate-prompt-tag
must be odd) add impersonator properties or override impersonator-property values of
prompt-tag .

Examples:

> (define tag
(impersonate-prompt-tag
(make-continuation-prompt-tag)
(lambda (n) (* n 2))
(lambda (n) (+ n 1))))

> (call-with-continuation-prompt
(lambda ()
(abort-current-continuation tag 5))

tag
(lambda (n) n))

12

1030

(impersonate-continuation-mark-key key
get-proc
set-proc
prop
prop-val ...
...)

Ñ (and/c continuation-mark? impersonator?)
key : continuation-mark-key?
get-proc : procedure?
set-proc : procedure?
prop : impersonator-property?
prop-val : any

Returns an impersonator of key , which redirects with-continuation-mark and continu-
ation mark accessors such as continuation-mark-set->list.

The get-proc must accept the value attached to a continuation mark and it must produce a
replacement value, which will be returned by the continuation mark accessor.

The set-proc must accept a value passed to with-continuation-mark; it must produce
a replacement value, which is attached to the continuation frame.

Pairs of prop and prop-val (the number of arguments to impersonate-prompt-tag
must be odd) add impersonator properties or override impersonator-property values of key .

Examples:

> (define mark-key
(impersonate-continuation-mark-key
(make-continuation-mark-key)
(lambda (l) (map char-upcase l))
(lambda (s) (string->list s))))

> (with-continuation-mark mark-key "quiche"
(continuation-mark-set-first
(current-continuation-marks)
mark-key))

'(#\Q #\U #\I #\C #\H #\E)

prop:impersonator-of : struct-type-property?

A structure type property (see §5.3 “Structure Type Properties”) that supplies a procedure
for extracting an impersonated value from a structure that represents an impersonator. The
property is used for impersonator-of? as well as equal?.

The property value must be a procedure of one argument, which is a structure whose struc-
ture type has the property. The result can be #f to indicate the structure does not represent an

1031

impersonator, otherwise the result is a value for which the original structure is an imperson-
ator (so the original structure is an impersonator-of? and equal? to the result value). The
result value must have the same prop:impersonator-of and prop:equal+hash prop-
erty values as the original structure, if any, and the property values must be inherited from
the same structure type (which ensures some consistency between impersonator-of? and
equal?).

Impersonator property predicates and accessors applied to a structure with the
prop:impersonator-of property first check for the property on the immediate structure,
and if it is not found, the value produced by the prop:impersonator-of procedure is
checked (recursively).

Changed in version 6.1.1.8 of package base: Made impersonator property predicates and accessors sensitive to
prop:impersonator-of.

prop:authentic : struct-type-property?

A structure type property that declares a structure type as authentic. The value associated
with the property is ignored; the presence of the property itself makes the structure type
authentic.

Instances of an authentic structure type cannot be impersonated via impersonate-struct
or chaperoned via chaperone-struct. As a consequence, an instance of an authentic
structure type can be given a contract (see struct/c) only if it is a flat contract.

Declaring a structure type as authentic can prevent unwanted structure impersonation, but
exposed structure types normally should support impersonators or chaperones to facilitate
contracts. Declaring a structure type as authentic can also slightly improve the performance
of structure predicates, selectors, and mutators, which can be appropriate for data structures
that are private and frequently used within a library.

Added in version 6.9.0.4 of package base.

14.5.2 Chaperone Constructors

(chaperone-procedure proc
wrapper-proc
prop
prop-val ...
...)

Ñ (and/c procedure? chaperone?)
proc : procedure?
wrapper-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

1032

Like impersonate-procedure, but for each value supplied to wrapper-proc , the corre-
sponding result must be the same or a chaperone of (in the sense of chaperone-of?) the
supplied value. The additional result, if any, that precedes the chaperoned values must be a
procedure that accepts as many results as produced by proc ; it must return the same number
of results, each of which is the same or a chaperone of the corresponding original result.

For applications that include keyword arguments, wrapper-proc must return an additional
value before any other values but after the result-chaperoning procedure (if any). The ad-
ditional value must be a list of chaperones of the keyword arguments that were supplied
to the chaperone procedure (i.e., not counting optional arguments that were not supplied).
The arguments must be ordered according to the sorted order of the supplied arguments’
keywords.

(chaperone-procedure* proc
wrapper-proc
prop
prop-val ...
...)

Ñ (and/c procedure? chaperone?)
proc : procedure?
wrapper-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

Like chaperone-procedure, but wrapper-proc receives an extra argument as with
impersonate-procedure*.

Added in version 6.1.1.5 of package base.

(chaperone-struct v
[struct-type]
orig-proc
redirect-proc ...
...
prop
prop-val ...
...) Ñ any/c

v : any/c
struct-type : struct-type? = unspecified
orig-proc : (or/c struct-accessor-procedure?

struct-mutator-procedure?
struct-type-property-accessor-procedure?
(one-of/c struct-info))

redirect-proc : (or/c procedure? #f)
prop : impersonator-property?
prop-val : any

1033

Like impersonate-struct, but with the following refinements, where self refers to the
value to which a orig-proc is originally applied:

• With a structure-field accessor as orig-proc , redirect-proc must accept two ar-
guments, self and the value field-v that orig-proc produces for v ; it must return
a chaperone of field-v . The corresponding field may be immutable.

• With structure-field mutator as orig-proc , redirect-proc must accept two argu-
ments, self and the value field-v supplied to the mutator; it must return a chaper-
one of field-v to be propagated to orig-proc and v .

• A property accessor can be supplied as orig-proc , and the property need not have
been created with 'can-impersonate. The corresponding redirect-proc uses the
same protocol as for a structure-field accessor.

• With struct-info as orig-proc , the corresponding redirect-proc must accept
two values, which are the results of struct-info on v ; it must return each values
or a chaperone of each value. The redirect-proc is not called if struct-info
would return #f as its first argument. An orig-proc can be struct-info only if
struct-type or some other orig-proc is supplied.

• Any accessor or mutator orig-proc that is an impersonator must be specifically a
chaperone.

Supplying a property accessor for orig-proc enables prop arguments, the same as sup-
plying an accessor, mutator, or structure type.

Changed in version 6.1.1.2 of package base: Changed first argument to an accessor or mutator redirect-proc
from v to self .
Changed in version 6.1.1.8: Added optional struct-type argument.

(chaperone-vector vec
ref-proc
set-proc
prop
prop-val ...
...) Ñ (and/c vector? chaperone?)

vec : vector?
ref-proc : (or/c (vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
set-proc : (or/c (vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
prop : impersonator-property?
prop-val : any

Like impersonate-vector, but with support for immutable vectors. The ref-proc pro-
cedure must produce the same value or a chaperone of the original value, and set-proc
must produce the value that is given or a chaperone of the value. The set-proc will not be
used if vec is immutable.

1034

(chaperone-vector* vec
ref-proc
set-proc
prop
prop-val ...
...) Ñ (and/c vector? chaperone?)

vec : (and/c vector? (not/c immutable?))
ref-proc : (or/c (vector? vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
set-proc : (or/c (vector? vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
prop : impersonator-property?
prop-val : any

Like chaperone-vector, but ref-proc and set-proc receive an extra argument as with
impersonate-vector*.

Added in version 6.9.0.2 of package base.

(chaperone-box box
unbox-proc
set-proc
prop
prop-val ...
...) Ñ (and/c box? chaperone?)

box : box?
unbox-proc : (box? any/c . -> . any/c)
set-proc : (box? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Like impersonate-box, but with support for immutable boxes. The unbox-proc proce-
dure must produce the same value or a chaperone of the original value, and set-proc must
produce the same value or a chaperone of the value that it is given. The set-proc will not
be used if box is immutable.

(chaperone-hash hash
ref-proc
set-proc
remove-proc
key-proc

[clear-proc
equal-key-proc]
prop
prop-val ...
...) Ñ (and/c hash? chaperone?)

hash : hash?

1035

ref-proc : (hash? any/c . -> . (values
any/c
(hash? any/c any/c . -> . any/c)))

set-proc : (hash? any/c any/c . -> . (values any/c any/c))
remove-proc : (hash? any/c . -> . any/c)
key-proc : (hash? any/c . -> . any/c)
clear-proc : (or/c #f (hash? . -> . any)) = #f
equal-key-proc : (or/c #f (hash? any/c . -> . any/c)) = #f
prop : impersonator-property?
prop-val : any

Like impersonate-hash, but with constraints on the given functions and support for im-
mutable hashes. The ref-proc procedure must return a found value or a chaperone of the
value. The set-proc procedure must produce two values: the key that it is given or a chap-
erone of the key and the value that it is given or a chaperone of the value. The remove-proc ,
key-proc , and equal-key-proc procedures must produce the given key or a chaperone
of the key.

Changed in version 6.3.0.11 of package base: Added the equal-key-proc argument.

(chaperone-struct-type struct-type
struct-info-proc
make-constructor-proc
guard-proc
prop
prop-val ...
...)

Ñ (and/c struct-type? chaperone?)
struct-type : struct-type?
struct-info-proc : procedure?
make-constructor-proc : (procedure? . -> . procedure?)
guard-proc : procedure?
prop : impersonator-property?
prop-val : any

Returns a chaperoned value like struct-type , but with struct-type-info and struct-
type-make-constructor operations on the chaperoned structure type redirected. In ad-
dition, when a new structure type is created as a subtype of the chaperoned structure type,
guard-proc is interposed as an extra guard on creation of instances of the subtype.

The struct-info-proc must accept 8 arguments—the result of struct-type-info on
struct-type . It must return 8 values, where each is the same or a chaperone of the cor-
responding argument. The 8 values are used as the results of struct-type-info for the
chaperoned structure type.

The make-constructor-proc must accept a single procedure argument, which is a con-

1036

structor produced by struct-type-make-constructor on struct-type . It must return
the same or a chaperone of the procedure, which is used as the result of struct-type-
make-constructor on the chaperoned structure type.

The guard-proc is like a guard argument to make-struct-type: it must accept one
more argument than a constructor for struct-type , where the last argument is the name
the name of the instantiated structure type. It must return the number of values needed by
the constructor (i.e. one value for each argument but the last), and each returned value must
be the same as or a chaperone of the corresponding argument. The guard-proc is added as
a constructor guard when a subtype is created of the chaperoned structure type.

Pairs of prop and prop-val (the number of arguments to chaperone-struct-type must
be even) add impersonator properties or override impersonator-property values of struct-
type .

(chaperone-evt evt proc prop prop-val)
Ñ (and/c evt? chaperone?)
evt : evt?
proc : (evt? . -> . (values evt? (any/c . -> . any/c)))
prop : impersonator-property?
prop-val : any

Returns a chaperoned value like evt , but with proc as an event generator when the result is
synchronized with functions like sync.

The proc generator is called on synchronization, much like the procedure passed to guard-
evt, except that proc is given evt . The proc must return two values: a synchronizable
event that is a chaperone of evt , and a procedure that is used to check the event’s result if it
is chosen in a selection. The latter procedure accepts the result of evt , and it must return a
chaperone of that value.

Pairs of prop and prop-val (the number of arguments to chaperone-evt must be even)
add impersonator properties or override impersonator-property values of evt .

(chaperone-channel channel
get-proc
put-proc
prop
prop-val ...
...) Ñ (and/c channel? chaperone?)

channel : channel?
get-proc : (channel? . -> . (values channel? (any/c . -> . any/c)))
put-proc : (channel? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any

Like impersonate-channel, but with restrictions on the get-proc and put-proc proce-

1037

dures.

The get-proc must return two values: a channel that is a chaperone of channel , and a
procedure that is used to check the channel’s contents. The latter procedure must return the
original value or a chaperone of that value.

The put-proc must produce a replacement value that is either the original value communi-
cated on the channel or a chaperone of that value.

Pairs of prop and prop-val (the number of arguments to chaperone-channel must be
odd) add impersonator properties or override impersonator-property values of channel .

(chaperone-prompt-tag prompt-tag
handle-proc
abort-proc

[cc-guard-proc
callcc-chaperone-proc]
prop
prop-val ...
...)

Ñ (and/c continuation-prompt-tag? chaperone?)
prompt-tag : continuation-prompt-tag?
handle-proc : procedure?
abort-proc : procedure?
cc-guard-proc : procedure? = values
callcc-chaperone-proc : (procedure? . -> . procedure?)

= (lambda (p) p)
prop : impersonator-property?
prop-val : any

Like impersonate-prompt-tag, but produces a chaperoned value. The handle-proc
procedure must produce the same values or chaperones of the original values, abort-proc
must produce the same values or chaperones of the values that it is given, and cc-guard-
proc must produce the same values or chaperones of the original result values, and callcc-
chaperone-proc must produce a procedure that is a chaperone or the same as the given
procedure.

Examples:

> (define bad-chaperone
(chaperone-prompt-tag
(make-continuation-prompt-tag)
(lambda (n) (* n 2))
(lambda (n) (+ n 1))))

> (call-with-continuation-prompt
(lambda ()
(abort-current-continuation bad-chaperone 5))

1038

bad-chaperone
(lambda (n) n))

abort-current-continuation: non-chaperone result;
received a value that is not a chaperone of the original

value
original: 5
received: 6

> (define good-chaperone
(chaperone-prompt-tag
(make-continuation-prompt-tag)
(lambda (n) (if (even? n) n (error "not even")))
(lambda (n) (if (even? n) n (error "not even")))))

> (call-with-continuation-prompt
(lambda ()
(abort-current-continuation good-chaperone 2))

good-chaperone
(lambda (n) n))

2

(chaperone-continuation-mark-key key
get-proc
set-proc
prop
prop-val ...
...)

Ñ (and/c continuation-mark-key? chaperone?)
key : continuation-mark-key?
get-proc : procedure?
set-proc : procedure?
prop : impersonator-property?
prop-val : any

Like impersonate-continuation-mark-key, but produces a chaperoned value. The
get-proc procedure must produce the same value or a chaperone of the original value,
and set-proc must produce the same value or a chaperone of the value that it is given.

Examples:

> (define bad-chaperone
(chaperone-continuation-mark-key
(make-continuation-mark-key)
(lambda (l) (map char-upcase l))
string->list))

> (with-continuation-mark bad-chaperone "timballo"
(continuation-mark-set-first
(current-continuation-marks)

1039

bad-chaperone))
with-continuation-mark: non-chaperone result;

received a value that is not a chaperone of the original
value

original: "timballo"
received: '(#zt #zi #zm #zb #za #zl #zl #zo)

> (define (checker s)
(if (> (string-length s) 5)

s
(error "expected string of length at least 5")))

> (define good-chaperone
(chaperone-continuation-mark-key
(make-continuation-mark-key)
checker
checker))

> (with-continuation-mark good-chaperone "zabaione"
(continuation-mark-set-first
(current-continuation-marks)
good-chaperone))

"zabaione"

14.5.3 Impersonator Properties

(make-impersonator-property name)
Ñ impersonator-property?

(-> any/c boolean?)
(->* (impersonator?) (any/c) any)

name : symbol?

Creates a new impersonator property and returns three values:

• an impersonator property descriptor, for use with impersonate-procedure,
chaperone-procedure, and other impersonator constructors;

• an impersonator property predicate procedure, which takes an arbitrary value and
returns #t if the value is an impersonator with a value for the property, #f otherwise;

• an impersonator property accessor procedure, which returns the value associated with
an impersonator for the property; if a value given to the accessor is not an impersonator
or does not have a value for the property (i.e. if the corresponding impersonator prop-
erty predicate returns #f), then a second optional argument to the selector determines
its response: the exn:fail:contract exception is raised if a second argument is not
provided, the second argument is tail-called with zero arguments if it is a procedure,
and the second argument is returned otherwise.

1040

(impersonator-property? v) Ñ boolean?
v : any/c

Returns #t if v is a impersonator property descriptor value, #f otherwise.

(impersonator-property-accessor-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is an accessor procedure produced by make-impersonator-property, #f
otherwise.

impersonator-prop:application-mark : impersonator-property?

An impersonator property that is recognized by impersonate-procedure and
chaperone-procedure.

14.6 Security Guards

(security-guard? v) Ñ boolean?
v : any/c

Returns #t if v is a security guard value as created by make-security-guard, #f other-
wise.

A security guard provides a set of access-checking procedures to be called when a thread
initiates access of a file, directory, or network connection through a primitive procedure.
For example, when a thread calls open-input-file, the thread’s current security guard is
consulted to check whether the thread is allowed read access to the file. If access is granted,
the thread receives a port that it may use indefinitely, regardless of changes to the security
guard (although the port’s custodian could shut down the port; see §14.7 “Custodians”).

A thread’s current security guard is determined by the current-security-guard parame-
ter. Every security guard has a parent, and a parent’s access procedures are called whenever
a child’s access procedures are called. Thus, a thread cannot increase its own access arbi-
trarily by installing a new guard. The initial security guard enforces no access restrictions
other than those enforced by the host platform.

(make-security-guard parent
file-guard
network-guard

[link-guard]) Ñ security-guard?
parent : security-guard?

1041

file-guard : (symbol?
(or/c path? #f)
(listof symbol?)
. -> . any)

network-guard : (symbol?
(or/c (and/c string? immutable?) #f)
(or/c (integer-in 1 65535) #f)
(or/c 'server 'client)
. -> . any)

link-guard : (or/c (symbol? path? path? . -> . any) #f) = #f

Creates a new security guard as child of parent .

The file-guard procedure must accept three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful
for raising an exception to deny access.

• a path (see §15.1 “Paths”) or #f for pathless queries, such as (current-directory),
(filesystem-root-list), and (find-system-path symbol). A path provided
to file-guard is not expanded or otherwise normalized before checking access; it
may be a relative path, for example.

• a list containing one or more of the following symbols:

– 'read — read a file or directory

– 'write — modify or create a file or directory

– 'execute — execute a file

– 'delete — delete a file or directory

– 'exists — determine whether a file or directory exists, or that a path string is
well-formed

The 'exists symbol is never combined with other symbols in the last argument to
file-guard , but any other combination is possible. When the second argument to
file-guard is #f, the last argument always contains only 'exists.

The network-guard procedure must accept four arguments:

• a symbol for the primitive operation that triggered the access check, which is useful
for raising an exception to deny access.

• an immutable string representing the target hostname for a client connection or the
accepting hostname for a listening server; #f for a listening server or UDP socket that
accepts connections at all of the host’s address; or #f an unbound UDP socket.

1042

• an exact integer between 1 and 65535 (inclusive) representing the port number, or #f
for an unbound UDP socket. In the case of a client connection, the port number is
the target port on the server. For a listening server, the port number is the local port
number.

• a symbol, either 'client or 'server, indicating whether the check is for the creation
of a client connection or a listening server. The opening of an unbound UDP socket
is identified as a 'client connection; explicitly binding the socket is identified as a
'server action.

The link-guard argument can be #f or a procedure of three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful
for raising an exception to deny access.

• a complete path (see §15.1 “Paths”) representing the file to create as link.

• a path representing the content of the link, which may be relative the second-argument
path; this path is not expanded or otherwise normalized before checking access.

If link-guard is #f, then a default procedure is used that always raises exn:fail.

The return value of file-guard , network-guard , or link-guard is ignored. To deny
access, the procedure must raise an exception or otherwise escape from the context of the
primitive call. If the procedure returns, the parent’s corresponding procedure is called on the
same inputs, and so on up the chain of security guards.

The file-guard , network-guard , and link-guard procedures are invoked in the thread
that called the access-checked primitive. Breaks may or may not be enabled (see §10.6
“Breaks”). Full continuation jumps are blocked going into or out of the file-guard or
network-guard call (see §1.1.12 “Prompts, Delimited Continuations, and Barriers”).

(current-security-guard) Ñ security-guard?
(current-security-guard guard) Ñ void?

guard : security-guard?

A parameter that determines the current security guard that controls access to the filesystem
and network.

14.7 Custodians

See §1.1.16 “Custodians” for basic information on the Racket custodian model.

(custodian? v) Ñ boolean?
v : any/c

1043

Returns #t if v is a custodian value, #f otherwise.

(make-custodian [cust]) Ñ custodian?
cust : (and/c custodian? (not/c custodian-shut-down?))

= (current-custodian)

Creates a new custodian that is subordinate to cust . When cust is directed (via
custodian-shutdown-all) to shut down all of its managed values, the new subordinate
custodian is automatically directed to shut down its managed values as well.

(custodian-shutdown-all cust) Ñ void?
cust : custodian?

In
racket/gui/base,
eventspaces
managed by cust
are also shut down.

Closes all file-stream ports, TCP ports, TCP listeners, and UDP sockets that are managed by
cust (and its subordinates), and empties all custodian boxes associated with cust (and its
subordinates). It also removes cust (and its subordinates) as managers of all threads; when
a thread has no managers, it is killed (or suspended; see thread/suspend-to-kill) If the
current thread is to be killed, all other shut-down actions take place before killing the thread.

If cust is already shut down, then custodian-shutdown-all has no effect. When a
custodian is shut down and it has subordinate custodians, the subordinates are not only shut
down, they no longer count as subordinates.

(custodian-shut-down? cust) Ñ boolean?
cust : custodian?

Returns #t if cust has been shut down with custodian-shutdown-all or if it was a
subordinate of a custodian that is shut down, #f otherwise.

Added in version 6.11.0.5 of package base.

(current-custodian) Ñ custodian?
(current-custodian cust) Ñ void?

cust : custodian?
Custodians also
manage eventspaces
from
racket/gui/base.

A parameter that determines a custodian that assumes responsibility for newly created
threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, and byte converters.

(custodian-managed-list cust super) Ñ list?
cust : custodian?
super : custodian?

Returns a list of immediately managed objects (not including custodian boxes) and subordi-
nate custodians for cust , where cust is itself subordinate to super (directly or indirectly).
If cust is not strictly subordinate to super , the exn:fail:contract exception is raised.

If cust has been shut down, the result is '(). If cust was a subordinate of a custodian that
was shut down, then it cannot be a subordinate of super .

1044

(custodian-memory-accounting-available?) Ñ boolean?
Memory accounting
is normally
available in Racket
3m, which is the
main variant of
Racket, and not
normally available
in Racket CGC.

Returns #t if Racket is compiled with support for per-custodian memory accounting, #f
otherwise.

(custodian-require-memory limit-cust
need-amt
stop-cust) Ñ void?

limit-cust : custodian?
need-amt : exact-nonnegative-integer?
stop-cust : custodian?

Registers a required-memory check if Racket is compiled with support for per-custodian
memory accounting, otherwise the exn:fail:unsupported exception is raised.

If a check is registered, and if Racket later reaches a state after garbage collection (see §1.1.7
“Garbage Collection”) where allocating need-amt bytes charged to limit-cust would fail
or trigger some shutdown, then stop-cust is shut down.

The stop-cust must be a subordinate custodian of limit-cust .

(custodian-limit-memory limit-cust
limit-amt

[stop-cust]) Ñ void?
limit-cust : custodian?
limit-amt : exact-nonnegative-integer?
stop-cust : custodian? = limit-cust

Registers a limited-memory check if Racket is compiled with support for per-custodian
memory accounting, otherwise the exn:fail:unsupported exception is raised.

If a check is registered, and if Racket later reaches a state after garbage collection (see §1.1.7
“Garbage Collection”) where limit-cust owns more than limit-amt bytes, then stop-
cust is shut down. A custodian’s limit

is checked only
after a garbage
collection, except
that it may also be
checked during
certain large
allocations that are
individually larger
than the custodian’s
limit. A single
garbage collection
may shut down
multiple custodians,
even if shutting
down only one of
the custodians
would have reduced
memory use for
other custodians.

For reliable shutdown, limit-amt for custodian-limit-memory must be much lower
than the total amount of memory available (minus the size of memory that is potentially
used and not charged to limit-cust). Moreover, if individual allocations that are ini-
tially charged to limit-cust can be arbitrarily large, then stop-cust must be the same
as limit-cust , so that excessively large immediate allocations can be rejected with an
exn:fail:out-of-memory exception.

(make-custodian-box cust v) Ñ custodian-box?
cust : custodian?
v : any/c

1045

Returns a custodian box that contains v as long as cust has not been shut down. If cust is
already shut down, the custodian box’s value is immediately removed.

A custodian box is a synchronizable event (see §11.2.1 “Events”). The custodian box be-
comes ready when its custodian is shut down; the synchronization result of a custodian box
is the custodian box itself.

(custodian-box? v) Ñ boolean?
v : any/c

Returns #t if v is a custodian box produced by make-custodian-box, #f otherwise.

(custodian-box-value cb) Ñ any
cb : custodian-box?

Returns the value in the given custodian box, or #f if the value has been removed.

14.8 Thread Groups

A thread group is a collection of threads and other thread groups that have equal claim to
the CPU. By nesting thread groups and by creating certain threads within certain groups,
a programmer can control the amount of CPU allocated to a set of threads. Every thread
belongs to a thread group, which is determined by the current-thread-group parameter
when the thread is created. Thread groups and custodians (see §14.7 “Custodians”) are
independent.

The root thread group receives all of the CPU that the operating system gives Racket. Every
thread or nested group in a particular thread group receives equal allocation of the CPU (a
portion of the group’s access), although a thread may relinquish part of its allocation by
sleeping or synchronizing with other processes.

(make-thread-group [group]) Ñ thread-group?
group : thread-group? = (current-thread-group)

Creates a new thread group that belongs to group .

(thread-group? v) Ñ boolean?
v : any/c

Returns #t if v is a thread group value, #f otherwise.

(current-thread-group) Ñ thread-group?
(current-thread-group group) Ñ void?

group : thread-group?

A parameter that determines the thread group for newly created threads.

1046

14.9 Structure Inspectors

An inspector provides access to structure fields and structure type information without the
normal field accessors and mutators. (Inspectors are also used to control access to mod-
ule bindings; see §14.10 “Code Inspectors”.) Inspectors are primarily intended for use by
debuggers.

When a structure type is created, an inspector can be supplied. The given inspector is not the
one that will control the new structure type; instead, the given inspector’s parent will control
the type. By using the parent of the given inspector, the structure type remains opaque to
“peer” code that cannot access the parent inspector.

The current-inspector parameter determines a default inspector argument for new struc-
ture types. An alternate inspector can be provided though the #:inspector option of the
define-struct form (see §5.1 “Defining Structure Types: struct”), or through an op-
tional inspector argument to make-struct-type.

(inspector? v) Ñ boolean?
v : any/c

Returns #t if v is an inspector, #f otherwise.

(make-inspector [inspector]) Ñ inspector?
inspector : inspector? = (current-inspector)

Returns a new inspector that is a subinspector of inspector . Any structure type controlled
by the new inspector is also controlled by its ancestor inspectors, but no other inspectors.

(make-sibling-inspector [inspector]) Ñ inspector?
inspector : inspector? = (current-inspector)

Returns a new inspector that is a subinspector of the same inspector as inspector . That is,
inspector and the result inspector control mutually disjoint sets of structure types.

(inspector-superior? inspector
maybe-subinspector) Ñ boolean?

inspector : inspector?
maybe-subinspector : inspector?

Returns #t if inspector is an ancestor of maybe-subinspector (and not equal to maybe-
subinspector), #f otherwise.

Added in version 6.5.0.6 of package base.

(current-inspector) Ñ inspector?
(current-inspector insp) Ñ void?

insp : inspector?

1047

A parameter that determines the default inspector for newly created structure types.

(struct-info v) Ñ (or/c struct-type? #f) boolean?
v : any/c

Returns two values:

• struct-type : a structure type descriptor or #f; the result is a structure type descrip-
tor of the most specific type for which v is an instance, and for which the current
inspector has control, or the result is #f if the current inspector does not control any
structure type for which the struct is an instance.

• skipped?: #f if the first result corresponds to the most specific structure type of v ,
#t otherwise.

(struct-type-info struct-type)
Ñ symbol?

exact-nonnegative-integer?
exact-nonnegative-integer?
struct-accessor-procedure?
struct-mutator-procedure?
(listof exact-nonnegative-integer?)
(or/c struct-type? #f)
boolean?

struct-type : struct-type?

Returns eight values that provide information about the structure type descriptor struct-
type , assuming that the type is controlled by the current inspector:

• name : the structure type’s name as a symbol;

• init-field-cnt : the number of fields defined by the structure type provided to the
constructor procedure (not counting fields created by its ancestor types);

• auto-field-cnt : the number of fields defined by the structure type without a coun-
terpart in the constructor procedure (not counting fields created by its ancestor types);

• accessor-proc : an accessor procedure for the structure type, like the one returned
by make-struct-type;

• mutator-proc : a mutator procedure for the structure type, like the one returned by
make-struct-type;

• immutable-k-list : an immutable list of exact non-negative integers that corre-
spond to immutable fields for the structure type;

1048

• super-type : a structure type descriptor for the most specific ancestor of the type that
is controlled by the current inspector, or #f if no ancestor is controlled by the current
inspector;

• skipped?: #f if the seventh result is the most specific ancestor type or if the type has
no supertype, #t otherwise.

If the type for struct-type is not controlled by the current inspector, the
exn:fail:contract exception is raised.

(struct-type-make-constructor struct-type
[constructor-name])

Ñ struct-constructor-procedure?
struct-type : struct-type?
constructor-name : (or/c symbol? #f) = #f

Returns a constructor procedure to create instances of the type for struct-type . If
constructor-name is not #f, it is used as the name of the generated constructor pro-
cedure. If the type for struct-type is not controlled by the current inspector, the
exn:fail:contract exception is raised.

(struct-type-make-predicate struct-type) Ñ any
struct-type : any/c

Returns a predicate procedure to recognize instances of the type for struct-type . If the
type for struct-type is not controlled by the current inspector, the exn:fail:contract
exception is raised.

(object-name v) Ñ any
v : any/c

Returns a value for the name of v if v has a name, #f otherwise. The argument v can be
any value, but only (some) procedures, structures, structure types, structure type properties,
regexp values, ports, and loggers have names. See also §1.2.6 “Inferred Value Names”.

The name (if any) of a procedure is always a symbol. The procedure-rename function
creates a procedure with a specific name.

If a structure’s type implements the prop:object-name property, and the value of the
prop:object-name property is an integer, then the corresponding field of the structure
is the name of the structure. Otherwise, the property value must be a procedure, which is
called with the structure as argument, and the result is the name of the structure. If a struc-
ture is a procedure as implemented by one of its fields (i.e., the prop:procedure property
value for the structure’s type is an integer), then its name is the implementing procedure’s
name. Otherwise, its name matches the name of the structure type that it instantiates.

1049

The name of a regexp value is a string or byte string. Passing the string or byte string
to regexp, byte-regexp, pregexp, or byte-pregexp (depending on the kind of regexp
whose name was extracted) produces a value that matches the same inputs.

The name of a port can be any value, but many tools use a path or string name as the port’s
for (to report source locations, for example).

The name of a logger is either a symbol or #f.

prop:object-name : struct-type-property?

A structure type property that allows structure types to customize the result of object-name
applied to their instances. The property value can be any of the following:

• A procedure proc of one argument: In this case, procedure proc receives the struc-
ture as an argument, and the result of proc is the object-name of the structure.

• An exact, non-negative integer between 0 (inclusive) and the number of non-automatic
fields in the structure type (exclusive, not counting supertype fields): The integer iden-
tifies a field in the structure, and the field must be designated as immutable. The value
of the field is used as the object-name of the structure.

Added in version 6.2 of package base.

14.10 Code Inspectors

In the same way that inspectors control access to structure fields (see §14.9 “Structure In-
spectors”), inspectors also control access to module bindings. Inspectors used this way
are code inspectors. The default code inspector for module bindings is determined by the
current-code-inspector parameter, instead of the current-inspector parameter.

When a module declaration is evaluated, the value of the current-code-inspector pa-
rameter is associated with the module declaration. When the module is invoked via re-
quire or dynamic-require, a sub-inspector of the module’s declaration-time inspector is
created, and this sub-inspector is associated with the module invocation. Any inspector that
controls the sub-inspector (including the declaration-time inspector and its superior) con-
trols the module invocation. In particular, if the value of current-code-inspector never
changes, then no control is lost for any module invocation, since the module’s invocation is
associated with a sub-inspector of current-code-inspector.

When an inspector that controls a module invocation is installed current-code-
inspector, it enables the following module->namespace on the module, and it enables
access to the module’s protected exports (i.e., those identifiers exported from the module
with protect-out) via dynamic-require.

1050

When a module form is expanded or a namespace is created, the value of current-code-
inspector is associated with the module or namespace’s top-level lexical information. Syn-
tax objects with that lexical information gain access to the protected and unexported bindings
of any module that the inspector controls. In the case of a module, the inspector sticks with
such syntax objects even the syntax object is used in the expansion of code in a less pow-
erful context; furthermore, if the syntax object is an identifier that is compiled as a variable
reference, the inspector sticks with the variable reference even if it appears in a module form
that is evaluated (i.e., declared) with a weaker inspector. When a syntax object or variable
reference is within compiled code that is printed (see §1.4.16 “Printing Compiled Code”),
the associated inspector is not preserved.

When compiled code in printed form is read back in, no inspectors are associated with
the code. When the code is evaluated, the instantiated syntax-object literals and module-
variable references acquire value of current-code-inspector as their inspector.

When a module instantiation is attached to multiple namespaces, each with its own module
registry, the inspector for the module invocation can be registry-specific. The invocation in-
spector in a particular module registry can be changed via namespace-unprotect-module
(but changing the inspector requires control over the old one).

(current-code-inspector) Ñ inspector?
(current-code-inspector insp) Ñ void?

insp : inspector?

A parameter that determines an inspector to control access to module bindings and redefini-
tions.

If the code inspector is changed from its original value, then bytecode loaded by the default
compiled-load handler is marked as non-runnable.

14.11 Plumbers

A plumber supports flush callbacks, which are normally triggered just before a Racket pro-
cess or place exits. For example, a flush callback might flush an output port’s buffer. Flush callbacks are

roughly analogous
to the standard C
library’s atexit,
but flush callback
can also be used in
other, similar
scenarios.

There is no guarantee that a flush callback will be called before a process terminates—either
because the plumber is not the original plumber that is flushed by the default exit handler, or
because the process is terminated forcibly (e.g., through a custodian shutdown).

(plumber? v) Ñ boolean?
v : any/c

Returns #t if v is a plumber value, #f otherwise.

Added in version 6.0.1.8 of package base.

1051

(make-plumber) Ñ plumber?

Creates a new plumber.

Plumbers have no hierarchy (unlike custodians or inspectors), but a flush callback can be
registered in one plumber to call plumber-flush-all with another plumber.

Added in version 6.0.1.8 of package base.

(current-plumber) Ñ plumber?
(current-plumber plumber) Ñ void?

plumber : plumber?

A parameter that determines a current plumber for flush callbacks. For example, creating an
output file stream port registers a flush callback with the current plumber to flush the port as
long as the port is opened.

Added in version 6.0.1.8 of package base.

(plumber-flush-all plumber) Ñ void?
plumber : plumber?

Calls all flush callbacks that are registered with plumber .

The flush callbacks to call are collected from plumber before the first one is called. If a
flush callback registers a new flush callback, the new one is not called. If a flush callback
raises an exception or otherwise escapes, then the remaining flush callbacks are not called.

Added in version 6.0.1.8 of package base.

(plumber-flush-handle? v) Ñ boolean?
v : any/c

Returns #t if v is a flush handle represents the registration of a flush callback, #f otherwise.

Added in version 6.0.1.8 of package base.

(plumber-add-flush! plumber proc [weak?]) Ñ plumber-flush-handle?
plumber : plumber?
proc : (plumber-flush-handle? . -> . any)
weak? : any/c = #f

Registers proc as a flush callback with plumber , so that proc is called when plumber-
flush-all is applied to plumber .

1052

The result flush handle represents the registration of the callback, and it can be used with
plumber-flush-handle-remove! to unregister the callback.

The given proc is reachable from the flush handle, but if weak? is true, then plumber
retains only a weak reference to the result flush handle (and thus proc).

When proc is called as a flush callback, it is passed the same value that is returned by
plumber-add-flush! so that proc can conveniently unregister itself. The call of proc is
within a continuation barrier.

Added in version 6.0.1.8 of package base.

(plumber-flush-handle-remove! handle) Ñ void?
handle : plumber-flush-handle?

Unregisters the flush callback that was registered by the plumber-add-flush! call that
produced handle .

If the registration represented by handle has been removed already, then plumber-flush-
handle-remove! has no effect.

Added in version 6.0.1.8 of package base.

14.12 Sandboxed Evaluation

(require racket/sandbox) package: sandbox-lib

The bindings documented in this section are provided by the racket/sandbox library, not
racket/base or racket.

The racket/sandbox module provides utilities for creating “sandboxed” evaluators, which
are configured in a particular way and can have restricted resources (memory and time),
filesystem and network access, and much more. Sandboxed evaluators can be configured
through numerous parameters — and the defaults are set for the common use case where
sandboxes are very limited.

(make-evaluator language
input-program ...

[#:requires requires
#:allow-for-require allow-for-require
#:allow-for-load allow-for-load
#:allow-read allow-read])

Ñ (any/c . -> . any)
language : (or/c module-path?

(list/c 'special symbol?)
(cons/c 'begin list?))

1053

https://pkgs.racket-lang.org/package/sandbox-lib

input-program : any/c
requires : (listof (or/c module-path? path-string?

(cons/c 'for-syntax (listof module-path?))))
= null

allow-for-require : (listof (or/c module-path? path?)) = null
allow-for-load : (listof path-string?) = null
allow-read : (listof (or/c module-path? path-string?)) = null

(make-module-evaluator module-decl
[#:language lang
#:allow-for-require allow-for-require
#:allow-for-load allow-for-load
#:allow-read allow-read])

Ñ (any/c . -> . any)
module-decl : (or/c syntax? pair? path? input-port? string? bytes?)
lang : (or/c #f module-path?) = #f
allow-for-require : (listof (or/c module-path? path?)) = null
allow-for-load : (listof path-string?) = null
allow-read : (listof (or/c module-path? path-string?)) = null

The make-evaluator function creates an evaluator with a language and requires spec-
ification, and starts evaluating the given input-programs. The make-module-evaluator
function creates an evaluator that works in the context of a given module. The result in either
case is a function for further evaluation.

The returned evaluator operates in an isolated and limited environment. In particular, filesys-
tem access is restricted, which may interfere with using modules from the filesystem that are
not in a collection. See below for information on the allow-for-require , allow-for-
load , and allow-read arguments. When language is a module path or when requires
is provided, the indicated modules are implicitly included in the allow-for-require list.
(For backward compatibility, non-module-path? path strings are allowed in requires ;
they are implicitly converted to paths before addition to allow-for-require .)

Each input-program or module-decl argument provides a program in one of the follow-
ing forms:

• an input port used to read the program;

• a string or a byte string holding the complete input;

• a path that names a file holding the input; or

• an S-expression or a syntax object, which is evaluated as with eval (see also get-
uncovered-expressions).

In the first three cases above, the program is read using sandbox-reader, with line-
counting enabled for sensible error messages, and with 'program as the source (used for

1054

testing coverage). In the last case, the input is expected to be the complete program, and is
converted to a syntax object (using 'program as the source), unless it already is a syntax
object.

The returned evaluator function accepts additional expressions (each time it is called) in
essentially the same form: a string or byte string holding a sequence of expressions, a path
for a file holding expressions, an S-expression, or a syntax object. If the evaluator receives
an eof value, it is terminated and raises errors thereafter. See also kill-evaluator, which
terminates the evaluator without raising an exception.

For make-evaluator, multiple input-programs are effectively concatenated to form a
single program. The way that the input-programs are evaluated depends on the language
argument:

• The language argument can be a module path (i.e., a datum that matches the grammar
for module-path of require).

In this case, the input-programs are automatically wrapped in a module, and the
resulting evaluator works within the resulting module’s namespace.

• The language argument can be a list starting with 'special, which indicates
a built-in language with special input configuration. The possible values are
'(special r5rs) or a value indicating a teaching language: '(special begin-
ner), '(special beginner-abbr), '(special intermediate), '(special
intermediate-lambda), or '(special advanced).

In this case, the input-programs are automatically wrapped in a module, and the re-
sulting evaluator works within the resulting module’s namespace. In addition, certain
parameters (such as such as read-accept-infix-dot) are set to customize reading
programs from strings and ports.

This option is provided mainly for older test systems. Using make-module-
evaluator with input starting with #lang is generally better.

• Finally, language can be a list whose first element is 'begin.

In this case, a new namespace is created using sandbox-namespace-specs, which
by default creates a new namespace using sandbox-make-namespace (which,
in turn, uses make-base-namespace or make-gui-namespace depending on
sandbox-gui-available and gui-available?).

In the new namespace, language is evaluated as an expression to further initialize the
namespace.

The requires list adds additional imports to the module or namespace for the input-
programs, even in the case that require is not made available through the language .

The following examples illustrate the difference between an evaluator that puts the program
in a module and one that merely initializes a top-level namespace:

1055

> (define base-module-eval
; a module cannot have free variables...
(make-evaluator 'racket/base '(define (f) later)))

program:1:0: later: unbound identifier
in: later

> (define base-module-eval
(make-evaluator 'racket/base '(define (f) later)

'(define later 5)))
> (base-module-eval '(f))
5
> (define base-top-eval

; non-module code can have free variables:
(make-evaluator '(begin) '(define (f) later)))

> (base-top-eval '(+ 1 2))
3
> (base-top-eval '(define later 5))
> (base-top-eval '(f))
5

The make-module-evaluator function is essentially a restriction of make-evaluator,
where the program must be a module, and all imports are part of the program. In some cases
it is useful to restrict the program to be a module using a specific module in its language
position — use the optional lang argument to specify such a restriction (the default, #f,
means no restriction is enforced). When the program is specified as a path, then the path is
implicitly added to the allow-for-load list.

(define base-module-eval2
; equivalent to base-module-eval:
(make-module-evaluator '(module m racket/base

(define (f) later)
(define later 5))))

The make-module-evaluator function can be convenient for testing module files: pass in
a path value for the file name, and you get back an evaluator in the module’s context which
you can use with your favorite test facility.

In all cases, the evaluator operates in an isolated and limited environment:

• It uses a new custodian and namespace. When gui-available? and sandbox-gui-
available produce true, it is also runs in its own eventspace.

• The evaluator works under the sandbox-security-guard, which restricts file sys-
tem and network access.

• The evaluator is contained in a memory-restricted environment, and each evaluation
is wrapped in a call-with-limits (when memory accounting is available); see also
sandbox-memory-limit, sandbox-eval-limits and set-eval-limits.

1056

Note that these limits apply to the creation of the sandbox environment too — so, for ex-
ample, if the memory that is required to create the sandbox is higher than the limit, then
make-evaluator will fail with a memory limit exception.

The allow-for-require and allow-for-load arguments adjust filesystem permissions
to extend the set of files that are usable by the evaluator. Modules that are in a collection
are automatically accessible, but the allow-for-require argument lists additional mod-
ules that can be required along with their imports (transitively) through a filesystem path.
The allow-for-load argument similarly lists files that can be loaded. (The precise per-
missions needed for require versus load can differ.) The allow-read argument is for
backward compatibility, only; each module-path? element of allow-read is effectively
moved to allow-for-require , while other elements are moved to allow-for-load .

The sandboxed environment is well isolated, and the evaluator function essentially sends it
an expression and waits for a result. This form of communication makes it impossible to
have nested (or concurrent) calls to a single evaluator. Usually this is not a problem, but
in some cases you can get the evaluator function available inside the sandboxed code, for
example:

> (let ([e (make-evaluator 'racket/base)])
(e `(,e 1)))

evaluator: nested evaluator call with: 1

An error will be signaled in such cases.

If the value of sandbox-propagate-exceptions is true (the default) when the sandbox is
created, then exceptions (both syntax and run-time) are propagated as usual to the caller of
the evaluation function (i.e., catch them with with-handlers). If the value of sandbox-
propagate-exceptions is #f when the sandbox is created, then uncaught exceptions in a
sandbox evaluation cause the error to be printed to the sandbox’s error port, and the caller of
the evaluation receives #<void>.

Finally, the fact that a sandboxed evaluator accept syntax objects makes it usable as the value
for current-eval, which means that you can easily start a sandboxed read-eval-print-loop:

(define e (make-evaluator 'racket/base))
(parameterize ([current-eval e])
(read-eval-print-loop))

Note that in this code only the REPL interactions will be printed to the current output ports;
using I/O operations inside the REPL will still use the usual sandbox parameters (defaulting
to no I/O). In addition, the code works only from an existing toplevel REPL — specifically,
read-eval-print-loop reads a syntax value and gives it the lexical context of the current
namespace. Here is a variation that also allows I/O over the current input and output ports,
and works when used from a module (by using a new namespace):

(parameterize ([sandbox-input current-input-port]

1057

[sandbox-output current-output-port]
[sandbox-error-output current-error-port]
[current-namespace (make-empty-namespace)])

(parameterize ([current-eval (make-evaluator 'racket/base)])
(read-eval-print-loop)))

(exn:fail:sandbox-terminated? v) Ñ boolean?
v : any/c

(exn:fail:sandbox-terminated-reason exn) Ñ symbol?
exn : exn:fail:sandbox-terminated?

A predicate and accessor for exceptions that are raised when a sandbox is terminated. Once
a sandbox raises such an exception, it will continue to raise it on further evaluation attempts.

14.12.1 Security Considerations

Although the sandbox is designed to provide a safe environment for executing Racket pro-
grams with restricted access to system resources, executing untrusted programs in a sandbox
still carries some risk. Because a malicious program can exercise arbitrary functionality
from the Racket runtime and installed collections, an attacker who identifies a vulnerability
in Racket or an installed collection may be able to escape the sandbox.

To mitigate this risk, programs that use the sandbox should employ additional precautions
when possible. Suggested measures include:

• Supplying a custom module language to make-evaluator or make-module-
evaluator that gives untrusted code access to only the language constructs it ab-
solutely requires.

• If untrusted code needs access to installed collections, installing only the collections
required by your program.

• Using operating-system-level security features to provide defense-in-depth in case the
process running the sandbox is compromised.

• Making sure your Racket installation and installed packages are up-to-date with the
latest release.

14.12.2 Customizing Evaluators

The sandboxed evaluators that make-evaluator creates can be customized via many pa-
rameters. Most of the configuration parameters affect newly created evaluators; changing
them has no effect on already-running evaluators.

1058

The default configuration options are set for a very restricted sandboxed environment — one
that is safe to make publicly available. Further customizations might be needed in case more
privileges are needed, or if you want tighter restrictions. Another useful approach for cus-
tomizing an evaluator is to begin with a relatively unrestricted configuration and add the de-
sired restrictions. This approach is made possible by the call-with-trusted-sandbox-
configuration function.

The sandbox environment uses two notions of restricting the time that evaluations takes:
shallow time and deep time. Shallow time refers to the immediate execution of an expres-
sion. For example, a shallow time limit of five seconds would restrict (sleep 6) and other
computations that take longer than five seconds. Deep time refers to the total execution of
the expression and all threads and sub-processes that the expression creates. For example, a
deep time limit of five seconds would restrict (thread (λ () (sleep 6))), which shal-
low time would not, as well as all expressions that shallow time would restrict. By default,
most sandboxes only restrict shallow time to facilitate expressions that use threads.

(call-with-trusted-sandbox-configuration thunk) Ñ any
thunk : (-> any)

Invokes the thunk in a context where sandbox configuration parameters are set for minimal
restrictions. More specifically, there are no memory or time limits, and the existing existing
inspectors, security guard, exit handler, logger, plumber, and environment variable set are
used. (Note that the I/O ports settings are not included.)

(sandbox-init-hook) Ñ (-> any)
(sandbox-init-hook thunk) Ñ void?

thunk : (-> any)

A parameter that determines a thunk to be called for initializing a new evaluator. The hook
is called just before the program is evaluated in a newly-created evaluator context. It can be
used to setup environment parameters related to reading, writing, evaluation, and so on. Cer-
tain languages ('(special r5rs) and the teaching languages) have initializations specific
to the language; the hook is used after that initialization, so it can override settings.

(sandbox-reader) Ñ (any/c . -> . any)
(sandbox-reader proc) Ñ void?

proc : (any/c . -> . any)

A parameter that specifies a function that reads all expressions from (current-input-
port). The function is used to read program source for an evaluator when a string, byte
string, or port is supplied. The reader function receives a value to be used as input source
(i.e., the first argument to read-syntax), and it should return a list of syntax objects. The
default reader calls read-syntax, accumulating results in a list until it receives eof.

Note that the reader function is usually called as is, but when it is used to read the program
input for make-module-evaluator, read-accept-lang and read-accept-reader are
set to #t.

1059

(sandbox-input) Ñ (or/c #f
string? bytes?
input-port?
'pipe
(-> input-port?))

(sandbox-input in) Ñ void?
in : (or/c #f

string? bytes?
input-port?
'pipe
(-> input-port?))

A parameter that determines the initial current-input-port setting for a newly created
evaluator. It defaults to #f, which creates an empty port. The following other values are
allowed:

• a string or byte string, which is converted to a port using open-input-string or
open-input-bytes;

• an input port;

• the symbol 'pipe, which triggers the creation of a pipe, where put-input can return
the output end of the pipe or write directly to it;

• a thunk, which is called to obtain a port (e.g., using current-input-port means
that the evaluator input is the same as the calling context’s input).

(sandbox-output) Ñ (or/c #f
output-port?
'pipe
'bytes
'string
(-> output-port?))

(sandbox-output in) Ñ void?
in : (or/c #f

output-port?
'pipe
'bytes
'string
(-> output-port?))

A parameter that determines the initial current-output-port setting for a newly created
evaluator. It defaults to #f, which creates a port that discards all data. The following other
values are allowed:

1060

• an output port, which is used as-is;

• the symbol 'bytes, which causes get-output to return the complete output as a byte
string as long as the evaluator has not yet terminated (so that the size of the bytes can
be charged to the evaluator);

• the symbol 'string, which is similar to 'bytes, but makes get-output produce a
string;

• the symbol 'pipe, which triggers the creation of a pipe, where get-output returns
the input end of the pipe;

• a thunk, which is called to obtain a port (e.g., using current-output-port means
that the evaluator output is not diverted).

(sandbox-error-output) Ñ (or/c #f
output-port?
'pipe
'bytes
'string
(-> output-port?))

(sandbox-error-output in) Ñ void?
in : (or/c #f

output-port?
'pipe
'bytes
'string
(-> output-port?))

Like sandbox-output, but for the initial current-error-port value. An evaluator’s
error output is set after its output, so using current-output-port (the parameter itself,
not its value) for this parameter value means that the error port is the same as the evaluator’s
initial output port.

The default is (lambda () (dup-output-port (current-error-port))), which
means that the error output of the generated evaluator goes to the calling context’s error
port.

(sandbox-coverage-enabled) Ñ boolean?
(sandbox-coverage-enabled enabled?) Ñ void?

enabled? : any/c

A parameter that controls whether syntactic coverage information is collected by sandbox
evaluators. Use get-uncovered-expressions to retrieve coverage information.

The default value is #f.

1061

(sandbox-propagate-breaks) Ñ boolean?
(sandbox-propagate-breaks propagate?) Ñ void?

propagate? : any/c

When both this boolean parameter and (break-enabled) are true, breaking while an eval-
uator is running propagates the break signal to the sandboxed context. This makes the sand-
boxed evaluator break, typically, but beware that sandboxed evaluation can capture and avoid
the breaks (so if safe execution of code is your goal, make sure you use it with a time limit).
Also, beware that a break may be received after the evaluator’s result, in which case the
evaluation result is lost. Finally, beware that a break may be propagated after an evaluator
has produced a result, so that the break is visible on the next interaction with the evaluator
(or the break is lost if the evaluator is not used further). The default is #t.

(sandbox-propagate-exceptions) Ñ boolean?
(sandbox-propagate-exceptions propagate?) Ñ void?

propagate? : any/c

A parameter that controls how uncaught exceptions during a sandbox evaluation are treated.
When the parameter value is #t, then the exception is propagated to the caller of sandbox.
When the parameter value is #f, the exception message is printed to the sandbox’s error
port, and the caller of the sandbox receives #<void> for the evaluation. The default is #t.

(sandbox-namespace-specs) Ñ (cons/c (-> namespace?)
(listof module-path?))

(sandbox-namespace-specs spec) Ñ void?
spec : (cons/c (-> namespace?)

(listof module-path?))

A parameter that holds a list of values that specify how to create a namespace for evaluation
in make-evaluator or make-module-evaluator. The first item in the list is a thunk
that creates the namespace, and the rest are module paths for modules to be attached to the
created namespace using namespace-attach-module.

The default is (list sandbox-make-namespace).

The module paths are needed for sharing module instantiations between the sandbox and the
caller. For example, sandbox code that returns posn values (from the lang/posn module)
will not be recognized as such by your own code by default, since the sandbox will have its
own instance of lang/posn and thus its own struct type for posns. To be able to use such
values, include 'lang/posn in the list of module paths.

When testing code that uses a teaching language, the following piece of code can be helpful:

(sandbox-namespace-specs
(let ([specs (sandbox-namespace-specs)])

1062

`(,(car specs)
,@(cdr specs)
lang/posn
,@(if (gui-available?) '(mrlib/cache-image-snip) '()))))

(sandbox-make-namespace) Ñ namespace?

Calls make-gui-namespace when (sandbox-gui-available) produces true, make-
base-namespace otherwise.

(sandbox-gui-available) Ñ boolean?
(sandbox-gui-available avail?) Ñ void?

avail? : any/c

Determines whether the racket/gui module can be used when a sandbox evaluator is cre-
ated. If gui-available? produces #f during the creation of a sandbox evaluator, this
parameter is forced to #f during initialization of the sandbox. The default value of the pa-
rameter is #t.

Various aspects of the library change when the GUI library is available, such as using a new
eventspace for each evaluator.

(sandbox-override-collection-paths) Ñ (listof path-string?)
(sandbox-override-collection-paths paths) Ñ void?

paths : (listof path-string?)

A parameter that determines a list of collection directories to prefix current-library-
collection-paths in an evaluator. This parameter is useful for cases when you want to
test code using an alternate, test-friendly version of a collection, for example, testing code
that uses a GUI (like the htdp/world teachpack) can be done using a fake library that
provides the same interface but no actual interaction. The default is null.

(sandbox-security-guard)
Ñ (or/c security-guard? (-> security-guard?))

(sandbox-security-guard guard) Ñ void?
guard : (or/c security-guard? (-> security-guard?))

A parameter that determines the initial (current-security-guard) for sandboxed eval-
uations. It can be either a security guard, or a function to construct one. The default is a
function that restricts the access of the current security guard by forbidding all filesystem I/O
except for specifications in sandbox-path-permissions, and it uses sandbox-network-
guard for network connections.

(sandbox-path-permissions)

1063

Ñ (listof (list/c (or/c 'execute 'write 'delete
'read-bytecode 'read 'exists)

(or/c byte-regexp? bytes? string? path?)))
(sandbox-path-permissions perms) Ñ void?

perms : (listof (list/c (or/c 'execute 'write 'delete
'read-bytecode 'read 'exists)

(or/c byte-regexp? bytes? string? path?)))

A parameter that configures the behavior of the default sandbox security guard by listing
paths and access modes that are allowed for them. The contents of this parameter is a list
of specifications, each is an access mode and a byte-regexp for paths that are granted this
access.

The access mode symbol is one of: 'execute, 'write, 'delete, 'read, or 'exists.
These symbols are in decreasing order: each implies access for the following modes too
(e.g., 'read allows reading or checking for existence).

The path regexp is used to identify paths that are granted access. It can also be given as a
path (or a string or a byte string), which is (made into a complete path, cleansed, simplified,
and then) converted to a regexp that allows the path and sub-directories; e.g., "/foo/bar"
applies to "/foo/bar/baz".

An additional mode symbol, 'read-bytecode, is not part of the linear order of these modes.
Specifying this mode is similar to specifying 'read, but it is not implied by any other mode.
(For example, even if you specify 'write for a certain path, you need to also specify 'read-
bytecode to grant this permission.) The sandbox usually works in the context of a lower
code inspector (see sandbox-make-code-inspector) which prevents loading of untrusted
bytecode files — the sandbox is set-up to allow loading bytecode from files that are speci-
fied with 'read-bytecode. This specification is given by default to the Racket collection
hierarchy (including user-specific libraries) and to libraries that are explicitly specified in
an #:allow-read argument. (Note that this applies for loading bytecode files only, under
a lower code inspector it is still impossible to use protected module bindings (see §14.10
“Code Inspectors”).)

The default value is null, but when an evaluator is created, it is augmented by 'read-
bytecode permissions that make it possible to use collection libraries (including sandbox-
override-collection-paths). See make-evaluator for more information.

(sandbox-network-guard)
Ñ (symbol?

(or/c (and/c string? immutable?) #f)
(or/c (integer-in 1 65535) #f)
(or/c 'server 'client)
. -> . any)

(sandbox-network-guard proc) Ñ void?

1064

proc : (symbol?
(or/c (and/c string? immutable?) #f)
(or/c (integer-in 1 65535) #f)
(or/c 'server 'client)
. -> . any)

A parameter that specifies a procedure to be used (as is) by the default sandbox-security-
guard. The default forbids all network connection.

(sandbox-exit-handler) Ñ (any/c . -> . any)
(sandbox-exit-handler handler) Ñ void?

handler : (any/c . -> . any)

A parameter that determines the initial (exit-handler) for sandboxed evaluations. The
default kills the evaluator with an appropriate error message (see exn:fail:sandbox-
terminated-reason).

(sandbox-memory-limit) Ñ (or/c (>=/c 0) #f)
(sandbox-memory-limit limit) Ñ void?

limit : (or/c (>=/c 0) #f)

A parameter that determines the total memory limit on the sandbox in megabytes (it can
hold a rational or a floating point number). When this limit is exceeded, the sandbox is
terminated. This value is used when the sandbox is created and the limit cannot be changed
afterwards. It defaults to 30mb. See sandbox-eval-limits for per-evaluation limits and
a description of how the two limits work together.

Note that (when memory accounting is enabled) memory is attributed to the highest cus-
todian that refers to it. This means that if you inspect a value that sandboxed evaluation
returns outside of the sandbox, your own custodian will be charged for it. To ensure that it
is charged back to the sandbox, you should remove references to such values when the code
is done inspecting it.

This policy has an impact on how the sandbox memory limit interacts with the per-expression
limit specified by sandbox-eval-limits: values that are reachable from the sandbox, as
well as from the interaction will count against the sandbox limit. For example, in the last
interaction of this code,

(define e (make-evaluator 'racket/base))
(e '(define a 1))
(e '(for ([i (in-range 20)]) (set! a (cons (make-
bytes 500000) a))))

the memory blocks are allocated within the interaction limit, but since they’re chained to the
defined variable, they’re also reachable from the sandbox — so they will count against the

1065

sandbox memory limit but not against the interaction limit (more precisely, no more than
one block counts against the interaction limit).

(sandbox-eval-limits) Ñ (or/c (list/c (or/c (>=/c 0) #f)
(or/c (>=/c 0) #f))

#f)
(sandbox-eval-limits limits) Ñ void?

limits : (or/c (list/c (or/c (>=/c 0) #f)
(or/c (>=/c 0) #f))

#f)

A parameter that determines the default limits on each use of a make-evaluator function,
including the initial evaluation of the input program. Its value should be a list of two num-
bers; where the first is a shallow time value in seconds, and the second is a memory limit in
megabytes (note that they don’t have to be integers). Either one can be #f for disabling the
corresponding limit; alternately, the parameter can be set to #f to disable all per-evaluation
limits (useful in case more limit kinds are available in future versions). The default is (list
30 20).

Note that these limits apply to the creation of the sandbox environment too — even (make-
evaluator 'racket/base) can fail if the limits are strict enough. For example,

(parameterize ([sandbox-eval-limits '(0.25 5)])
(make-evaluator 'racket/base '(sleep 2)))

will throw an error instead of creating an evaluator. Therefore, to avoid surprises you need
to catch errors that happen when the sandbox is created.

When limits are set, call-with-limits (see below) is wrapped around each use of the
evaluator, so consuming too much time or memory results in an exception. Change the
limits of a running evaluator using set-eval-limits. A custodian’s limit

is checked only
after a garbage
collection, except
that it may also be
checked during
certain large
allocations that are
individually larger
than the custodian’s
limit.

The memory limit that is specified by this parameter applies to each individual evaluation,
but not to the whole sandbox — that limit is specified via sandbox-memory-limit. When
the global limit is exceeded, the sandbox is terminated, but when the per-evaluation limit is
exceeded, an exception recognizable by exn:fail:resource? is raised. For example, say
that you evaluate an expression like

(for ([i (in-range 1000)])
(set! a (cons (make-bytes 1000000) a))
(collect-garbage))

then, assuming sufficiently small limits,

• if a global limit is set but no per-evaluation limit, the sandbox will eventually be
terminated and no further evaluations possible;

1066

• if there is a per-evaluation limit, but no global limit, the evaluation will abort with an
error and it can be used again — specifically, a will still hold a number of blocks, and
you can evaluate the same expression again which will add more blocks to it;

• if both limits are set, with the global one larger than the per-evaluation limit, then the
evaluation will abort and you will be able to repeat it, but doing so several times will
eventually terminate the sandbox (this will be indicated by the error message, and by
the evaluator-alive? predicate).

(sandbox-eval-handlers)
Ñ (list/c (or/c #f ((-> any) . -> . any))

(or/c #f ((-> any) . -> . any)))
(sandbox-eval-handlers handlers) Ñ void?

handlers : (list/c (or/c #f ((-> any) . -> . any))
(or/c #f ((-> any) . -> . any)))

A parameter that determines two (optional) handlers that wrap sandboxed evaluations. The
first one is used when evaluating the initial program when the sandbox is being set-up, and
the second is used for each interaction. Each of these handlers should expect a thunk as an
argument, and they should execute these thunks — possibly imposing further restrictions.
The default values are #f and call-with-custodian-shutdown, meaning no additional
restrictions on initial sandbox code (e.g., it can start background threads), and a custodian-
shutdown around each interaction that follows. Another useful function for this is call-
with-killing-threads which kills all threads, but leaves other resources intact.

(sandbox-run-submodules) Ñ (list/c symbol?)
(sandbox-run-submodules submod-syms) Ñ void?

submod-syms : (list/c symbol?)

A parameter that determines submodules to run when a sandbox is created by make-
module-evaluator. The parameter’s default value is the empty list.

(sandbox-make-inspector) Ñ (-> inspector?)
(sandbox-make-inspector make) Ñ void?

make : (-> inspector?)

A parameter that determines the (nullary) procedure that is used to create the inspector for
sandboxed evaluation. The procedure is called when initializing an evaluator. The default
parameter value is (lambda () (make-inspector (current-inspector))).

(sandbox-make-code-inspector) Ñ (-> inspector?)
(sandbox-make-code-inspector make) Ñ void?

make : (-> inspector?)

A parameter that determines the (nullary) procedure that is used to create the code inspector
for sandboxed evaluation. The procedure is called when initializing an evaluator. The default
parameter value is (lambda () (make-inspector (current-code-inspector))).

1067

The current-load/use-compiled handler is setup to allow loading of bytecode files
under the original code inspector when sandbox-path-permissions allows it through
a 'read-bytecode mode symbol, which makes loading libraries possible.

(sandbox-make-logger) Ñ (-> logger?)
(sandbox-make-logger make) Ñ void?

make : (-> logger?)

A parameter that determines the procedure used to create the logger for sandboxed evalua-
tion. The procedure is called when initializing an evaluator, and the default parameter value
is current-logger. This means that it is not creating a new logger (this might change in
the future).

(sandbox-make-plumber) Ñ (or/c (-> plumber?) 'propagate)
(sandbox-make-plumber make) Ñ void?

make : (or/c (-> plumber?) 'propagate)

A parameter that determines the procedure used to create the plumber for sandboxed evalu-
ation. The procedure is called when initializing an evaluator.

If the value is 'propagate (the default), then a new plumber is created, and a flush callback
is added to the current plumber to propagate the request to the new plumber within the
created sandbox (if the sandbox has not already terminated).

Added in version 6.0.1.8 of package sandbox-lib.

(sandbox-make-environment-variables)
Ñ (-> environment-variables?)

(sandbox-make-environment-variables make) Ñ void?
make : (-> environment-variables?)

A parameter that determines the procedure used to create the environment variable set for
sandboxed evaluation. The procedure is called when initializing an evaluator, and the de-
fault parameter value constructs a new environment variable set using (environment-
variables-copy (current-environment-variables)).

14.12.3 Interacting with Evaluators

The following functions are used to interact with a sandboxed evaluator in addition to using
it to evaluate code.

(evaluator-alive? evaluator) Ñ boolean?
evaluator : (any/c . -> . any)

Determines whether the evaluator is still alive.

1068

(kill-evaluator evaluator) Ñ void?
evaluator : (any/c . -> . any)

Releases the resources that are held by evaluator by shutting down the evaluator’s custo-
dian. Attempting to use an evaluator after killing raises an exception, and attempts to kill a
dead evaluator are ignored.

Killing an evaluator is similar to sending an eof value to the evaluator, except that an eof
value will raise an error immediately.

(break-evaluator evaluator) Ñ void?
evaluator : (any/c . -> . any)

Sends a break to the running evaluator. The effect of this is as if Ctrl-C was typed when the
evaluator is currently executing, which propagates the break to the evaluator’s context.

(get-user-custodian evaluator) Ñ void?
evaluator : (any/c . -> . any)

Retrieves the evaluator ’s toplevel custodian. This returns a value that is different
from (evaluator '(current-custodian)) or call-in-sandbox-context evalua-
tor current-custodian — each sandbox interaction is wrapped in its own custodian,
which is what these would return.

(One use for this custodian is with current-memory-use, where the per-interaction sub-
custodians will not be charged with the memory for the whole sandbox.)

(set-eval-limits evaluator secs mb) Ñ void?
evaluator : (any/c . -> . any)
secs : (or/c exact-nonnegative-integer? #f)
mb : (or/c exact-nonnegative-integer? #f)

Changes the per-expression limits that evaluator uses to secs seconds of shallow time
and mb megabytes (either one can be #f, indicating no limit).

This procedure should be used to modify an existing evaluator limits, because changing
the sandbox-eval-limits parameter does not affect existing evaluators. See also call-
with-limits.

(set-eval-handler evaluator handler) Ñ void?
evaluator : (any/c . -> . any)
handler : (or/c #f ((-> any) . -> . any))

Changes the per-expression handler that the evaluator uses around each interaction. A #f
value means no handler is used.

1069

This procedure should be used to modify an existing evaluator handler, because changing the
sandbox-eval-handlers parameter does not affect existing evaluators. See also call-
with-custodian-shutdown and call-with-killing-threads for two useful handlers
that are provided.

(call-with-custodian-shutdown thunk) Ñ any
thunk : (-> any)

(call-with-killing-threads thunk) Ñ any
thunk : (-> any)

These functions are useful for use as an evaluation handler. call-with-custodian-
shutdown will execute the thunk in a fresh custodian, then shutdown that custodian,
making sure that thunk could not have left behind any resources. call-with-killing-
threads is similar, except that it kills threads that were left, but leaves other resources as
is.

(put-input evaluator) Ñ output-port?
evaluator : (any/c . -> . any)

(put-input evaluator i/o) Ñ void?
evaluator : (any/c . -> . any)
i/o : (or/c bytes? string? eof-object?)

If (sandbox-input) is 'pipe when an evaluator is created, then this procedure can be used
to retrieve the output port end of the pipe (when used with no arguments), or to add a string
or a byte string into the pipe. It can also be used with eof, which closes the pipe.

(get-output evaluator) Ñ (or/c #f input-port? bytes? string?)
evaluator : (any/c . -> . any)

(get-error-output evaluator)
Ñ (or/c #f input-port? bytes? string?)
evaluator : (any/c . -> . any)

Returns the output or error-output of the evaluator , in a way that depends on the setting
of (sandbox-output) or (sandbox-error-output) when the evaluator was created:

• if it was 'pipe, then get-output returns the input port end of the created pipe;

• if it was 'bytes or 'string, then the result is the accumulated output, and the output
port is reset so each call returns a different piece of the evaluator’s output (note that
results are available only until the evaluator has terminated, and any allocations of the
output are subject to the sandbox memory limit);

• otherwise, it returns #f.

1070

(get-uncovered-expressions evaluator
[prog?
src]) Ñ (listof syntax?)

evaluator : (any/c . -> . any)
prog? : any/c = #t
src : any/c = default-src

Retrieves uncovered expression from an evaluator, as longs as the sandbox-coverage-
enabled parameter had a true value when the evaluator was created. Otherwise, an excep-
tion is raised to indicate that no coverage information is available.

The prog? argument specifies whether to obtain expressions that were uncovered after only
the original input program was evaluated (#t) or after all later uses of the evaluator (#f).
Using #t retrieves a list that is saved after the input program is evaluated, and before the
evaluator is used, so the result is always the same.

A #t value of prog? is useful for testing student programs to find out whether a submission
has sufficient test coverage built in. A #f value is useful for writing test suites for a program
to ensure that your tests cover the whole code.

The second optional argument, src , specifies that the result should be filtered to hold only
syntax objects whose source matches src . The default is the source that was used in the
program code, if there was one. Note that 'program is used as the source value if the input
program was given as S-expressions or as a string (and in these cases it will be the default
for filtering). If given #f, the result is the unfiltered list of expressions.

The resulting list of syntax objects has at most one expression for each position and span.
Thus, the contents may be unreliable, but the position information is reliable (i.e., it always
indicates source code that would be painted red in DrRacket when coverage information is
used).

Note that if the input program is a sequence of syntax values, either make sure that they have
'program as the source field, or use the src argument. Using a sequence of S-expressions
(not syntax objects) for an input program leads to unreliable coverage results, since each
expression may be assigned a single source location.

(call-in-sandbox-context evaluator
thunk

[unrestricted?]) Ñ any
evaluator : (any/c . -> . any)
thunk : (-> any)
unrestricted? : boolean? = #f

Calls the given thunk in the context of a sandboxed evaluator. The call is performed under
the resource limits and evaluation handler that are used for evaluating expressions, unless
unrestricted? is specified as true.

1071

This process is usually similar to (evaluator (list thunk)), except that it does not
rely on the common meaning of a sexpr-based syntax with list expressions as function ap-
plication (which is not true in all languages). Note that this is more useful for meta-level
operations such as namespace manipulation, it is not intended to be used as a safe-evaluation
replacement (i.e., using the sandbox evaluator as usual).

In addition, you can avoid some of the sandboxed restrictions by using your own permis-
sions, for example,

(let ([guard (current-security-guard)])
(call-in-sandbox-context
ev
(lambda ()
(parameterize ([current-security-guard guard])
; can access anything you want here
(delete-file "/some/file")))))

14.12.4 Miscellaneous

gui? : boolean?

For backward compatibility, only: the result of gui-available? at the time that
racket/sandbox was instantiated.

The value of gui? is no longer used by racket/sandbox itself. Instead, gui-available?
and sandbox-gui-available are checked at the time that a sandbox evaluator is created.

(call-with-limits secs mb thunk) Ñ any
secs : (or/c exact-nonnegative-integer? #f)
mb : (or/c exact-nonnegative-integer? #f)
thunk : (-> any)

Executes the given thunk with memory and time restrictions: if execution consumes more
than mb megabytes or more than secs shallow time seconds, then the computation is aborted
and an exception recognizable by exn:fail:resource? is raised. Otherwise, the result of
the thunk is returned as usual (a value, multiple values, or an exception). Each of the two
limits can be #f to indicate the absence of a limit. See also custodian-limit-memory for
information on memory limits.

Sandboxed evaluators use call-with-limits, according to the sandbox-eval-limits
setting and uses of set-eval-limits: each expression evaluation is protected from time-
outs and memory problems. Use call-with-limits directly only to limit a whole testing
session, instead of each expression.

(with-limits sec-expr mb-expr body ...)

1072

A macro version of call-with-limits.

(call-with-deep-time-limit secs thunk) Ñ any
secs : exact-nonnegative-integer?
thunk : (-> any)

Executes the given thunk with deep time restrictions, and returns the values produced by
thunk .

The given thunk is run in a new thread. If it errors or if the thread terminates returning a
value, then (values) is returned.

Changed in version 1.1 of package sandbox-lib: Changed to return thunk ’s result if it completes normally.

(with-deep-time-limit secs-expr body ...)

A macro version of call-with-deep-time-limit.

(exn:fail:resource? v) Ñ boolean?
v : any/c

(exn:fail:resource-resource exn)
Ñ (or/c 'time 'memory 'deep-time)
exn : exn:fail:resource?

A predicate and accessor for exceptions that are raised by call-with-limits. The re-
source field holds a symbol, representing the resource that was expended. 'time is used
for shallow time and 'deep-time is used for deep time.

14.13 The racket/repl Library

(require racket/repl) package: base

The racket/repl provides the same read-eval-print-loop binding as racket/base,
but with even fewer internal dependencies than racket/base. It is loaded in some situations
on startup, as described in §18.1.1 “Initialization”.

14.14 Linklets and the Core Compiler

(require racket/linklet) package: base

A linklet is a primitive element of compilation, bytecode marshaling, and evaluation.
Racket’s implementations of modules, macros, and top-level evaluation are all built

1073

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

on linklets. Racket programmers generally do not encounter linklets directly, but the
racket/linklet library provides access to linklet facilities.

A single Racket module (or collection of top-level forms) is typically implemented by mul-
tiple linklets. For example, each phase of evaluation that exists in a module is implemented
in a separate linklet. A linklet is also used for metadata such as the module path indexes
for a module’s requires. These linklets, plus some other metadata, are combined to form
a linklet bundle. Information in a linklet bundle is keyed by either a symbol or a fixnum. A
linklet bundle containing linklets can be marshaled to and from a byte stream by write and
(with read-accept-compiled is enabled) read.

When a Racket module has submodules, the linklet bundles for the module and the submod-
ules are grouped together in a linklet directory. A linklet directory can have nested linklet
directories. Information in a linklet directory is keyed by #f or a symbol, where #f must be
mapped to a linklet bundle (if anything) and each symbol must be mapped to a linklet direc-
tory. A linklet directory can be equivalently viewed as a mapping from a lists of symbols
to a linklet bundle. Like linklet bundles, a linklet directory can be marshaled to and from a
byte stream by write and read; the marshaled form allows individual linklet bundles to be
loaded independently.

A linklet consists of a set of variable definitions and expressions, an exported subset of
the defined variable names, a set of variables to export from the linklet despite having no
corresponding definition, and a set of imports that provide other variables for the linklet
to use. To run a linklet, it is instantiated as as linklet instance (or just instance, for short).
When a linklet is instantiated, it receives other linklet instances for its imports, and it extracts
a specified set of variables that are exported from each of the given instances. The newly
created linklet instance provides its exported variables for use by other linklets or for direct
access via instance-variable-value. A linklet instance can be synthesized directly with
make-instance.

A linklet is created by compiling an enriched S-expression representation of its source. Since
linklets exist below the layer of macros and syntax objects, linklet compilation does not use
syntax objects. Instead, linklet compilation uses correlated objects, which are like syntax
objects without lexical-context information and without the constraint that content is coerced
to correlated objects. Using an S-expression or correlated object, the grammar of a linklet as
recognized by compile-linklet is

(linklet [[imported-id/renamed ...] ...]
[exported-id/renamed ...]

defn-or-expr ...)

imported-id/renamed = imported-id
| (external-imported-id internal-imported-id)

exported-id/renamed = exported-id
| (internal-exported-id external-exported-id)

1074

Each import set [imported-id/renamed ...] refers to a single imported instance, and
each import-id/renamed corresponds to a variable from that instance. If separate
external-imported-id and internal-imported-id are specified, then external-
imported-id is the name of the variable as exported by the instance, and internal-
imported-id is the name used to refer to the variable in the defn-or-exprs. For exports,
separate internal-exported-id and external-exported-id names corresponds to the
variable name as exported as referenced in the defn-or-exprs, respectively.

The grammar of an defn-or-expr is similar to the expander’s grammar of fully expanded
expressions (see §1.2.3.1 “Fully Expanded Programs”) with some exceptions: quote-
syntax and #%top are not allowed; #%plain-lambda is spelled lambda; #%plain-app
is omitted (i.e., application is implicit); lambda, case-lambda, let-values, and letrec-
values can have only a single body expression; and numbers, booleans, strings, and byte
strings are self-quoting. Primitives are accessed directly by name, and shadowing is not al-
lowed within a linklet form for primitive names, imported variables, defined variables, or
local variables.

When an exported-id/renamed has no corresponding definition among the defn-or-
exprs, then the variable is effectively defined as uninitialized; referencing the variable will
trigger exn:fail:contract:variable, the same as referencing a variable before it is
defined. When a target instance is provided to instantiate-linklet, any existing vari-
able with the same name will be left as-is, instead of set to undefined. This treatment of
uninitialized variables provides core support for top-level evaluation where variables may be
referenced and then defined in a separate element of compilation.

Added in version 6.90.0.1 of package base.

(linklet? v) Ñ boolean?
v : any/c

Returns #t if v is a linklet, #f otherwise.

(compile-linklet form
[name
import-keys
get-import
options]) Ñ linklet?

form : (or/c correlated? any/c)
name : any/c = #f
import-keys : #f = #f
get-import : #f = #f
options : (listof (or/c 'serializable 'unsafe 'static

'use-prompt 'uninterned-literal))
= '(serializable)

1075

(compile-linklet form
name
import-keys

[get-import
options]) Ñ linklet? vector?

form : (or/c correlated? any/c)
name : any/c
import-keys : vector?
get-import : (or/c #f (any/c . -> . (values (or/c linklet? instance? #f)

(or/c vector? #f))))
= #f

options : (listof (or/c 'serializable 'unsafe 'static
'use-prompt 'uninterned-literal))

= '(serializable)

Takes an S-expression or correlated object for a linklet form and produces a linklet. As
long as 'serializable included in options , the resulting linklet can be marshaled to and
from a byte stream when it is part of a linklet bundle (possibly in a linklet directory).

The optional name is associated to the linklet for debugging purposes and as the default
name of the linklet’s instance.

The optional import-keys and get-import arguments support cross-linklet optimization.
If import-keys is a vector, it must have as many elements as sets of imports in form . If the
compiler becomes interested in optimizing a reference to an imported variable, it passes back
to get-import (if non-#f) the element of import-keys that corresponds to the variable’s
import set. The get-import function can then return a linklet or instance that represents an
instance to be provided to the compiled linklet when it is eventually instantiated; ensuring
consistency between reported linklet or instance and the eventual instance is up to the caller
of compile-linklet. If get-import returns #f as its first value, the compiler will be pre-
vented from making any assumptions about the imported instance. The second result from
get-import is an optional vector of keys to provide transitive information on a returned
linklet’s imports (and is not allowed for a returned instance); the returned vector must have
the same number of elements as the linklet has imports. When vector elements are eq? and
non-#f, the compiler can assume that they correspond to the same run-time instance. A #f
value for get-import is equivalent to a function that always returns two #f results.

When import-keys is not #f, then the compiler is allowed to grow or shrink the set of
imported instances for the linklet. The result vector specifies the keys of the imports for the
returned linklet. Any key that is #f or a linklet instance must be preserved intact, however.

If 'unsafe is included in options , then the linklet is compiled in unsafe mode: uses of safe
operations within the linklet can be converted to unsafe operations on the assumption that
the relevant contracts are satisfied. For example, car is converted to unsafe-car. Some
substituted unsafe operations may not have directly accessible names, such as the unsafe
variant of in-list that can be substituted in unsafe mode. An unsafe operation is substituted

1076

only if its (unchecked) contract is subsumed by the safe operation’s contract. The fact that
the linklet is compiled in unsafe mode can be exposed through variable-reference-
from-unsafe? using a variable reference produced by a #%variable-reference form
within the module body.

If 'static is included in options , then the linklet must be instantiated only once; if the
linklet is serialized, then any individual instance read from the serialized form must be in-
stantiated at most once. Compilation with 'static is intended to improve the performance
of references within the linklet to defined and imported variables.

If 'use-prompt is included in options , then instantiating resulting linklet always wraps a
prompt around each definition and immediate expression in the linklet. Otherwise, supply-
ing #t as the use-prompt? argument to instantiate-linklet may only wrap a prompt
around the entire instantiation.

If 'uninterned-literal is included in options , then literals in form will not necessarily
be interned via datum-intern-literal when compiling or loading the linklet. Disabling
the use of datum-intern-literal can be especially useful of the linklet includes a large
string or byte string constant that is not meant to be shared.

The symbols in options must be distinct, otherwise exn:fail:contract exception is
raised.

Changed in version 7.1.0.8 of package base: Added the 'use-prompt option.
Changed in version 7.1.0.10: Added the 'uninterned-literal option.

(recompile-linklet linklet
[name
import-keys
get-import
options]) Ñ linklet?

linklet : linklet?
name : any/c = #f
import-keys : #f = #f
get-import : #f = #f
options : (listof (or/c 'serializable 'unsafe 'static

'use-prompt 'uninterned-literal))
= '(serializable)

(recompile-linklet linklet
name
import-keys

[get-import
options]) Ñ linklet? vector?

linklet : linklet?
name : any/c
import-keys : vector?

1077

get-import : (or/c (any/c . -> . (values (or/c linklet? #f)
(or/c vector? #f)))

#f)
= (lambda (import-key) (values #f #f))

options : (listof (or/c 'serializable 'unsafe 'static
'use-prompt 'uninterned-literal))

= '(serializable)

Like compile-linklet, but takes an already-compiled linklet and potentially optimizes it
further.

Changed in version 7.1.0.6 of package base: Added the options argument.
Changed in version 7.1.0.8: Added the 'use-prompt option.
Changed in version 7.1.0.10: Added the 'uninterned-literal option.

(eval-linklet linklet) Ñ linklet?
linklet : linklet?

Returns a variant of a linklet that is prepared for JIT compilation such that every later use
of the result linklet with instantiate-linklet shares the JIT-generated code. However,
the result of eval-linklet cannot be marshaled to a byte stream as part of a linklet bundle,
and it cannot be used with recompile-linklet.

(instantiate-linklet linklet
import-instances

[target-instance?
use-prompt?]) Ñ instance?

linklet : linklet?
import-instances : (listof instance?)
target-instance? : #f = #f
use-prompt? : any/c = #t

(instantiate-linklet linklet
import-instances
target-instance

[use-prompt?]) Ñ any
linklet : linklet?
import-instances : (listof instance?)
target-instance : instance?
use-prompt? : any/c = #t

Instantiates linklet by running its definitions and expressions, using the given import-
instances for its imports. The number of instances in import-instances must match
the number of import sets in linklet .

If target-instance is #f or not provided, the result is a fresh instance for the linklet.
If target-instance is an instance, then the instance is used and modified for the linklet
definitions and expressions, and the result is the value of the last expression in the linklet.

1078

The linklet’s exported variables are accessible in the result instance or in target-instance
using the linklet’s external name for each export. If target-instance is provided as non-
#f, its existing variables remain intact if they are not modified by a linklet definition.

If use-prompt? is true, then a a prompt is wrapped around the linklet instantiation in same
ways as an expression in a module body. If the linklet contains multiple definitions or im-
mediate expressions, then a prompt may or may not be wrapped around each definition or
expression; supply 'use-prompt to compile-linklet to ensure that a prompt is used
around each definition and expression.

(linklet-import-variables linklet) Ñ (listof (listof symbol?))
linklet : linklet?

Returns a description of a linklet’s imports. Each element of the result list corresponds to an
import set as satisfied by a single instance on instantiation, and each member of the set is a
variable name that is used from the corresponding imported instance.

(linklet-export-variables linklet) Ñ (listof symbol?)
linklet : linklet?

Returns a description of a linklet’s exports. Each element of the list corresponds to a variable
that is made available by the linklet in its instance.

(linklet-directory? v) Ñ boolean?
v : any/c

Returns #t if v is a linklet directory, #f otherwise.

(hash->linklet-directory content) Ñ linklet-directory?
content : (and/c hash? hash-eq? immutable? (not/c impersonator?))

Constructs a linklet directory given mappings in the form of a hash table. Each key of
content must be either a symbol or #f, each symbol must be mapped to a linklet directory,
and #f must be mapped to a linklet bundle or not mapped.

(linklet-directory->hash linklet-directory)
Ñ (and/c hash? hash-eq? immutable? (not/c impersonator?))
linklet-directory : linklet-directory?

Extracts the content of a linklet directory into a hash table.

(linklet-bundle? v) Ñ boolean?
v : any/c

Returns #t if v is a linklet bundle, #f otherwise.

1079

(hash->linklet-bundle content) Ñ linklet-bundle?
content : (and/c hash? hash-eq? immutable? (not/c impersonator?))

Constructs a linklet bundle given mappings in the form of a hash table. Each key of content
must be either a symbol or a fixnum. Values in the hash table are unconstrained, but the intent
is that they are all linklets or values that can be recovered from write output by read.

(linklet-bundle->hash linklet-bundle)
Ñ (and/c hash? hash-eq? immutable? (not/c impersonator?))
linklet-bundle : linklet-bundle?

Extracts the content of a linklet bundle into a hash table.

(instance? v) Ñ boolean?
v : any/c

Returns #t if v is a linklet instance, #f otherwise.

(make-instance name
[data
mode]
variable-name
variable-value ...
...) Ñ instance?

name : any/c
data : any/c = #f
mode : (or/c #f 'constant 'consistent) = #f
variable-name : symbol?
variable-value : any/c

Constructs a linklet instance directly. Besides associating an arbitrary name and data value
to the instance, the instance is populated with variables as specified by variable-name and
variable-value .

The optional data and mode arguments must be provided if any variable-name and
variable-value arguments are provided. The mode argument is used as in instance-
set-variable-value! for every variable-name .

(instance-name instance) Ñ any/c
instance : instance?

Returns the value associated to instance as its name—either the first value provided to
make-instance or the name of a linklet that was instantiated to create the instance.

1080

(instance-data instance) Ñ any/c
instance : instance?

Returns the value associated to instance as its data—either the second value provided to
make-instance or the default #f.

(instance-variable-names instance) Ñ (list symbol?)
instance : instance?

Returns a list of all names for all variables accessible from instance .

(instance-variable-value instance
name

[fail-k]) Ñ any
instance : instance?
name : symbol?
fail-k : any/c = (lambda () (error))

Returns the value of the variable exported as name from instance . If no such variable is
exported, then fail-k is used in the same way as by hash-ref.

(instance-set-variable-value! instance
name
v

[mode]) Ñ void?
instance : instance?
name : symbol?
v : any/c
mode : (or/c #f 'constant 'consistent) = #f

Sets or creates the variable exported as name in instance so that its value is v , as long as
the variable does not exist already as constant. If a variable for name exists as constant, the
exn:fail:contract exception is raised.

If mode is 'constant or 'consistent, then the variable is created or changed to be
constant. Furthermore, when the instance is reported for a linklet’s import though a get-
import callback to compile-linklet, the compiler can assume that the variable will be
constant in all future instances that are used to satisfy a linklet’s imports.

If mode is 'consistent, when the instance is reported though a callback to compile-
linklet, the compiler can further assume that the variable’s value will be the same for
future instances. For compilation purposes, “the same” can mean that a procedure value will
have the same arity and implementation details, a structure type value will have the same
configuration, a marshalable constant will be equal? to the current value, and so on.

1081

(instance-unset-variable! instance name) Ñ void?
instance : instance?
name : symbol?

Changes instance so that it does not export a variable as name , as long as name
does not exist as a constant variable. If a variable for name exists as constant, the
exn:fail:contract exception is raised.

(instance-describe-variable! instance
name
desc-v) Ñ void?

instance : instance?
name : symbol?
desc-v : any/c

Registers information about name in instance that may be useful for compiling linklets
where the instance is return via the get-import callback to compile-linklet. The desc-
v description can be any value; the recognized descriptions depend on virtual machine, but
may include the following:

• `(procedure ,arity-mask) — the value is always a procedure that is not imper-
sonated and not a structure, and its arity in the style of procedure-arity-mask is
arity-mask.

• `(procedure/succeeds ,arity-mask) — like `(procedure ,arity-mask),
but for a procedure that never raises an exception of otherwise captures or escapes
the calling context.

• `(procedure/pure ,arity-mask) — like `(procedure/succeeds ,arity-
mask), but with no observable side effects, so a call to the procedure can be reordered.

Added in version 7.1.0.8 of package base.

(variable-reference->instance varref
[ref-site?])

Ñ (if ref-site? (or/c instance? #f symbol?) instance?)
varref : variable-reference?
ref-site? : any/c = #f

Extracts the instance where the variable of varref is defined if ref-site? is #f, and re-
turns the instance where varref itself resides if ref-site? is true. This notion of variable
reference is the same as at the module level and can reflect the linklet instance that imple-
ments a particular phase of a module instance.

When ref-site? is #f, the result is #f when varref is from (#%variable-reference)
with no identifier. The result is a symbol if varref refers to a primitive.

1082

(correlated? v) Ñ boolean?
v : any/c

(correlated-source crlt) Ñ any
crlt : correlated?

(correlated-line crlt) Ñ (or/c exact-positive-integer? #f)
crlt : correlated?

(correlated-column crlt) Ñ (or/c exact-nonnegative-integer? #f)
crlt : correlated?

(correlated-position crlt) Ñ (or/c exact-positive-integer? #f)
crlt : correlated?

(correlated-span crlt) Ñ (or/c exact-nonnegative-integer? #f)
crlt : correlated?

(correlated-e crlt) Ñ any
crlt : correlated?

(correlated->datum crlt) Ñ any
crlt : (or/c correlated? any/c)

(datum->correlated v [srcloc prop]) Ñ correlated?
v : any/c
srcloc : (or/c correlated? #f

(list/c any/c
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f))

(vector/c any/c
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)
(or/c exact-positive-integer? #f)
(or/c exact-nonnegative-integer? #f)))

= #f
prop : (or/c correlated? #f) = #f

(correlated-property crlt key val) Ñ correlated?
crlt : correlated?
key : any/c
val : any/c

(correlated-property crlt key) Ñ any/c
crlt : correlated?
key : any/c

(correlated-property-symbol-keys crlt) Ñ list?
crlt : correlated?

Like syntax?, syntax-source, syntax-line, syntax-column, syntax-position,
syntax-span, syntax-e, syntax->datum, datum->syntax, syntax-property, and
syntax-property-symbol-keys, but for correlated objects.

1083

Unlike datum->syntax, datum->correlated does not recur through the given S-
expression and convert pieces to correlated objects. Instead, a correlated object is simply
wrapped around the immediate value. In contrast, correlated->datum recurs through its
argument (which is not necessarily a correlated object) to discover any correlated objects
and convert them to plain S-expressions.

Changed in version 7.6.0.6 of package base: Added the prop argument to datum->correlated.

1084

15 Operating System

15.1 Paths

When a Racket procedure takes a filesystem path as an argument, the path can be provided
either as a string or as an instance of the path datatype. If a string is provided, it is converted
to a path using string->path. Beware that some paths may not be representable as strings;
see §15.1.3.1 “Unix Path Representation” and §15.1.4.1 “Windows Path Representation” for
more information. A Racket procedure that generates a filesystem path always generates a
path value.

By default, paths are created and manipulated for the current platform, but procedures that
merely manipulate paths (without using the filesystem) can manipulate paths using con-
ventions for other supported platforms. The bytes->path procedure accepts an optional
argument that indicates the platform for the path, either 'unix or 'windows. For other
functions, such as build-path or simplify-path, the behavior is sensitive to the kind of
path that is supplied. Unless otherwise specified, a procedure that requires a path accepts
only paths for the current platform.

Two path values are equal? when they are use the same convention type and when their
byte-string representations are equal?. A path string (or byte string) cannot be empty,
and it cannot contain a nul character or byte. When an empty string or a string containing
nul is provided as a path to any procedure except absolute-path?, relative-path?, or
complete-path?, the exn:fail:contract exception is raised.

Most Racket primitives that accept paths first cleanse the path before using it. Procedures
that build paths or merely check the form of a path do not cleanse paths, with the exceptions
of cleanse-path, expand-user-path, and simplify-path. For more information about
path cleansing and other platform-specific details, see §15.1.3 “Unix and Mac OS Paths” and
§15.1.4 “Windows Paths”.

15.1.1 Manipulating Paths

(path? v) Ñ boolean?
v : any/c

Returns #t if v is a path value for the current platform (not a string, and not a path for a
different platform), #f otherwise.

(path-string? v) Ñ boolean?
v : any/c

Returns #t if v is either a path or string: either a path for the current platform or a non-empty
string without nul characters. Returns #f otherwise.

1085

(path-for-some-system? v) Ñ boolean?
v : any/c

Returns #t if v is a path value for some platform (not a string), #f otherwise.

(string->path str) Ñ path?
str : string?

Produces a path whose byte-string encoding is (string->bytes/locale str (char-
>integer #\?)) on Unix and Mac OS or (string->bytes/utf-8 str) on Windows.

Beware that the current locale might not encode every string, in which case string->path
can produce the same path for different strs. See also string->path-element, which
should be used instead of string->path when a string represents a single path element.
For information on how strings and byte strings encode paths, see §15.1.3.1 “Unix Path
Representation” and §15.1.4.1 “Windows Path Representation”.

See also string->some-system-path, and see §15.1.3.1 “Unix Path Representation” and
§15.1.4.1 “Windows Path Representation” for information on how strings encode paths.

Changed in version 6.1.1.1 of package base: Changed Windows conversion to always use UTF-8.

(bytes->path bstr [type]) Ñ path?
bstr : bytes?
type : (or/c 'unix 'windows) = (system-path-convention-type)

Produces a path (for some platform) whose byte-string encoding is bstr . The optional type
specifies the convention to use for the path.

For converting relative path elements from literals, use instead bytes->path-element,
which applies a suitable encoding for individual elements.

For information on how byte strings encode paths, see §15.1.3.1 “Unix Path Representation”
and §15.1.4.1 “Windows Path Representation”.

(path->string path) Ñ string?
path : path?

Produces a string that represents path by decoding path ’s byte-string encoding using the
current locale on Unix and Mac OS and by using UTF-8 on Windows. In the former case,
? is used in the result string where encoding fails, and if the encoding result is the empty
string, then the result is "?".

The resulting string is suitable for displaying to a user, string-ordering comparisons, etc.,
but it is not suitable for re-creating a path (possibly modified) via string->path, since
decoding and re-encoding the path’s byte string may lose information.

1086

Furthermore, for display and sorting based on individual path elements (such as pathless
file names), use path-element->string, instead, to avoid special encodings use to repre-
sent some relative paths. See §15.1.4 “Windows Paths” for specific information about the
conversion of Windows paths.

See also some-system-path->string.

Changed in version 6.1.1.1 of package base: Changed Windows conversion to always use UTF-8.

(path->bytes path) Ñ bytes?
path : path-for-some-system?

Produces path ’s byte-string representation. No information is lost in this translation, so
that (bytes->path (path->bytes path) (path-convention-type path)) always
produces a path that is equal? to path . The path argument can be a path for any platform.

Conversion to and from byte values is useful for marshaling and unmarshaling paths, but
manipulating the byte form of a path is generally a mistake. In particular, the byte string may
start with a \\?\REL encoding for Windows paths. Instead of path->bytes, use split-
path and path-element->bytes to manipulate individual path elements.

For information on how byte strings encode paths, see §15.1.3.1 “Unix Path Representation”
and §15.1.4.1 “Windows Path Representation”.

(string->path-element str) Ñ path?
str : string?

Like string->path, except that str corresponds to a single relative element in a path, and
it is encoded as necessary to convert it to a path. See §15.1.3 “Unix and Mac OS Paths” and
§15.1.4 “Windows Paths” for more information on the conversion of paths.

If str does not correspond to any path element (e.g., it is an absolute path, or it can be split),
or if it corresponds to an up-directory or same-directory indicator on Unix and Mac OS, then
exn:fail:contract exception is raised.

Like path->string, information can be lost from str in the locale-specific conversion to
a path.

(bytes->path-element bstr [type]) Ñ path-for-some-system?
bstr : bytes?
type : (or/c 'unix 'windows) = (system-path-convention-type)

Like bytes->path, except that bstr corresponds to a single relative element in a path.
In terms of conversions and restrictions on bstr , bytes->path-element is like string-
>path-element.

1087

The bytes->path-element procedure is generally the best choice for reconstructing a path
based on another path (where the other path is deconstructed with split-path and path-
element->bytes) when ASCII-level manipulation of path elements is necessary.

(path-element->string path) Ñ string?
path : path-element?

Like path->string, except that trailing path separators are removed (as by split-path).
On Windows, any \\?\REL encoding prefix is also removed; see §15.1.4 “Windows Paths”
for more information.

The path argument must be such that split-path applied to path would return 'rela-
tive as its first result and a path as its second result, otherwise the exn:fail:contract
exception is raised.

The path-element->string procedure is generally the best choice for presenting a path-
less file or directory name to a user.

(path-element->bytes path) Ñ bytes?
path : path-element?

Like path->bytes, except that any encoding prefix is removed, etc., as for path-element-
>string.

For any reasonable locale, consecutive ASCII characters in the printed form of path are
mapped to consecutive byte values that match each character’s code-point value, and a lead-
ing or trailing ASCII character is mapped to a leading or trailing byte, respectively. The
path argument can be a path for any platform.

The path-element->bytes procedure is generally the right choice (in combination with
split-path) for extracting the content of a path to manipulate it at the ASCII level (then
reassembling the result with bytes->path-element and build-path).

(path<? a-path b-path ...) Ñ boolean?
a-path : path?
b-path : path?

Returns #t if the arguments are sorted, where the comparison for each pair of paths is the
same as using path->bytes and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(path-convention-type path) Ñ (or/c 'unix 'windows)
path : path-for-some-system?

Accepts a path value (not a string) and returns its convention type.

1088

(system-path-convention-type) Ñ (or/c 'unix 'windows)

Returns the path convention type of the current platform: 'unix for Unix and Mac OS,
'windows for Windows.

(build-path base sub ...) Ñ path-for-some-system?
base : (or/c path-string? path-for-some-system? 'up 'same)
sub : (or/c (and/c (or/c path-string? path-for-some-system?)

(not/c complete-path?))
(or/c 'up 'same))

Creates a path given a base path and any number of sub-path extensions. If base is an
absolute path, the result is an absolute path, otherwise the result is a relative path.

The base and each sub must be either a relative path, the symbol 'up (indicating the rel-
ative parent directory), or the symbol 'same (indicating the relative current directory). For
Windows paths, if base is a drive specification (with or without a trailing slash) the first
sub can be an absolute (driveless) path. For all platforms, the last sub can be a filename.

The base and sub arguments can be paths for any platform. The platform for the re-
sulting path is inferred from the base and sub arguments, where string arguments im-
ply a path for the current platform. If different arguments are for different platforms, the
exn:fail:contract exception is raised. If no argument implies a platform (i.e., all are
'up or 'same), the generated path is for the current platform.

Each sub and base can optionally end in a directory separator. If the last sub ends in a
separator, it is included in the resulting path.

If base or sub is an illegal path string (because it is empty or contains a nul character), the
exn:fail:contract exception is raised.

The build-path procedure builds a path without checking the validity of the path or ac-
cessing the filesystem.

See §15.1.3 “Unix and Mac OS Paths” and §15.1.4 “Windows Paths” for more information
on the construction of paths.

The following examples assume that the current directory is "/home/joeuser" for Unix
examples and "C:\Joe’s Files" for Windows examples.

(define p1 (build-path (current-directory) "src" "racket"))
; Unix: p1 is "/home/joeuser/src/racket"
; Windows: p1 is "C:\\Joe's Files\\src\\racket"
(define p2 (build-path 'up 'up "docs" "Racket"))
; Unix: p2 is "../../docs/Racket"
; Windows: p2 is "..\\..\\docs\\Racket"

1089

(build-path p2 p1)
; Unix and Windows: raises exn:fail:contract; p1 is absolute
(build-path p1 p2)
; Unix: is "/home/joeuser/src/racket/../../docs/Racket"
; Windows: is "C:\\Joe's Files\\src\\racket\\..\\..\\docs\\Racket"

(build-path/convention-type type
base
sub ...) Ñ path-for-some-system?

type : (or/c 'unix 'windows)
base : (or/c path-string? path-for-some-system? 'up 'same)
sub : (or/c (and/c (or/c path-string? path-for-some-system?)

(not/c complete-path?))
(or/c 'up 'same))

Like build-path, except a path convention type is specified explicitly.

(absolute-path? path) Ñ boolean?
path : (or/c path? string? path-for-some-system?)

Returns #t if path is an absolute path, #f otherwise. The path argument can be a path
for any platform. If path is not a legal path string (e.g., it contains a nul character), #f is
returned. This procedure does not access the filesystem.

(relative-path? path) Ñ boolean?
path : (or/c path? string? path-for-some-system?)

Returns #t if path is a relative path, #f otherwise. The path argument can be a path for any
platform. If path is not a legal path string (e.g., it contains a nul character), #f is returned.
This procedure does not access the filesystem.

(complete-path? path) Ñ boolean?
path : (or/c path? string? path-for-some-system?)

Returns #t if path is a completely determined path (not relative to a directory or drive),
#f otherwise. The path argument can be a path for any platform. Note that for Windows
paths, an absolute path can omit the drive specification, in which case the path is neither
relative nor complete. If path is not a legal path string (e.g., it contains a nul character), #f
is returned.

This procedure does not access the filesystem.

(path->complete-path path [base]) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
base : (or/c path-string? path-for-some-system?)

= (current-directory)

1090

Returns path as a complete path. If path is already a complete path, it is returned as the
result. Otherwise, path is resolved with respect to the complete path base . If base is not
a complete path, the exn:fail:contract exception is raised.

The path and base arguments can be paths for any platform; if they are for different plat-
forms, the exn:fail:contract exception is raised.

This procedure does not access the filesystem.

(path->directory-path path) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)

Returns path if path syntactically refers to a directory and ends in a separator, otherwise it
returns an extended version of path that specifies a directory and ends with a separator. For
example, on Unix and Mac OS, the path "x/y/" syntactically refers to a directory and ends
in a separator, but "x/y" would be extended to "x/y/", and "x/.." would be extended to
"x/../". The path argument can be a path for any platform, and the result will be for the
same platform.

This procedure does not access the filesystem.

(resolve-path path) Ñ path?
path : path-string?

Cleanses path and returns a path that references the same file or directory as path . If path
is a soft link to another path, then the referenced path is returned (this may be a relative path
with respect to the directory owning path), otherwise path is returned (after expansion).

On Windows, the path for a link should be simplified syntactically, so that an up-directory
indicator removes a preceding path element independent of whether the preceding element
itself refers to a link. For relative-paths links, the path should be parsed specially; see §15.1.4
“Windows Paths” for more information.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

(cleanse-path path) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)

Cleanses path (as described at the beginning of this chapter) without consulting the filesys-
tem.

Example:

> (let ([p (string->some-system-path "tiny//dancer" 'unix)])
(cleanse-path p))

#<path:tiny/dancer>

1091

(expand-user-path path) Ñ path?
path : path-string?

Cleanses path . In addition, on Unix and Mac OS, a leading „ is treated as user’s home
directory and expanded; the username follows the „ (before a / or the end of the path),
where „ by itself indicates the home directory of the current user.

(simplify-path path [use-filesystem?]) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
use-filesystem? : boolean? = #t

Eliminates redundant path separators (except for a single trailing separator), up-directory
.., and same-directory . indicators in path , and changes / separators to \ separators in
Windows paths, such that the result accesses the same file or directory (if it exists) as path .

In general, the pathname is normalized as much as possible—without consulting the filesys-
tem if use-filesystem? is #f, and (on Windows) without changing the case of letters
within the path. If path syntactically refers to a directory, the result ends with a directory
separator.

When path is simplified and use-filesystem? is true (the default), a complete path is
returned. If path is relative, it is resolved with respect to the current directory. On Unix
and Mac OS, up-directory indicators are removed taking into account soft links (so that the
resulting path refers to the same directory as before); on Windows, up-directory indicators
are removed by deleting a preceding path element.

When use-filesystem? is #f, up-directory indicators are removed by deleting a preceding
path element, and the result can be a relative path with up-directory indicators remaining at
the beginning of the path; up-directory indicators are dropped when they refer to the parent
of a root directory. Similarly, the result can be the same as (build-path 'same) (but
with a trailing separator) if eliminating up-directory indicators leaves only same-directory
indicators.

The path argument can be a path for any platform when use-filesystem? is #f, and the
resulting path is for the same platform.

The filesystem might be accessed when use-filesystem? is true, but the source or simpli-
fied path might be a non-existent path. If path cannot be simplified due to a cycle of links,
the exn:fail:filesystem exception is raised (but a successfully simplified path may still
involve a cycle of links if the cycle did not inhibit the simplification).

See §15.1.3 “Unix and Mac OS Paths” and §15.1.4 “Windows Paths” for more information
on simplifying paths.

Example:

1092

> (let ([p (string->some-system-path "tiny//in/my/head/../../../dancer" 'unix)])
(simplify-path p #f))

#<path:tiny/dancer>

(normal-case-path path) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)

Returns path with “normalized” case characters. For Unix and Mac OS paths, this pro-
cedure always returns the input path, because filesystems for these platforms can be case-
sensitive. For Windows paths, if path does not start with \\?\, the resulting string uses
only lowercase letters, based on the current locale. In addition, for Windows paths when
the path does not start with \\?\, all /s are converted to \s, and trailing spaces and .s are
removed.

The path argument can be a path for any platform, but beware that local-sensitive decoding
and conversion of the path may be different on the current platform than for the path’s
platform.

This procedure does not access the filesystem.

(split-path path) Ñ (or/c path-for-some-system? 'relative #f)
(or/c path-for-some-system? 'up 'same)
boolean?

path : (or/c path-string? path-for-some-system?)

Deconstructs path into a smaller path and an immediate directory or file name. Three values
are returned:

• base is either

– a path,
– 'relative if path is an immediate relative directory or filename, or
– #f if path is a root directory.

• name is either

– a directory-name path,
– a filename,
– 'up if the last part of path specifies the parent directory of the preceding path

(e.g., .. on Unix), or
– 'same if the last part of path specifies the same directory as the preceding path

(e.g., . on Unix).

• must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing sep-
arator), #f otherwise. Note that must-be-dir? does not specify whether name is
actually a directory or not, but whether path syntactically specifies a directory.

1093

Compared to path , redundant separators (if any) are removed in the result base and name.
If base is #f, then name cannot be 'up or 'same. The path argument can be a path for any
platform, and resulting paths for the same platform.

This procedure does not access the filesystem.

See §15.1.3 “Unix and Mac OS Paths” and §15.1.4 “Windows Paths” for more information
on splitting paths.

(explode-path path)
Ñ (listof (or/c path-for-some-system? 'up 'same))
path : (or/c path-string? path-for-some-system?)

Returns the list of path elements that constitute path . If path is simplified in the sense of
simple-form-path, then the result is always a list of paths, and the first element of the list
is a root.

The explode-path function computes its result in time proportional to the length of path
(unlike a loop in that uses split-path, which must allocate intermediate paths).

(path-replace-extension path ext) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)

Returns a path that is the same as path , except that the extension for the last element of the
path (including the extension separator) is changed to ext . If the last element of path has
no extension, then ext is added to the path.

An extension is defined as a . that is not at the start of the path element followed by any
number of non-. characters/bytes at the end of the path element, as long as the path element
is not a directory indicator like "..".

The path argument can be a path for any platform, and the result is for the same platform.
If path represents a root, the exn:fail:contract exception is raised. The given ext
typically starts with ., but it is not required to start with an extension separator.

Examples:

> (path-replace-extension "x/y.ss" #".rkt")
#<path:x/y.rkt>
> (path-replace-extension "x/y.ss" #"")
#<path:x/y>
> (path-replace-extension "x/y" #".rkt")
#<path:x/y.rkt>
> (path-replace-extension "x/y.tar.gz" #".rkt")
#<path:x/y.tar.rkt>
> (path-replace-extension "x/.racketrc" #".rkt")
#<path:x/.racketrc.rkt>

1094

Added in version 6.5.0.3 of package base.

(path-add-extension path ext [sep]) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)
sep : (or/c string? bytes?) = #"_"

Similar to path-replace-extension, but any existing extension on path is preserved by
replacing the . before the extension with sep , and then the ext is added to the end.

Examples:

> (path-add-extension "x/y.ss" #".rkt")
#<path:x/y_ss.rkt>
> (path-add-extension "x/y" #".rkt")
#<path:x/y.rkt>
> (path-add-extension "x/y.tar.gz" #".rkt")
#<path:x/y.tar_gz.rkt>
> (path-add-extension "x/y.tar.gz" #".rkt" #".")
#<path:x/y.tar.gz.rkt>
> (path-add-extension "x/.racketrc" #".rkt")
#<path:x/.racketrc.rkt>

Added in version 6.5.0.3 of package base.
Changed in version 6.8.0.2: Added the sep optional argument.

(path-replace-suffix path ext) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)

NOTE: This function is deprecated; use path-replace-extension, instead.

Like path-replace-extension, but treats a leading . in a path element as an extension
separator.

(path-add-suffix path ext) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)

NOTE: This function is deprecated; use path-add-extension, instead.

Like path-add-extension, but treats a leading . in a path element as an extension sepa-
rator.

1095

(reroot-path path root-path) Ñ path-for-some-system?
path : (or/c path-string? path-for-some-system?)
root-path : (or/c path-string? path-for-some-system?)

Produces a path that extends root-path based on the complete form of path .

If path is not already complete, is it completed via path->complete-path, in which case
path must be a path for the current platform. The path argument is also cleansed and case-
normalized via normal-case-path. The path is then appended to root-path ; in the case
of Windows paths, a root letter drive becomes a letter path element, while a root UNC path
is prefixed with "UNC" as a path element and the machine and volume names become path
elements.

Examples:

> (reroot-path (bytes->path #"/home/caprica/baltar" 'unix)
(bytes->path #"/earth" 'unix))

#<path:/earth/home/caprica/baltar>
> (reroot-path (bytes->path #"c:\\usr\\adama" 'windows)

(bytes->path #"\\\\earth\\africa\\" 'windows))
#<windows-path:\\earth\africa\c\usr\adama>
> (reroot-path (bytes->path #"\\\\galactica\\cac\\adama" 'windows)

(bytes->path #"s:\\earth\\africa\\" 'windows))
#<windows-path:s:\earth\africa\UNC\galactica\cac\adama>

15.1.2 More Path Utilities

(require racket/path) package: base

The bindings documented in this section are provided by the racket/path and racket
libraries, but not racket/base.

(file-name-from-path path) Ñ (or/c path-for-some-system? #f)
path : (or/c path-string? path-for-some-system?)

Returns the last element of path . If path is syntactically a directory path (see split-
path), then the result is #f.

(path-get-extension path) Ñ (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)

Returns a byte string that is the extension part of the filename in path , including the .
separator. If the path has no extension, #f is returned.

1096

https://pkgs.racket-lang.org/package/base

See path-replace-extension for the definition of a filename extension.

Examples:

> (path-get-extension "x/y.rkt")
#".rkt"
> (path-get-extension "x/y")
#f
> (path-get-extension "x/y.tar.gz")
#".gz"
> (path-get-extension "x/.racketrc")
#f

Added in version 6.5.0.3 of package base.

(path-has-extension? path ext) Ñ (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)
ext : (or/c bytes? string?)

Determines whether the last element of path ends with ext but is not exactly the same as
ext .

If ext is a byte string with the shape of an extension (i.e., starting with .), this check is
equivalent to checking whether (path-get-extension path) produces ext .

Examples:

> (path-has-extension? "x/y.rkt" #".rkt")
#t
> (path-has-extension? "x/y.ss" #".rkt")
#f
> (path-has-extension? "x/y" #".rkt")
#f
> (path-has-extension? "x/.racketrc" #".racketrc")
#f
> (path-has-extension? "x/compiled/y_rkt.zo" #"_rkt.zo")
#t

Added in version 6.5.0.3 of package base.

(filename-extension path) Ñ (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)

NOTE: This function is deprecated; use path-get-extension, instead.

1097

Returns a byte string that is the extension part of the filename in path without the . sepa-
rator. If path is syntactically a directory (see split-path) or if the path has no extension,
#f is returned.

(find-relative-path base
path

[#:more-than-root? more-than-root?
#:more-than-same? more-than-same?
#:normalize-case? normalize-case?])

Ñ (or/c path-for-some-system? path-string?)
base : (or/c path-string? path-for-some-system?)
path : (or/c path-string? path-for-some-system?)
more-than-root? : any/c = #f
more-than-same? : any/c = #t
normalize-case? : any/c = #t

Finds a relative pathname with respect to base that names the same file or directory as
path . Both base and path must be simplified in the sense of simple-form-path. If
path shares no subpath in common with base , path is returned.

If more-than-root? is true, if base and path share only a Unix root in common, and if
neither base nor path is just a root path, then path is returned.

If path is the same as base , then (build-path 'same) is returned only if more-than-
same? is true. Otherwise, path is returned when path is the same as base .

If normalize-case? is true (the default), then pairs of path elements to be compared are
first converted via normal-case-path, which means that path elements are comparsed
case-insentively on Windows. If normalize-case? is #f, then path elements and the path
roots match only if they have the same case.

The result is normally a path in the sense of path?. The result is a string only if path is
provided a string and also returned as the result.

Changed in version 6.8.0.3 of package base: Made path elements case-normalized for comparison by default, and
added the #:normalize-case? argument.
Changed in version 6.90.0.21: Added the #:more-than-same? argument.

(normalize-path path [wrt]) Ñ path?
path : path-string?
wrt : (and/c path-string? complete-path?)

= (current-directory)
For most purposes,
simple-form-path
is the preferred
mechanism to
normalize a path,
because it works for
paths that include
non-existent
directory
components, and it
avoids
unnecessarily
expanding soft
links.

Returns a complete version of path by making the path complete, expanding the complete
path, and resolving all soft links (which requires consulting the filesystem). If path is
relative, then wrt is used as the base path.

1098

Letter case is not normalized by normalize-path. For this and other reasons, such as
whether the path is syntactically a directory, the result of normalize-path is not suitable
for comparisons that determine whether two paths refer to the same file or directory (i.e., the
comparison may produce false negatives).

An error is signaled by normalize-path if the input path contains an embedded path for a
non-existent directory, or if an infinite cycle of soft links is detected.

Example:

> (equal? (current-directory) (normalize-path "."))
#t

(path-element? path) Ñ boolean?
path : any/c

Returns #t if path is a path element: a path value for some platform (see path-for-some-
system?) such that split-path applied to path would return 'relative as its first result
and a path as its second result. Otherwise, the result is #f.

(path-only path) Ñ (or/c #f path-for-some-system?)
path : (or/c path-string? path-for-some-system?)

Returns path without its final path element in the case that path is not syntactically a
directory; if path has only a single, non-directory path element, #f is returned. If path is
syntactically a directory, then path is returned unchanged (but as a path, if it was a string).

Examples:

> (path-only (build-path "a" "b"))
#<path:a/>
> (path-only (build-path "a"))
#f
> (path-only (path->directory-path (build-path "a")))
#<path:a/>
> (path-only (build-path 'up 'up))
#<path:../..>

(simple-form-path path) Ñ path?
path : path-string?

Returns (simplify-path (path->complete-path path)), which ensures that the re-
sult is a complete path containing no up- or same-directory indicators.

(some-system-path->string path) Ñ string?
path : path-for-some-system?

1099

Converts path to a string using a UTF-8 encoding of the path’s bytes.

Use this function when working with paths for a different system (whose encoding of path-
names might be unrelated to the current locale’s encoding) and when starting and ending
with strings.

(string->some-system-path str kind) Ñ path-for-some-system?
str : string?
kind : (or/c 'unix 'windows)

Converts str to a kind path using a UTF-8 encoding of the path’s bytes.

Use this function when working with paths for a different system (whose encoding of path-
names might be unrelated to the current locale’s encoding) and when starting and ending
with strings.

(shrink-path-wrt pth other-pths) Ñ (or/c #f path?)
pth : path?
other-pths : (listof path?)

Returns a suffix of pth that shares nothing in common with the suffixes of other-pths , or
pth , if not possible (e.g. when other-pths is empty or contains only paths with the same
elements as pth).

Examples:

> (shrink-path-wrt (build-path "racket" "list.rkt")
(list (build-path "racket" "list.rkt")

(build-path "racket" "base.rkt")))
#<path:list.rkt>
> (shrink-path-wrt (build-path "racket" "list.rkt")

(list (build-path "racket" "list.rkt")
(build-path "racket" "private" "list.rkt")
(build-path "racket" "base.rkt")))

#<path:racket/list.rkt>

15.1.3 Unix and Mac OS Paths

In a path on Unix and Mac OS, a / separates elements of the path, . as a path element
always means the directory indicated by preceding path, and .. as a path element always
means the parent of the directory indicated by the preceding path. A leading „ in a path is
not treated specially, but expand-user-path can be used to convert a leading „ element
to a user-specific directory. No other character or byte has a special meaning within a path.
Multiple adjacent / are equivalent to a single / (i.e., they act as a single path separator).

1100

A path root is always /. A path starting with / is an absolute, complete path, and a path
starting with any other character is a relative path.

Any pathname that ends with a / syntactically refers to a directory, as does any path whose
last element is . or ...

A Unix and Mac OS path is cleansed by replacing multiple adjacent /s with a single /.

For (bytes->path-element bstr), bstr must not contain any /, otherwise the
exn:fail:contract exception is raised. The result of (path-element->bytes path)
or (path-element->string path) is always the same as the result of (path->bytes
path) and (path->string path). Since that is not the case for other platforms, however,
path-element->bytes and path-element->string should be used when converting in-
dividual path elements.

On Mac OS, Finder aliases are zero-length files.

Unix Path Representation

A path on Unix and Mac OS is natively a byte string. For presentation to users and for
other string-based operations, a path is converted to/from a string using the current locale’s
encoding with ? (encoding) or #\uFFFD (decoding) in place of errors. Beware that the
encoding may not accommodate all possible paths as distinct strings.

15.1.4 Windows Paths

In general, a Windows pathname consists of an optional drive specifier and a drive-specific
path. A Windows path can be absolute but still relative to the current drive; such paths start
with a / or \ separator and are not UNC paths or paths that start with \\?\.

A path that starts with a drive specification is complete. Roughly, a drive specification is
either a Latin letter followed by a colon, a UNC path of the form \\xmachiney\xvolumey, or
a \\?\ form followed by something other than REL\xelementy, or RED\xelementy. (Variants
of \\?\ paths are described further below.)

Racket fails to implement the usual Windows path syntax in one way. Outside of Racket,
a pathname "C:rant.txt" can be a drive-specific relative path. That is, it names a file
"rant.txt" on drive "C:", but the complete path to the file is determined by the current
working directory for drive "C:". Racket does not support drive-specific working directo-
ries (only a working directory across all drives, as reflected by the current-directory
parameter). Consequently, Racket implicitly converts a path like "C:rant.txt" into
"C:\rant.txt".

• Racket-specific: Whenever a path starts with a drive specifier xlettery: that is not
followed by a / or \, a \ is inserted as the path is cleansed.

1101

Otherwise, Racket follows standard Windows path conventions, but also adds \\?\REL and
\\?\RED conventions to deal with paths inexpressible in the standard convention, plus con-
ventions to deal with excessive \s in \\?\ paths.

In the following, xlettery stands for a Latin letter (case does not matter), xmachiney stands
for any sequence of characters that does not include \ or / and is not ?, xvolumey stands
for any sequence of characters that does not include \ or / , and xelementy stands for any
sequence of characters that does not include \.

• Trailing spaces and . in a path element are ignored when the element is the last one in
the path, unless the path starts with \\?\ or the element consists of only spaces and
.s.

• The following special “files”, which access devices, exist in all directories, case-
insensitively, and with all possible endings after a period or colon, except in path-
names that start with \\?\: "NUL", "CON", "PRN", "AUX", "COM1", "COM2", "COM3",
"COM4", "COM5", "COM6", "COM7", "COM8", "COM9", "LPT1", "LPT2", "LPT3",
"LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9".

• Except for \\?\ paths, /s are equivalent to \s. Except for \\?\ paths and the start of
UNC paths, multiple adjacent /s and \s count as a single \. In a path that starts \\?\
paths, elements can be separated by either a single or double \.

• A directory can be accessed with or without a trailing separator. In the case of a
non-\\?\ path, the trailing separator can be any number of /s and \s; in the case of
a \\?\ path, a trailing separator must be a single \, except that two \s can follow
\\?\xlettery:.

• Except for \\?\ paths, a single . as a path element means “the current directory,” and
a .. as a path element means “the parent directory.” Up-directory path elements (i.e.,
..) immediately after a drive are ignored.

• A pathname that starts \\xmachiney\xvolumey (where a / can replace any \) is a UNC
path, and the starting \\xmachiney\xvolumey counts as the drive specifier.

• Normally, a path element cannot contain a character in the range #\x 0 to #\x 1F
nor any of the following characters:

< > : " / \ |

Except for \, path elements containing these characters can be accessed using a \\?\
path (assuming that the underlying filesystem allows the characters).

• In a pathname that starts \\?\xlettery:\, the \\?\xlettery:\ prefix counts as the
path’s drive, as long as the path does not both contain non-drive elements and end
with two consecutive \s, and as long as the path contains no sequence of three or
more \s. Two \s can appear in place of the \ before xlettery. A / cannot be used in
place of a \ (but /s can be used in element names, though the result typically does not
name an actual directory or file).

1102

• In a pathname that starts \\?\UNC\xmachiney\xvolumey, the
\\?\UNC\xmachiney\xvolumey prefix counts as the path’s drive, as long as the
path does not end with two consecutive \s, and as long as the path contains no
sequence of three or more \s. Two \s can appear in place of the \ before UNC, the \s
after UNC, and/or the \s afterxmachiney. The letters in the UNC part can be uppercase
or lowercase, and / cannot be used in place of \s (but / can be used in element
names).

• Racket-specific: A pathname that starts \\?\REL\xelementy or \\?\REL\\xelementy
is a relative path, as long as the path does not end with two consecutive \s, and as long
as the path contains no sequence of three or more \s. This Racket-specific path form
supports relative paths with elements that are not normally expressible in Windows
paths (e.g., a final element that ends in a space). The REL part must be exactly the three
uppercase letters, and /s cannot be used in place of \s. If the path starts \\?\REL\..
then for as long as the path continues with repetitions of \.., each element counts as
an up-directory element; a single \ must be used to separate the up-directory elements.
As soon as a second \ is used to separate the elements, or as soon as a non-.. element
is encountered, the remaining elements are all literals (never up-directory elements).
When a \\?\REL path value is converted to a string (or when the path value is written
or displayed), the string does not contain the starting \\?\REL or the immediately
following \s; converting a path value to a byte string preserves the \\?\REL prefix.

• Racket-specific: A pathname that starts \\?\RED\xelementy or \\?\RED\\xelementy
is a drive-relative path, as long as the path does not end with two consecutive \s, and
as long as the path contains no sequence of three or more \s. This Racket-specific path
form supports drive-relative paths (i.e., absolute given a drive) with elements that are
not normally expressible in Windows paths. The RED part must be exactly the three
uppercase letters, and /s cannot be used in place of \s. Unlike \\?\REL paths, a ..
element is always a literal path element. When a \\?\RED path value is converted to a
string (or when the path value is written or displayed), the string does not contain the
starting \\?\RED and it contains a single starting \; converting a path value to a byte
string preserves the \\?\RED prefix.

Three additional Racket-specific rules provide meanings to character sequences that are oth-
erwise ill-formed as Windows paths:

• Racket-specific: In a pathname of the form \\?\xanyy\\ where xanyy is any non-
empty sequence of characters other than xlettery: or \xlettery:, the entire path counts
as the path’s (non-existent) drive.

• Racket-specific: In a pathname of the form \\?\xanyy\\\xelementsy, where xanyy is
any non-empty sequence of characters and xelementsy is any sequence that does not
start with a \, does not end with two \s, and does not contain a sequence of three \s,
then \\?\xanyy\\ counts as the path’s (non-existent) drive.

• Racket-specific: In a pathname that starts \\?\ and does not match any of the patterns
from the preceding bullets, \\?\ counts as the path’s (non-existent) drive.

1103

Outside of Racket, except for \\?\ paths, pathnames are typically limited to 259 characters.
Racket internally converts pathnames to \\?\ form as needed to avoid this limit. The oper-
ating system cannot access files through \\?\ paths that are longer than 32,000 characters
or so.

Where the above descriptions says “character,” substitute “byte” for interpreting byte strings
as paths. The encoding of Windows paths into bytes preserves ASCII characters, and all
special characters mentioned above are ASCII, so all of the rules are the same.

Beware that the \ path separator is an escape character in Racket strings. Thus, the path
\\?\REL\..\\.. as a string must be written "\\\\?\\REL\\..\\\\..".

A path that ends with a directory separator syntactically refers to a directory. In addition, a
path syntactically refers to a directory if its last element is a same-directory or up-directory
indicator (not quoted by a \\?\ form), or if it refers to a root.

Even on variants of Windows that support symbolic links, up-directory .. indicators in a
path are resolved syntactically, not sensitive to links. For example, if a path ends with
d\..\f and d refers to a symbolic link that references a directory with a different parent
than d, the path nevertheless refers to f in the same directory as d. A relative-path link
is parsed as if prefixed with \\?\REL paths, except that .. and . elements are allowed
throughout the path, and any number of redundant / separators are allowed.

Windows paths are cleansed as follows: In paths that start \\?\, redundant \s are removed,
an extra \ is added in a \\?\REL if an extra one is not already present to separate up-directory
indicators from literal path elements, and an extra \ is similarly added after \\?\RED if an
extra one is not already present. For other paths, multiple /s and \s are converted to single
/s or \ (except at the beginning of a shared folder name), and a \ is inserted after the colon
in a drive specification if it is missing.

For (bytes->path-element bstr), /s, colons, trailing dots, trailing whitespace, and
special device names (e.g., “aux”) in bstr are encoded as a literal part of the path ele-
ment by using a \\?\REL prefix. The bstr argument must not contain a \, otherwise the
exn:fail:contract exception is raised.

For (path-element->bytes path) or (path-element->string path), if the byte-
string form of path starts with a \\?\REL, the prefix is not included in the result.

For (build-path base-path sub-path ...), trailing spaces and periods are removed
from the last element of base-path and all but the last sub-path (unless the element
consists of only spaces and periods), except for those that start with \\?\. If base-path
starts \\?\, then after each non-\\?\REL\ and non-\\?\RED\ sub-path is added, all /s
in the addition are converted to \s, multiple consecutive \s are converted to a single \,
added . elements are removed, and added .. elements are removed along with the preceding
element; these conversions are not performed on the original base-path part of the result
or on any \\?\REL\ or \\?\RED\ or sub-path . If a \\?\REL\ or \\?\RED\ sub-path is
added to a non-\\?\ base-path , the base-path (with any additions up to the \\?\REL\

1104

or \\?\RED\ sub-path) is simplified and converted to a \\?\ path. In other cases, a \ may
be added or removed before combining paths to avoid changing the root meaning of the path
(e.g., combining //x and y produces /x/y, because //x/y would be a UNC path instead of
a drive-relative path).

For (simplify-path path use-filesystem?), path is expanded, and if path does
not start with \\?\, trailing spaces and periods are removed, a / is inserted after the colon
in a drive specification if it is missing, and a \ is inserted after \\?\ as a root if there are
elements and no extra \ already. Otherwise, if no indicators or redundant separators are in
path , then path is returned.

For (split-path path) producing base , name , and must-be-dir?, splitting a path that
does not start with \\?\ can produce parts that start with \\?\. For example, splitting
C:/x„/aux/ produces \\?\C:\x„\ and \\?\REL\\aux; the \\?\ is needed in these cases
to preserve a trailing space after x and to avoid referring to the AUX device instead of an
"aux" file.

Windows Path Representation

A path on Windows is natively a sequence of UTF-16 code units, where the sequence can in-
clude unpaired surrogates. This sequence is encoded as a byte string through an extension of
UTF-8, where unpaired surrogates in the UTF-16 code-unit sequence are converted as if they
were non-surrogate values. The extended encodings are implemented on Windows as the
"platform-UTF-16" and "platform-UTF-8" encodings for bytes-open-converter.

Racket’s internal representation of a Windows path is a byte string, so that path->bytes
and bytes->path are always inverses. When converting a path to a native UTF-16 code-
unit sequence, #\tab is used in place of platform-UTF-8 decoding errors (on the grounds
that tab is normally disallowed as a character in a Windows path, unlike #\uFFFD).

A Windows path is converted to a string by treating the platform-UTF-8 encoding as a UTF-
8 encoding with #\uFFFD in place of decoding errors. Similarly, a string is converted to a
path by UTF-8 encoding (in which case no errors are possible).

15.2 Filesystem

15.2.1 Locating Paths

(find-system-path kind) Ñ path?
kind : symbol?

Returns a machine-specific path for a standard type of path specified by kind , which must
be one of the following:

1105

• 'home-dir — the current user’s home directory.

On all platforms, if the PLTUSERHOME environment variable is defined as a complete
path, then the path is used as the user’s home directory.

On Unix and Mac OS, when PLTUSERHOME does not apply, the user’s home directory
is determined by expanding the path "„", which is expanded by first checking for a
HOME environment variable. If none is defined, the USER and LOGNAME environment
variables are consulted (in that order) to find a user name, and then system files are
consulted to locate the user’s home directory.

On Windows, when PLTUSERHOME does not apply, the user’s home directory is the
user-specific profile directory as determined by the Windows registry. If the registry
cannot provide a directory for some reason, the value of the USERPROFILE environ-
ment variable is used instead, as long as it refers to a directory that exists. If USERPRO-
FILE also fails, the directory is the one specified by the HOMEDRIVE and HOMEPATH
environment variables. If those environment variables are not defined, or if the indi-
cated directory still does not exist, the directory containing the current executable is
used as the home directory.

• 'pref-dir — the standard directory for storing the current user’s preferences. On
Unix, the directory is ".racket" in the user’s home directory. On Windows, it
is "Racket" in the user’s home directory if determined by PLTUSERHOME, other-
wise in the user’s application-data folder as specified by the Windows registry; the
application-data folder is usually "Application Data" in the user’s profile direc-
tory. On Mac OS, the preferences directory is "Library/Preferences" in the user’s
home directory. The preferences directory might not exist.

• 'pref-file — a file that contains a symbol-keyed association list of preference val-
ues. The file’s directory path always matches the result returned for 'pref-dir. The
file name is "racket-prefs.rktd" on Unix and Windows, and it is "org.racket-
lang.prefs.rktd" on Mac OS. The file’s directory might not exist. See also get-
preference.

• 'temp-dir — the standard directory for storing temporary files. On Unix and Mac
OS, this is the directory specified by the TMPDIR environment variable, if it is de-
fined, otherwise it is the first path that exists among "/var/tmp", "/usr/tmp", and
"/tmp". On Windows, the result is the directory specified by the TMP or TEMP envi-
ronment variable, if it is defined, otherwise it is the current directory.

• 'init-dir — the directory containing the initialization file used by the Racket exe-
cutable. It is the same as the user’s home directory.

• 'init-file — the file loaded at start-up by the Racket executable. The directory part
of the path is the same path as returned for 'init-dir. The file name is platform-
specific:

– Unix and Mac OS: ".racketrc"

– Windows: "racketrc.rktl"

1106

• 'config-dir — a directory for the installation’s configuration. This directory is
specified by the PLTCONFIGDIR environment variable, and it can be overridden by the
--config or -G command-line flag. If no environment variable or flag is specified, or
if the value is not a legal path name, then this directory defaults to an "etc" directory
relative to the current executable. If the result of (find-system-path 'config-
dir) is a relative path, it is relative to the current executable. The directory might not
exist.

• 'host-config-dir — like 'config-dir, but when cross-platform build mode has
been selected (through the -C or --cross argument to racket; see §18.1.4 “Com-
mand Line”), the result refers to a directory for the current system’s installation, in-
stead of for the target system.

• 'addon-dir — a directory for user-specific Racket configuration, packages, and ex-
tension. This directory is specified by the PLTADDONDIR environment variable, and
it can be overridden by the --addon or -A command-line flag. If no environment
variable or flag is specified, or if the value is not a legal path name, then this direc-
tory defaults to "Library/Racket" in the user’s home directory on Mac OS and
'pref-dir otherwise. The directory might not exist.

• 'doc-dir — the standard directory for storing the current user’s documents. On
Unix, it’s the user’s home directory. On Windows, it is the user’s home directory if
determined by PLTUSERHOME, otherwise it is the user’s documents folder as specified
by the Windows registry; the documents folder is usually "My Documents" in the
user’s home directory. On Mac OS, it’s the "Documents" directory in the user’s
home directory.

• 'desk-dir — the directory for the current user’s desktop. On Unix, it’s the user’s
home directory. On Windows, it is the user’s home directory if determined by PL-
TUSERHOME, otherwise it is the user’s desktop folder as specified by the Windows
registry; the desktop folder is usually "Desktop" in the user’s home directory. On
Mac OS, it is "Desktop" in the user’s home directory

• 'sys-dir — the directory containing the operating system for Windows. On Unix
and Mac OS, the result is "/".

• 'exec-file — the path of the Racket executable as provided by the operating system
for the current invocation. For some operating systems, the path can be relative. For GRacket, the

executable path is
the name of a
GRacket
executable.

• 'run-file — the path of the current executable; this may be different from result
for 'exec-file because an alternate path was provided through a --name or -N
command-line flag to the Racket (or GRacket) executable, or because an embedding
executable installed an alternate path. In particular a “launcher” script created by
make-racket-launcher sets this path to the script’s path.

• 'collects-dir — a path to the main collection of libraries (see §18.2 “Libraries and
Collections”). If this path is relative, then it is relative to the executable as reported
by (find-system-path 'exec-file)—though the latter could be a soft-link or
relative to the user’s executable search path, so that the two results should be combined

1107

with find-executable-path. The 'collects-dir path is normally embedded in
the Racket executable, but it can be overridden by the --collects or -X command-
line flag.

• 'host-collects-dir — like 'collects-dir, but when cross-platform build mode
has been selected (through the -C or --cross argument to racket; see §18.1.4 “Com-
mand Line”), the result refers to a directory for the current system’s installation, in-
stead of for the target system. In cross-platform build mode, collection files are nor-
mally read from the target system’s installation, but some tasks require current-system
directories (such as the one that holds foreign libraries) that are configured relative to
the main library-collection path.

• 'orig-dir — the current directory at start-up, which can be useful in converting
a relative-path result from (find-system-path 'exec-file) or (find-system-
path 'run-file) to a complete path.

Changed in version 6.0.0.3 of package base: Added PLTUSERHOME.
Changed in version 6.9.0.1: Added 'host-config-dir and 'host-collects-dir.

(path-list-string->path-list str
default-path-list)

Ñ (listof path?)
str : (or/c string? bytes?)
default-path-list : (listof path?)

Parses a string or byte string containing a list of paths, and returns a list of path strings. On
Unix and Mac OS, paths in a path list are separated by a :; on Windows, paths are separated
by a ;, and all "s in the string are discarded. Whenever the path list contains an empty path,
the list default-path-list is spliced into the returned list of paths. Parts of str that do
not form a valid path are not included in the returned list.

(find-executable-path program
[related
deepest?]) Ñ (or/c path? #f)

program : path-string?
related : (or/c path-string? #f) = #f
deepest? : any/c = #f

Finds a path for the executable program , returning #f if the path cannot be found.

If related is not #f, then it must be a relative path string, and the path found for program
must be such that the file or directory related exists in the same directory as the executable.
The result is then the full path for the found related , instead of the path for the executable.

This procedure is used by the Racket executable to find the standard library collection direc-
tory (see §18.2 “Libraries and Collections”). In this case, program is the name used to start

1108

Racket and related is "collects". The related argument is used because, on Unix and
Mac OS, program may involve a sequence of soft links; in this case, related determines
which link in the chain is relevant.

If related is not #f, then when find-executable-path does not find a program that is
a link to another file path, the search can continue with the destination of the link. Further
links are inspected until related is found or the end of the chain of links is reached. If
deepest? is #f (the default), then the result corresponds to the first path in a chain of links
for which related is found (and further links are not actually explored); otherwise, the
result corresponds to the last link in the chain for which related is found.

If program is a pathless name, find-executable-path gets the value of the PATH en-
vironment variable; if this environment variable is defined, find-executable-path tries
each path in PATH as a prefix for program using the search algorithm described above for
path-containing programs. If the PATH environment variable is not defined, program is
prefixed with the current directory and used in the search algorithm above. (On Windows,
the current directory is always implicitly the first item in PATH, so find-executable-path
checks the current directory first on Windows.)

15.2.2 Files

(file-exists? path) Ñ boolean?
path : path-string?

Returns #t if a file (not a directory) path exists, #f otherwise.

On Windows, file-exists? reports #t for all variations of the special filenames (e.g.,
"LPT1", "x:/baddir/LPT1").

(link-exists? path) Ñ boolean?
path : path-string?

Returns #t if a link path exists, #f otherwise.

The predicates file-exists? or directory-exists? work on the final destination of a
link or series of links, while link-exists? only follows links to resolve the base part of
path (i.e., everything except the last name in the path).

This procedure never raises the exn:fail:filesystem exception.

On Windows, link-exists? reports #t for both symbolic links and junctions.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

(delete-file path) Ñ void?
path : path-string?

1109

Deletes the file with path path if it exists, otherwise the exn:fail:filesystem exception
is raised. If path is a link, the link is deleted rather than the destination of the link.

On Windows, if an initial attempt to delete the file fails with a permission error and the
value of current-force-delete-permissions is true, then delete-file attempts to
change the file’s permissions (to allow writes) and then delete the file; the permission change
followed by deletion is a non-atomic sequence, with no attempt to revert a permission change
if the deletion fails.

On Windows, delete-file can delete a symbolic link, but not a junction. Use delete-
directory to delete a junction.

On Windows, beware that if a file is deleted while it remains in use by some process (e.g.,
a background search indexer), then the file’s content will eventually go away, but the file’s
name remains occupied until the file is no longer used. As long as the name remains occu-
pied, attempts to open, delete, or replace the file will trigger a permission error (as opposed
to a file-exists error). A common technique to avoid this pitfall is to move the file to a
generated temporary name before deleting it. See also delete-directory/files.

Changed in version 6.1.1.7 of package base: Changed Windows behavior to use
current-force-delete-permissions.

(rename-file-or-directory old
new

[exists-ok?]) Ñ void?
old : path-string?
new : path-string?
exists-ok? : any/c = #f

Renames the file or directory with path old—if it exists—to the path new . If the file or
directory is not renamed successfully, the exn:fail:filesystem exception is raised.

This procedure can be used to move a file/directory to a different directory (on the same
filesystem) as well as rename a file/directory within a directory. Unless exists-ok? is
provided as a true value, new cannot refer to an existing file or directory, but the check is not
atomic with the rename operation on Unix and Mac OS. Even if exists-ok? is true, new
cannot refer to an existing file when old is a directory, and vice versa.

If new exists and is replaced, the replacement is atomic on Unix and Mac OS, but it is not
guaranteed to be atomic on Windows. Furthermore, if new exists and is opened by any
process for reading or writing, then attempting to replace it will typically fail on Windows.
See also call-with-atomic-output-file.

If old is a link, the link is renamed rather than the destination of the link, and it counts as a
file for replacing any existing new .

On Windows, beware that a directory cannot be renamed if any file within the directory

1110

is open. That constraint is particularly problematic if a search indexer is running in the
background (as in the default Windows configuration). A possible workaround is to combine
copy-directory/files and delete-directory/files, since the latter can deal with
open files, although that sequence is obviously not atomic and temporarily duplicates files.

(file-or-directory-modify-seconds path
[secs-n]) Ñ exact-integer?

path : path-string?
secs-n : #f = #f

(file-or-directory-modify-seconds path
secs-n) Ñ void?

path : path-string?
secs-n : exact-integer?

(file-or-directory-modify-seconds path
[secs-n
fail-thunk]) Ñ any

path : path-string?
secs-n : (or/c exact-integer? #f) = #f
fail-thunk : (-> any)

= (lambda () (raise (make-exn:fail:filesystem)))

Returns the file or directory’s last modification date in seconds since midnight UTC, January
1, 1970 (see also §15.6 “Time”) when secs-n is not provided or is #f.

For FAT filesystems on Windows, directories do not have modification dates. Therefore, the
creation date is returned for a directory, but the modification date is returned for a file.

If secs-n is provided and not #f, the access and modification times of path are set to the
given time.

On error (e.g., if no such file exists), then fail-thunk is called (through a tail call) to
produce the result of the file-or-directory-modify-seconds call. If fail-thunk is
not provided, an error raises exn:fail:filesystem.

(file-or-directory-permissions path [mode])
Ñ (listof (or/c 'read 'write 'execute))
path : path-string?
mode : #f = #f

(file-or-directory-permissions path mode) Ñ (integer-in 0 65535)
path : path-string?
mode : 'bits

(file-or-directory-permissions path mode) Ñ void
path : path-string?
mode : (integer-in 0 65535)

When given one argument or #f as the second argument, returns a list containing 'read,
'write, and/or 'execute to indicate permission the given file or directory path by the

1111

current user and group. On Unix and Mac OS, permissions are checked for the current
effective user instead of the real user.

If 'bits is supplied as the second argument, the result is a platform-specific integer encod-
ing of the file or directory properties (mostly permissions), and the result is independent of
the current user and group. The lowest nine bits of the encoding are somewhat portable,
reflecting permissions for the file or directory’s owner, members of the file or directory’s
group, or other users:

• #o400 : owner has read permission

• #o200 : owner has write permission

• #o100 : owner has execute permission

• #o040 : group has read permission

• #o020 : group has write permission

• #o010 : group has execute permission

• #o004 : others have read permission

• #o002 : others have write permission

• #o001 : others have execute permission

See also user-read-bit, etc. On Windows, permissions from all three (owner, group, and
others) are always the same, and read and execute permission are always available. On Unix
and Mac OS, higher bits have a platform-specific meaning.

If an integer is supplied as the second argument, its is used as an encoding of properties
(mostly permissions) to install for the file.

In all modes, the exn:fail:filesystem exception is raised on error (e.g., if no such file
exists).

(file-or-directory-identity path [as-link?])
Ñ exact-positive-integer?
path : path-string?
as-link? : any/c = #f

Returns a number that represents the identity of path in terms of the device and file or
directory that it accesses. This function can be used to check whether two paths correspond
to the same filesystem entity under the assumption that the path’s entity selection does not
change.

If as-link? is a true value, then if path refers to a filesystem link, the identity of the link
is returned instead of the identity of the referenced file or directory (if any).

1112

(file-size path) Ñ exact-nonnegative-integer?
path : path-string?

Returns the (logical) size of the specified file in bytes. On Mac OS, this size excludes
the resource-fork size. On error (e.g., if no such file exists), the exn:fail:filesystem
exception is raised.

(copy-file src dest [exists-ok?]) Ñ void?
src : path-string?
dest : path-string?
exists-ok? : any/c = #f

Creates the file dest as a copy of src , if dest does not already exist. If dest already exists
and exists-ok? is #f, the copy fails with exn:fail:filesystem:exists? exception
is raised; otherwise, if dest exists, its content is replaced with the content of src . File
permissions are transferred from src to dest ; on Windows, the modification time of src
is also transferred to dest . If src refers to a link, the target of the link is copied, rather
than the link itself; if dest refers to a link and exists-ok? is true, the target of the link is
updated.

(make-file-or-directory-link to path) Ñ void?
to : path-string?
path : path-string?

Creates a link path to to . The creation will fail if path already exists. The to need not
refer to an existing file or directory, and to is not expanded before writing the link. If the
link is not created successfully,the exn:fail:filesystem exception is raised.

On Windows XP and earlier, the exn:fail:unsupported exception is raised. On later
versions of Windows, the creation of links tends to be disallowed by security policies. Fur-
thermore, a relative-path link is parsed specially; see §15.1.4 “Windows Paths” for more
information. When make-file-or-directory-link succeeds, it creates a symbolic link
as opposed to a junction.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

(current-force-delete-permissions) Ñ boolean?
(current-force-delete-permissions any/c) Ñ void?

any/c : boolean?

A parameter that determines on Windows whether delete-file and delete-directory
attempt to change a file or directory’s permissions to delete it. The default value is #t.

1113

15.2.3 Directories

See also: rename-file-or-directory, file-or-directory-modify-seconds,
file-or-directory-permissions.

(current-directory) Ñ (and/c path? complete-path?)
(current-directory path) Ñ void?

path : path-string?

A parameter that determines the current directory for resolving relative paths.

When the parameter procedure is called to set the current directory, the path argument is
cleansed using cleanse-path, simplified using simplify-path, and then converted to a
directory path with path->directory-path; cleansing and simplification raise an excep-
tion if the path is ill-formed. Thus, the current value of current-directory is always a
cleansed, simplified, complete, directory path.

The path is not checked for existence when the parameter is set.

On Unix and Mac OS, the initial value of the parameter for a Racket process is taken from
the PWD environment variable—if the value of the environment variable identifies the same
directory as the operating system’s report of the current directory.

(current-directory-for-user) Ñ (and/c path? complete-path?)
(current-directory-for-user path) Ñ void?

path : path-string?

Like current-directory, but use only by srcloc->string for reporting paths relative
to a directory.

Normally, current-directory-for-user should stay at its initial value, reflecting the
directory where a user started a process. A tool such as DrRacket, however, implicitly
lets a user select a directory (for the file being edited), in which case updating current-
directory-for-user makes sense.

(current-drive) Ñ path?

Returns the current drive name Windows. For other platforms, the exn:fail:unsupported
exception is raised. The current drive is always the drive of the current directory.

(directory-exists? path) Ñ boolean?
path : path-string?

Returns #t if path refers to a directory, #f otherwise.

(make-directory path) Ñ void?
path : path-string?

1114

Creates a new directory with the path path . If the directory is not created successfully, the
exn:fail:filesystem exception is raised.

(delete-directory path) Ñ void?
path : path-string?

Deletes an existing directory with the path path . If the directory is not deleted successfully,
the exn:fail:filesystem exception is raised.

On Windows, if an initial attempt to delete the directory fails with a permission error and
the value of current-force-delete-permissions is true, then delete-file attempts
to change the directory’s permissions (to allow writes) and then delete the directory; the
permission change followed by deletion is a non-atomic sequence, with no attempt to revert
a permission change if the deletion fails.

Changed in version 6.1.1.7 of package base: Changed Windows behavior to use
current-force-delete-permissions.

(directory-list [path #:build? build?]) Ñ (listof path?)
path : path-string? = (current-directory)
build? : any/c = #f

See also the
in-directory
sequence
constructor.

Returns a list of all files and directories in the directory specified by path . If build? is
#f, the resulting paths are all path elements; otherwise, the individual results are combined
with path using build-path. On Windows, an element of the result list may start with
\\?\REL\\.

The resulting paths are always sorted using path<?.

(filesystem-root-list) Ñ (listof path?)

Returns a list of all current root directories. Obtaining this list can be particularly slow on
Windows.

15.2.4 Detecting Filesystem Changes

Many operating systems provide notifications for filesystem changes, and those notifications
are reflected in Racket by filesystem change events.

(filesystem-change-evt? v) Ñ boolean?
v : any/c

Returns #t if v is a filesystem change event, #f otherwise.

1115

(filesystem-change-evt path [failure-thunk])
Ñ (or/c filesystem-change-evt? any)
path : path-string?
failure-thunk : (or/c (-> any) #f) = #f

Creates a filesystem change event, which is a synchronizable event that becomes ready for
synchronization after a change to path :

• If path refers to a file, the event becomes ready for synchronization when the file’s
content or attributes change, or when the file is deleted.

• If path refers to a directory, the event becomes ready for synchronization if a file or
subdirectory is added, renamed, or removed within the directory.

The event also becomes ready for synchronization if it is passed to filesystem-change-
evt-cancel.

Finally, depending on the precision of information available from the operating system, the
event may become ready for synchronization under other circumstances. For example, on
Windows, an event for a file becomes ready when any file changes within in the same direc-
tory as the file.

After a filesystem change event becomes ready for synchronization, it stays ready for syn-
chronization. The event’s synchronization result is the event itself.

If the current platform does not support filesystem-change notifications, then the
exn:fail:unsupported exception is raised if failure-thunk is not provided as a pro-
cedure, or failure-thunk is called in tail position if provided. Similarly, if there is
any operating-system error when creating the event (such as a non-existent file), then the
exn:fail:filesystem exception is raised or failure-thunk is called.

Creation of a filesystem change event allocates resources at the operating-system level. The
resources are released at latest when the event is sychronized and ready for synchronization,
when the event is canceled with filesystem-change-evt-cancel, or when the garbage
collector determine that the filesystem change event is unreachable. See also system-type
in 'fs-change mode.

A filesystem change event is placed under the management of the current custodian when it
is created. If the custodian is shut down, filesystem-change-evt-cancel is applied to
the event.

Changed in version 7.3.0.8 of package base: Allow #f for failure-thunk .

(filesystem-change-evt-cancel evt) Ñ void?
evt : filesystem-change-evt?

1116

Causes evt to become immediately ready for synchronization, whether it was ready or not
before, and releases the resources (at the operating-system level) for tracking filesystem
changes.

15.2.5 Declaring Paths Needed at Run Time

(require racket/runtime-path) package: base

The bindings documented in this section are provided by the racket/runtime-path li-
brary, not racket/base or racket.

The racket/runtime-path library provides forms for accessing files and directories at
run time using a path that are usually relative to an enclosing source file. Unlike using
collection-path, define-runtime-path exposes each run-time path to tools like the
executable and distribution creators, so that files and directories needed at run time are car-
ried along in a distribution.

In addition to the bindings described below, racket/runtime-path provides #%datum
in phase level 1, since string constants are often used as compile-time expressions with
define-runtime-path.

(define-runtime-path id maybe-runtime?-id expr)

maybe-runtime? =
| #:runtime?-id runtime?-id

Uses expr as both a compile-time (i.e., phase 1) expression and a run-time (i.e., phase 0)
expression. In either context, expr should produce a path, a string that represents a path, a
list of the form (list 'lib str ...+), or a list of the form (list 'so str) or (list
'so str vers). If runtime?-id is provided, then it is bound in the context of expr to
#f for the compile-time instance of expr and #t for the run-time instance of expr .

For run time, id is bound to a path that is based on the result of expr . The path is normally
computed by taking a relative path result from expr and adding it to a path for the enclosing
file (which is computed as described below). However, tools like the executable creator can
also arrange (by colluding with racket/runtime-path) to have a different base path sub-
stituted in a generated executable. If expr produces an absolute path, it is normally returned
directly, but again may be replaced by an executable creator. In all cases, the executable
creator preserves the relative locations of all paths within a given package (treating paths
outside of any package as being together). When expr produces a relative or absolute path,
then the path bound to id is always an absolute path.

If expr produces a list of the form (list 'lib str ...+), the value bound to id is an
absolute path. The path refers to a collection-based file similar to using the value as a module
path.

1117

https://pkgs.racket-lang.org/package/base

If expr produces a list of the form (list 'so str) or (list 'so str vers), the value
bound to id can be either str or an absolute path; it is an absolute path when searching in
the Racket-specific shared-object library directories (as determined by get-lib-search-
dirs) locates the path. In this way, shared-object libraries that are installed specifically for
Racket get carried along in distributions. The search tries each directory in order; within a
directory, the search tries using str directly, then it tries adding each version specified by
vers—which defaults to '(#f)—along with a platform-specific shared-library extension—
as produced by (system-type 'so-suffix). A vers can be a string, or it can be a list of
strings and #f.

If expr produces a list of the form (list 'module module-path var-ref) or (list
'so str (list str-or-false ...)), the value bound to id is a module path index,
where module-path is treated as relative (if it is relative) to the module that is the home of
the variable reference var-ref , where var-ref can be #f if module-path is absolute. In
an executable, the corresponding module is carried along, including all of its dependencies.

For compile-time, the expr result is used by an executable creator—but not the result when
the containing module is compiled. Instead, expr is preserved in the module as a compile-
time expression (in the sense of begin-for-syntax). Later, at the time that an executable
is created, the compile-time portion of the module is executed (again), and the result of expr
is the file to be included with the executable. The reason for the extra compile-time execution
is that the result of expr might be platform-dependent, so the result should not be stored in
the (platform-independent) bytecode form of the module; the platform at executable-creation
time, however, is the same as at run time for the executable. Note that expr is still evaluated
at run-time; consequently, avoid procedures like collection-path, which depends on the
source installation, and instead use relative paths and forms like (list 'lib str ...+).

If a path is needed only on some platforms and not on others, use define-runtime-path-
list with an expr that produces an empty list on platforms where the path is not needed.

Beware that define-runtime-path in a phase level other than 0 does not cooperate prop-
erly with an executable creator. To work around that limitation, put define-runtime-path
in a separate module—perhaps a submodule created by module—then export the definition,
and then the module containing the definition can be required into any phase level. Using
define-runtime-path in a phase level other than 0 logs a warning at expansion time.

The enclosing path for a define-runtime-path is determined as follows from the
define-runtime-path syntactic form:

• If the form has a source module according to syntax-source-module, then the
source location is determined by preserving the original expression as a syntax object,
extracting its source module path at run time (again using syntax-source-module),
and then resolving the resulting module path index. Note that syntax-source-
module is based on a syntax object’s lexical information, not its source location.

• If the expression has no source module, the syntax-source location associated with
the form is used, if is a string or path.

1118

• If no source module is available, and syntax-source produces no path, then
current-load-relative-directory is used if it is not #f. Finally, current-
directory is used if all else fails.

In the latter two cases, the path is normally preserved in (platform-specific) byte form, but
if the enclosing path corresponds to a result of collection-file-path, then the path is
record as relative to the corresponding module path.

Changed in version 6.0.1.6 of package base: Preserve relative paths only within a package.

Examples:

; Access a file "data.txt" at run-time that is originally
; located in the same directory as the module source file:
(define-runtime-path data-file "data.txt")
(define (read-data)
(with-input-from-file data-file
(lambda ()
(read-bytes (file-size data-file)))))

; Load a platform-specific shared object (using ffi-lib)
; that is located in a platform-specific sub-directory of the
; module's source directory:
(define-runtime-path libfit-path
(build-path "compiled" "native" (system-library-subpath #f)

(path-replace-suffix "libfit"
(system-type 'so-suffix))))

(define libfit (ffi-lib libfit-path))

; Load a platform-specific shared object that might be installed
; as part of the operating system, or might be installed
; specifically for Racket:
(define-runtime-path libssl-so
(case (system-type)
[(windows) '(so "ssleay32")]
[else '(so "libssl")]))

(define libssl (ffi-lib libssl-so))

Changed in version 6.4 of package base: Added #:runtime?-id.

(define-runtime-paths (id ...) maybe-runtime?-id expr)

Like define-runtime-path, but declares and binds multiple paths at once. The expr
should produce as many values as ids.

(define-runtime-path-list id maybe-runtime?-id expr)

1119

Like define-runtime-path, but expr should produce a list of paths.

(define-runtime-module-path-index id maybe-runtime?-id module-path-
expr)

Similar to define-runtime-path, but id is bound to a module path index that encapsu-
lates the result of module-path-expr relative to the enclosing module.

Use define-runtime-module-path-index to bind a module path that is passed to a re-
flective function like dynamic-require while also creating a module dependency for build-
ing and distributing executables.

(runtime-require module-path)

Similar to define-runtime-module-path-index, but creates the distribution depen-
dency without binding a module path index. When runtime-require is used multiple
times within a module with the same module-path , all but the first use expands to an
empty begin.

(define-runtime-module-path id module-path)

Similar to define-runtime-path, but id is bound to a resolved module path. The resolved
module path for id corresponds to module-path (with the same syntax as a module path
for require), which can be relative to the enclosing module.

The define-runtime-module-path-index form is usually preferred, because it creates a
weaker link to the referenced module. Unlike define-runtime-module-path-index, the
define-runtime-module-path form creates a for-label dependency from an enclosing
module to module-path . Since the dependency is merely for-label, module-path is
not instantiated or visited when the enclosing module is instantiated or visited (unless such a
dependency is created by other requires), but the code for the referenced module is loaded
when the enclosing module is loaded.

(runtime-paths module-path)

This form is mainly for use by tools such as executable builders. It expands to a quoted list
containing the run-time paths declared by module-path , returning the compile-time results
of the declaration exprs, except that paths are converted to byte strings. The enclosing
module must require (directly or indirectly) the module specified by module-path , which
is an unquoted module path. The resulting list does not include module paths bound through
define-runtime-module-path.

15.2.6 More File and Directory Utilities

(require racket/file) package: base

1120

https://pkgs.racket-lang.org/package/base

The bindings documented in this section are provided by the racket/file and racket
libraries, but not racket/base.

(file->string path [#:mode mode-flag]) Ñ string?
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary

Reads all characters from path and returns them as a string. The mode-flag argument is
the same as for open-input-file.

(file->bytes path [#:mode mode-flag]) Ñ bytes?
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary

Reads all characters from path and returns them as a byte string. The mode-flag argument
is the same as for open-input-file.

(file->value path [#:mode mode-flag]) Ñ any
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary

Reads a single S-expression from path using read. The mode-flag argument is the same
as for open-input-file.

(file->list path [proc #:mode mode-flag]) Ñ (listof any/c)
path : path-string?
proc : (input-port? . -> . any/c) = read
mode-flag : (or/c 'binary 'text) = 'binary

Repeatedly calls proc to consume the contents of path , until eof is produced. The mode-
flag argument is the same as for open-input-file.

(file->lines path
[#:mode mode-flag
#:line-mode line-mode]) Ñ (listof string?)

path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any

Read all characters from path , breaking them into lines. The line-mode argument is the
same as the second argument to read-line, but the default is 'any instead of 'linefeed.
The mode-flag argument is the same as for open-input-file.

1121

(file->bytes-lines path
[#:mode mode-flag
#:line-mode line-mode]) Ñ (listof bytes?)

path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)

= 'any

Like file->lines, but reading bytes and collecting them into lines like read-bytes-
line.

(display-to-file v
path

[#:mode mode-flag
#:exists exists-flag]) Ñ void?

v : any/c
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Uses display to print v to path . The mode-flag and exists-flag arguments are the
same as for open-output-file.

(write-to-file v
path

[#:mode mode-flag
#:exists exists-flag]) Ñ void?

v : any/c
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Like display-to-file, but using write instead of display.

(display-lines-to-file lst
path

[#:separator separator
#:mode mode-flag
#:exists exists-flag]) Ñ void?

lst : list?
path : path-string?

1122

separator : any/c = #"\n"
mode-flag : (or/c 'binary 'text) = 'binary
exists-flag : (or/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Displays each element of lst to path , adding separator after each element. The mode-
flag and exists-flag arguments are the same as for open-output-file.

(copy-directory/files
src
dest
#:keep-modify-seconds? keep-modify-seconds?
#:preserve-links? preserve-links?)
Ñ void?
src : path-string?
dest : path-string?
keep-modify-seconds? : #f
preserve-links? : #f

Copies the file or directory src to dest , raising exn:fail:filesystem if the file or direc-
tory cannot be copied, possibly because dest exists already. If src is a directory, the copy
applies recursively to the directory’s content. If a source is a link and preserve-links? is
#f, the target of the link is copied rather than the link itself; if preserve-links? is #t, the
link is copied.

If keep-modify-seconds? is #f, then file copies keep only the properties kept by copy-
file. If keep-modify-seconds? is true, then each file copy also keeps the modification
date of the original.

Changed in version 6.3 of package base: Added the #:preserve-links? argument.

(delete-directory/files path
#:must-exist? must-exist?) Ñ void?

path : path-string?
must-exist? : #t

Deletes the file or directory specified by path , raising exn:fail:filesystem if the file or
directory cannot be deleted. If path is a directory, then delete-directory/files is first
applied to each file and directory in path before the directory is deleted.

If must-exist? is true, then exn:fail:filesystem is raised if path does not exist. If
must-exist? is false, then delete-directory/files succeeds if path does not exist
(but a failure is possible if path initially exists and is removed by another thread or process
before delete-directory/files deletes it).

1123

On Windows, delete-directory/files attempts to move a file into the temporary-file
directory before deleting it, which avoids problems caused by deleting a file that is currently
open (e.g., by a search indexer running as a background process). If the move attempt fails
(e.g., because the temporary directory is on a different drive than the file), then the file is
deleted directly with delete-file.

Changed in version 7.0 of package base: Added Windows-specific file deletion.

(find-files
predicate

[start-path]
#:skip-filtered-directory? skip-filtered-directory?
#:follow-links? follow-links?)

Ñ (listof path?)
predicate : (path? . -> . any/c)
start-path : (or/c path-string? #f) = #f
skip-filtered-directory? : #f
follow-links? : #f

Traverses the filesystem starting at start-path and creates a list of all files and directories
for which predicate returns true. If start-path is #f, then the traversal starts from
(current-directory). In the resulting list, each directory precedes its content.

The predicate procedure is called with a single argument for each file or directory. If
start-path is #f, the argument is a pathname string that is relative to the current direc-
tory. Otherwise, it is a path building on start-path . Consequently, supplying (current-
directory) for start-path is different from supplying #f, because predicate receives
complete paths in the former case and relative paths in the latter. Another difference is that
predicate is not called for the current directory when start-path is #f.

If skip-filtered-directory? is true, then when predicate returns #f for a directory,
the directory’s content is not traversed.

If follow-links? is true, the find-files traversal follows links, and links are not in-
cluded in the result. If follow-links? is #f, then links are not followed, and links are
included in the result.

If start-path does not refer to an existing file or directory, then predicate will be called
exactly once with start-path as the argument.

The find-files procedure raises an exception if it encounters a directory for which
directory-list fails.

Changed in version 6.3.0.11 of package base: Added the #:skip-filtered-directory? argument.

(pathlist-closure path-list
[#:path-filter path-filter
#:follow-links? follow-links?])

1124

Ñ (listof path?)
path-list : (listof path-string?)
path-filter : (or/c #f (path? . -> . any/c)) = #f
follow-links? : any/c = #f

Given a list of paths, either absolute or relative to the current directory, returns a list such
that

• if a nested path is given, all of its ancestors are also included in the result (but the same
ancestor is not added twice);

• if a path refers to directory, all of its descendants are also included in the result, except
as omitted by path-filter ;

• ancestor directories appear before their descendants in the result list, as long as they
are not misordered in the given path-list .

If path-filter is a procedure, then it is applied to each descendant of a directory. If
path-filter returns #f, then the descendant (and any of its descendants, in the case of a
subdirectory) are omitted from the result.

If follow-links? is true, then the traversal of directories and files follows links, and the
link paths are not included in the result. If follow-links? is #f, then the result list includes
paths to link and the links are not followed.

Changed in version 6.3.0.11 of package base: Added the #:path-filter argument.

(fold-files proc
init-val

[start-path
follow-links?]) Ñ any

proc : (or/c (path? (or/c 'file 'dir 'link) any/c
. -> . any/c)

(path? (or/c 'file 'dir 'link) any/c
. -> . (values any/c any/c)))

init-val : any/c
start-path : (or/c path-string? #f) = #f
follow-links? : any/c = #t

Traverses the filesystem starting at start-path , calling proc on each discovered file, direc-
tory, and link. If start-path is #f, then the traversal starts from (current-directory).

The proc procedure is called with three arguments for each file, directory, or link:

• If start-path is #f, the first argument is a pathname string that is relative to the
current directory. Otherwise, the first argument is a pathname that starts with start-
path . Consequently, supplying (current-directory) for start-path is different

1125

from supplying #f, because proc receives complete paths in the former case and
relative paths in the latter. Another difference is that proc is not called for the current
directory when start-path is #f.

• The second argument is a symbol, either 'file, 'dir, or 'link. The second argu-
ment can be 'link when follow-links? is #f, in which case the filesystem traversal
does not follow links. If follow-links? is #t, then proc will only get a 'link as
a second argument when it encounters a dangling symbolic link (one that does not
resolve to an existing file or directory).

• The third argument is the accumulated result. For the first call to proc , the third
argument is init-val . For the second call to proc (if any), the third argument is the
result from the first call, and so on. The result of the last call to proc is the result of
fold-files.

The proc argument is used in an analogous way to the procedure argument of foldl, where
its result is used as the new accumulated result. There is an exception for the case of a
directory (when the second argument is 'dir): in this case the procedure may return two
values, the second indicating whether the recursive scan should include the given directory
or not. If it returns a single value, the directory is scanned. In the cases of files or links
(when the second argument is 'file or 'link), a second value is permitted but ignored.

If the start-path is provided but no such path exists, or if paths disappear during the scan,
then an exception is raised.

(make-directory* path) Ñ void?
path : path-string?

Creates directory specified by path , creating intermediate directories as necessary, and
never failing if path exists already.

If path is a relative path and the current directory does not exist, then make-directory*
will not create the current directory, because it considers only explicit elements of path .

(make-parent-directory* path) Ñ void?
path : path-string?

Creates the parent directory of the path specified by path , creating intermediate directories
as necessary, and never failing if an ancestor of path exists already.

If path is a filesystem root or a relative path with a single path element, then no directory
is created. Like make-directory*, if path is a relative path and the current directory does
not exist, then make-parent-directory* will not create it.

Added in version 6.1.1.3 of package base.

1126

(make-temporary-file [template
copy-from-filename
directory]) Ñ path?

template : string? = "rkttmp„a"
copy-from-filename : (or/c path-string? #f 'directory) = #f
directory : (or/c path-string? #f) = #f

Creates a new temporary file and returns a pathname string for the file. Instead of merely
generating a fresh file name, the file is actually created; this prevents other threads or pro-
cesses from picking the same temporary name.

The template argument must be a format string suitable for use with format and one
additional string argument (where the string contains only digits). If the resulting string is
a relative path, it is combined with the result of (find-system-path 'temp-dir), unless
directory is provided and non-#f, in which case the file name generated from template
is combined with directory to obtain a full path.

The template argument’s default is only the string "rkttmp„a" when there is no source
location information for the callsite of make-temporary-file (or if make-temporary-
file is used in a higher-order position). If there is such information, then the template
string is based on the source location.

If copy-from-filename is provided as path, the temporary file is created as a copy of the
named file (using copy-file). If copy-from-filename is #f, the temporary file is created
as empty. If copy-from-filename is 'directory, then the temporary “file” is created as
a directory.

When a temporary file is created, it is not opened for reading or writing when the pathname
is returned. The client program calling make-temporary-file is expected to open the file
with the desired access and flags (probably using the 'truncate flag; see open-output-
file) and to delete it when it is no longer needed.

(call-with-atomic-output-file
file
proc

[#:security-guard security-guard
#:rename-fail-handler rename-fail-handler])

Ñ any
file : path-string?
proc : ([port output-port?] [tmp-path path?] . -> . any)
security-guard : (or/c #f security-guard?) = #f
rename-fail-handler : (or/c #f (exn:fail:filesystem? path> . -> . any))

= #f

Opens a temporary file for writing in the same directory as file , calls proc to write to the
temporary file, and then atomically (except on Windows) moves the temporary file in place

1127

of file . The move simply uses rename-file-or-directory on Unix and Mac OS, and
it uses rename-file-or-directory on Windows if rename-fail-handler is provided;
otherwise, on Windows, the moves uses an extra rename step (see below) on Windows to
avoid problems due to concurrent readers of file .

The proc function is called with an output port for the temporary file, plus the path of the
temporary file. The result of proc is the result of call-with-atomic-output-file.

The call-with-atomic-output-file function arranges to delete temporary files on ex-
ceptions.

Windows prevents programs from deleting or replacing files that are open, but it allows
renaming of open files. Therefore, on Windows, call-with-atomic-output-file by
default creates a second temporary file extra-tmp-file , renames file to extra-tmp-
file , renames the temporary file written by proc to file , and finally deletes extra-tmp-
file . Since that process is not atomic, however, rename-file-or-directory is used
if rename-fail-handler is provided, where rename-file-or-directory has some
chance of being atomic, since that the source and destination of the moves will be in the same
directory; any filesystem exception while attempting to rename the file is send to rename-
fail-handler , which can re-raise the exception or simply return to try again, perhaps
after a delay. In addition to a filesystem exception, the rename-fail-handler procedure
also receives the temporary file path to be moved to path. The rename-fail-handler
argument is used only on Windows.

Changed in version 7.1.0.6 of package base: Added the #:rename-fail-handler argument.

(get-preference name
[failure-thunk
flush-mode
filename
#:use-lock? use-lock?
#:timeout-lock-there timeout-lock-there
#:lock-there lock-there]) Ñ any

name : symbol?
failure-thunk : (-> any) = (lambda () #f)
flush-mode : any/c = 'timestamp
filename : (or/c string-path? #f) = #f
use-lock? : any/c = #t
timeout-lock-there : (or/c (path? . -> . any) #f) = #f
lock-there : (or/c (path? . -> . any) #f)

= (make-handle-get-preference-locked
0.01 name failure-thunk flush-mode filename
#:lock-there timeout-lock-there)

Extracts a preference value from the file designated by (find-system-path 'pref-
file), or by filename if it is provided and is not #f. In the former case, if the preference
file doesn’t exist, get-preferences attempts to read an old preferences file, and then a

1128

"racket-prefs.rktd" file in the configuration directory (as reported by find-config-
dir), instead. If none of those files exists, the preference set is empty.

The preference file should contain a list of symbol–value lists written with the default pa-
rameter settings. Keys starting with racket:, mzscheme:, mred:, and plt: in any letter
case are reserved for use by Racket implementors. If the preference file does not contain a
list of symbol–value lists, an error is logged via log-error and failure-thunk is called.

The result of get-preference is the value associated with name if it exists in the associa-
tion list, or the result of calling failure-thunk otherwise.

Preference settings are cached (weakly) across calls to get-preference, using (path-
>complete-path filename) as a cache key. If flush-mode is provided as #f, the cache
is used instead of re-consulting the preferences file. If flush-mode is provided as 'times-
tamp (the default), then the cache is used only if the file has a timestamp that is the same as
the last time the file was read. Otherwise, the file is re-consulted.

On platforms for which preferences-lock-file-mode returns 'file-lock and when
use-lock? is true, preference-file reading is guarded by a lock; multiple readers can share
the lock, but writers take the lock exclusively. If the preferences file cannot be read because
the lock is unavailable, lock-there is called on the path of the lock file; if lock-there is
#f, an exception is raised. The default lock-there handler retries about 5 times (with in-
creasing delays between each attempt) before trying timeout-lock-there , and the default
timeout-lock-there triggers an exception.

See also put-preferences. For a more elaborate preference system, see
preferences:get.

Old preferences files: When a filename is not provided and the file indicated by (find-
system-path 'pref-file) does not exist, the following paths are checked for compati-
bility with old versions of Racket:

• Windows: (build-path (find-system-path 'pref-dir) 'up "PLT
Scheme" "plt-prefs.ss")

• Mac OS: (build-path (find-system-path 'pref-dir) "org.plt-
scheme.prefs.ss")

• Unix: (expand-user-path "„/.plt-scheme/plt-prefs.ss")

(put-preferences names
vals

[locked-proc
filename]) Ñ void?

names : (listof symbol?)
vals : list?
locked-proc : (or/c #f (path? . -> . any)) = #f

1129

filename : (or/c #f path-string?) = #f

Installs a set of preference values and writes all current values to the preference file desig-
nated by (find-system-path 'pref-file), or filename if it is supplied and not #f.

The names argument supplies the preference names, and vals must have the same length
as names . Each element of vals must be an instance of a built-in data type whose write
output is readable (i.e., the print-unreadable parameter is set to #f while writing pref-
erences).

Current preference values are read from the preference file before updating, and a write lock
is held starting before the file read, and lasting until after the preferences file is updated. The
lock is implemented by the existence of a file in the same directory as the preference file; see
preferences-lock-file-mode for more information. If the directory of the preferences
file does not already exist, it is created.

If the write lock is already held, then locked-proc is called with a single argument: the
path of the lock file. The default locked-proc (used when the locked-proc argument is
#f) reports an error; an alternative thunk might wait a while and try again, or give the user
the choice to delete the lock file (in case a previous update attempt encountered disaster and
locks are implemented by the presence of the lock file).

If filename is #f or not supplied, and the preference file does not already exist, then val-
ues read from the "defaults" collection (if any) are written for preferences that are not
mentioned in names .

(preferences-lock-file-mode) Ñ (or/c 'exists 'file-lock)

Reports the way that the lock file is used to implement preference-file locking on the current
platform.

The 'exists mode is currently used on all platforms except Windows. In 'exists mode,
the existence of the lock file indicates that a write lock is held, and readers need no lock
(because the preferences file is atomically updated via rename-file-or-directory).

The 'file-lock mode is currently used on Windows. In 'file-lock mode, shared and
exclusive locks (in the sense of port-try-file-lock?) on the lock file reflect reader and
writer locks on the preference-file content. (The preference file itself is not locked, because
a lock would interfere with replacing the file via rename-file-or-directory.)

(make-handle-get-preference-locked delay
name

[failure-thunk
flush-mode
filename
#:lock-there lock-there
#:max-delay max-delay])

1130

Ñ (path-string? . -> . any)
delay : real?
name : symbol?
failure-thunk : (-> any) = (lambda () #f)
flush-mode : any/c = 'timestamp
filename : (or/c path-string? #f) = #f
lock-there : (or/c (path? . -> . any) #f) = #f
max-delay : real? = 0.2

Creates a procedure suitable for use as the #:lock-there argument to get-preference,
where the name , failure-thunk , flush-mode , and filename are all passed on to get-
preference by the result procedure to retry the preferences lookup.

Before calling get-preference, the result procedure uses (sleep delay) to pause.
Then, if (* 2 delay) is less than max-delay , the result procedure calls make-handle-
get-preference-locked to generate a new retry procedure to pass to get-preference,
but with a delay of (* 2 delay). If (* 2 delay) is not less than max-delay , then
get-preference is called with the given lock-there , instead.

(call-with-file-lock/timeout filename
kind
thunk
failure-thunk

[#:lock-file lock-file
#:delay delay
#:max-delay max-delay]) Ñ any

filename : (or/c path-string? #f)
kind : (or/c 'shared 'exclusive)
thunk : (-> any)
failure-thunk : (-> any)
lock-file : (or/c #f path-string?) = #f
delay : (and/c real? (not/c negative?)) = 0.01
max-delay : (and/c real? (not/c negative?)) = 0.2

Obtains a lock for the filename lock-file and then calls thunk . The filename argument
specifies a file path prefix that is used only to generate the lock filename when lock-file
is #f. Specifically, when lock-file is #f, then call-with-file-lock/timeout uses
make-lock-file-name to build the lock filename. If the lock file does not yet exist, it is
created; beware that the lock file is not deleted by call-with-file-lock/timeout.

When thunk returns, call-with-file-lock/timeout releases the lock, returning the
result of thunk . The call-with-file-lock/timeout function will retry after delay
seconds and continue retrying with exponential backoff until delay reaches max-delay . If
call-with-file-lock/timeout fails to obtain the lock, failure-thunk is called in tail
position. The kind argument specifies whether the lock is 'shared or 'exclusive in the
sense of port-try-file-lock?.

1131

Examples:

> (call-with-file-lock/timeout filename 'exclusive
(lambda () (printf "File is locked\n"))
(lambda () (printf "Failed to obtain lock for file\n")))

File is locked
> (call-with-file-lock/timeout #f 'exclusive

(lambda ()
(call-with-file-lock/timeout filename 'shared
(lambda () (printf "Shouldn't get here\n"))
(lambda () (printf "Failed to obtain lock for file\n"))))

(lambda () (printf "Shouldn't get here either\n"))
#:lock-file (make-lock-file-name filename))

Failed to obtain lock for file

(make-lock-file-name path) Ñ path?
path : (or path-string? path-for-some-system?)

(make-lock-file-name dir name) Ñ path?
dir : (or path-string? path-for-some-system?)
name : path-element?

Creates a lock filename by prepending "_LOCK" on Windows (i.e., when cross-system-
type reports 'windows) or ".LOCK" on other platforms to the file portion of the path.

Example:

> (make-lock-file-name "/home/george/project/important-file")
#<path:/home/george/project/.LOCKimportant-file>

user-read-bit : #o400
user-write-bit : #o200
user-execute-bit : #o100
group-read-bit : #o040
group-write-bit : #o020
group-execute-bit : #o010
other-read-bit : #o004
other-write-bit : #o002
other-execute-bit : #o001

Constants that are useful with file-or-directory-permissions and bitwise operations
such as bitwise-ior, and bitwise-and.

1132

15.3 Networking

15.3.1 TCP

(require racket/tcp) package: base

The bindings documented in this section are provided by the racket/tcp and racket li-
braries, but not racket/base.

For information about TCP in general, see TCP/IP Illustrated, Volume 1 by W. Richard
Stevens.
(tcp-listen port-no

[max-allow-wait
reuse?
hostname]) Ñ tcp-listener?

port-no : listen-port-number?
max-allow-wait : exact-nonnegative-integer? = 4
reuse? : any/c = #f
hostname : (or/c string? #f) = #f

Creates a “listening” server on the local machine at the port number specified by port-no .
If port-no is 0 the socket binds to an ephemeral port, which can be determined by calling
tcp-addresses. The max-allow-wait argument determines the maximum number of
client connections that can be waiting for acceptance. (When max-allow-wait clients are
waiting acceptance, no new client connections can be made.)

If the reuse? argument is true, then tcp-listen will create a listener even if the port is
involved in a TIME_WAIT state. Such a use of reuse? defeats certain guarantees of the TCP
protocol; see Stevens’s book for details. Furthermore, on many modern platforms, a true
value for reuse? overrides TIME_WAIT only if the listener was previously created with a
true value for reuse?.

If hostname is #f (the default), then the listener accepts connections to all of the listening
machine’s addresses. Otherwise, the listener accepts connections only at the interface(s)
associated with the given hostname. For example, providing "127.0.0.1" as hostname
creates a listener that accepts only connections to "127.0.0.1" (the loopback interface)
from the local machine.

(Racket implements a listener with multiple sockets, if necessary, to accommodate multiple
addresses with different protocol families. On Linux, if hostname maps to both IPv4 and
IPv6 addresses, then the behavior depends on whether IPv6 is supported and IPv6 sockets
can be configured to listen to only IPv6 connections: if IPv6 is not supported or IPv6 sockets
are not configurable, then the IPv6 addresses are ignored; otherwise, each IPv6 listener
accepts only IPv6 connections.)

The return value of tcp-listen is a TCP listener. This value can be used in future calls

1133

https://pkgs.racket-lang.org/package/base

to tcp-accept, tcp-accept-ready?, and tcp-close. Each new TCP listener value is
placed into the management of the current custodian (see §14.7 “Custodians”).

If the server cannot be started by tcp-listen, the exn:fail:network exception is raised.

A TCP listener can be used as a synchronizable event (see §11.2.1 “Events”). A TCP listener
is ready for synchronization when tcp-accept would not block; the synchronization result
of a TCP listener is the TCP listener itself.

(tcp-connect hostname
port-no

[local-hostname
local-port-no]) Ñ input-port? output-port?

hostname : string?
port-no : port-number?
local-hostname : (or/c string? #f) = #f
local-port-no : (or/c port-number? #f) = #f

Attempts to connect as a client to a listening server. The hostname argument is the server
host’s Internet address name, and port-no is the port number where the server is listening.

(If hostname is associated with multiple addresses, they are tried one at a time until a
connection succeeds. The name "localhost" generally specifies the local machine.)

The optional local-hostname and local-port-no specify the client’s address and port.
If both are #f (the default), the client’s address and port are selected automatically. If
local-hostname is not #f, then local-port-no must be non-#f. If local-port-no
is non-#f and local-hostname is #f, then the given port is used but the address is selected
automatically.

Two values are returned by tcp-connect: an input port and an output port. Data can be
received from the server through the input port and sent to the server through the output port.
If the server is a Racket program, it can obtain ports to communicate to the client with tcp-
accept. These ports are placed into the management of the current custodian (see §14.7
“Custodians”).

Initially, the returned input port is block-buffered, and the returned output port is block-
buffered. Change the buffer mode using file-stream-buffer-mode.

Both of the returned ports must be closed to terminate the TCP connection. When both ports
are still open, closing the output port with close-output-port sends a TCP close to the
server (which is seen as an end-of-file if the server reads the connection through a port). In
contrast, tcp-abandon-port (see below) closes the output port, but does not send a TCP
close until the input port is also closed.

Note that the TCP protocol does not support a state where one end is willing to send but
not read, nor does it include an automatic message when one end of a connection is fully

1134

closed. Instead, the other end of a connection discovers that one end is fully closed only as
a response to sending data; in particular, some number of writes on the still-open end may
appear to succeed, though writes will eventually produce an error.

If a connection cannot be established by tcp-connect, the exn:fail:network exception
is raised.

(tcp-connect/enable-break hostname
port-no

[local-hostname]
local-port-no)

Ñ input-port? output-port?
hostname : string?
port-no : port-number?
local-hostname : (or/c string? #f) = #f
local-port-no : (or/c port-number? #f)

Like tcp-connect, but breaking is enabled (see §10.6 “Breaks”) while trying to connect.
If breaking is disabled when tcp-connect/enable-break is called, then either ports are
returned or the exn:break exception is raised, but not both.

(tcp-accept listener) Ñ input-port? output-port?
listener : tcp-listener?

Accepts a client connection for the server associated with listener . If no client connection
is waiting on the listening port, the call to tcp-accept will block. (See also tcp-accept-
ready?.)

Two values are returned by tcp-accept: an input port and an output port. Data can be
received from the client through the input port and sent to the client through the output port.
These ports are placed into the management of the current custodian (see §14.7 “Custodi-
ans”).

In terms of buffering and connection states, the ports act the same as ports from tcp-
connect.

If a connection cannot be accepted by tcp-accept, or if the listener has been closed, the
exn:fail:network exception is raised.

(tcp-accept/enable-break listener) Ñ input-port? output-port?
listener : tcp-listener?

Like tcp-accept, but breaking is enabled (see §10.6 “Breaks”) while trying to accept a
connection. If breaking is disabled when tcp-accept/enable-break is called, then either
ports are returned or the exn:break exception is raised, but not both.

1135

(tcp-accept-ready? listener) Ñ boolean?
listener : tcp-listener?

Tests whether an unaccepted client has connected to the server associated with listener .
If a client is waiting, the return value is #t, otherwise it is #f. A client is accepted with the
tcp-accept procedure, which returns ports for communicating with the client and removes
the client from the list of unaccepted clients.

If the listener has been closed, the exn:fail:network exception is raised.

(tcp-close listener) Ñ void?
listener : tcp-listener?

Shuts down the server associated with listener . All unaccepted clients receive an end-of-
file from the server; connections to accepted clients are unaffected.

If the listener has already been closed, the exn:fail:network exception is raised.

The listener’s port number may not become immediately available for new listeners (with
the default reuse? argument of tcp-listen). For further information, see Stevens’s ex-
planation of the TIME_WAIT TCP state.

(tcp-listener? v) Ñ boolean?
v : any/c

Returns #t if v is a TCP listener created by tcp-listen, #f otherwise.

(tcp-accept-evt listener) Ñ evt?
listener : tcp-listener?

Returns a synchronizable event (see §11.2.1 “Events”) that is ready for synchronization when
tcp-accept on listener would not block. The synchronization result is a list of two
items, which correspond to the two results of tcp-accept. (If the event is not chosen
in a sync, no connections are accepted.) The ports are placed into the management of
the custodian that is the current custodian (see §14.7 “Custodians”) at the time that tcp-
accept-evt is called.

(tcp-abandon-port tcp-port) Ñ void?
tcp-port : tcp-port?

Like close-output-port or close-input-port (depending on whether tcp-port is an
input or output port), but if tcp-port is an output port and its associated input port is not
yet closed, then the other end of the TCP connection does not receive a TCP close message
until the input port is also closed.

1136

The TCP protocol does not include a “no longer reading” state on connections, so tcp-
abandon-port is equivalent to close-input-port on input TCP ports.

(tcp-addresses tcp-port [port-numbers?])
Ñ (or/c (values string? string?)

(values string? port-number?
string? listen-port-number?))

tcp-port : (or/c tcp-port? tcp-listener? udp?)
port-numbers? : any/c = #f

Returns two strings when port-numbers? is #f (the default). The first string is the Internet
address for the local machine as viewed by the given TCP port’s connection, for the TCP
listener, or the UDP socket. (When a machine serves multiple addresses, as it usually does
if you count the loopback device, the result is connection-specific or listener-specific.) If a
listener or UDP socket is given and it has no specific host, the first string result is "0.0.0.0".
The second string is the Internet address for the other end of the connection, or always
"0.0.0.0" for a listener or unconnected UDP socket.

If port-numbers? is true, then four results are returned: a string for the local machine’s
address, an exact integer between 1 and 65535 for the local machine’s port number, a string
for the remote machine’s address, and an exact integer between 1 and 65535 for the remote
machine’s port number or 0 for a listener.

If the given port, listener, or socket has been closed, the exn:fail:network exception is
raised.
(tcp-port? v) Ñ boolean?

v : any/c

Returns #t if v is a TCP port—which is a port returned by tcp-accept, tcp-connect,
tcp-accept/enable-break, or tcp-connect/enable-break—#f otherwise.

port-number? : contract?

Equivalent to (between/c 1 65535).

Added in version 6.3 of package base.

listen-port-number? : contract?

Equivalent to (between/c 0 65535).

Added in version 6.3 of package base.

15.3.2 UDP

(require racket/udp) package: base

1137

https://pkgs.racket-lang.org/package/base

The bindings documented in this section are provided by the racket/udp and racket li-
braries, but not racket/base.

For information about UDP in general, see TCP/IP Illustrated, Volume 1 by W. Richard
Stevens.

(udp-open-socket [family-hostname
family-port-no]) Ñ udp?

family-hostname : (or/c string? #f) = #f
family-port-no : (or/c port-number? #f) = #f

Creates and returns a UDP socket to send and receive datagrams (broadcasting is allowed).
Initially, the socket is not bound or connected to any address or port.

If family-hostname or family-port-no is not #f, then the socket’s protocol family is
determined from these arguments. The socket is not bound to the hostname or port number.
For example, the arguments might be the hostname and port to which messages will be sent
through the socket, which ensures that the socket’s protocol family is consistent with the
destination. Alternately, the arguments might be the same as for a future call to udp-bind!,
which ensures that the socket’s protocol family is consistent with the binding. If neither
family-hostname nor family-port-no is non-#f, then the socket’s protocol family is
IPv4.

(udp-bind! udp-socket
hostname-string
port-no

[reuse?]) Ñ void?
udp-socket : udp?
hostname-string : (or/c string? #f)
port-no : listen-port-number?
reuse? : any/c = #f

Binds an unbound udp-socket to the local port number port-no . If port-no is 0 the
udp-socket is bound to an ephemeral port, which can be determined by calling udp-
addresses.

If hostname-string is #f, then the socket accepts connections to all of the lis-
tening machine’s IP addresses at port-no . Otherwise, the socket accepts connec-
tions only at the IP address associated with the given name. For example, providing
"127.0.0.1" as hostname-string typically creates a listener that accepts only connec-
tions to "127.0.0.1" from the local machine.

A socket cannot receive datagrams until it is bound to a local address and port. If a socket
is not bound before it is used with a sending procedure udp-send, udp-send-to, etc., the
sending procedure binds the socket to a random local port. Similarly, if an event from udp-
send-evt or udp-send-to-evt is chosen for a synchronization (see §11.2.1 “Events”), the
socket is bound; if the event is not chosen, the socket may or may not become bound.

1138

The binding of a bound socket cannot be changed, with one exception: on some systems,
if the socket is bound automatically when sending, if the socket is disconnected via udp-
connect!, and if the socket is later used again in a send, then the later send may change the
socket’s automatic binding.

If udp-socket is already bound or closed, the exn:fail:network exception is raised.

If the reuse? argument is true, then udp-bind! will set the SO_REUSEADDR socket option
before binding, permitting the sharing of access to a UDP port between many processes on
a single machine when using UDP multicast.

(udp-connect! udp-socket
hostname-string
port-no) Ñ void?

udp-socket : udp?
hostname-string : (or/c string? #f)
port-no : (or/c port-number? #f)

Connects the socket to the indicated remote address and port if hostname-string is a
string and port-no is an exact integer.

If hostname-string is #f, then port-no also must be #f, and the port is disconnected
(if connected). If one of hostname-string or port-no is #f and the other is not, the
exn:fail:contract exception is raised.

A connected socket can be used with udp-send (not udp-send-to), and it accepts data-
grams only from the connected address and port. A socket need not be connected to receive
datagrams. A socket can be connected, re-connected, and disconnected any number of times.

If udp-socket is closed, the exn:fail:network exception is raised.

(udp-send-to udp-socket
hostname
port-no
bstr

[start-pos
end-pos]) Ñ void

udp-socket : udp?
hostname : string?
port-no : port-number?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Sends (subbytes bytes start-pos end-pos) as a datagram from the unconnected
udp-socket to the socket at the remote machine hostname-address on the port port-
no . The udp-socket need not be bound or connected; if it is not bound, udp-send-to

1139

binds it to a random local port. If the socket’s outgoing datagram queue is too full to support
the send, udp-send-to blocks until the datagram can be queued.

If start-pos is greater than the length of bstr , or if end-pos is less than start-pos or
greater than the length of bstr , the exn:fail:contract exception is raised.

If udp-socket is closed or connected, the exn:fail:network exception is raised.

(udp-send udp-socket bstr [start-pos end-pos]) Ñ void
udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-send-to, except that udp-socket must be connected, and the datagram goes to
the connection target. If udp-socket is closed or unconnected, the exn:fail:network
exception is raised.

(udp-send-to* udp-socket
hostname
port-no
bstr

[start-pos
end-pos]) Ñ boolean?

udp-socket : udp?
hostname : string?
port-no : port-number?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-send-to, but never blocks; if the socket’s outgoing queue is too full to support
the send, #f is returned, otherwise the datagram is queued and the result is #t.

(udp-send* udp-socket bstr [start-pos end-pos]) Ñ boolean?
udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-send, except that (like udp-send-to) it never blocks and returns #f or #t.

(udp-send-to/enable-break udp-socket
hostname
port-no
bstr

[start-pos
end-pos]) Ñ void

1140

udp-socket : udp?
hostname : string?
port-no : port-number?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-send-to, but breaking is enabled (see §10.6 “Breaks”) while trying to send the
datagram. If breaking is disabled when udp-send-to/enable-break is called, then either
the datagram is sent or the exn:break exception is raised, but not both.

(udp-send/enable-break udp-socket
bstr

[start-pos
end-pos]) Ñ void

udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-send, except that breaks are enabled like udp-send-to/enable-break.

(udp-receive! udp-socket
bstr

[start-pos
end-pos]) Ñ exact-nonnegative-integer?

string?
port-number?

udp-socket : udp?
bstr : (and/c bytes? (not immutable?))
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Accepts up to end-pos -start-pos bytes of udp-socket ’s next incoming datagram into
bstr , writing the datagram bytes starting at position start-pos within bstr . The udp-
socket must be bound to a local address and port (but need not be connected). If no incom-
ing datagram is immediately available, udp-receive! blocks until one is available.

Three values are returned: the number of received bytes (between 0 and end-pos -start-
pos , a hostname string indicating the source address of the datagram, and an integer indi-
cating the source port of the datagram. If the received datagram is longer than end-pos -
start-pos bytes, the remainder is discarded.

If start-pos is greater than the length of bstr , or if end-pos is less than start-pos or
greater than the length of bstr , the exn:fail:contract exception is raised.

1141

(udp-receive!* udp-socket
bstr

[start-pos
end-pos])

Ñ (or/c exact-nonnegative-integer? #f)
(or/c string? #f)
(or/c port-number? #f)

udp-socket : udp?
bstr : (and/c bytes? (not immutable?))
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-receive!, except that it never blocks. If no datagram is available, the three result
values are all #f.

(udp-receive!/enable-break udp-socket
bstr

[start-pos
end-pos])

Ñ exact-nonnegative-integer?
string?
port-number?

udp-socket : udp?
bstr : (and/c bytes? (not immutable?))
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Like udp-receive!, but breaking is enabled (see §10.6 “Breaks”) while trying to receive
the datagram. If breaking is disabled when udp-receive!/enable-break is called, then
either a datagram is received or the exn:break exception is raised, but not both.

(udp-set-receive-buffer-size! udp-socket
size) Ñ void

udp-socket : udp?
size : exact-positive-integer?

Set the receive buffer size (SO_RCVBUF) for udp-socket . Using a larger buffer can mini-
mize packet loss that can occur due to slow polling of a connection, including during a major
garbage collection.

If size is greater than the maximum allowed by the system, the exn:fail:network ex-
ception is raised.

Added in version 7.1.0.11 of package base.

1142

(udp-close udp-socket) Ñ void?
udp-socket : udp?

Closes udp-socket , discarding unreceived datagrams. If the socket is already closed, the
exn:fail:network exception is raised.

(udp? v) Ñ boolean?
v : any/c

Returns #t if v is a socket created by udp-open-socket, #f otherwise.

(udp-bound? udp-socket) Ñ boolean?
udp-socket : udp?

Returns #t if udp-socket is bound to a local address and port, #f otherwise.

(udp-connected? udp-socket) Ñ boolean?
udp-socket : udp?

Returns #t if udp-socket is connected to a remote address and port, #f otherwise.

(udp-send-ready-evt udp-socket) Ñ evt?
udp-socket : udp?

Returns a synchronizable event (see §11.2.1 “Events”) that is in a blocking state when udp-
send-to on udp-socket would block. The synchronization result is the event itself.

(udp-receive-ready-evt udp-socket) Ñ evt?
udp-socket : udp?

Returns a synchronizable event (see §11.2.1 “Events”) that is in a blocking state when udp-
receive! on udp-socket would block. The synchronization result is the event itself.

(udp-send-to-evt udp-socket
hostname
port-no
bstr

[start-pos
end-pos]) Ñ evt?

udp-socket : udp?
hostname : string?
port-no : port-number?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

1143

Returns a synchronizable event. The event is in a blocking state when udp-send-to on
udp-socket would block. Otherwise, if the event is chosen in a synchronization, data is
sent as for (udp-send-to udp-socket hostname-address port-no bstr start-
pos end-pos), and the synchronization result is #<void>. (No bytes are sent if the event
is not chosen.)

(udp-send-evt udp-socket
bstr

[start-pos
end-pos]) Ñ evt?

udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Returns a synchronizable event. The event is ready for synchronization when udp-send
on udp-socket would not block. Otherwise, if the event is chosen in a synchronization,
data is sent as for (udp-send-to udp-socket bstr start-pos end-pos), and the
synchronization result is #<void>. (No bytes are sent if the event is not chosen.) If udp-
socket is closed or unconnected, the exn:fail:network exception is raised during a
synchronization attempt.

(udp-receive!-evt udp-socket
bstr

[start-pos
end-pos]) Ñ evt?

udp-socket : udp?
bstr : (and/c bytes? (not immutable?))
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)

Returns a synchronizable event. The event is ready for synchronization when udp-receive
on udp-socket would not block. Otherwise, if the event is chosen in a synchronization,
data is received into bstr as for (udp-receive! udp-socket bytes start-pos end-
pos), and the synchronization result is a list of three values, corresponding to the three
results from udp-receive!. (No bytes are received and the bstr content is not modified if
the event is not chosen.)

(udp-addresses udp-port [port-numbers?])
Ñ (or/c (values string? string?)

(values string? listen-port-number?
string? listen-port-number?))

udp-port : udp?
port-numbers? : any/c = #f

Returns two strings when port-numbers? is #f (the default). The first string is the Internet
address for the local machine a viewed by the given UDP socket’s connection. (For most

1144

machines, the answer corresponds to the current machine’s only Internet address, but when
a machine serves multiple addresses, the result is connection-specific.) The second string is
the Internet address for the other end of the connection.

If port-numbers? is true, then four results are returned: a string for the local machine’s
address, an exact integer between 1 and 65535 for the local machine’s port number or 0 if the
socket is unbound, a string for the remote machine’s address, and an exact integer between
1 and 65535 for the remote machine’s port number or 0 if the socket is unconnected.

If the given port has been closed, the exn:fail:network exception is raised.

(udp-multicast-join-group! udp-socket
multicast-addr
hostname) Ñ void?

udp-socket : udp?
multicast-addr : string?
hostname : (or/c string? #f)

(udp-multicast-leave-group! udp-socket
multicast-addr
hostname) Ñ void?

udp-socket : udp?
multicast-addr : string?
hostname : (or/c string? #f)

Adds or removes udp-socket to a named multicast group.

The multicast-addr argument must be a valid IPv4 multicast IP address; for example,
"224.0.0.251" is the appropriate address for the mDNS protocol. The hostname argu-
ment selects the interface that the socket uses to receive (not send) multicast datagrams; if
hostname is #f or "0.0.0.0", the kernel selects an interface automatically.

Leaving a group requires the same multicast-addr and hostname arguments that were
used to join the group.

(udp-multicast-interface udp-socket) Ñ string?
udp-socket : udp?

(udp-multicast-set-interface! udp-socket
hostname) Ñ void?

udp-socket : udp?
hostname : (or/c string? #f)

Retrieves or sets the interface that udp-socket uses to send (not receive) multicast data-
grams. If the result or hostname is either #f or "0.0.0.0", the kernel automatically selects
an interface when a multicast datagram is sent.

1145

(udp-multicast-set-loopback! udp-socket
loopback?) Ñ void?

udp-socket : udp?
loopback? : any/c

(udp-multicast-loopback? udp-socket) Ñ boolean?
udp-socket : udp?

Loopback settings
correspond to the
IP_MULTICAST_LOOP
setting of the
socket.

Sets or checks whether udp-socket receives its own multicast datagrams: a #t result or a
true value for loopback? indicates that self-receipt is enabled, and #f indicates that self-
receipt is disabled.

(udp-multicast-set-ttl! udp-socket ttl) Ñ void?
udp-socket : udp?
ttl : byte?

(udp-multicast-ttl udp-socket) Ñ byte?
udp-socket : udp?

Time-to-live
settings correspond
to the
IP_MULTICAST_TTL
setting of the
socket.

Sets or retrieves the current time-to-live setting of udp-socket .

The time-to-live setting should almost always be 1, and it is important that this number is as
low as possible. In fact, these functions seldom should be used at all. See the documentation
for your platform’s IP stack.

15.4 Processes

(subprocess stdout
stdin
stderr

[group]
command
arg ...)

Ñ subprocess?
(or/c (and/c input-port? file-stream-port?) #f)
(or/c (and/c output-port? file-stream-port?) #f)
(or/c (and/c input-port? file-stream-port?) #f)

stdout : (or/c (and/c output-port? file-stream-port?) #f)
stdin : (or/c (and/c input-port? file-stream-port?) #f)
stderr : (or/c (and/c output-port? file-stream-port?) #f 'stdout)
group : (or/c #f 'new subprocess)

= (and (subprocess-group-enabled) 'new)
command : path-string?
arg : (or/c path? string-no-nuls? bytes-no-nuls?)

1146

(subprocess stdout
stdin
stderr

[group]
command
exact
arg)

Ñ subprocess?
(or/c (and/c input-port? file-stream-port?) #f)
(or/c (and/c output-port? file-stream-port?) #f)
(or/c (and/c input-port? file-stream-port?) #f)

stdout : (or/c (and/c output-port? file-stream-port?) #f)
stdin : (or/c (and/c input-port? file-stream-port?) #f)
stderr : (or/c (and/c output-port? file-stream-port?) #f)
group : (or/c #f 'new subprocess)

= (and (subprocess-group-enabled) 'new)
command : path-string?
exact : 'exact
arg : string?

Creates a new process in the underlying operating system to execute command
asynchronously, providing the new process with environment variables current-
environment-variables. See also system and process from racket/system. On Unix and Mac

OS, subprocess
creation is separate
from starting the
program indicated
by command . In
particular, if
command refers to a
non-existent or
non-executable file,
an error will be
reported (via
standard error and a
non-0 exit code) in
the subprocess, not
in the creating
process.

The command argument is a path to a program executable, and the args are command-line
arguments for the program. See find-executable-path for locating an executable based
on the PATH environment variable. On Unix and Mac OS, command-line arguments are
passed as byte strings, and string args are converted using the current locale’s encoding
(see §13.1.1 “Encodings and Locales”). On Windows, command-line arguments are passed
as strings, and bytes strings are converted using UTF-8.

On Windows, the first arg can be replaced with 'exact, which triggers a Windows-specific
behavior: the sole arg is used exactly as the command-line for the subprocess. Otherwise,
on Windows, a command-line string is constructed from command and arg so that a typi-
cal Windows console application can parse it back to an array of arguments. If 'exact is
provided on a non-Windows platform, the exn:fail:contract exception is raised. For information on

the Windows
command-line
conventions, search
for “command line
parsing” at
http://msdn.microsoft.com/.

When provided as a port, stdout is used for the launched process’s standard output, stdin
is used for the process’s standard input, and stderr is used for the process’s standard error.
All provided ports must be file-stream ports. Any of the ports can be #f, in which case a sys-
tem pipe is created and returned by subprocess. The stderr argument can be 'stdout,
in which case the same file-stream port or system pipe that is supplied as standard output is
also used for standard error. For each port or 'stdout that is provided, no pipe is created
and the corresponding returned value is #f.

If group is 'new, then the new process is created as a new OS-level process group. In that

1147

case, subprocess-kill attempts to terminate all processes within the group, which may
include additional processes created by the subprocess. See subprocess-kill for details. Beware that

creating a group
may interfere with
the job control in an
interactive shell,
since job control is
based on process
groups.

If group is a subprocess, then that subprocess must have been created with 'new, and the
new subprocess will be added to the group; adding to the group will succeed only on Unix
and Mac OS, and only in the same cases that subprocess-kill would have an effect (i.e.,
the subprocess is not known to have terminated), otherwise it will fail silently.

The subprocess procedure returns four values:

• a subprocess value representing the created process;

• an input port piped from the process’s standard output, or #f if stdout-output-port
was a port;

• an output port piped to the process standard input, or #f if stdin-input-port was
a port;

• an input port piped from the process’s standard error, or #f if stderr-output-port
was a port or 'stdout.

Important: All ports returned from subprocess must be explicitly closed, usually with
close-input-port or close-output-port. A file-stream port

for communicating
with a subprocess is
normally a pipe
with a limited
capacity. Beware of
creating deadlock
by serializing a
write to a
subprocess
followed by a read,
while the
subprocess does the
same, so that both
processes end up
blocking on a write
because the other
end must first read
to make room in the
pipe. Beware also
of waiting for a
subprocess to finish
without reading its
output, because the
subprocess may be
blocked attempting
to write output into
a full pipe.

The returned ports are file-stream ports (see §13.1.5 “File Ports”), and they are placed into
the management of the current custodian (see §14.7 “Custodians”). The exn:fail excep-
tion is raised when a low-level error prevents the spawning of a process or the creation of
operating system pipes for process communication.

The current-subprocess-custodian-mode parameter determines whether the subpro-
cess itself is registered with the current custodian so that a custodian shutdown calls
subprocess-kill for the subprocess.

A subprocess can be used as a synchronizable event (see §11.2.1 “Events”). A subprocess
value is ready for synchronization when subprocess-wait would not block; the synchro-
nization result of a subprocess value is the subprocess value itself.

Changed in version 6.11.0.1 of package base: Added the group argument.

(subprocess-wait subproc) Ñ void?
subproc : subprocess?

Blocks until the process represented by subproc terminates. The subproc value also can
be used with sync and sync/timeout.

(subprocess-status subproc) Ñ (or/c 'running
exact-nonnegative-integer?)

subproc : subprocess?

1148

Returns 'running if the process represented by subproc is still running, or its exit code
otherwise. The exit code is an exact integer, and 0 typically indicates success. If the process
terminated due to a fault or signal, the exit code is non-zero.

(subprocess-kill subproc force?) Ñ void?
subproc : subprocess?
force? : any/c

Terminates the subprocess represented by subproc . The precise action depends on
whether force? is true, whether the process was created in its own group by setting the
subprocess-group-enabled parameter to a true value, and the current platform:

• force? is true, not a group, all platforms: Terminates the process if the process still
running.

• force? is false, not a group, on Unix or Mac OS: Sends the process an interrupt signal
instead of a kill signal.

• force? is false, not a group, on Windows: No action is taken.

• force? is true, a group, on Unix or Mac OS: Terminates all processes in the group,
but only if subprocess-status has never produced a non-'running result for the
subprocess and only if functions like subprocess-wait and sync have not detected
the subprocess’s completion. Otherwise, no action is taken (because the immediate
process is known to have terminated while the continued existence of the group is
unknown).

• force? is true, a group, on Windows: Terminates the process if the process still
running.

• force? is false, a group, on Unix or Mac OS: The same as when force? is #t, but
when the group is sent a signal, it is an interrupt signal instead of a kill signal.

• force? is false, a group, on Windows: All processes in the group receive a CTRL-
BREAK signal (independent of whether the immediate subprocess has terminated).

If an error occurs during termination, the exn:fail exception is raised.

(subprocess-pid subproc) Ñ exact-nonnegative-integer?
subproc : subprocess?

Returns the operating system’s numerical ID (if any) for the process represented by sub-
proc . The result is valid only as long as the process is running.

(subprocess? v) Ñ boolean?
v : any/c

1149

Returns #t if v is a subprocess value, #f otherwise.

(current-subprocess-custodian-mode)
Ñ (or/c #f 'kill 'interrupt)

(current-subprocess-custodian-mode mode) Ñ void?
mode : (or/c #f 'kill 'interrupt)

A parameter that determines whether a subprocess (as created by subprocess or wrappers
like process) is registered with the current custodian. If the parameter value is #f, then the
subprocess is not registered with the custodian—although any created ports are registered.
If the parameter value is 'kill or 'interrupt, then the subprocess is shut down through
subprocess-kill, where 'kill supplies a #t value for the force? argument and 'in-
terrupt supplies a #f value. The shutdown may occur either before or after ports created
for the subprocess are closed.

Custodian-triggered shutdown is limited by details of process handling in the host system.
For example, process and system may create an intermediate shell process to run a pro-
gram, in which case custodian-based termination shuts down the shell process and proba-
bly not the process started by the shell. See also subprocess-kill. Process groups (see
subprocess-group-enabled) can address some limitations, but not all of them.

(subprocess-group-enabled) Ñ boolean?
(subprocess-group-enabled on?) Ñ void?

on? : any/c

A parameter that determines whether a subprocess is created as a new process group by
default. See subprocess and subprocess-kill for more information.

(shell-execute verb
target
parameters
dir
show-mode) Ñ #f

verb : (or/c string? #f)
target : string?
parameters : string?
dir : path-string?
show-mode : symbol?

Performs the action specified by verb on target in Windows. For platforms other than
Windows, the exn:fail:unsupported exception is raised.

For example,

(shell-execute #f "http://racket-lang.org" ""
(current-directory) 'sw_shownormal)

1150

Opens the Racket home page in a browser window.

The verb can be #f, in which case the operating system will use a default verb. Common
verbs include "open", "edit", "find", "explore", and "print".

The target is the target for the action, usually a filename path. The file could be exe-
cutable, or it could be a file with a recognized extension that can be handled by an installed
application.

The parameters argument is passed on to the system to perform the action. For example,
in the case of opening an executable, the parameters is used as the command line (after
the executable name).

The dir is used as the current directory when performing the action.

The show-mode sets the display mode for a Window affected by the action. It must be
one of the following symbols; the description of each symbol’s meaning is taken from the
Windows API documentation.

• 'sw_hide or 'SW_HIDE — Hides the window and activates another window.

• 'sw_maximize or 'SW_MAXIMIZE — Maximizes the window.

• 'sw_minimize or 'SW_MINIMIZE — Minimizes the window and activates the next
top-level window in the z-order.

• 'sw_restore or 'SW_RESTORE — Activates and displays the window. If the window
is minimized or maximized, Windows restores it to its original size and position.

• 'sw_show or 'SW_SHOW — Activates the window and displays it in its current size
and position.

• 'sw_showdefault or 'SW_SHOWDEFAULT — Uses a default.

• 'sw_showmaximized or 'SW_SHOWMAXIMIZED — Activates the window and displays
it as a maximized window.

• 'sw_showminimized or 'SW_SHOWMINIMIZED — Activates the window and displays
it as a minimized window.

• 'sw_showminnoactive or 'SW_SHOWMINNOACTIVE — Displays the window as a
minimized window. The active window remains active.

• 'sw_showna or 'SW_SHOWNA — Displays the window in its current state. The active
window remains active.

• 'sw_shownoactivate or 'SW_SHOWNOACTIVATE — Displays a window in its most
recent size and position. The active window remains active.

1151

• 'sw_shownormal or 'SW_SHOWNORMAL — Activates and displays a window. If the
window is minimized or maximized, Windows restores it to its original size and posi-
tion.

If the action fails, the exn:fail exception is raised. If the action succeeds, the result is #f.

In future versions of Racket, the result may be a subprocess value if the operating system
did returns a process handle (but if a subprocess value is returned, its process ID will be 0
instead of the real process ID).

15.4.1 Simple Subprocesses

(require racket/system) package: base

The bindings documented in this section are provided by the racket/system and racket
libraries, but not racket/base.

(system command [#:set-pwd? set-pwd?]) Ñ boolean?
command : (or/c string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

Executes a Unix, Mac OS, or Windows shell command synchronously (i.e., the call to sys-
tem does not return until the subprocess has ended). The command argument is a string or
byte string containing no nul characters. If the command succeeds, the return value is #t,
#f otherwise. See also

subprocess for
notes about error
handling and the
limited buffer
capacity of
subprocess pipes.

If set-pwd? is true, then the PWD environment variable is set to the value of (current-
directory) when starting the shell process.

See also current-subprocess-custodian-mode and subprocess-group-enabled,
which affect the subprocess used to implement system.

The resulting process writes to (current-output-port), reads from (current-input-
port), and logs errors to (current-error-port). To gather the process’s non-error out-
put to a string, for example, use with-output-to-string, which sets current-output-
port while calling the given function:

(with-output-to-string (lambda () (system "date")))

(system* command arg ... [#:set-pwd? set-pwd?]) Ñ boolean?
command : path-string?
arg : (or/c path? string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

1152

https://pkgs.racket-lang.org/package/base

(system* command
exact
arg

[#:set-pwd? set-pwd?]) Ñ boolean?
command : path-string?
exact : 'exact
arg : string?
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like system, except that command is a filename that is executed directly (instead of through
a shell command; see find-executable-path for locating an executable based on the
PATH environment variable), and the args are the arguments. The executed file is passed the
specified string arguments (which must contain no nul characters).

On Windows, the first argument after command can be 'exact, and the final arg is a com-
plete command line. See subprocess for details.

(system/exit-code command
[#:set-pwd? set-pwd?]) Ñ byte?

command : (or/c string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like system, except that the result is the exit code returned by the subprocess. A 0 result
normally indicates success.

(system*/exit-code command
arg ...

[#:set-pwd? set-pwd?]) Ñ byte?
command : path-string?
arg : (or/c path? string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

(system*/exit-code command
exact
arg

[#:set-pwd? set-pwd?]) Ñ byte?
command : path-string?
exact : 'exact
arg : string?
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like system*, but returns the exit code like system/exit-code.

(process command [#:set-pwd? set-pwd?])

1153

Ñ (list input-port?
output-port?
exact-nonnegative-integer?
input-port?
((or/c 'status 'wait 'interrupt 'kill) . -> . any))

command : (or/c string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

Executes a shell command asynchronously (using sh on Unix and Mac OS, cmd on Win-
dows). The result is a list of five values: See also

subprocess for
notes about error
handling and the
limited buffer
capacity of
subprocess pipes.

• an input port piped from the subprocess’s standard output,

• an output port piped to the subprocess standard input,

• the system process id of the subprocess,

• an input port piped from the subprocess’s standard error, and

• a procedure of one argument, either 'status, 'wait, 'interrupt, 'exit-code or
'kill:

– 'status returns the status of the subprocess as one of 'running, 'done-ok, or
'done-error.

– 'exit-code returns the integer exit code of the subprocess or #f if it is still
running.

– 'wait blocks execution in the current thread until the subprocess has completed.

– 'interrupt sends the subprocess an interrupt signal on Unix and Mac OS, and
takes no action on Windows. The result is #<void>. On Unix and Mac

OS, if command
runs a single
program, then sh
typically runs the
program in such a
way that it replaces
sh in the same
process. For
reliable and precise
control over process
creation, however,
use process*.

– 'kill terminates the subprocess and returns #<void>. Note that the immediate
process created by process is a shell process that may run another program;
terminating the shell process may not terminate processes that the shell starts,
particularly on Windows.

Important: All three ports returned from process must be explicitly closed with close-
input-port or close-output-port.

If set-pwd? is true, then PWD is set in the same way as system.

See also current-subprocess-custodian-mode and subprocess-group-enabled,
which affect the subprocess used to implement process. In particular, the 'interrupt
and 'kill process-control messages are implemented via subprocess-kill, so they can
affect a process group instead of a single process.

1154

(process* command
arg ...

[#:set-pwd? set-pwd?]) Ñ list?
command : path-string?
arg : (or/c path? string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

(process* command
exact
arg

[#:set-pwd? set-pwd?]) Ñ list?
command : path-string?
exact : 'exact
arg : string?
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like process, except that command is a filename that is executed directly like system*,
and the args are the arguments. On Windows, as for system*, the first arg can be replaced
with 'exact.

(process/ports out
in
error-out
command

[#:set-pwd? set-pwd?]) Ñ list?
out : (or/c #f output-port?)
in : (or/c #f input-port?)
error-out : (or/c #f output-port? 'stdout)
command : (or/c path? string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like process, except that out is used for the process’s standard output, in is used for the
process’s standard input, and error-out is used for the process’s standard error. Any of
the ports can be #f, in which case a system pipe is created and returned, as in process. If
error-out is 'stdout, then standard error is redirected to standard output. For each port
or 'stdout that is provided, no pipe is created, and the corresponding value in the returned
list is #f.

(process*/ports out
in
error-out
command
arg ...

[#:set-pwd? set-pwd?]) Ñ list?
out : (or/c #f output-port?)
in : (or/c #f input-port?)

1155

error-out : (or/c #f output-port? 'stdout)
command : path-string?
arg : (or/c path? string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))

(process*/ports out
in
error-out
command
exact
arg

[#:set-pwd? set-pwd?]) Ñ list?
out : (or/c #f output-port?)
in : (or/c #f input-port?)
error-out : (or/c #f output-port? 'stdout)
command : path-string?
exact : 'exact
arg : string?
set-pwd? : any/c = (member (system-type) '(unix macosx))

Like process*, but with the port handling of process/ports.

The contracts of system and related functions may signal a contract error with references to
the following functions.

(string-no-nuls? x) Ñ boolean?
x : any/c

Ensures that x is a string and does not contain "\u0000".

(bytes-no-nuls? x) Ñ boolean?
x : any/c

Ensures that x is a byte-string and does not contain #"\0".

15.5 Logging

A logger accepts events that contain information to be logged for interested parties. A log re-
ceiver represents an interested party that receives logged events asynchronously. Each event
has a topic and level of detail, and a log receiver subscribes to logging events at a certain
level of detail (and lower) for a specific topic or for all topics. The levels, in increasing order
of detail, are 'none, 'fatal, 'error, 'warning, 'info, and 'debug.

To help organize logged events, a logger can have a default topic and/or a parent logger.
Every event reported to a logger is propagated to its parent (if any), and the event message

1156

is prefixed with the logger’s topic (if any) if the message doesn’t already have a topic. Fur-
thermore, events that are propagated from a logger to its parent can be filtered by level and
topic.

On start-up, Racket creates an initial logger that is used to record events from the core run-
time system. For example, a 'debug event is reported for each garbage collection (see §1.1.7
“Garbage Collection”). For this initial logger, two log receivers are also created: one that
writes events to the process’s original error output port, and one that writes events to the
system log. The level of written events in each case is system-specific, and the default can
be changed through command-line flags (see §18.1.4 “Command Line”) or through environ-
ment variables:

• If the PLTSTDERR environment variable is defined and is not overridden by a
command-line flag, it determines the level of the log receiver that propagates events
to the original error port.
The environment variable’s value can be a xlevely: none, fatal, error, warning,
info, or debug (from low detail to high detail); all events at the corresponding level of
detail or lower are printed. After an initial xlevely, the value can contain whitespace-
separated specifications of the form xlevely@xtopicy, which prints events whose topics
match xtopicy only at the given xlevely or higher (where a xtopicy contains any char-
acter other than whitespace or @). Leading and trailing whitespace is ignored. For ex-
ample, the value "error debug@GC" prints all events at the 'error level and higher,
but prints events for the topic 'GC at the 'debug level and higher (which includes all
levels).
The default is "error".

• If the PLTSTDOUT environment variable is defined and is not overridden by a
command-line flag, it determines the level of the log receiver that propagates events
to the original output port. The possible values are the same as for PLTSTDERR.
The default is "none".

• If the PLTSYSLOG environment variable is defined and is not overridden by a
command-line flag, it determines the level of the log receiver that propagates events
to the system log. The possible values are the same as for PLTSTDERR.
The default is "none" for Unix or "error" for Windows and Mac OS.

The current-logger parameter determines the current logger that is used by forms such
as log-warning. On start-up, the initial value of this parameter is the initial logger. The
run-time system sometimes uses the current logger to report events. For example, the byte-
code compiler sometimes reports 'warning events when it detects an expression that would
produce a run-time error if evaluated.

Changed in version 6.6.0.2 of package base: Prior to version 6.6.0.2, parsing of PLTSTDERR and PLTSYSLOG was
very strict. Leading and trailing whitespace was forbidden, and anything other than exactly one space character
separating two specifications was rejected.
Changed in version 6.90.0.17: Added PLTSTDOUT.

1157

15.5.1 Creating Loggers

(logger? v) Ñ boolean?
v : any/c

Returns #t if v is a logger, #f otherwise.

(make-logger [topic
parent
propagate-level
propagate-topic ...]
...) Ñ logger?

topic : (or/c symbol? #f) = #f
parent : (or/c logger? #f) = #f
propagate-level : log-level/c = 'debug
propagate-topic : (or/c #f symbol?) = #f

Creates a new logger with an optional topic and parent.

The optional propagate-level and propagate-topic arguments constrain the events
that are propagated from the new logger to parent (when parent is not #f) in the same
way that events are described for a log receiver in make-log-receiver. By default, all
events are propagated to parent .

Changed in version 6.1.1.3 of package base: Removed an optional argument to specify a notification callback, and
added propagate-level and propagate-topic constraints for events to propagate.

(logger-name logger) Ñ (or/c symbol? #f)
logger : logger?

Reports logger ’s default topic, if any.

(current-logger) Ñ logger?
(current-logger logger) Ñ void?

logger : logger?

A parameter that determines the current logger.

(define-logger id maybe-parent)

maybe-parent =
| #:parent parent-expr

parent-expr : (or/c logger? #f)

1158

Defines log-id-fatal, log-id-error, log-id-warning, log-id-info, and log-id-
debug as forms like log-fatal, log-error,log-warning, log-info, and log-debug.
The define-logger form also defines id-logger, which is a logger with default topic
'id that is a child of the result of parent-expr (if parent-expr does not produce #f), or
of (current-logger) if parent-expr not provided; the log-id-fatal, etc. forms use
this new logger. The new logger is created when define-logger is evaluated.

Changed in version 7.1.0.9 of package base: Added the #:parent option.

15.5.2 Logging Events

(log-message logger
level

[topic]
message

[data
prefix-message?]) Ñ void?

logger : logger?
level : log-level/c
topic : (or/c symbol? #f) = (logger-name logger)
message : string?
data : any/c = #f
prefix-message? : any/c = #t

Reports an event to logger , which in turn distributes the information to any log receivers
attached to logger or its ancestors that are interested in events at level or higher.

Log receivers can filter events based on topic . In addition, if topic and prefix-
message? are not #f, then message is prefixed with the topic followed by ": " before
it is sent to receivers.

Changed in version 6.0.1.10 of package base: Added the prefix-message? argument.
Changed in version 7.2.0.7: Made the data argument optional.

(log-level? logger level [topic]) Ñ boolean?
logger : logger?
level : log-level/c
topic : (or/c symbol? #f) = #f

Reports whether any log receiver attached to logger or one of its ancestors is interested in
level events (or potentially lower) for topic . If topic is #f, the result indicates whether
a log receiver is interested in events at level for any topic.

Use this function to avoid work generating an event for log-message if no receiver is inter-
ested in the information; this shortcut is built into log-fatal, log-error, log-warning,

1159

log-info, log-debug, and forms bound by define-logger, however, so it should not be
used with those forms.

The result of this function can change if a garbage collection determines that a log receiver is
no longer accessible (and therefore that any event information it receives will never become
accessible).

Changed in version 6.1.1.3 of package base: Added the topic argument.

(log-max-level logger [topic]) Ñ (or/c log-level/c #f)
logger : logger?
topic : (or/c symbol? #f) = #f

Similar to log-level?, but reports the maximum-detail level of logging for which log-
level? on logger and topic returns #t. The result is #f if log-level? with logger
and topic currently returns #f for all levels.

Changed in version 6.1.1.3 of package base: Added the topic argument.

(log-all-levels logger) Ñ (list/c (or/c #f log-level/c)
(or/c #f symbol?)
... ...)

logger : logger?

Summarizes the possible results of log-max-level on all possible interned symbols. The
result list contains a sequence of symbols and #f, where the first, third, etc., list element
corresponds to a level, and the second, fourth, etc., list element indicates a corresponding
topic. The level is the result that log-max-level would produce for the topic, where the
level for the #f topic (which is always present in the result list) indicates the result for any
interned-symbol topic that does not appear in the list.

The result is suitable as a sequence of arguments to make-log-receiver (after a logger
argument) to create a new receiver for events that currently have receivers in logger .

Added in version 6.1.1.4 of package base.

(log-level-evt logger) Ñ evt?
logger : logger?

Creates a synchronizable event that is ready for synchronization when the result of log-
level?, log-max-level, or log-all-levels can be different than before log-level-
evt was called. The event’s synchronization result is the event itself.

The condition reported by the event is a conservative approximation: the event can become
ready for synchronization even if the results of log-level?, log-max-level, and log-
all-levels are unchanged. Nevertheless, the expectation is that events produced by log-
level-evt become ready infrequently, because they are triggered by the creation of a log
receiver.

1160

Added in version 6.1.1.4 of package base.

(log-fatal string-expr)
(log-fatal format-string-expr v ...)
(log-error string-expr)
(log-error format-string-expr v ...)
(log-warning string-expr)
(log-warning format-string-expr v ...)
(log-info string-expr)
(log-info format-string-expr v ...)
(log-debug string-expr)
(log-debug format-string-expr v ...)

Log an event with the current logger, evaluating string-expr or (format format-
string-expr v ...) only if the logger has receivers that are interested in the event. In
addition, the current continuation’s continuation marks are sent to the logger with the mes-
sage string.

These form are convenient for using the current logger, but libraries should generally use
a logger for a specific topic—typically through similar convenience forms generated by
define-logger.

For each log-level ,

(log-level string-expr)

is equivalent to

(let ([l (current-logger)])
(when (log-level? l 'level)

(log-message l 'level string-expr
(current-continuation-marks))))

while

(log-level format-string-expr v ...)

is equivalent to

(log-level (format format-string-expr v ...))

15.5.3 Receiving Logged Events

(log-receiver? v) Ñ boolean?
v : any/c

1161

Returns #t if v is a log receiver, #f otherwise.

(make-log-receiver logger level [topic ...] ...) Ñ log-receiver?
logger : logger?
level : log-level/c
topic : (or/c #f symbol?) = #f

Creates a log receiver to receive events of detail level and lower as reported to logger
and its descendants, as long as either topic is #f or the event’s topic matches topic .

A log receiver is a synchronizable event. It becomes ready for synchronization when a
logging event is received, so use sync to receive a logged event. The log receiver’s syn-
chronization result is an immutable vector containing four values: the level of the event as a
symbol, an immutable string for the event message, an arbitrary value that was supplied as
the last argument to log-message when the event was logged, and a symbol or #f for the
event topic.

Multiple pairs of level and topic can be provided to indicate different specific levels for
different topics (where topic defaults to #f only for the last given level). A level for
a #f topic applies only to events whose topic does not match any other provided topic .
If the same topic is provided multiple times, the level provided with the last instance in
the argument list takes precedence.

15.5.4 Additional Logging Functions

(require racket/logging) package: base

The bindings documented in this section are provided by the racket/logging library, not
racket/base or racket.

(log-level/c v) Ñ boolean?
v : any/c

Returns #t if v is a valid logging level ('none, 'fatal, 'error, 'warning, 'info, or
'debug), #f otherwise.

Added in version 6.3 of package base.

(with-intercepted-logging interceptor
proc

[#:logger logger]
level

[topic ...]
...) Ñ any

1162

https://pkgs.racket-lang.org/package/base

interceptor : (-> (vector/c
log-level/c
string?
any/c
(or/c symbol? #f))
any)

proc : (-> any)
logger : logger? = #f
level : log-level/c
topic : (or/c #f symbol?) = #f

Runs proc , calling interceptor on any log event that the execution of proc emits to
current-logger at the specified levels and topics. If #:logger is specified, intercepts
events sent to that logger, otherwise uses a new child logger of the current logger. Returns
whatever proc returns.

Example:

> (let ([warning-counter 0])
(with-intercepted-logging
(lambda (l)
(when (eq? (vector-ref l 0)

'warning)
(set! warning-counter (add1 warning-counter))))

(lambda ()
(log-warning "Warning!")
(log-warning "Warning again!")
(+ 2 2))

'warning)
warning-counter)

2

Added in version 6.3 of package base.
Changed in version 6.7.0.1: Added #:logger argument.

(with-logging-to-port port
proc

[#:logger logger]
level

[topic ...]
...) Ñ any

port : output-port?
proc : (-> any)
logger : logger? = #f
level : log-level/c
topic : (or/c #f symbol?) = #f

1163

Runs proc , outputting any logging that the execution of proc emits to current-logger at
the specified levels and topics. If #:logger is specified, intercepts events sent to that logger,
otherwise uses a new child logger of the current logger. Returns whatever proc returns.

Example:

> (let ([my-log (open-output-string)])
(with-logging-to-port my-log
(lambda ()
(log-warning "Warning World!")
(+ 2 2))

'warning)
(get-output-string my-log))

"Warning World!\n"

Added in version 6.3 of package base.
Changed in version 6.7.0.1: Added #:logger argument.

15.6 Time

(current-seconds) Ñ exact-integer?

Returns the current time in seconds since midnight UTC, January 1, 1970.

(current-inexact-milliseconds) Ñ real?

Returns the current time in milliseconds since midnight UTC, January 1, 1970. The result
may contain fractions of a millisecond.

Example:

> (current-inexact-milliseconds)
1289513737015.418

In this example, 1289513737015 is in milliseconds and 418 is in microseconds.

(seconds->date secs-n [local-time?]) Ñ date*?
secs-n : real?
local-time? : any/c = #t

Takes secs-n , a platform-specific time in seconds returned by current-seconds, file-
or-directory-modify-seconds, or 1/1000th of current-inexact-milliseconds,

1164

and returns an instance of the date* structure type. Note that secs-n can include frac-
tions of a second. If secs-n is too small or large, the exn:fail exception is raised.

The resulting date* reflects the time according to the local time zone if local-time? is
#t, otherwise it reflects a date in UTC.

(struct date (second
minute
hour
day
month
year
week-day
year-day
dst?
time-zone-offset)

#:extra-constructor-name make-date
#:transparent)

second : (integer-in 0 60)
minute : (integer-in 0 59)
hour : (integer-in 0 23)
day : (integer-in 1 31)
month : (integer-in 1 12)
year : exact-integer?
week-day : (integer-in 0 6)
year-day : (integer-in 0 365)
dst? : boolean?
time-zone-offset : exact-integer?

Represents a date. The second field reaches 60 only for leap seconds. The week-day field
is 0 for Sunday, 1 for Monday, etc. The year-day field is 0 for January 1, 1 for January 2,
etc.; the year-day field reaches 365 only in leap years.

The dst? field is #t if the date reflects a daylight-saving adjustment. The time-zone-
offset field reports the number of seconds east of UTC (GMT) for the current time zone
(e.g., Pacific Standard Time is -28800), including any daylight-saving adjustment (e.g.,
Pacific Daylight Time is -25200). When a date record is generated by seconds->date
with #f as the second argument, then the dst? and time-zone-offset fields are #f and 0,
respectively.

The date constructor accepts any value for dst? and converts any non-#f value to #t.

The value produced for the time-zone-offset field tends to be sensitive to the value of the
TZ environment variable, especially on Unix platforms; consult the system documentation
(usually under tzset) for details.

See also the racket/date library.

1165

(struct date* date (nanosecond time-zone-name)
#:extra-constructor-name make-date*)

nanosecond : (integer-in 0 999999999)
time-zone-name : (and/c string? immutable?)

Extends date with nanoseconds and a time zone name, such as "MDT", "Mountain Day-
light Time", or "UTC".

When a date* record is generated by seconds->date with #f as the second argument,
then the time-zone-name field is "UTC".

The date* constructor accepts a mutable string for time-zone-name and converts it to an
immutable one.

(current-milliseconds) Ñ exact-integer?

Like current-inexact-milliseconds, but coerced to a fixnum (possibly negative).
Since the result is a fixnum, the value increases only over a limited (though reasonably
long) time on a 32-bit platform.

(current-process-milliseconds [scope]) Ñ exact-integer?
scope : (or/c #f thread? 'subprocesses) = #f

Returns an amount of processor time in fixnum milliseconds that has been consumed by on
the underlying operating system, including both user and system time.

• If scope is #f, the reported time is for all Racket threads and places.

• If scope is a thread, the result is specific to the time while the thread ran, but it may
include time for other places. The more a thread synchronizes with other threads, the
less precisely per-thread processor time is recorded.

• If scope is 'subprocesses, the result is the sum of process times for known-
completed subprocesses (see §15.4 “Processes”)—and known-completed children of
the subprocesses, etc., on Unix and Mac OS—across all places.

The precision of the result is platform-specific, and since the result is a fixnum, the value
increases only over a limited (though reasonably long) time on a 32-bit platform.

Changed in version 6.1.1.4 of package base: Added 'subprocesses mode.

(current-gc-milliseconds) Ñ exact-integer?

Returns the amount of processor time in fixnum milliseconds that has been consumed by
Racket’s garbage collection so far. This time is a portion of the time reported by (current-
process-milliseconds), and is similarly limited.

1166

(time-apply proc lst) Ñ list?
exact-integer?
exact-integer?
exact-integer?

proc : procedure?
lst : list?

Collects timing information for a procedure application.

Four values are returned: a list containing the result(s) of applying proc to the arguments
in lst , the number of milliseconds of CPU time required to obtain this result, the number
of “real” milliseconds required for the result, and the number of milliseconds of CPU time
(included in the first result) spent on garbage collection.

The reliability of the timing numbers depends on the platform. If multiple Racket threads
are running, then the reported time may include work performed by other threads.

(time body ...+)

Reports time-apply-style timing information for the evaluation of expr directly to the
current output port. The result is the result of the last body .

15.6.1 Date Utilities
For more date &
time operations, see
the Gregor: Date
and Time
documentation or
srfi/19

(require racket/date) package: base

The bindings documented in this section are provided by the racket/date library, not
racket/base or racket.

(current-date) Ñ date*?

An abbreviation for (seconds->date (* 0.001 (current-inexact-
milliseconds))).

(date->string date [time?]) Ñ string?
date : date?
time? : any/c = #f

Converts a date to a string. The returned string contains the time of day only if time?. See
also date-display-format.

1167

../srfi/srfi-19.html
https://pkgs.racket-lang.org/package/base

(date-display-format) Ñ (or/c 'american
'chinese
'german
'indian
'irish
'iso-8601
'rfc2822
'julian)

(date-display-format format) Ñ void?
format : (or/c 'american

'chinese
'german
'indian
'irish
'iso-8601
'rfc2822
'julian)

Parameter that determines the date string format. The initial format is 'american.

(date->seconds date [local-time?]) Ñ exact-integer?
date : date?
local-time? : any/c = #t

Finds the representation of a date in platform-specific seconds. If the platform cannot repre-
sent the specified date, exn:fail exception is raised.

The week-day, year-day fields of date are ignored. The dst? and time-zone-offset
fields of date are also ignored; the date is assumed to be in local time by default or in UTC
if local-time? is #f.

(date*->seconds date [local-time?]) Ñ real?
date : date?
local-time? : any/c = #t

Like date->seconds, but returns an exact number that can include a fraction of a second
based on (date*-nanosecond date) if date is a date* instance.

(find-seconds second
minute
hour
day
month
year

[local-time?]) Ñ exact-integer?
second : (integer-in 0 61)

1168

minute : (integer-in 0 59)
hour : (integer-in 0 23)
day : (integer-in 1 31)
month : (integer-in 1 12)
year : exact-nonnegative-integer?
local-time? : any/c = #t

Finds the representation of a date in platform-specific seconds. The arguments correspond
to the fields of the date structure—in local time by default or UTC if local-time? is #f.
If the platform cannot represent the specified date, an error is signaled, otherwise an integer
is returned.

(date->julian/scaliger date) Ñ exact-integer?
date : date?

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The re-
turned value is not a strict Julian number, but rather Scaliger’s version, which is off by one
for easier calculations.

(julian/scaliger->string date-number) Ñ string?
date-number : exact-integer?

Converts a Julian number (Scaliger’s off-by-one version) into a string.

15.7 Environment Variables

An environment variable set encapsulates a partial mapping from byte strings to byte strings.
A Racket process’s initial environment variable set is connected to the operating system’s
environment variables: accesses or changes to the set read or change operating-system envi-
ronment variables for the Racket process.

Since Windows environment variables are case-insensitive, environment variable set’s key
byte strings on Windows are case-folded. More precisely, key byte strings are coerced
to a UTF-8 encoding of characters that are converted to lowercase via string-locale-
downcase.

The current environment variable set, which is determined by the current-environment-
variables parameter, is propagated to a subprocess when the subprocess is created.

(environment-variables? v) Ñ boolean?
v : any/c

Returns #t if v is an environment variable set, #f otherwise.

1169

(current-environment-variables) Ñ environment-variables?
(current-environment-variables env) Ñ void?

env : environment-variables?

A parameter that determines the environment variable set that is propagated to a subprocess
and that is used as the default set for getenv and putenv.

(bytes-environment-variable-name? v) Ñ boolean?
v : any/c

Returns #t if v is a byte string and if it is valid for an environment variable name. An
environment variable name must contain no bytes with the value 0 or 61, where 61 is (char-
>integer #\=). On Windows, an environment variable name also must have a non-zero
length.

(make-environment-variables name val)
Ñ environment-variables?
name : bytes-environment-variable-name?
val : bytes-no-nuls?

Creates a fresh environment variable set that is initialized with the given name to val map-
pings.

(environment-variables-ref env name)
Ñ (or/c #f (and/c bytes-no-nuls? immutable?))
env : environment-variables?
name : bytes-environment-variable-name?

Returns the mapping for name in env , returning #f if name has no mapping.

Normally, name should be a byte-string encoding of a string using the default encoding of
the current locale. On Windows, name is coerced to a UTF-8 encoding and case-normalized.

(environment-variables-set! env
name
maybe-bstr

[fail]) Ñ any
env : environment-variables?
name : bytes-environment-variable-name?
maybe-bstr : (or/c bytes-no-nuls? #f)
fail : (-> any) = (lambda ()

(raise (make-exn:fail)))

Changes the mapping for name in env to maybe-bstr . If maybe-bstr is #f and env
is the initial environment variable set of the Racket process, then the operating system
environment-variable mapping for name is removed.

1170

Normally, name and maybe-bstr should be a byte-string encoding of a string using the
default encoding of the current locale. On Windows, name is coerced to a UTF-8 encoding
and case-normalized, and maybe-bstr is coerced to a UTF-8 encoding if env is the initial
environment variable set of the Racket process.

On success, the result of environment-variables-set! is #<void>. If env is the ini-
tial environment variable set of the Racket process, then attempting to adjust the operating
system environment-variable mapping might fail for some reason, in which case fail is
called in tail position with respect to the environment-variables-set!. The default
fail raises an exception.

(environment-variables-names env)
Ñ (listof (and/c bytes-environment-variable-name? immutable?))
env : environment-variables?

Returns a list of byte strings that corresponds to names mapped by env .

(environment-variables-copy env) Ñ environment-variables?
env : environment-variables?

Returns an environment variable set that is initialized with the same mappings as env .

(getenv name) Ñ (or/c string-no-nuls? #f)
name : string-environment-variable-name?

(putenv name value) Ñ boolean?
name : string-environment-variable-name?
value : string-no-nuls?

Convenience wrappers for environment-variables-ref and environment-
variables-set! that convert between strings and byte strings using the current locale’s
default encoding (using #\? as the replacement character for encoding errors) and always
using the current environment variable set from current-environment-variables. The
putenv function returns #t for success and #f for failure.

(string-environment-variable-name? v) Ñ boolean?
v : any/c

Returns #t if v is a string and if its encoding using the current locale’s encoding is valid for
an environment variable name according to bytes-environment-variable-name?.

15.8 Environment and Runtime Information

(system-type [mode])
Ñ (or/c symbol? string? bytes? exact-positive-integer? vector? #f)

1171

mode : (or/c 'os 'word 'vm 'gc 'link 'machine 'target-machine
'so-suffix 'so-mode 'fs-change 'cross)

= 'os

Returns information about the operating system, build mode, or machine for a running
Racket. (Installation tools should use cross-system-type, instead, to support cross-
installation.)

In 'os mode, the possible symbol results are:

• 'unix

• 'windows

• 'macosx

In 'word mode, the result is either 32 or 64 to indicate whether Racket is running as a 32-bit
program or 64-bit program. See §19.2 “Racket

Virtual Machine
Implementations”
for more
information about
the 'vm and 'gc
mode results.

In 'vm mode, the possible symbol results are:

• 'racket

• 'chez-scheme

In 'gc mode, the possible symbol results are:

• 'cgc — when (system-type 'vm) is 'racket

• '3m — when (system-type 'vm) is 'racket

• 'cs — when (system-type 'vm) is 'chez-scheme

In 'link mode, the possible symbol results are:

• 'static (Unix)

• 'shared (Unix)

• 'dll (Windows)

• 'framework (Mac OS)

1172

Future ports of Racket may expand the list of 'os, 'vm, 'gc, and 'link results.

In 'machine mode, then the result is a string, which contains further details about the current
machine in a platform-specific format.

In 'target-machine mode, the result is a symbol for the running Racket’s native bytecode
format, or it is #f if there is no native format other than the machine-independent format.
If the result is a symbol, then compile-target-machine? returns #t when applied to the
symbol; see also current-compile-target-machine.

In 'so-suffix mode, then the result is a byte string that represents the file extension used
for shared objects on the current platform. The byte string starts with a period, so it is
suitable as a second argument to path-replace-suffix.

In 'so-mode mode, then the result is 'local if foreign libraries should be opened in “local”
mode by default (as on most platforms) or 'global if foreign libraries should be opened in
“global” mode.

In 'fs-change mode, the result is an immutable vector of four elements. Each element is
either #f or a symbol, where a symbol indicates the presence of a property and #f indicates
the absence of a property. The possible symbols, in order, are:

• 'supported — filesystem-change-evt can produce a filesystem change event to
monitor filesystem changes; if this symbol is not first in the vector, all other vector
elements are #f

• 'scalable — resources consumed by a filesystem change event are effectively lim-
ited only by available memory, as opposed to file-descriptor limits; this property is #f
on Mac OS and BSD variants of Unix

• 'low-latency — creation and checking of a filesystem change event is practically
instantaneous; this property is #f on Linux

• 'file-level — a filesystem change event can track changes at the level of a file, as
opposed to the file’s directory; this property is #f on Windows

In 'cross mode, the result reports whether cross-platform build mode has been selected
(through the -C or --cross argument to racket; see §18.1.4 “Command Line”). The
possible symbols are:

• 'infer — infer cross-platform mode based on whether (system-type) and
(cross-system-type) report the same symbol

• 'force — use cross-platform mode, even if the current and target system types are
the same, because the current and target executables can be different

1173

Changed in version 6.8.0.2 of package base: Added 'vm mode.
Changed in version 6.9.0.1: Added 'cross mode.
Changed in version 7.1.0.6: Added 'target-machine mode.

(system-language+country) Ñ string?

Returns a string to identify the current user’s language and country.

On Unix and Mac OS, the string is five characters: two lowercase ASCII letters for the
language, an underscore, and two uppercase ASCII letters for the country. On Windows, the
string can be arbitrarily long, but the language and country are in English (all ASCII letters
or spaces) separated by an underscore.

On Unix, the result is determined by checking the LC_ALL, LC_TYPE, and LANG environment
variables, in that order (and the result is used if the environment variable’s value starts with
two lowercase ASCII letters, an underscore, and two uppercase ASCII letters, followed by
either nothing or a period). On Windows and Mac OS, the result is determined by system
calls.

(system-library-subpath [mode]) Ñ path?
mode : (or/c 'cgc '3m #f) = (system-type 'gc)

Returns a relative directory path. This string can be used to build paths to system-specific
files. For example, when Racket is running on Solaris on a Sparc architecture, the subpath
starts "sparc-solaris", while the subpath for Windows on an i386 architecture starts
"win32\\i386".

The optional mode argument specifies the relevant garbage-collection variant, which one of
the possible results of (system-type 'gc): 'cgc or '3m. It can also be #f, in which case
the result is independent of the garbage-collection variant.

Installation tools should use cross-system-library-subpath, instead, to support cross-
installation.

(version) Ñ (and/c string? immutable?)

Returns an immutable string indicating the currently executing version of Racket.

(banner) Ñ (and/c string? immutable?)

Returns an immutable string for Racket’s start-up banner text (or the banner text for an
embedding program, such as GRacket). The banner string ends with a newline.

(current-command-line-arguments)
Ñ (vectorof (and/c string? immutable?))

(current-command-line-arguments argv) Ñ void?
argv : (vectorof string?)

1174

A parameter that is initialized with command-line arguments when Racket starts (not includ-
ing any command-line arguments that were treated as flags for the system).

On Unix and Mac OS, command-line arguments are provided to the Racket process as
byte strings. The arguments are converted to strings using bytes->string/locale and
#\uFFFD as the encoding-error character.

(current-thread-initial-stack-size) Ñ exact-positive-integer?
(current-thread-initial-stack-size size) Ñ void?

size : exact-positive-integer?

A parameter that provides a hint about how much space to reserve for a newly created
thread’s local variables. The actual space used by a computation is affected by JIT com-
pilation, but it is otherwise platform-independent.

(vector-set-performance-stats! results [thd]) Ñ void?
results : (and/c vector?

(not/c immutable?))
thd : (or/c thread? #f) = #f

Sets elements in results to report current performance statistics. If thd is not #f, a par-
ticular set of thread-specific statistics are reported, otherwise a different set of global (within
the current place) statistics are reported.

For global statistics, up to 12 elements are set in the vector, starting from the beginning. If
results has n elements where nă 12, then the n elements are set to the first n performance-
statistics values. The reported statistics values are as follows, in the order that they are set
within results :

• 0: The same value as returned by current-process-milliseconds.

• 1: The same value as returned by current-milliseconds.

• 2: The same value as returned by current-gc-milliseconds.

• 3: The number of garbage collections performed since start-up within the current
place.

• 4: The number of thread context switches performed since start-up.

• 5: The number of internal stack overflows handled since start-up.

• 6: The number of threads currently scheduled for execution (i.e., threads that are
running, not suspended, and not unscheduled due to a synchronization).

• 7: The number of syntax objects read from compiled code since start-up.

• 8: The number of hash-table searches performed. When this counter reaches the
maximum value of a fixnum, it overflows to the most negative fixnum.

1175

• 9: The number of additional hash slots searched to complete hash searches (using dou-
ble hashing). When this counter reaches the maximum value of a fixnum, it overflows
to the most negative fixnum.

• 10: The number of bytes allocated for machine code that is not reported by current-
memory-use.

• 11: The peak number of allocated bytes just before a garbage collection.

For thread-specific statistics, up to 4 elements are set in the vector:

• 0: #t if the thread is running, #f otherwise (same result as thread-running?).

• 1: #t if the thread has terminated, #f otherwise (same result as thread-dead?).

• 2: #t if the thread is currently blocked on a synchronizable event (or sleeping for some
number of milliseconds), #f otherwise.

• 3: The number of bytes currently in use for the thread’s continuation.

Changed in version 6.1.1.8 of package base: Added vector position 11 for global statistics.

15.9 Command-Line Parsing

(require racket/cmdline) package: base

The bindings documented in this section are provided by the racket/cmdline and racket
libraries, but not racket/base.

(command-line optional-name-expr optional-argv-expr
flag-clause ...
finish-clause)

1176

https://pkgs.racket-lang.org/package/base

optional-name-expr =
| #:program name-expr

optional-argv-expr =
| #:argv argv-expr

flag-clause = #:multi flag-spec ...
| #:once-each flag-spec ...
| #:once-any flag-spec ...
| #:final flag-spec ...
| #:usage-help string ...
| #:help-labels string ...
| #:ps string ...

flag-spec = (flags id ... help-spec body ...+)
| (flags => handler-expr help-expr)

flags = flag-string
| (flag-string ...+)

help-spec = string
| (string-expr ...+)

finish-clause =
| #:args arg-formals body ...+
| #:handlers handlers-exprs

arg-formals = rest-id
| (arg ...)
| (arg ...+ . rest-id)

arg = id
| [id default-expr]

handlers-exprs = finish-expr arg-strings-expr
| finish-expr arg-strings-expr help-expr
| finish-expr arg-strings-expr help-expr
unknown-expr

Parses a command line according to the specification in the flag-clauses.

The name-expr , if provided, should produce a path or string to be used as the program name
for reporting errors when the command-line is ill-formed. It defaults to (find-system-
path 'run-file). When a path is provided, only the last element of the path is used to
report an error.

1177

The argv-expr , if provided, must evaluate to a list or a vector of strings. It defaults to
(current-command-line-arguments).

The command-line is disassembled into flags, each possibly with flag-specific arguments,
followed by (non-flag) arguments. Command-line strings starting with - or + are parsed as
flags, but arguments to flags are never parsed as flags, and integers and decimal numbers
that start with - or + are not treated as flags. Non-flag arguments in the command-line must
appear after all flags and the flags’ arguments. No command-line string past the first non-flag
argument is parsed as a flag. The built-in -- flag signals the end of command-line flags; any
command-line string past the -- flag is parsed as a non-flag argument.

A #:multi, #:once-each, #:once-any, or #:final clause introduces a set of command-
line flag specifications. The clause tag indicates how many times the flag can appear on the
command line:

• #:multi — Each flag specified in the set can be represented any number of times on
the command line; i.e., the flags in the set are independent and each flag can be used
multiple times.

• #:once-each — Each flag specified in the set can be represented once on the com-
mand line; i.e., the flags in the set are independent, but each flag should be specified at
most once. If a flag specification is represented in the command line more than once,
the exn:fail exception is raised.

• #:once-any — Only one flag specified in the set can be represented on the command
line; i.e., the flags in the set are mutually exclusive. If the set is represented in the
command line more than once, the exn:fail exception is raised.

• #:final — Like #:multi, except that no argument after the flag is treated as a flag.
Note that multiple #:final flags can be specified if they have short names; for ex-
ample, if -a is a #:final flag, then -aa combines two instances of -a in a single
command-line argument.

A normal flag specification has four parts:

• flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the
flags are equivalent. Each flag string must be of the form "-x" or "+x" for some char-
acter x , or "--x" or "++x" for some sequence of characters x . An x cannot contain
only digits or digits plus a single decimal point, since simple (signed) numbers are not
treated as flags. In addition, the flags "--", "-h", and "--help" are predefined and
cannot be changed.

• ids — identifier that are bound to the flag’s arguments. The number of identifiers
determines how many arguments can be provided on the command line with the flag,
and the names of these identifiers will appear in the help message describing the flag.
The ids are bound to string values in the bodys for handling the flag.

1178

• help-spec — a string or sequence of strings that describes the flag. This string is
used in the help message generated by the handler for the built-in -h (or --help) flag.
A single literal string can be provided, or any number of expressions that produce
strings; in the latter case, strings after the first one are displayed on subsequent lines.

• bodys — expressions that are evaluated when one of the flags appears on the com-
mand line. The flags are parsed left-to-right, and each sequence of bodys is evaluated
as the corresponding flag is encountered. When the bodys are evaluated, the preceding
ids are bound to the arguments provided for the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and
help strings. In this case, the handler procedure and help string list returned by handler-
expr and help-expr are used as in the table argument of parse-command-line.

A #:usage-help clause inserts text lines immediately after the usage line. Each string in
the clause provides a separate line of text.

A #:help-labels clause inserts text lines into the help table of command-line flags. Each
string in the clause provides a separate line of text.

A #:ps clause inserts text lines at the end of the help output. Each string in the clause
provides a separate line of text.

After the flag clauses, a final clause handles command-line arguments that are not parsed as
flags:

• Supplying no finish clause is the same as supplying #:args () (void).

• For an #:args finish clause, identifiers in arg-formals are bound to the leftover
command-line strings in the same way that identifiers are bound for a lambda expres-
sion. Thus, specifying a single id (without parentheses) collects all of the leftover ar-
guments into a list. The effective arity of the arg-formals specification determines
the number of extra command-line arguments that the user can provide, and the names
of the identifiers in arg-formals are used in the help string. When the command-
line is parsed, if the number of provided arguments cannot be matched to identifiers
in arg-formals , the exn:fail exception is raised. Otherwise, args clause’s bodys
are evaluated to handle the leftover arguments, and the result of the last body is the
result of the command-line expression.

• A #:handlers finish clause escapes to a more general method of handling the leftover
arguments. In this case, the values of the expressions are used like the last two to four
arguments parse-command-line.

Example:

(define verbose-mode (make-parameter #f))

1179

(define profiling-on (make-parameter #f))
(define optimize-level (make-parameter 0))
(define link-flags (make-parameter null))

(define file-to-compile
(command-line
#:program "compiler"
#:once-each
[("-v" "--verbose") "Compile with verbose messages"

(verbose-mode #t)]
[("-p" "--profile") "Compile with profiling"

(profiling-on #t)]
#:once-any
[("-o" "--optimize-1") "Compile with optimization level 1"

(optimize-level 1)]
["--optimize-2" (; show help on separate lines

"Compile with optimization level 2,"
"which includes all of level 1")
(optimize-level 2)]

#:multi
[("-l" "--link-flags") lf ; flag takes one argument

"Add a flag <lf> for the linker"
(link-flags (cons lf (link-flags)))]

#:args (filename) ; expect one command-line argument: <file-
name>

; return the argument as a filename to compile
filename))

(parse-command-line name
argv
table
finish-proc
arg-help-strs

[help-proc
unknown-proc]) Ñ any

name : (or/c string? path?)
argv : (or/c (listof string?) (vectorof string?))
table : (listof (cons/c symbol? list?))
finish-proc : ((list?) () #:rest list? . ->* . any)
arg-help-strs : (listof string?)
help-proc : (string? . -> . any) = (lambda (str))
unknown-proc : (string? . -> . any) = (lambda (str) ...)

Parses a command-line using the specification in table . For an overview of command-line
parsing, see the command-line form, which provides a more convenient notation for most
purposes.

1180

The table argument to this procedural form encodes the information in command-line’s
clauses, except for the args clause. Instead, arguments are handled by the finish-proc
procedure, and help information about non-flag arguments is provided in arg-help-strs .
In addition, the finish-proc procedure receives information accumulated while parsing
flags. The help-proc and unknown-proc arguments allow customization that is not pos-
sible with command-line.

When there are no more flags, finish-proc is called with a list of information accumu-
lated for command-line flags (see below) and the remaining non-flag arguments from the
command-line. The arity of finish-proc determines the number of non-flag arguments
accepted and required from the command-line. For example, if finish-proc accepts either
two or three arguments, then either one or two non-flag arguments must be provided on the
command-line. The finish-proc procedure can have any arity (see procedure-arity)
except 0 or a list of 0s (i.e., the procedure must at least accept one or more arguments).

The arg-help-strs argument is a list of strings identifying the expected (non-flag)
command-line arguments, one for each argument. If an arbitrary number of arguments are
allowed, the last string in arg-help-strs represents all of them.

The help-proc procedure is called with a help string if the -h or --help flag is included
on the command line. If an unknown flag is encountered, the unknown-proc procedure is
called just like a flag-handling procedure (as described below); it must at least accept one ar-
gument (the unknown flag), but it may also accept more arguments. The default help-proc
displays the string and exits and the default unknown-proc raises the exn:fail exception.

A table is a list of flag specification sets. Each set is represented as a pair of two items: a
mode symbol and a list of either help strings or flag specifications. A mode symbol is one of
'once-each, 'once-any, 'multi, 'final, 'help-labels, 'usage-help, or 'ps with
the same meanings as the corresponding clause tags in command-line. For the 'help-
labels, 'usage-help or 'ps mode, a list of help strings is provided. For the other modes,
a list of flag specifications is provided, where each specification maps a number of flags to a
single handler procedure. A specification is a list of three items:

• A list of strings for the flags defined by the spec. See command-line for information
about the format of flag strings.

• A procedure to handle the flag and its arguments when one of the flags is found on
the command line. The arity of this handler procedure determines the number of
arguments consumed by the flag: the handler procedure is called with a flag string
plus the next few arguments from the command line to match the arity of the handler
procedure. The handler procedure must accept at least one argument to receive the
flag. If the handler accepts arbitrarily many arguments, all of the remaining arguments
are passed to the handler. A handler procedure’s arity must either be a number or an
arity-at-least value.

The return value from the handler is added to a list that is eventually passed to
finish-proc . If the handler returns #<void>, no value is added onto this list. For

1181

all non-#<void> values returned by handlers, the order of the values in the list is the
same as the order of the arguments on the command-line.

• A non-empty list for constructing help information for the spec. The first element of
the list describes the flag; it can be a string or a non-empty list of strings, and in the
latter case, each string is shown on its own line. Additional elements of the main list
must be strings to name the expected arguments for the flag. The number of extra
help strings provided for a spec must match the number of arguments accepted by the
spec’s handler procedure.

The following example is the same as the core example for command-line, translated to the
procedural form:

(parse-command-line "compile" (current-command-line-arguments)
`((once-each

[("-v" "--verbose")
,(lambda (flag) (verbose-mode #t))
("Compile with verbose messages")]
[("-p" "--profile")
,(lambda (flag) (profiling-on #t))
("Compile with profiling")])

(once-any
[("-o" "--optimize-1")
,(lambda (flag) (optimize-level 1))
("Compile with optimization level 1")]
[("--optimize-2")
,(lambda (flag) (optimize-level 2))
(("Compile with optimization level 2,"
"which implies all optimizations of level 1"))])

(multi
[("-l" "--link-flags")
,(lambda (flag lf) (link-flags (cons lf (link-flags))))
("Add a flag <lf> for the linker" "lf")]))

(lambda (flag-accum file) file)
'("filename"))

15.10 Additional Operating System Functions

(require racket/os) package: base

The racket/os library additional functions for querying the operating system.

Added in version 6.3 of package base.

(gethostname) Ñ string?

1182

https://pkgs.racket-lang.org/package/base

Returns a string for the current machine’s hostname (including its domain).

(getpid) Ñ exact-integer?

Returns an integer identifying the current process within the operating system.

1183

16 Memory Management

16.1 Weak Boxes

A weak box is similar to a normal box (see §4.12 “Boxes”), but when the garbage collector
(see §1.1.7 “Garbage Collection”) can prove that the content value of a weak box is only
reachable via weak references, the content of the weak box is replaced with #f. A weak
reference is a reference through a weak box, through a key reference in a weak hash table
(see §4.13 “Hash Tables”), through a value in an ephemeron where the value can be replaced
by #f (see §16.2 “Ephemerons”), or through a custodian (see §14.7 “Custodians”).

(make-weak-box v) Ñ weak-box?
v : any/c

Returns a new weak box that initially contains v .

(weak-box-value weak-box [gced-v]) Ñ any/c
weak-box : weak-box?
gced-v : any/c = #f

Returns the value contained in weak-box . If the garbage collector has proven that the previ-
ous content value of weak-box was reachable only through a weak reference, then gced-v
(which defaults to #f) is returned.

(weak-box? v) Ñ boolean?
v : any/c

Returns #t if v is a weak box, #f otherwise.

16.2 Ephemerons

An ephemeron [Hayes97] is a generalization of a weak box (see §16.1 “Weak Boxes”).
Instead of just containing one value, an ephemeron holds two values: one that is considered
the value of the ephemeron and another that is the ephemeron’s key. Like the value in
a weak box, the value in an ephemeron may be replaced by #f, but when the key is no
longer reachable (except possibly via weak references) instead of when the value is no longer
reachable.

As long as an ephemeron’s value is retained, the reference is considered a non-weak refer-
ence. References to the key via the value are treated specially, however, in that the reference
does not necessarily count toward the key’s reachability. A weak box can be seen as a spe-
cialization of an ephemeron where the key and value are the same.

1184

One particularly common use of ephemerons is to combine them with a weak hash table (see
§4.13 “Hash Tables”) to produce a mapping where the memory manager can reclaim key–
value pairs even when the value refers to the key. A related use is to retain a reference to a
value as long as any value for which it is an impersonator is reachable; see impersonator-
ephemeron.

More precisely,

• the value in an ephemeron is replaced by #f when the automatic memory manager can
prove that either the ephemeron or the key is reachable only through weak references
(see §16.1 “Weak Boxes”); and

• nothing reachable from the value in an ephemeron counts toward the reachability of an
ephemeron key (whether for the same ephemeron or another), unless the same value
is reachable through a non-weak reference, or unless the value’s ephemeron key is
reachable through a non-weak reference (see §16.1 “Weak Boxes” for information on
weak references).

(make-ephemeron key v) Ñ ephemeron?
key : any/c
v : any/c

Returns a new ephemeron whose key is key and whose value is initially v .

(ephemeron-value ephemeron [gced-v retain-v]) Ñ any/c
ephemeron : ephemeron?
gced-v : any/c = #f
retain-v : any/c = #f

Returns the value contained in ephemeron . If the garbage collector has proven that the key
for ephemeron is only weakly reachable, then the result is gced-v (which defaults to #f).

The retain-v argument is retained as reachable until the ephemeron’s value is extracted. It
is useful, for example, when ephemeron was obtained through a weak, eq?-based mapping
from key and ephemeron was created with key as the key; in that case, supplying key as
retain-v ensures that ephemeron retains its value long enough for it to be extracted, even
if key is otherwise unreachable.

Changed in version 7.1.0.10 of package base: Added the retain-v argument.

(ephemeron? v) Ñ boolean?
v : any/c

Returns #t if v is an ephemeron, #f otherwise.

1185

16.3 Wills and Executors

A will executor manages a collection of values and associated will procedures (a.k.a. final-
izers). The will procedure for each value is ready to be executed when the value has been
proven (by the garbage collector) to be unreachable, except through weak references (see
§16.1 “Weak Boxes”) or as the registrant for other will executors. A will is useful for trig-
gering clean-up actions on data associated with an unreachable value, such as closing a port
embedded in an object when the object is no longer used.

Calling the will-execute or will-try-execute procedure executes a will that is ready
in the specified will executor. A will executor is also a synchronizable event, so sync
or sync/timeout can be used to detect when a will executor has ready wills. Wills are
not executed automatically, because certain programs need control to avoid race conditions.
However, a program can create a thread whose sole job is to execute wills for a particular
executor.

If a value is registered with multiple wills (in one or multiple executors), the wills are read-
ied in the reverse order of registration. Since readying a will procedure makes the value
reachable again, the will must be executed and the value must be proven again unreachable
through only weak references before another of the wills is readied or executed. However,
wills for distinct unreachable values are readied at the same time, regardless of whether the
values are reachable from each other.

A will executor’s registrant is held non-weakly until after the corresponding will procedure
is executed. Thus, if the content value of a weak box (see §16.1 “Weak Boxes”) is registered
with a will executor, the weak box’s content is not changed to #f until all wills have been
executed for the value and the value has been proven again reachable through only weak
references.

A will executor can be used as a synchronizable event (see §11.2.1 “Events”). A will execu-
tor is ready for synchronization when will-execute would not block; the synchronization
result of a will executor is the will executor itself.

These examples show how to run cleanup actions when no synchronization is necessary. It
simply runs the registered executors as they become ready in another thread.

Examples:

> (define an-executor (make-will-executor))
> (void

(thread
(λ ()
(let loop ()
(will-execute an-executor)
(loop)))))

> (define (executor-proc v) (printf "a-box is now garbage\n"))
> (define a-box-to-track (box #f))

1186

> (will-register an-executor a-box-to-track executor-proc)
> (collect-garbage)
> (set! a-box-to-track #f)
> (collect-garbage)
a-box is now garbage

(make-will-executor) Ñ will-executor?

Returns a new will executor with no managed values.

(will-executor? v) Ñ boolean?
v : any/c

Returns #t if v is a will executor, #f otherwise.

(will-register executor v proc) Ñ void?
executor : will-executor?
v : any/c
proc : (any/c . -> . any)

Registers the value v with the will procedure proc in the will executor executor . When v
is proven unreachable, then the procedure proc is ready to be called with v as its argument
via will-execute or will-try-execute. The proc argument is strongly referenced until
the will procedure is executed.

(will-execute executor) Ñ any
executor : will-executor?

Invokes the will procedure for a single “unreachable” value registered with the executor
executor . The values returned by the will procedure are the result of the will-execute
call. If no will is ready for immediate execution, will-execute blocks until one is ready.

(will-try-execute executor [v]) Ñ any
executor : any/c
v : any/c = #f

Like will-execute if a will is ready for immediate execution. Otherwise, v is returned.

Changed in version 6.90.0.4 of package base: Added the v argument.

16.4 Garbage Collection

Set the PLTDISABLEGC environment variable (to any value) before Racket starts to disable
garbage collection. Set the PLT_INCREMENTAL_GC environment variable to a value that

1187

starts with 1, y, or Y to request incremental mode at all times, but calling (collect-
garbage 'incremental) in a program with a periodic task is generally a better mech-
anism for requesting incremental mode.

In Racket 3m (the main variant of Racket), each garbage collection logs a message (see
§15.5 “Logging”) at the 'debug level with topic 'GC. The data portion of the message is an
instance of a gc-info prefab structure type with 10 fields as follows, but future versions of
Racket may use a gc-info prefab structure with additional fields:

(struct gc-info (mode pre-amount pre-admin-amount code-amount
post-amount post-admin-amount
start-process-time end-process-time
start-time end-time)

#:prefab)

• The mode field is a symbol 'major, 'minor, or 'incremental; 'major indicates a
collection that inspects all memory, 'minor indicates collection that mostly inspects
just recent allocations, and 'incremental indicates a minor collection that performs
extra work toward the next major collection.

Changed in version 6.3.0.7 of package base: Changed first field from a boolean (#t for 'major, #f for
'minor) to a mode symbol.

• The pre-amount field reports place-local memory use (i.e., not counting the memory
use of child places) in bytes at the time that the garbage collection started. Additional
bytes registered via make-phantom-bytes are included.

• The pre-admin-amount is a larger number that includes memory use for the garbage
collector’s overhead, such as space on memory pages that are mapped but not currently
used.

• The code-amount field reports additional memory use for generated native code
(which is the same just before and after a garbage collection, since it is released via
finalization).

• The post-amount and post-admin-amount fields correspond to pre-amount and
pre-admin-amount, but after garbage collection. In typical configurations, the
difference between post-amount and pre-amount contributes to post-admin-
amount, since reclaimed pages tend to stay in reserve with the expectation that they’ll
be needed again (but the pages are released if multiple collections pass without need
for the pages).

• The start-process-time and end-process-time fields report processor time (in
the sense of current-process-milliseconds) at the start and end of garbage col-
lection. The difference between the times is the processor time consumed by collec-
tion.

• The start-time and end-time fields report real time (in the sense of current-
inexact-milliseconds) at the start and end of garbage collection. The difference
between the times is the real time consumed by garbage collection.

1188

The format of the logged message’s text is subject to change. Currently, after a prefix that
indicates the place and collection mode, the text has the format

xusedy(xadminy)[xcodey]; free xreclaimedy(xadjusty) xelapsedy @
xtimestampy

xusedy Collectable memory in use just prior to garbage collection
xadminy Additional memory used as to manage collectable memory
xcodey Additional memory used for generated machine code
xreclaimedy Collectable memory reclaimed by garbage collection
xadjusty Negation of change to administrative memory minus xreclaimedy
xelapsedy Processor time used to perform garbage collection
xtimestampy Processor time since startup of garbage collection’s start

Changed in version 6.3.0.7 of package base: Added PLT_INCREMENTAL_GC.

(collect-garbage [request]) Ñ void?
request : (or/c 'major 'minor 'incremental) = 'major

Requests an immediate garbage collection or requests a garbage-collection mode, depending
on request :

• 'major — Forces a “major” collection, which inspects all memory. Some effectively
unreachable data may remain uncollected, because the collector cannot prove that it is
unreachable.

This mode of collect-garbage procedure provides some control over the timing
of collections, but garbage will obviously be collected even if this procedure is never
called—unless garbage collection is disabled by setting PLTDISABLEGC.

• 'minor — Requests a “minor” collection, which mostly inspects only recent alloca-
tions. If minor collection is not supported (e.g., when (system-type 'gc) returns
'cgc) or if the next collection must be a major collection, no collection is performed.
More generally, minor collections triggered by (collect-garbage 'minor) do not
cause major collections any sooner than they would occur otherwise.

• 'incremental — Requests that each minor collection performs incremental work
toward a major collection (but does not request an immediate minor collection). This
incremental-mode request expires at the next major collection.

The intent of incremental mode is to significantly reduce pause times due to ma-
jor collections, but incremental mode typically implies longer minor-collection times
and higher memory use. Currently, incremental mode is only really supported when
(system-type 'gc) returns '3m; it has no effect in other Racket variants.

If the PLT_INCREMENTAL_GC environment variable’s value starts with 0, n, or N on
start-up, then incremental-mode requests are ignored.

1189

Changed in version 6.3 of package base: Added the request argument.
Changed in version 6.3.0.2: Added 'incremental mode.

(current-memory-use [mode]) Ñ exact-nonnegative-integer?
mode : (or/c #f 'cumulative custodian?) = #f

Returns information about memory use:

• If mode is #f (the default), the result is an estimate of the number of bytes reachable
from any custodian.

• If mode is 'cumulative, returns an estimate of the total number of bytes allocated
since start up, including bytes that have since been reclaimed by garbage collection.

• If mode is a custodian, returns an estimate of the number of bytes of memory occupied
by reachable data from mode . This estimate is calculated by the last garbage collec-
tion, and can be 0 if none occurred (or if none occurred since the given custodian was
created). The current-memory-use function does not perform a collection by itself;
doing one before the call will generally decrease the result (or increase it from 0 if no
collections happened yet).

When Racket is compiled without support for memory accounting, the estimate is the
same as when mode is #f (i.e., all memory) for any individual custodian. See also
custodian-memory-accounting-available?.

See also vector-set-performance-stats!.

Changed in version 6.6.0.3 of package base: Added 'cumulative mode.

(dump-memory-stats v ...) Ñ any
v : any/c

Dumps information about memory usage to the low-level error port or console.

Various combinations of v arguments can control the information in a dump. The informa-
tion that is available depends on your Racket build; check the end of a dump from a particular
build to see if it offers additional information; otherwise, all vs are ignored.

16.5 Phantom Byte Strings

A phantom byte string is a small Racket value that is treated by the Racket memory manager
as having an arbitrary size, which is specified when the phantom byte string is created or
when it is changed via set-phantom-bytes!.

A phantom byte string acts as a hint to Racket’s memory manager that memory is allocated
within the process but through a separate allocator, such as through a foreign library that is

1190

accessed via ffi/unsafe. This hint is used to trigger garbage collections or to compute the
result of current-memory-use. Currently, the hint is used only in Racket 3m (the main
variant of Racket).

(phantom-bytes? v) Ñ boolean?
v : any/c

Returns #t if v is a phantom byte string, #f otherwise.

(make-phantom-bytes k) Ñ phantom-bytes?
k : exact-nonnegative-integer?

Creates a phantom byte string that is treated by the Racket memory manager as being k
bytes in size. For a large enough k , the exn:fail:out-of-memory exception is raised—
either because the size is implausibly large, or because a memory limit has been installed
with custodian-limit-memory.

(set-phantom-bytes! phantom-bstr k) Ñ phantom-bytes?
phantom-bstr : phantom-bytes?
k : exact-nonnegative-integer?

Adjusts the size of a phantom byte string as it is treated by the Racket memory manager.

For example, if the memory that phantom-bstr represents is released through a foreign
library, then (set-phantom-bytes! phantom-bstr 0) can reflect the change in memory
use.

When k is larger than the current size of phantom-bstr , then this function can raise
exn:fail:out-of-memory, like make-phantom-bytes.

1191

17 Unsafe Operations

(require racket/unsafe/ops) package: base

All functions and forms provided by racket/base and racket check their arguments to
ensure that the arguments conform to contracts and other constraints. For example, vector-
ref checks its arguments to ensure that the first argument is a vector, that the second argu-
ment is an exact integer, and that the second argument is between 0 and one less than the
vector’s length, inclusive.

Functions provided by racket/unsafe/ops are unsafe. They have certain constraints, but
the constraints are not checked, which allows the system to generate and execute faster code.
If arguments violate an unsafe function’s constraints, the function’s behavior and result is
unpredictable, and the entire system can crash or become corrupted.

All of the exported bindings of racket/unsafe/ops are protected in the sense of protect-
out, so access to unsafe operations can be prevented by adjusting the code inspector (see
§14.10 “Code Inspectors”).

17.1 Unsafe Numeric Operations

(unsafe-fx+ a ...) Ñ fixnum?
a : fixnum?

(unsafe-fx- a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fx* a ...) Ñ fixnum?
a : fixnum?

(unsafe-fxquotient a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fxremainder a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fxmodulo a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fxabs a) Ñ fixnum?
a : fixnum?

For fixnums: Like +, -, *, quotient, remainder, modulo, and abs, but constrained to
consume fixnums and produce a fixnum result. The mathematical operation on a and b must
be representable as a fixnum. In the case of unsafe-fxquotient, unsafe-fxremainder,
and unsafe-fxmodulo, b must not be 0.

1192

https://pkgs.racket-lang.org/package/base

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fx+ and unsafe-fx*
and allow one or more arguments for unsafe-fx-.

(unsafe-fxand a ...) Ñ fixnum?
a : fixnum?

(unsafe-fxior a ...) Ñ fixnum?
a : fixnum?

(unsafe-fxxor a ...) Ñ fixnum?
a : fixnum?

(unsafe-fxnot a) Ñ fixnum?
a : fixnum?

(unsafe-fxlshift a b) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fxrshift a b) Ñ fixnum?
a : fixnum?
b : fixnum?

For fixnums: Like bitwise-and, bitwise-ior, bitwise-xor, bitwise-not, and
arithmetic-shift, but constrained to consume fixnums; the result is always a fixnum.
The unsafe-fxlshift and unsafe-fxrshift operations correspond to arithmetic-
shift, but require non-negative arguments; unsafe-fxlshift is a positive (i.e., left) shift,
and unsafe-fxrshift is a negative (i.e., right) shift, where the number of bits to shift must
be no more than the number of bits used to represent a fixnum. In the case of unsafe-
fxlshift, bits in the result beyond the number of bits used to represent a fixnum are effec-
tively replaced with a copy of the high bit.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fxand, unsafe-fxior,
and unsafe-fxxor.

(unsafe-fx= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(unsafe-fx< a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(unsafe-fx> a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(unsafe-fx<= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

(unsafe-fx>= a b ...) Ñ boolean?
a : fixnum?
b : fixnum?

1193

(unsafe-fxmin a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

(unsafe-fxmax a b ...) Ñ fixnum?
a : fixnum?
b : fixnum?

For fixnums: Like =, <, >, <=, >=, min, and max, but constrained to consume fixnums.

Changed in version 7.0.0.13 of package base: Allow one or more argument, instead of allowing just two.

(unsafe-fl+ a ...) Ñ flonum?
a : flonum?

(unsafe-fl- a b ...) Ñ flonum?
a : flonum?
b : flonum?

(unsafe-fl* a ...) Ñ flonum?
a : flonum?

(unsafe-fl/ a b ...) Ñ flonum?
a : flonum?
b : flonum?

(unsafe-flabs a) Ñ flonum?
a : flonum?

For flonums: Unchecked versions of fl+, fl-, fl*, fl/, and flabs.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fl+ and unsafe-fl*
and one or more arguments for unsafe-fl- and unsafe-fl/.

(unsafe-fl= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(unsafe-fl< a b ...) Ñ boolean?
a : flonum?
b : flonum?

(unsafe-fl> a b ...) Ñ boolean?
a : flonum?
b : flonum?

(unsafe-fl<= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(unsafe-fl>= a b ...) Ñ boolean?
a : flonum?
b : flonum?

(unsafe-flmin a b ...) Ñ flonum?
a : flonum?
b : flonum?

1194

(unsafe-flmax a b ...) Ñ flonum?
a : flonum?
b : flonum?

For flonums: Unchecked versions of fl=, fl<, fl>, fl<=, fl>=, flmin, and flmax.

Changed in version 7.0.0.13 of package base: Allow one or more argument, instead of allowing just two.

(unsafe-flround a) Ñ flonum?
a : flonum?

(unsafe-flfloor a) Ñ flonum?
a : flonum?

(unsafe-flceiling a) Ñ flonum?
a : flonum?

(unsafe-fltruncate a) Ñ flonum?
a : flonum?

For flonums: Unchecked (potentially) versions of flround, flfloor, flceiling, and
fltruncate. Currently, these bindings are simply aliases for the corresponding safe bind-
ings.

(unsafe-flsin a) Ñ flonum?
a : flonum?

(unsafe-flcos a) Ñ flonum?
a : flonum?

(unsafe-fltan a) Ñ flonum?
a : flonum?

(unsafe-flasin a) Ñ flonum?
a : flonum?

(unsafe-flacos a) Ñ flonum?
a : flonum?

(unsafe-flatan a) Ñ flonum?
a : flonum?

(unsafe-fllog a) Ñ flonum?
a : flonum?

(unsafe-flexp a) Ñ flonum?
a : flonum?

(unsafe-flsqrt a) Ñ flonum?
a : flonum?

(unsafe-flexpt a b) Ñ flonum?
a : flonum?
b : flonum?

For flonums: Unchecked (potentially) versions of flsin, flcos, fltan, flasin, flacos,
flatan, fllog, flexp, flsqrt, and flexpt. Currently, some of these bindings are simply
aliases for the corresponding safe bindings.

1195

(unsafe-make-flrectangular a b)
Ñ (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

a : flonum?
b : flonum?

(unsafe-flreal-part a) Ñ flonum?
a : (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

(unsafe-flimag-part a) Ñ flonum?
a : (and/c complex?

(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

For flonums: Unchecked versions of make-flrectangular, flreal-part, and flimag-
part.

(unsafe-fx->fl a) Ñ flonum?
a : fixnum?

(unsafe-fl->fx a) Ñ fixnum?
a : flonum?

Unchecked conversion of a fixnum to an integer flonum and vice versa. These are similar
to the safe bindings ->fl and fl->exact-integer, but further constrained to consume or
produce a fixnum.

(unsafe-flrandom rand-gen) Ñ (and flonum? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?

Unchecked version of flrandom.

17.2 Unsafe Character Operations

(unsafe-char=? a b ...) Ñ boolean?
a : char?
b : char?

(unsafe-char<? a b ...) Ñ boolean?
a : char?
b : char?

(unsafe-char>? a b ...) Ñ boolean?
a : char?
b : char?

1196

(unsafe-char<=? a b ...) Ñ boolean?
a : char?
b : char?

(unsafe-char>=? a b ...) Ñ boolean?
a : char?
b : char?

(unsafe-char->integer a) Ñ fixnum?
a : char?

Unchecked versions of char=?, char<?, char>?, char<=?, char>=?, and char-
>integer.

Added in version 7.0.0.14 of package base.

17.3 Unsafe Data Extraction

(unsafe-car p) Ñ any/c
p : pair?

(unsafe-cdr p) Ñ any/c
p : pair?

(unsafe-mcar p) Ñ any/c
p : mpair?

(unsafe-mcdr p) Ñ any/c
p : mpair?

(unsafe-set-mcar! p v) Ñ void?
p : mpair?
v : any/c

(unsafe-set-mcdr! p v) Ñ void?
p : mpair?
v : any/c

Unsafe variants of car, cdr, mcar, mcdr, set-mcar!, and set-mcdr!.

(unsafe-cons-list v rest) Ñ (and/c pair? list?)
v : any/c
rest : list?

Unsafe variant of cons that produces a pair that claims to be a list—without checking
whether rest is a list.
(unsafe-list-ref lst pos) Ñ any/c

lst : pair?
pos : (and/c exact-nonnegative-integer? fixnum?)

(unsafe-list-tail lst pos) Ñ any/c
lst : any/c
pos : (and/c exact-nonnegative-integer? fixnum?)

1197

Unsafe variants of list-ref and list-tail, where pos must be a fixnum, and lst must
start with at least (add1 pos) (for unsafe-list-ref) or pos (for unsafe-list-tail)
pairs.

(unsafe-unbox b) Ñ fixnum?
b : box?

(unsafe-set-box! b k) Ñ void?
b : box?
k : fixnum?

(unsafe-unbox* v) Ñ any/c
v : (and/c box? (not/c impersonator?))

(unsafe-set-box*! v val) Ñ void?
v : (and/c box? (not/c impersonator?))
val : any/c

Unsafe versions of unbox and set-box!, where the box* variants can be faster but do not
work on impersonators.

(unsafe-box*-cas! loc old new) Ñ boolean?
loc : box?
old : any/c
new : any/c

Unsafe version of box-cas!. Like unsafe-set-box*!, it does not work on impersonators.

(unsafe-vector-length v) Ñ fixnum?
v : vector?

(unsafe-vector-ref v k) Ñ any/c
v : vector?
k : fixnum?

(unsafe-vector-set! v k val) Ñ void?
v : vector?
k : fixnum?
val : any/c

(unsafe-vector*-length v) Ñ fixnum?
v : (and/c vector? (not/c impersonator?))

(unsafe-vector*-ref v k) Ñ any/c
v : (and/c vector? (not/c impersonator?))
k : fixnum?

(unsafe-vector*-set! v k val) Ñ void?
v : (and/c vector? (not/c impersonator?))
k : fixnum?
val : any/c

1198

(unsafe-vector*-cas! v k old-val new-val) Ñ boolean?
v : (and/c vector? (not/c impersonator?))
k : fixnum?
old-val : any/c
new-val : any/c

Unsafe versions of vector-length, vector-ref, vector-set!, and vector-cas!,
where the vector* variants can be faster but do not work on impersonators.

A vector’s size can never be larger than a fixnum, so even vector-length always returns a
fixnum.

Changed in version 6.11.0.2 of package base: Added unsafe-vector*-cas!.

(unsafe-string-length str) Ñ fixnum?
str : string?

(unsafe-string-ref str k)
Ñ (and/c char? (lambda (ch) (<= 0 (char->integer ch) 255)))
str : string?
k : fixnum?

(unsafe-string-set! str k ch) Ñ void?
str : (and/c string? (not/c immutable?))
k : fixnum?
ch : char?

Unsafe versions of string-length, string-ref, and string-set!. The unsafe-
string-ref procedure can be used only when the result will be a Latin-1 character. A
string’s size can never be larger than a fixnum (so even string-length always returns a
fixnum).

(unsafe-bytes-length bstr) Ñ fixnum?
bstr : bytes?

(unsafe-bytes-ref bstr k) Ñ byte?
bstr : bytes?
k : fixnum?

(unsafe-bytes-set! bstr k b) Ñ void?
bstr : (and/c bytes? (not/c immutable?))
k : fixnum?
b : byte?

Unsafe versions of bytes-length, bytes-ref, and bytes-set!. A bytes’s size can never
be larger than a fixnum (so even bytes-length always returns a fixnum).

(unsafe-fxvector-length v) Ñ fixnum?
v : fxvector?

1199

(unsafe-fxvector-ref v k) Ñ fixnum?
v : fxvector?
k : fixnum?

(unsafe-fxvector-set! v k x) Ñ void?
v : fxvector?
k : fixnum?
x : fixnum?

Unsafe versions of fxvector-length, fxvector-ref, and fxvector-set!. A fxvector’s
size can never be larger than a fixnum (so even fxvector-length always returns a fixnum).

(unsafe-flvector-length v) Ñ fixnum?
v : flvector?

(unsafe-flvector-ref v k) Ñ flonum?
v : flvector?
k : fixnum?

(unsafe-flvector-set! v k x) Ñ void?
v : flvector?
k : fixnum?
x : flonum?

Unsafe versions of flvector-length, flvector-ref, and flvector-set!. A flvector’s
size can never be larger than a fixnum (so even flvector-length always returns a fixnum).

(unsafe-f64vector-ref vec k) Ñ flonum?
vec : f64vector?
k : fixnum?

(unsafe-f64vector-set! vec k n) Ñ void?
vec : f64vector?
k : fixnum?
n : flonum?

Unsafe versions of f64vector-ref and f64vector-set!.

(unsafe-s16vector-ref vec k) Ñ (integer-in -32768 32767)
vec : s16vector?
k : fixnum?

(unsafe-s16vector-set! vec k n) Ñ void?
vec : s16vector?
k : fixnum?
n : (integer-in -32768 32767)

Unsafe versions of s16vector-ref and s16vector-set!.

(unsafe-u16vector-ref vec k) Ñ (integer-in 0 65535)
vec : u16vector?
k : fixnum?

1200

(unsafe-u16vector-set! vec k n) Ñ void?
vec : u16vector?
k : fixnum?
n : (integer-in 0 65535)

Unsafe versions of u16vector-ref and u16vector-set!.

(unsafe-struct-ref v k) Ñ any/c
v : any/c
k : fixnum?

(unsafe-struct-set! v k val) Ñ void?
v : any/c
k : fixnum?
val : any/c

(unsafe-struct*-ref v k) Ñ any/c
v : (not/c impersonator?)
k : fixnum?

(unsafe-struct*-set! v k val) Ñ void?
v : (not/c impersonator?)
k : fixnum?
val : any/c

(unsafe-struct*-cas! v k old-val new-val) Ñ boolean?
v : (not/c impersonator?)
k : fixnum?
old-val : any/c
new-val : any/c

Unsafe field access and update for an instance of a structure type, where the struct* vari-
ants can be faster but do not work on impersonators. The index k must be between 0
(inclusive) and the number of fields in the structure (exclusive). In the case of unsafe-
struct-set!, unsafe-struct*-set!, and unsafe-struct*-cas!, the field must be
mutable. The unsafe-struct*-cas! operation is analogous to box-cas! to perform an
atomic compare-and-set.

Changed in version 6.11.0.2 of package base: Added unsafe-struct*-cas!.

(unsafe-mutable-hash-iterate-first hash) Ñ (or/c #f any/c)
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))

(unsafe-mutable-hash-iterate-next hash pos) Ñ (or/c #f any/c)
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c

(unsafe-mutable-hash-iterate-key hash pos) Ñ any/c
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c

1201

(unsafe-mutable-hash-iterate-key hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c
bad-index-v : any/c

(unsafe-mutable-hash-iterate-value hash
pos) Ñ any/c

hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c

(unsafe-mutable-hash-iterate-value hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c
bad-index-v : any/c

(unsafe-mutable-hash-iterate-key+value hash
pos) Ñ any/c any/c

hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c

(unsafe-mutable-hash-iterate-key+value hash
pos
bad-index-v)

Ñ any/c any/c
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c
bad-index-v : any/c

(unsafe-mutable-hash-iterate-pair hash pos) Ñ pair?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c

(unsafe-mutable-hash-iterate-pair hash
pos
bad-index-v) Ñ pair?

hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
pos : any/c
bad-index-v : any/c

(unsafe-immutable-hash-iterate-first hash) Ñ (or/c #f any/c)
hash : (and/c hash? immutable?)

(unsafe-immutable-hash-iterate-next hash
pos) Ñ (or/c #f any/c)

hash : (and/c hash? immutable?)
pos : any/c

(unsafe-immutable-hash-iterate-key hash
pos) Ñ any/c

hash : (and/c hash? immutable?)
pos : any/c

1202

(unsafe-immutable-hash-iterate-key hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? immutable?)
pos : any/c
bad-index-v : any/c

(unsafe-immutable-hash-iterate-value hash
pos) Ñ any/c

hash : (and/c hash? immutable?)
pos : any/c

(unsafe-immutable-hash-iterate-value hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? immutable?)
pos : any/c
bad-index-v : any/c

(unsafe-immutable-hash-iterate-key+value hash
pos) Ñ any/c any/c

hash : (and/c hash? immutable?)
pos : any/c

(unsafe-immutable-hash-iterate-key+value hash
pos
bad-index-v)

Ñ any/c any/c
hash : (and/c hash? immutable?)
pos : any/c
bad-index-v : any/c

(unsafe-immutable-hash-iterate-pair hash
pos) Ñ pair?

hash : (and/c hash? immutable?)
pos : any/c

(unsafe-immutable-hash-iterate-pair hash
pos
bad-index-v) Ñ pair?

hash : (and/c hash? immutable?)
pos : any/c
bad-index-v : any/c

(unsafe-weak-hash-iterate-first hash) Ñ (or/c #f any/c)
hash : (and/c hash? hash-weak?)

(unsafe-weak-hash-iterate-next hash pos) Ñ (or/c #f any/c)
hash : (and/c hash? hash-weak?)
pos : any/c

(unsafe-weak-hash-iterate-key hash pos) Ñ any/c
hash : (and/c hash? hash-weak?)
pos : any/c

1203

(unsafe-weak-hash-iterate-key hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? hash-weak?)
pos : any/c
bad-index-v : any/c

(unsafe-weak-hash-iterate-value hash pos) Ñ any/c
hash : (and/c hash? hash-weak?)
pos : any/c

(unsafe-weak-hash-iterate-value hash
pos
bad-index-v) Ñ any/c

hash : (and/c hash? hash-weak?)
pos : any/c
bad-index-v : any/c

(unsafe-weak-hash-iterate-key+value hash
pos) Ñ any/c any/c

hash : (and/c hash? hash-weak?)
pos : any/c

(unsafe-weak-hash-iterate-key+value hash
pos
bad-index-v) Ñ any/c any/c

hash : (and/c hash? hash-weak?)
pos : any/c
bad-index-v : any/c

(unsafe-weak-hash-iterate-pair hash pos) Ñ pair?
hash : (and/c hash? hash-weak?)
pos : any/c

(unsafe-weak-hash-iterate-pair hash
pos
bad-index-v) Ñ pair?

hash : (and/c hash? hash-weak?)
pos : any/c
bad-index-v : any/c

Unsafe versions of hash-iterate-key and similar procedures. These operations support
chaperones and impersonators.

Each unsafe ...-first and ...-next procedure may return, instead of a number index, an
internal representation of a view into the hash structure, enabling faster iteration. The result
of these ...-first and ...-next functions should be given as pos to the corresponding unsafe
accessor functions.

If the pos provided to an accessor function for a mutable hash was formerly a valid hash
index but is no longer a valid hash index for hash , and if bad-index-v is not provided,
then the exn:fail:contract exception is raised. No behavior is specified for a pos that

1204

was never a valid hash index for hash . Note that bad-index-v argument is technically
not useful for the unsafe-immutable-hash-iterate- functions, since an index cannot
become invalid for an immutable hash .

Added in version 6.4.0.6 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(unsafe-make-srcloc source
line
column
position
span) Ñ srcloc?

source : any/c
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)

Unsafe version of srcloc.

Added in version 7.2.0.10 of package base.

17.4 Unsafe Extflonum Operations

(unsafe-extfl+ a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(unsafe-extfl- a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(unsafe-extfl* a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(unsafe-extfl/ a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(unsafe-extflabs a) Ñ extflonum?
a : extflonum?

Unchecked versions of extfl+, extfl-, extfl*, extfl/, and extflabs.

(unsafe-extfl= a b) Ñ boolean?
a : extflonum?
b : extflonum?

1205

(unsafe-extfl< a b) Ñ boolean?
a : extflonum?
b : extflonum?

(unsafe-extfl> a b) Ñ boolean?
a : extflonum?
b : extflonum?

(unsafe-extfl<= a b) Ñ boolean?
a : extflonum?
b : extflonum?

(unsafe-extfl>= a b) Ñ boolean?
a : extflonum?
b : extflonum?

(unsafe-extflmin a b) Ñ extflonum?
a : extflonum?
b : extflonum?

(unsafe-extflmax a b) Ñ extflonum?
a : extflonum?
b : extflonum?

Unchecked versions of extfl=, extfl<, extfl>, extfl<=, extfl>=, extflmin, and
extflmax.

(unsafe-extflround a) Ñ extflonum?
a : extflonum?

(unsafe-extflfloor a) Ñ extflonum?
a : extflonum?

(unsafe-extflceiling a) Ñ extflonum?
a : extflonum?

(unsafe-extfltruncate a) Ñ extflonum?
a : extflonum?

Unchecked (potentially) versions of extflround, extflfloor, extflceiling, and
extfltruncate. Currently, these bindings are simply aliases for the corresponding safe
bindings.

(unsafe-extflsin a) Ñ extflonum?
a : extflonum?

(unsafe-extflcos a) Ñ extflonum?
a : extflonum?

(unsafe-extfltan a) Ñ extflonum?
a : extflonum?

(unsafe-extflasin a) Ñ extflonum?
a : extflonum?

(unsafe-extflacos a) Ñ extflonum?
a : extflonum?

(unsafe-extflatan a) Ñ extflonum?
a : extflonum?

1206

(unsafe-extfllog a) Ñ extflonum?
a : extflonum?

(unsafe-extflexp a) Ñ extflonum?
a : extflonum?

(unsafe-extflsqrt a) Ñ extflonum?
a : extflonum?

(unsafe-extflexpt a b) Ñ extflonum?
a : extflonum?
b : extflonum?

Unchecked (potentially) versions of extflsin, extflcos, extfltan, extflasin,
extflacos, extflatan, extfllog, extflexp, extflsqrt, and extflexpt. Currently,
some of these bindings are simply aliases for the corresponding safe bindings.

(unsafe-fx->extfl a) Ñ extflonum?
a : fixnum?

(unsafe-extfl->fx a) Ñ fixnum?
a : extflonum?

Unchecked conversion of a fixnum to an integer extflonum and vice versa. These are simi-
lar to the safe bindings ->extfl and extfl->exact-integer, but further constrained to
consume or produce a fixnum.

(unsafe-extflvector-length v) Ñ fixnum?
v : extflvector?

(unsafe-extflvector-ref v k) Ñ extflonum?
v : extflvector?
k : fixnum?

(unsafe-extflvector-set! v k x) Ñ void?
v : extflvector?
k : fixnum?
x : extflonum?

Unchecked versions of extflvector-length, extflvector-ref, and extflvector-
set!. A extflvector’s size can never be larger than a fixnum (so even extflvector-length
always returns a fixnum).

17.5 Unsafe Impersonators and Chaperones

(unsafe-impersonate-procedure proc
replacement-proc
prop
prop-val ...
...)

1207

Ñ (and/c procedure? impersonator?)
proc : procedure?
replacement-proc : procedure?
prop : impersonator-property?
prop-val : any

Like impersonate-procedure, but assumes that replacement-proc calls proc itself.
When the result of unsafe-impersonate-procedure is applied to arguments, the ar-
guments are passed on to replacement-proc directly, ignoring proc . At the same
time, impersonator-of? reports #t when given the result of unsafe-impersonate-
procedure and proc .

If proc is itself an impersonator that is derived from impersonate-procedure* or
chaperone-procedure*, beware that replacement-proc will not be able to call it cor-
rectly. Specifically, the impersonator produced by unsafe-impersonate-procedure will
not get passed to a wrapper procedure that was supplied to impersonate-procedure* or
chaperone-procedure* to generate proc .

Finally, unlike impersonate-procedure, unsafe-impersonate-procedure does not
specially handle impersonator-prop:application-mark as a prop .

The unsafety of unsafe-impersonate-procedure is limited to the above differences from
impersonate-procedure. The contracts on the arguments of unsafe-impersonate-
procedure are checked when the arguments are supplied.

As an example, assuming that f accepts a single argument and is not derived from
impersonate-procedure* or chaperone-procedure*, then

(λ (f)
(unsafe-impersonate-procedure
f
(λ (x)
(if (number? x)

(error 'no-numbers!)
(f x)))))

is equivalent to

(λ (f)
(impersonate-procedure
f
(λ (x)
(if (number? x)

(error 'no-numbers!)
x))))

1208

Similarly, with the same assumptions about f, the following two procedures wrap-f1 and
wrap-f2 are almost equivalent; they differ only in the error message produced when their ar-
guments are functions that return multiple values (and that they update different global vari-
ables). The version using unsafe-impersonate-procedure will signal an error in the let
expression about multiple return values, whereas the one using impersonate-procedure
signals an error from impersonate-procedure about multiple return values.

(define log1-args '())
(define log1-results '())
(define wrap-f1
(λ (f)
(impersonate-procedure
f
(λ (arg)
(set! log1-args (cons arg log1-args))
(values (λ (res)

(set! log1-results (cons res log1-results))
res)

arg)))))

(define log2-args '())
(define log2-results '())
(define wrap-f2
(λ (f)
(unsafe-impersonate-procedure
f
(λ (arg)
(set! log2-args (cons arg log2-args))
(let ([res (f arg)])
(set! log2-results (cons res log2-results))
res)))))

Added in version 6.4.0.4 of package base.

(unsafe-chaperone-procedure proc
wrapper-proc
prop
prop-val ...
...)

Ñ (and/c procedure? chaperone?)
proc : procedure?
wrapper-proc : procedure?
prop : impersonator-property?
prop-val : any

Like unsafe-impersonate-procedure, but creates a chaperone. Since wrapper-proc

1209

will be called in lieu of proc , wrapper-proc is assumed to return a chaperone of the value
that proc would return.

Added in version 6.4.0.4 of package base.

(unsafe-impersonate-vector vec
replacement-vec
prop
prop-val ...
...)

Ñ (and/c vector? impersonator?)
vec : vector?
replacement-vec : (and/c vector? (not/c impersonator?))
prop : impersonator-property?
prop-val : any/c

Like impersonate-vector, but instead of going through interposition procedures, all ac-
cesses to the impersonator are dispatched to replacement-vec .

The result of unsafe-impersonate-vector is an impersonator of vec .

Added in version 6.9.0.2 of package base.

(unsafe-chaperone-vector vec
replacement-vec
prop
prop-val ...
...)

Ñ (and/c vector? chaperone?)
vec : vector?
replacement-vec : (and/c vector? (not/c impersonator?))
prop : impersonator-property?
prop-val : any/c

Like unsafe-impersonate-vector, but the result of unsafe-chaperone-vector is a
chaperone of vec .

Added in version 6.9.0.2 of package base.

17.6 Unsafe Undefined

(require racket/unsafe/undefined) package: base

The bindings documented in this section are provided by the racket/unsafe/undefined
library, not racket/base or racket.

1210

https://pkgs.racket-lang.org/package/base

The constant unsafe-undefined is used internally as a placeholder value. For example, it
is used by letrec as a value for a variable that has not yet been assigned a value. Unlike
the undefined value exported by racket/undefined, however, the unsafe-undefined
value should not leak as the result of a safe expression, and it should not be passed as an
optional argument to a procedure (because it may count as “no value provided”). Expres-
sion results that potentially produce unsafe-undefined can be guarded by check-not-
unsafe-undefined, so that an exception can be raised instead of producing an undefined
value.

The unsafe-undefined value is always eq? to itself.

Added in version 6.0.1.2 of package base.
Changed in version 6.90.0.29: Procedures with optional arguments sometimes use the unsafe-undefined value
internally to mean “no argument supplied.”

unsafe-undefined : any/c

The unsafe “undefined” constant.

See above for important constraints on the use of unsafe-undefined.

(check-not-unsafe-undefined v sym)
Ñ (and/c any/c (not/c (one-of/c unsafe-undefined)))
v : any/c
sym : symbol?

Checks whether v is unsafe-undefined, and raises exn:fail:contract:variable in
that case with an error message along the lines of “sym : undefined; use before initialization.”
If v is not unsafe-undefined, then v is returned.

(check-not-unsafe-undefined/assign v sym)
Ñ (and/c any/c (not/c (one-of/c unsafe-undefined)))
v : any/c
sym : symbol?

The same as check-not-unsafe-undefined, except that the error message (if any) is
along the lines of “sym : undefined; assignment before initialization.”

(chaperone-struct-unsafe-undefined v) Ñ any/c
v : any/c

Chaperones v if it is a structure (as viewed through some inspector). Every access of a
field in the structure is checked to prevent returning unsafe-undefined. Similarly, every
assignment to a field in the structure is checked (unless the check disabled as described
below) to prevent assignment of a field whose current value is unsafe-undefined.

1211

When a field access would otherwise produce unsafe-undefined or when a field assign-
ment would replace unsafe-undefined, the exn:fail:contract exception is raised.

The chaperone’s field-assignment check is disabled whenever (continuation-mark-set-
first #f prop:chaperone-unsafe-undefined) returns unsafe-undefined. Thus, a
field-initializing assignment—one that is intended to replace the unsafe-undefined value
of a field—should be wrapped with (with-continuation-mark prop:chaperone-
unsafe-undefined unsafe-undefined).

prop:chaperone-unsafe-undefined : struct-type-property?

A structure type property that causes a structure type’s constructor to produce a chaperone
of an instance in the same way as chaperone-struct-unsafe-undefined.

The property value should be a list of symbols used as field names, but the list should be in
reverse order of the structure’s fields. When a field access or assignment would produce or
replace unsafe-undefined, the exn:fail:contract:variable exception is raised if a
field name is provided by the structure property’s value, otherwise the exn:fail:contract
exception is raised.

1212

18 Running Racket

18.1 Running Racket or GRacket

The core Racket run-time system is available in two main variants:

• Racket, which provides the primitives libraries on which racket/base is imple-
mented. On Unix and Mac OS, the executable is called racket. On Windows, the
executable is called Racket.exe.

• GRacket, which is a GUI variant of racket to the degree that the system distinguishes
them. On Unix, the executable is called gracket, and single-instance flags and X11-
related flags are handled and communicated specially to the racket/gui/base li-
brary. On Windows, the executable is called GRacket.exe, and it is a GUI applica-
tion (as opposed to a console application) that implements single-instance support. On
Mac OS, the gracket script launches GRacket.app.

18.1.1 Initialization

On start-up, the top-level environment contains no bindings—not even #%app for function
application. Primitive modules with names that start with #% are defined, but they are not
meant for direct use, and the set of such modules can change. For example, the '#%kernel
module is eventually used to bootstrap the implementation of racket/base.

The first action of Racket or GRacket is to initialize current-library-collection-
paths to the result of (find-library-collection-paths pre-extras extras),
where pre-extras is normally null and extras are extra directory paths provided in
order in the command line with -S/--search. An executable created from the Racket or
GRacket executable can embed paths used as pre-extras .

Racket and GRacket next require racket/init and racket/gui/init, respectively, but
only if the command line does not specify a require flag (-t/--require, -l/--lib, or
-u/--require-script) before any eval, load, or read-eval-print-loop flag (-e/--eval,
-f/--load, -r/--script, -m/--main, or -i/--repl). The initialization library can be
changed with the -I configuration option. The configure-runtime submodule of the
initialization library or the 'configure-runtime property of the initialization library’s
language is used before the library is instantiated; see §18.1.5 “Language Run-Time Config-
uration”.

After potentially loading the initialization module, expression evals, files loads, and mod-
ule requires are executed in the order that they are provided on the command line. If any
raises an uncaught exception, then the remaining evals, loads, and requires are skipped.
If the first require precedes any eval or load so that the initialization library is skipped,

1213

then the configure-runtime submodule of the required module or the 'configure-
runtime property of the required module’s library language is used before the module is
instantiated; see §18.1.5 “Language Run-Time Configuration”.

After running all command-line expressions, files, and modules, Racket or GRacket then
starts a read-eval-print loop for interactive evaluation if no command line flags are provided
other than configuration options. For Racket, the read-eval-print loop is run by calling read-
eval-print-loop from racket/repl. For GRacket, the read-eval-print loop is run by
calling graphical-read-eval-print-loop from racket/gui/base. If any command-
line argument is provided that is not a configuration option, then the read-eval-print-loop
is not started, unless the -i/--repl flag is provided on the command line to specifically
re-enable it.

In addition, just before the read-eval-print loop is started, Racket runs
racket/interactive and GRacket runs racket/gui/interactive, unless a dif-
ferent interactive file is specified in the the installation’s "config.rktd" file found in
(find-config-dir), or the file "interactive.rkt" is found in (find-system-path
'addon-dir). If the -q/--no-init-file flag is specified on the command line, then no
interactive file is run.

Finally, before Racket or GRacket exits, it calls the procedure that is the current value of
executable-yield-handler in the main thread, unless the -V/--no-yield command-
line flag is specified. Requiring racket/gui/base sets this parameter call (racket
'yield).

Changed in version 6.7 of package base: Run racket/interactive file rather than directly running
(find-system-path 'init-file).
Changed in version 6.90.0.30: Run a read-eval-print loop by using racket/repl or racket/gui/base instead of
racket/base or racket/gui/init.

18.1.2 Exit Status

The default exit status for a Racket or GRacket process is non-zero if an error occurs during a
command-line eval (via -e, etc.), load (via -f, -r, etc.), or require (via -l, -t, etc.)—or,
more generally, if the abort handler of the prompt surrounding those evalutions is called—but
only when no read-eval-print loop is started. Otherwise, the default exit status is 0.

In all cases, a call to exit (when the default exit handler is in place) can end the process
with a specific status value.

18.1.3 Init Libraries

(require racket/init) package: base

1214

https://pkgs.racket-lang.org/package/base

The racket/init library is the default start-up library for Racket. It re-exports the racket,
racket/enter and racket/help libraries, and it sets current-print to use pretty-
print.

(require racket/interactive) package: base

The racket/interactive is the default start up library when the REPL begins. It is not
run if the -q/--no-init-file is specified. The interactive file can be changed by mod-
ifying 'interactive-file in the "config.rktd" file found in (find-config-dir).
Alternative, if the file "interactive.rkt" exists in (find-system-path 'addon-dir)
it is run rather than the installation wide interactive module.

The default interactive module starts xrepl and runs the (find-system-path 'init-
file) file in the users home directory. A different interactive file can keep this behavior by
requiring racket/interactive.

Added in version 6.7 of package base.

(require racket/language-info) package: base

The racket/language-info library provides a get-info function that takes any value
and returns another function; the returned function takes a key value and a default value, and
it returns '(#(racket/runtime-config configure #f)) if the key is 'configure-
runtime or the default value otherwise. See also §17.3.6

“Module-Handling
Configuration” in
The Racket Guide.

The vector '#(racket/language-info get-info #f) is suitable for attaching to a mod-
ule as its language info to get the same language information as the racket/base language.

(require racket/runtime-config) package: base

The racket/runtime-config library provides a configure function that takes any value
and sets print-as-expression to #t.

The vector #(racket/runtime-config configure #f) is suitable as a member of a
list of runtime-configuration specification (as returned by a module’s language-information
function for the key 'configure-runtime) to obtain the same runtime configuration as for
the racket/base language.

18.1.4 Command Line

The Racket and GRacket executables recognize the following command-line flags:

• File and expression options:

– -e xexpry or --eval xexpry : evals xexpry. The results of the evaluation are
printed via current-print.

1215

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

– -f xfiley or --load xfiley : loads xfiley; if xfiley is "-", then expressions are
read and evaluated from standard input.

– -t xfiley or --require xfiley : requires xfiley, and then requires (submod
(file "xfiley") main) if available.

– -l xpathy or --lib xpathy : requires (lib "xpathy"), and then requires
(submod (lib "xpathy") main) if available.

– -p xpackagey : requires (planet "xpackagey"), and then requires (sub-
mod (planet "xpackagey") main) if available.

– -r xfiley or --script xfiley : loads xfiley as a script. This flag is like -t xfiley Despite its name,
--script is not
usually used for
Unix scripts. See
§21.2 “Scripts” for
more information
on scripts.

plus -N xfiley to set the program name and -- to cause all further command-line
elements to be treated as non-flag arguments.

– -u xfiley or --require-script xfiley : requires xfiley as a script; This flag is
like -t xfiley plus -N xfiley to set the program name and -- to cause all further
command-line elements to be treated as non-flag arguments.

– -k xny xmy xpy : Loads code embedded in the executable from file position xny
to xmy and from xmy to xpy. (On Mac OS, xny, xmy, and xpy are relative to a
__PLTSCHEME segment in the executable. On Windows, they are relative to a
resource of type 257 and ID 1.) The first range is loaded in every new place,
and any modules declared in that range are considered predefined in the sense
of module-predefined?. This option is normally embedded in a stand-alone
binary that also embeds Racket code.

– -m or --main : Evaluates a call to main as bound in the top-level environment.
All of the command-line arguments that are not processed as options (i.e., the
arguments put into current-command-line-arguments) are passed as argu-
ments to main. The results of the call are printed via current-print.
The call to main is constructed as an expression (main arg-str ...) where
the lexical context of the expression gives #%app and #%datum bindings as
#%plain-app and #%datum, but the lexical context of main is the top-level
environment.

• Interaction options:

– -i or --repl : Runs an interactive read-eval-print loop, using either
read-eval-print-loop (Racket) or graphical-read-eval-print-loop
(GRacket) after showing (banner) and loading (find-system-path 'init-
file). In the case of Racket, (read-eval-print-loop) is followed by (new-
line). For GRacket, supply the -z/--text-repl configuration option to use
read-eval-print-loop (and newline) instead of graphical-read-eval-
print-loop.

– -n or --no-lib : Skips requiring the initialization library (i.e., racket/init
or racket/gui/init, unless it is changed with the -I flag) when not otherwise
disabled.

– -v or --version : Shows (banner).

1216

– -K or --back : GRacket, Mac OS only; leave application in the background.

– -V --no-yield : Skips final executable-yield-handler action, which nor-
mally waits until all frames are closed, etc. in the main eventspace before exiting
for programs that use racket/gui/base.

• Configuration options:

– -c or --no-compiled : Disables loading of compiled byte-code ".zo"
files, by initializing current-compiled-file-paths to null. Use judi-
ciously: this effectively ignores the content of all "compiled" subdirectories,
so that any used modules are compiled on the fly—even racket/base and its
dependencies—which leads to prohibitively expensive run times.

– -q or --no-init-file : Skips loading (find-system-path 'init-file)
for -i/--repl.

– -z or --text-repl : GRacket only; changes -i/--repl to use textual-
read-eval-print-loop instead of graphical-read-eval-print-loop.

– -I xpathy : Sets (lib "xpathy") as the path to require to initialize the names-
pace, unless namespace initialization is disabled. Using this flag can effectively
set the language for the read-eval-print loop and other top-level evaluation.

– -X xdiry or --collects xdiry : Sets xdiry as the path to the main collection of
libraries by making (find-system-path 'collects-dir) produce xdiry. If
xdiry is an empty string, then (find-system-path 'collects-dir) returns
".", but current-library-collection-paths is initialized to the empty
list, and use-collection-link-paths is initialized to #f.

– -S xdiry or --search xdiry : Adds xdiry to the default library collection search
path after the main collection directory. If the -S/--dir flag is supplied multiple
times, the search order is as supplied.

– -G xdiry or --config xdiry : Sets the directory that is returned by (find-
system-path 'config-dir).

– -A xdiry or --addon xdiry : Sets the directory that is returned by (find-
system-path 'addon-dir).

– -U or --no-user-path : Omits user-specific paths in the search for collec-
tions, C libraries, etc. by initializing the use-user-specific-search-paths
parameter to #f.

– -A xdiry or --addon xdiry : Sets the directory that is returned by (find-
system-path 'addon-dir).

– -R xpathsy or --compiled xpathsy : Sets the initial value of the current-
compiled-file-roots parameter, overriding any PLTCOMPILEDROOTS set-
ting. The xpathsy argument is parsed in the same way as PLTCOMPILEDROOTS
(see current-compiled-file-roots).

– -C or --cross : Select cross-platform build mode, causing (system-type
'cross) to report 'force, and sets the current configuration of (find-
system-path 'config-dir) and (find-system-path 'collects-dir)

1217

to be the results of (find-system-path 'host-config-dir) and (find-
system-path 'host-collects-dir), respectively. If -C or --cross is pro-
vided multiple times, only the first instance has an effect.

– -N xfiley or --name xfiley : sets the name of the executable as reported by (find-
system-path 'run-file) to xfiley.

– -J xnamey or --wm-class xnamey : GRacket, Unix only; sets the WM_CLASS
program class to xnamey (while the WM_CLASS program name is derived from
the executable name or a -N/--name argument).

– -j or --no-jit : Disables the native-code just-in-time compiler by setting the
eval-jit-enabled parameter to #f.

– -M or --compile-any : Enables machine-independent bytecode by setting the
current-compile-target-machine parameter to #f.

– -d or --no-delay : Disables on-demand parsing of compiled code and syntax
objects by setting the read-on-demand-source parameter to #f.

– -b or --binary : Requests binary mode, instead of text mode, for the process’s
input, out, and error ports. This flag currently has no effect, because binary mode
is always used.

– -W xlevelsy or --warn xlevelsy : Sets the logging level for writing events to the
original error port. The possible xlevely values are the same as for the PLTST-
DERR environment variable. See §15.5 “Logging” for more information.

– -O xlevelsy or --stdout xlevelsy : Sets the logging level for writing events to
the original output port. The possible xlevely values are the same as for the
PLTSTDOUT environment variable. See §15.5 “Logging” for more information.

– -L xlevelsy or --syslog xlevelsy : Sets the logging level for writing events to
the system log. The possible xlevely values are the same as for the PLTSYSLOG
environment variable. See §15.5 “Logging” for more information.

• Meta options:

– -- : No argument following this flag is itself used as a flag.

– -h or --help : Shows information about the command-line flags and start-up
process and exits, ignoring all other flags.

If at least one command-line argument is provided, and if the first one after any configuration
option is not a flag, then a -u/--require-script flag is implicitly added before the first
non-flag argument.

If no command-line arguments are supplied other than configuration options, then the
-i/--repl flag is effectively added.

For GRacket on Unix, the follow flags are recognized when they appear at the beginning
of the command line, and they count as configuration options (i.e., they do not disable the
read-eval-print loop or prevent the insertion of -u/--require-script):

1218

• -display xdisplayy : Sets the X11 display to use.

• -geometry xargy, -bg xargy, -background xargy, -fg xargy, -foreground
xargy, -fn xargy, -font xargy, -iconic, -name xargy, -rv, -reverse, +rv,
-selectionTimeout xargy, -synchronous, -title xargy, -xnllanguage xargy,
or -xrm xargy : Standard X11 arguments that are mostly ignored but accepted for
compatibility with other X11 programs. The -synchronous flag behaves in the usual
way.

• -singleInstance : If an existing GRacket is already running on the same X11 dis-
play, if it was started on a machine with the same hostname, and if it was started
with the same name as reported by (find-system-path 'run-file)—possibly
set with the -N/--name command-line argument—then all non-option command-line
arguments are treated as filenames and sent to the existing GRacket instance via the
application file handler (see application-file-handler).

Similarly, on Mac OS, a leading switch starting with -psn_ is treated as a special configura-
tion option. It indicates that Finder started the application, so the current input, output, and
error output are redirected to a GUI window.

Multiple single-letter switches (the ones preceded by a single -) can be collapsed into a
single switch by concatenating the letters, as long as the first switch is not --. The arguments
for each switch are placed after the collapsed switches (in the order of the switches). For
example,

-ifve xfiley xexpry

and

-i -f xfiley -v -e xexpry

are equivalent. If a collapsed -- appears before other collapsed switches in the same col-
lapsed set, it is implicitly moved to the end of the collapsed set.

Extra arguments following the last option are available from the current-command-line-
arguments parameter.

Changed in version 6.90.0.17 of package base: Added -O/--stdout.
Changed in version 7.1.0.5: Added -M/--compile-any.

18.1.5 Language Run-Time Configuration
See also §17.3.6
“Module-Handling
Configuration” in
The Racket Guide.

A module can have a configure-runtime submodule that is dynamic-required before
the module itself when a module is the main module of a program. Normally, a configure-
runtime submodule is added to a module by the module’s language (i.e., by the #%module-
begin form among a module’s initial bindings).

1219

Alternatively or in addition, an older protocol is in place. When a module is implemented
using #lang, the language after #lang can specify configuration actions to perform when
a module using the language is the main module of a program. The language specifies run-
time configuration by

• attaching a 'module-language syntax property to the module as read from its source
(see module and module-compiled-language-info);

• having the function indicated by the 'module-language syntax property recognize
the 'configure-runtime key, for which it returns a list of vectors; each vector must
have the form (vector mp name val) where mp is a module path, name is a sym-
bol, and val is an arbitrary value; and

• having each function called as ((dynamic-require mp name) val) configure the
run-time environment, typically by setting parameters such as current-print.

A 'configure-runtime query returns a list of vectors, instead of directly configuring the
environment, so that the indicated modules to be bundled with a program when creating a
stand-alone executable; see §2 “raco exe: Creating Stand-Alone Executables” in raco:
Racket Command-Line Tools.

For information on defining a new #lang language, see syntax/module-reader.

18.2 Libraries and Collections

A library is module declaration for use by multiple programs. Racket further groups libraries
into collections. Typically, collections are added via packages (see Package Management in
Racket); the package manager works outside of the Racket core, but it configures the core
run-time system through collection links files.

Libraries in collections are referenced through lib paths (see require) or symbolic short-
hands. For example, the following module uses the "getinfo.rkt" library module from
the "setup" collection, and the "cards.rkt" library module from the "games" collec-
tion’s "cards" subcollection:

#lang racket
(require (lib "setup/getinfo.rkt")

(lib "games/cards/cards.rkt"))
....

This example is more compactly and more commonly written using symbolic shorthands:

#lang racket
(require setup/getinfo

1220

games/cards/cards)
....

When an identifier id is used in a require form, it is converted to (lib rel-string)
where rel-string is the string form of id .

A rel-string in (lib rel-string) consists of one or more path elements that name
collections, and then a final path element that names a library file; the path elements are
separated by /. If rel-string contains no /s, then /main.rkt is implicitly appended
to the path. If rel-string contains / but does not end with a file suffix, then .rkt is
implicitly appended to the path.

Libraries also can be distributed via PLaneT packages. Such libraries are referenced through
a planet module path (see require) and are downloaded by Racket on demand, instead of
referenced through collections.

The translation of a planet or lib path to a module declaration is determined by the module
name resolver, as specified by the current-module-name-resolver parameter.

18.2.1 Collection Search Configuration

For the default module name resolver, the search path for collections is determined
by the current-library-collection-links parameter and the current-library-
collection-paths parameter:

• The most primitive collection-based modules are located in "collects" directory
relative to the Racket executable. Libraries for a collection are grouped within a direc-
tory whose name matches the collection name. The path to the "collects" directory
is normally included in current-library-collection-paths.

• Collection-based libraries also can be installed other directories, perhaps user-specific,
that are structured like the "collects" directory. Those additional directories can be
included in the current-library-collection-paths parameter either dynami-
cally, through command-line arguments to racket, or by setting the PLTCOLLECTS
environment variable; see find-library-collection-paths.

• Collection links files provide a mapping from top-level collection names to directories,
plus additional "collects"-like directories (that have subdirectories with names that
match collection names). Each collection links file to be searched is referenced by
the current-library-collection-links parameter; the parameter references the
file, and not the file’s content, so that changes to the file can be detected and affect later
module resolution. See also find-library-collection-links.

• The current-library-collection-links parameter’s value can also include
hash tables that provide the same content as collection links files: a mapping from

1221

collection names in symbol form to a list of paths for the collection, or from #f to a
list of "collects"-like paths.

• Finally, the current-library-collection-links parameter’s value includes #f
to indicate the point in the search process at which the module-name resolver should
check current-library-collection-paths relative to the files and hash tables in
current-library-collection-links.

To resolve a module reference rel-string , the default module name resolver searches
collection links in current-library-collection-links from first to last to locate the
first directory that contains rel-string , splicing a search through in current-library-
collection-paths where in current-library-collection-links contains #f. The
filesystem tree for each element in the link table and search path is effectively spliced to-
gether with the filesystem trees of other path elements that correspond to the same collec-
tion. Some Racket tools rely on unique resolution of module path names, so an installation
and configuration should not allow multiple files to match the same collection and file com-
bination.

The value of the current-library-collection-links parameter is initialized by the
racket executable to the result of (find-library-collection-links), and the value of
the current-library-collection-paths parameter is initialized to the result of (find-
library-collection-paths).

18.2.2 Collection Links

Collection links files are used by collection-file-path, collection-path, and the
default module name resolver to locate collections before trying the (current-library-
collection-paths) search path. The collection links files to use are determined by the
current-library-collection-links parameter, which is initialized to the result of
find-library-collection-links.

A collection links file is read with default reader parameter settings to obtain a list. Ev-
ery element of the list must be a link specification with one of the forms (list string
path), (list string path regexp), (list 'root path), (list 'root path
regexp), (list 'static-root path), (list 'static-root path regexp). A
string names a top-level collection, in which case path is a path that can be used as
the collection’s path (directly, as opposed to a subdirectory of path named by string). A
'root entry, in contrast, acts like an path in (current-library-collection-paths). A
'static-root entry is like a 'root entry, but where the immediate content of the directory
is assumed not to change unless the collection links file changes. If path is a relative path,
it is relative to the directory containing the collection links file. If regexp is specified in a
link, then the link is used only if (regexp-match? regexp (version)) produces a true
result.

A single top-level collection can have multiple links in a collection links file, and any number

1222

of 'root entries can appear. The corresponding paths are effectively spliced together, since
the paths are tried in order to locate a file or sub-collection.

The raco link command-link tool can display, install, and remove links in a collection
links file. See §9 “raco link: Library Collection Links” in raco: Racket Command-Line
Tools for more information.

18.2.3 Collection Paths and Parameters

(find-library-collection-paths [pre-extras
post-extras]) Ñ (listof path?)

pre-extras : (listof path-string?) = null
post-extras : (listof path-string?) = null

Produces a list of paths, which is normally used to initialize current-library-
collection-paths, as follows:

• The path produced by (build-path (find-system-path 'addon-dir) (get-
installation-name) "collects") is the first element of the default collection
path list, unless the value of the use-user-specific-search-paths parameter is
#f.

• Extra directories provided in pre-extras are included next to the default collection
path list, converted to complete paths relative to the executable.

• If the directory specified by (find-system-path 'collects-dir) is absolute, or
if it is relative (to the executable) and it exists, then it is added to the end of the default
collection path list.

• Extra directories provided in post-extras are included last in the default collection
path list, converted to complete paths relative to the executable.

• If the PLTCOLLECTS environment variable is defined, it is combined with the default
list using path-list-string->path-list, as long as the value of use-user-
specific-search-paths is true. If it is not defined or if the value use-user-
specific-search-paths is #f, the default collection path list (as constructed by
the first three bullets above) is used directly.

Note that on Unix and Mac OS, paths are separated by :, and on Windows by ;. Also,
path-list-string->path-list splices the default paths at an empty path, for ex-
ample, with many Unix shells you can set PLTCOLLECTS to ":‘pwd‘", "‘pwd‘:", or
"‘pwd‘" to specify search the current directory after, before, or instead of the default
paths, respectively.

(find-library-collection-links)
Ñ (listof (or/c #f (and/c path? complete-path?)))

1223

Produces a list of paths and #f, which is normally used to initialized current-library-
collection-links, as follows:

• The list starts with #f, which causes the default module name resolver,
collection-file-path, and collection-path to try paths in current-
library-collection-paths before collection links files.

• As long as the values of use-user-specific-search-paths and use-
collection-link-paths are true, the second element in the result list is the path of
the user–specific collection links file, which is (build-path (find-system-path
'addon-dir) (get-installation-name) "links.rktd").

• As long as the value of use-collection-link-paths is true, the rest of the list
contains the result of get-links-search-files. Typically, that function produces
a list with a single path, (build-path (find-config-dir) "links.rktd").

(collection-file-path file
collection ...+

[#:check-compiled? check-compiled?])
Ñ path?
file : path-string?
collection : path-string?
check-compiled? : any/c = (regexp-match? #rx"[.]rkt$" file)

(collection-file-path file
collection ...+
#:fail fail-proc

[#:check-compiled? check-compiled?]) Ñ any
file : path-string?
collection : path-string?
fail-proc : (string? . -> . any)
check-compiled? : any/c = (regexp-match? #rx"[.]rkt$" file)

Returns the path to the file indicated by file in the collection specified by the col-
lections, where the second collection (if any) names a sub-collection, and so on.
The search uses the values of current-library-collection-links and current-
library-collection-paths. See also

collection-search
in
setup/collection-search.

If file is not found, but file ends in ".rkt" and a file with the suffix ".ss" exists,
then the directory of the ".ss" file is used. If file is not found and the ".rkt"/".ss"
conversion does not apply, but a directory corresponding to the collections is found, then
a path using the first such directory is returned.

If check-compiled? is true, then the search also depends on use-compiled-file-paths
and current-compiled-file-roots; if file is not found, then a compiled form of file
with the suffix ".zo" is checked in the same way as the default compiled-load handler. If

1224

a compiled file is found, the result from collection-file-path reports the location that
file itself would occupy (if it existed) for the found compiled file.

Finally, if the collection is not found, and if fail-proc is provided, then fail-proc is
applied to an error message (that does not start "collection-file-path:" or otherwise
claim a source), and its result is the result of collection-file-path. If fail-proc is
not provided and the collection is not found, then the exn:fail:filesystem exception is
raised.

Examples:

> (collection-file-path "main.rkt" "racket" "base")
#<path:path/to/collects/racket/base/main.rkt>
> (collection-file-path "sandwich.rkt" "bologna")
collection-file-path: collection not found

collection: "bologna"
in collection directories:

/opt/racket/pltbuild/racket/racket/collects
... [196 additional linked and package directories]

Changed in version 6.0.1.12 of package base: Added the check-compiled? argument.

(collection-path collection ...+) Ñ path?
collection : path-string?

(collection-path collection
...+
#:fail fail-proc) Ñ any

collection : path-string?
fail-proc : (string? . -> . any)

NOTE: This function is deprecated; use collection-file-path, instead.
Collection splicing implies that a given collection can have multiple paths, such
as when multiple packages provide modules for a collection.

Like collection-file-path, but without a specified file name, so that a directory indi-
cated by collections is returned.

When multiple directories correspond to the collection, the first one found in the search
sequence (see §18.2.1 “Collection Search Configuration”) is returned.

(current-library-collection-paths)
Ñ (listof (and/c path? complete-path?))

(current-library-collection-paths paths) Ñ void?
paths : (listof (and/c path-string? complete-path?))

1225

Parameter that determines a list of complete directory paths for finding libraries (as refer-
enced in require, for example) through the default module name resolver and for finding
paths through collection-path and collection-file-path. See §18.2.1 “Collection
Search Configuration” for more information.

(current-library-collection-links)
Ñ (listof (or/c #f

(and/c path? complete-path?)
(hash/c (or/c (and/c symbol? module-path?) #f)

(listof (and/c path? complete-path?)))))
(current-library-collection-links paths) Ñ void?

paths : (listof (or/c #f
(and/c path-string? complete-path?)
(hash/c (or/c (and/c symbol? module-path?) #f)

(listof (and/c path-string? complete-path?)))))

Parameter that determines collection links files, additional paths, and the relative search or-
der of current-library-collection-paths for finding libraries (as referenced in re-
quire, for example) through the default module name resolver and for finding paths through
collection-path and collection-file-path. See §18.2.1 “Collection Search Config-
uration” for more information.

(use-user-specific-search-paths) Ñ boolean?
(use-user-specific-search-paths on?) Ñ void?

on? : any/c

Parameter that determines whether user-specific paths, which are in the directory produced
by (find-system-path 'addon-dir), are included in search paths for collections and
other files. For example, the initial value of find-library-collection-paths omits the
user-specific collection directory when this parameter’s value is #f.

If -U or --no-user-path argument to racket, then use-user-specific-search-
paths is initialized to #f.

(use-collection-link-paths) Ñ boolean?
(use-collection-link-paths on?) Ñ void?

on? : any/c

Parameter that determines whether collection links files are included in the result of find-
library-collection-links.

If this parameter’s value is #f on start-up, then collection links files are effectively disabled
permanently for the Racket process. In particular, if an empty string is provided as the -X
or --collects argument to racket, then not only is current-library-collection-
paths initialized to the empty list, but use-collection-link-paths is initialized to #f.

1226

18.3 Interactive Help

(require racket/help) package: base

The bindings documented in this section are provided by the racket/help and
racket/init libraries, which means that they are available when the Racket executable
is started with no command-line arguments. They are not provided by racket/base or
racket.

help
(help string ...)
(help id)
(help id #:from module-path)
(help #:search datum ...)

For general help, see the main documentation page.

The help form searches the documentation and opens a web browser (using the user’s se-
lected browser) to display the results. See net/sendurl

for information on
how the user’s
browser is launched
to display help
information.

A simple help or (help) form opens the main documentation page.

The (help string ...) form—using literal strings, as opposed to expressions that pro-
duce strings—performs a string-matching search. For example,

(help "web browser" "firefox")

searches the documentation index for references that include the phrase “web browser” or
“firefox.”

A (help id) form looks for documentation specific to the current binding of id . For
example,

(require net/url)
(help url->string)

opens a web browser to show the documentation for url->string from the net/url li-
brary.

For the purposes of help, a for-label require introduces a binding without actually exe-
cuting the net/url library—for cases when you want to check documentation, but cannot
or do not want to run the providing module.

(require racket/gui) ; does not work in racket
(require (for-label racket/gui)) ; ok in racket
(help frame%)

1227

https://pkgs.racket-lang.org/package/base
../index.html

If id has no for-label and normal binding, then help lists all libraries that are known to
export a binding for id .

The (help id #:from module-path) variant is similar to (help id), but using only
the exports of module-path . (The module-path module is required for-label in a tem-
porary namespace.)

(help frame% #:from racket/gui) ; equivalent to the above

The (help #:search datum ...) form is similar to (help string ...), where any
non-string form of datum is converted to a string using display. No datum is evaluated as
an expression.

For example,

(help #:search "web browser" firefox)

also searches the documentation index for references that include the phrase “web browser”
or “firefox.”

18.4 Interactive Module Loading

The racket/rerequire and racket/enter libraries provide support for loading, reload-
ing, and using modules.

18.4.1 Entering Modules

(require racket/enter) package: base

The bindings documented in this section are provided by the racket/enter and
racket/init libraries, which means that they are available when the Racket executable
is started with no command-line arguments. They are not provided by racket/base or
racket.

(enter! module-path)
(enter! #f)
(enter! module-path flag ...+)

flag = #:quiet
| #:verbose-reload
| #:verbose
| #:dont-re-require-enter

1228

https://pkgs.racket-lang.org/package/base

Intended for use in a REPL, such as when racket is started in interactive mode. When a
module-path is provided (in the same sense as for require), the corresponding module
is loaded or invoked via dynamic-rerequire, and the current namespace is changed to
the body of the module via module->namespace. When #f is provided, then the current
namespace is restored to the original one.

Additional flags can customize aspects of enter!:

• The #:verbose, #:verbose-reload, and #:quiet flags correspond to 'all,
'reload, and 'none verbosity for dynamic-rerequire. The default corresponds
to #:verbose-reload.

• After switching namespaces to the designated module, enter! automatically requires
racket/enter into the namespace, so that enter! can be used to switch namespaces
again. In some cases, requiring racket/enter might not be desirable (e.g., in a tool
that uses racket/enter); use the #:dont-re-require-enter flag to disable the
require.

(dynamic-enter! mod
[#:verbosity verbosity
#:re-require-enter? re-require-enter?]) Ñ void?

mod : (or/c module-path? #f)
verbosity : (or/c 'all 'reload 'none) = 'reload
re-require-enter? : any/c = #t

Procedure variant of enter!, where verbosity is passed along to dynamic-rerequire
and re-require-enter? determines whether dynamic-enter! requires racket/enter
in a newly entered namespace.

Added in version 6.0.0.1 of package base.

18.4.2 Loading and Reloading Modules

(require racket/rerequire) package: base

The bindings documented in this section are provided by the racket/rerequire library,
not racket/base or racket.
(dynamic-rerequire module-path

[#:verbosity verbosity]) Ñ (listof path?)
module-path : module-path?
verbosity : (or/c 'all 'reload 'none) = 'reload

Like (dynamic-require module-path 0), but with reloading support. The dynamic-
rerequire function is intended for use in an interactive environment, especially via
enter!.

1229

https://pkgs.racket-lang.org/package/base

If invoking module-path requires loading any files, then modification dates of the files
are recorded. If the file is modified, then a later dynamic-rerequire re-loads the module
from source; see also §1.1.10.4 “Module Redeclarations”. Similarly if a later dynamic-
rerequire transitively requires a modified module, then the required module is re-loaded.
Re-loading support works only for modules that are first loaded (either directly or indirectly
through transitive requires) via dynamic-rerequire.

The returned list contains the absolute paths to the modules that were reloaded on this call
to dynamic-rerequire. If the returned list is empty, no modules were changed or loaded.

When enter! loads or re-loads a module from a file, it can print a message to (current-
error-port), depending on verbosity : 'all prints a message for all loads and re-loads,
'reload prints a message only for re-loaded modules, and 'none disables printouts.

18.5 Debugging

Racket’s built-in debugging support is limited to context (i.e., “stack trace”) information
that is printed with an exception. In some cases, disabling the JIT compiler can affect con-
text information. The errortrace library supports more consistent (independent of the
JIT compiler) and precise context information. The racket/trace library provides sim-
ple tracing support. Finally, the DrRacket programming environment provides much more
debugging support.

18.5.1 Tracing

(require racket/trace) package: base

The bindings documented in this section are provided by the racket/trace library, not
racket/base or racket.

The racket/trace library mimics the tracing facility available in Chez Scheme.

(trace id ...)

Each id must be bound to a procedure in the environment of the trace expression. Each
id is set!ed to a new procedure that traces procedure calls and returns by printing the argu-
ments and results of the call via current-trace-notify. If multiple values are returned,
each value is displayed starting on a separate line.

When traced procedures invoke each other, nested invocations are shown by printing a nest-
ing prefix. If the nesting depth grows to ten and beyond, a number is printed to show the
actual nesting depth.

The trace form can be used on an identifier that is already traced. In this case, assuming

1230

https://pkgs.racket-lang.org/package/base

that the variable’s value has not been changed, trace has no effect. If the variable has been
changed to a different procedure, then a new trace is installed.

Tracing respects tail calls to preserve loops, but its effect may be visible through continuation
marks. When a call to a traced procedure occurs in tail position with respect to a previous
traced call, then the tailness of the call is preserved (and the result of the call is not printed
for the tail call, because the same result will be printed for an enclosing call). Otherwise,
however, the body of a traced procedure is not evaluated in tail position with respect to a call
to the procedure.

The result of a trace expression is #<void>.

Examples:

> (define (f x) (if (zero? x) 0 (add1 (f (sub1 x)))))
> (trace f)
> (f 10)
>(f 10)
> (f 9)
> >(f 8)
> > (f 7)
> > >(f 6)
> > > (f 5)
> > > >(f 4)
> > > > (f 3)
> > > > >(f 2)
> > > > > (f 1)
> > > >[10] (f 0)
< < < <[10] 0
< < < < < 1
< < < < <2
< < < < 3
< < < <4
< < < 5
< < <6
< < 7
< <8
< 9
<10
10

trace can also be used to debug syntax transformers. This is verbose to do directly with
trace; refer to trace-define-syntax for a simpler way to do this.

Examples:

> (require (for-syntax racket/trace))

1231

> (begin-for-syntax
(define let
(syntax-rules ()
[(_ ([x v]) e) ((lambda (x) e) v)]))

(trace let))
> (define-syntax let let)
> (let ([x 120]) x)
>(_let #<syntax:eval:9:0 (let ((x 120)) x)>)
<#<syntax:eval:9:0 ((lambda (x) x) 120)>
120

When tracing syntax transformers, it may be helpful to modify current-trace-print-
args and current-trace-print-results to make the trace output more readable; see
current-trace-print-args for an extended example.

(trace-define id expr)
(trace-define (head args) body ...+)

The trace-define form is short-hand for first defining a function then tracing it. This form
supports all define forms.

Examples:

> (trace-define (f x) (if (zero? x) 0 (add1 (f (sub1 x)))))
> (f 5)
>(f 5)
> (f 4)
> >(f 3)
> > (f 2)
> > >(f 1)
> > > (f 0)
< < < 0
< < <1
< < 2
< <3
< 4
<5
5

Examples:

> (trace-define ((+n n) x) (+ n x))
> (map (+n 5) (list 1 3 4))
>(+n 5)
<#<procedure>

1232

'(6 8 9)

(trace-define-syntax id expr)
(trace-define-syntax (head args) body ...+)

The trace-define-syntax form is short-hand for first defining a syntax transformer then
tracing it. This form supports all define-syntax forms.

For example:

Examples:

> (trace-define-syntax fact
(syntax-rules ()
[(_ x) 120]))

> (fact 5)
>(fact #<syntax:eval:15:0 (fact 5)>)
<#<syntax:eval:15:0 120>
120

By default, trace prints out syntax objects when tracing a syntax transformer. This can
result in too much output if you do not need to see, e.g., source information. To get more
readable output by printing syntax objects as datums, we can modify the current-trace-
print-args and current-trace-print-results. See current-trace-print-args
for an example.

(trace-lambda [#:name id] args expr)

The trace-lambda form enables tracing an anonymous function. This form will attempt
to infer a name using syntax-local-infer-name, or a name can be specified using the
optional #:name argument. A syntax error is raised if a name is not given and a name cannot
be inferred.

Example:

> ((trace-lambda (x) 120) 5)
>(eval:16:0 5)
<120
120

(trace-let id ([arg expr] ...+) body ...+)

The trace-let form enables tracing a named let.

Example:

1233

> (trace-let f ([x 5])
(if (zero? x)

1
(* x (f (sub1 x)))))

>(f 5)
> (f 4)
> >(f 3)
> > (f 2)
> > >(f 1)
> > > (f 0)
< < < 1
< < <1
< < 2
< <6
< 24
<120
120

(untrace id ...)

Undoes the effects of the trace form for each id , set!ing each id back to the untraced
procedure, but only if the current value of id is a traced procedure. If the current value of a
id is not a procedure installed by trace, then the variable is not changed.

The result of an untrace expression is #<void>.

(current-trace-notify) Ñ (string? . -> . any)
(current-trace-notify proc) Ñ void?

proc : (string? . -> . any)

A parameter that determines the way that trace output is displayed. The string given to proc
is a trace; it does not end with a newline, but it may contain internal newlines. Each call or
result is converted into a string using pretty-print. The parameter’s default value prints
the given string followed by a newline to (current-output-port).

(trace-call id proc #:<kw> kw-arg ...) Ñ any/c
id : symbol?
proc : procedure?
kw-arg : any/c

Calls proc with the arguments supplied in args , and possibly using keyword arguments.
Also prints out the trace information during the call, as described above in the docs for
trace, using id as the name of proc .

1234

(current-trace-print-args) Ñ (-> symbol?
list?
(listof keyword?)
list?
number?
void?)

(current-trace-print-args trace-print-args) Ñ void?
trace-print-args : (-> symbol?

list?
(listof keyword?)
list?
number?
void?)

The value of this parameter is invoked to print out the arguments of a traced call. It receives
the name of the function, the function’s ordinary arguments, its keywords, the values of the
keywords, and a number indicating the depth of the call.

Modifying this and current-trace-print-results is useful to to get more readable
or additional output when tracing syntax transformers. For example, we can use debug-
scopes to add scopes information to the trace, (see debug-scopes for an example), or
remove source location information to just display the shape of the syntax object

In this example, we update the printers current-trace-print-args and current-
trace-print-results by storing the current printers (ctpa and ctpr) to cast syntax ob-
jects to datum using syntax->datum and then pass the transformed arguments and results
to the previous printer. When tracing, syntax arguments will be displayed without source
location information, shortening the output.

Examples:

> (require (for-syntax racket/trace))
> (begin-for-syntax

(current-trace-print-args
(let ([ctpa (current-trace-print-args)])
(lambda (s l kw l2 n)
(ctpa s (map syntax->datum l) kw l2 n))))

(current-trace-print-results
(let ([ctpr (current-trace-print-results)])
(lambda (s r n)
(ctpr s (map syntax->datum r) n)))))

> (trace-define-syntax fact
(syntax-rules ()
[(_ x) 120]))

> (fact 5)
>(fact '(fact 5))

1235

<120
120

We must take care when modifying these parameters, especially when the transformation
makes assumptions about or changes the type of the argument/result of the traced iden-
tifier. This modification of current-trace-print-args and current-trace-print-
results is an imperative update, and will affect all traced identifiers. This example as-
sumes all arguments and results to all traced functions will be syntax objects, which is the
case only if you are only tracing syntax transformers. If used as-is, the above code could
result in type errors when tracing both functions and syntax transformers. It would be better
to use syntax->datum only when the argument or result is actually a syntax object, for
example, by defining maybe-syntax->datum as follows.

Examples:

> (require (for-syntax racket/trace))
> (begin-for-syntax

(define (maybe-syntax->datum syn?)
(if (syntax? syn?)

(syntax->datum syn?)
syn?))

(current-trace-print-args
(let ([ctpa (current-trace-print-args)])
(lambda (s l kw l2 n)
(ctpa s (map maybe-syntax->datum l) kw l2 n))))

(current-trace-print-results
(let ([ctpr (current-trace-print-results)])
(lambda (s l n)
(ctpr s (map maybe-syntax->datum l) n))))

(trace-define (precompute-fact syn n) (datum-
>syntax syn (apply * (build-list n add1)))))
> (trace-define (run-time-fact n) (apply * (build-list n add1)))
> (require (for-syntax syntax/parse))
> (trace-define-syntax (fact syn)

(syntax-parse syn
[(_ x:nat) (precompute-fact syn (syntax->datum #'x))]
[(_ x) #'(run-time-fact x)]))

> (fact 5)
>(fact '(fact 5))
>(precompute-fact '(fact 5) 5)
<120
120
> (fact (+ 2 3))
>(fact '(fact (+ 2 3)))
<'(run-time-fact (+ 2 3))

1236

>(run-time-fact 5)
<120
120

(current-trace-print-results) Ñ (-> symbol?
list?
number?
any)

(current-trace-print-results trace-print-results) Ñ void?
trace-print-results : (-> symbol?

list?
number?
any)

The value of this parameter is invoked to print out the results of a traced call. It receives the
name of the function, the function’s results, and a number indicating the depth of the call.

(current-prefix-in) Ñ string?
(current-prefix-in prefix) Ñ void?

prefix : string?

This string is used by the default value of current-trace-print-args indicating that the
current line is showing the a call to a traced function.

It defaults to ">".

(current-prefix-out) Ñ string?
(current-prefix-out prefix) Ñ void?

prefix : string?

This string is used by the default value of current-trace-print-results indicating that
the current line is showing the result of a traced call.

It defaults to "<".

18.6 Kernel Forms and Functions

#lang racket/kernel package: base

The racket/kernel library is a cross-phase persistent module that provides a minimal set
of syntactic forms and functions.

“Minimal” means that racket/kernel includes only forms that are built into the Racket
compiler and only functions that are built into the run-time system. Currently, the set of

1237

https://pkgs.racket-lang.org/package/base

bindings is not especially small, nor is it particularly well-defined, since the set of built-in
functions can change frequently. Use racket/kernel with care, and beware that its use can
create compatibility problems.

The racket/kernel module exports all of the bindings in the grammar of fully expanded
programs (see §1.2.3.1 “Fully Expanded Programs”), but it provides #%plain-lambda
as lambda and λ, #%plain-app as #%app, and #%plain-module-begin as #%module-
begin. Aside from #%datum (which expands to quote), racket/kernel provides no other
syntactic bindings.

The racket/kernel module also exports many of the function bindings from
racket/base, and it exports a few other functions that are not exported by racket/base
because racket/base exports improved variants. The exact set of function bindings ex-
ported by racket/kernel is unspecified and subject to change across versions.

(require racket/kernel/init) package: base

The racket/kernel/init library re-provides all of racket/kernel. It also provides
#%top-interaction, which makes racket/kernel/init useful with the -I command-
line flag for racket.

1238

https://pkgs.racket-lang.org/package/base

Bibliography

[C99] ISO/IEC, “ISO/IEC 9899:1999 Cor. 3:2007(E).” 2007.
[Culpepper07] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt, “Advanced

Macrology and the Implementation of Typed Scheme,” Workshop on
Scheme and Functional Programming, 2007.

[Danvy90] Olivier Danvy and Andre Filinski, “Abstracting Control,” LISP and Func-
tional Programming, 1990.

[Felleisen88a] Matthias Felleisen, “The theory and practice of first-class prompts,” Prin-
ciples of Programming Languages, 1988.

[Felleisen88] Matthias Felleisen, Mitch Wand, Dan Friedman, and Bruce Duba, “Ab-
stract Continuations: A Mathematical Semantics for Handling Full Func-
tional Jumps,” LISP and Functional Programming, 1988.

[Feltey18] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Find-
ler, and Vincent St-Amour, “Collapsible Contracts: Fixing a Pathology
of Gradual Typing,” Object-Oriented Programming, Systems, and Lan-
guages (OOPSLA), 2018.

[Flatt02] Matthew Flatt, “Composable and Compilable Macros: You Want it
When?,” International Conference on Functional Programming (ICFP),
2002.

[Friedman95] Daniel P. Friedman, C. T. Haynes, and R. Kent Dybvig, “Exception system
proposal,” web page, 1995. http://www.cs.indiana.edu/scheme-
repository/doc.proposals.exceptions.html

[Gasbichler02] Martin Gasbichler and Michael Sperber, “Processes vs. User-Level
Threads in Scsh,” Workshop on Scheme and Functional Programming,
2002.

[Greenberg15] Michael Greenberg, “Space-Efficient Manifest Contracts,” Principles of
Programming Languages (POPL), 2015.

[Gunter95] Carl Gunter, Didier Remy, and Jon Rieke, “A Generalization of Excep-
tions and Control in ML-like Languages,” Functional Programming Lan-
guages and Computer Architecture, 1995.

[Haynes84] Christopher T. Haynes and Daniel P. Friedman, “Engines Build Process
Abstractions,” Symposium on LISP and Functional Programming, 1984.

[Hayes97] Barry Hayes, “Ephemerons: a New Finalization Mechanism,” Object-
Oriented Languages, Programming, Systems, and Applications, 1997.

[Hieb90] Robert Hieb and R. Kent Dybvig, “Continuations and Concurrency,” Prin-
ciples and Practice of Parallel Programming, 1990.

[L'Ecuyer02] Pierre L’Ecuyer, Richard Simard, E. Jack Chen, and W. David Kel-
ton, “An Object-Oriented Random-Number Package With Many Long
Streams and Substreams,” Operations Research, 50(6), 2002.

[Queinnec91] Queinnec and Serpette, “A Dynamic Extent Control Operator for Partial
Continuations,” Principles of Programming Languages, 1991.

[Shan04] Ken Shan, “Shift to Control,” Workshop on Scheme and Functional Pro-
gramming, 2004.

[Sperber07] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten
(editors), “The Revised6 Report on the Algorithmic Language Scheme.”
2007. http://www.r6rs.org/

1239

http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html
http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html
http://www.r6rs.org/

[Sitaram90] Dorai Sitaram and Matthias Felleisen, “Control Delimiters and Their Hi-
erarchies,” Lisp and Symbolic Computation, 1990.

[Sitaram93] Dorai Sitaram, “Handling Control,” Programming Language Design and
Implementation, 1993.

[SRFI-42] Sebastian Egner, “SRFI-42: Eager Comprehensions,” SRFI, 2003.
http://srfi.schemers.org/srfi-42/

[Strickland12] T. Stephen Strickland, Sam Tobin-Hochstadt, Matthew Flatt, and
Robert Bruce Findler, “Chaperones and Impersonators: Run-
time Support for Reasonable Interposition,” Object-Oriented
Programming, Systems, and Languages (OOPSLA), 2012.
http://www.eecs.northwestern.edu/„robby/pubs/papers/oopsla2012-
stff.pdf

1240

http://srfi.schemers.org/srfi-42/
http://www.eecs.northwestern.edu/~robby/pubs/papers/oopsla2012-stff.pdf
http://www.eecs.northwestern.edu/~robby/pubs/papers/oopsla2012-stff.pdf

Index
", 57
"longdouble.dll", 226
#! , 60
#!, 65
#!/, 60
#", 58
#%, 53
#%app, 117
#%datum, 113
#%declare, 87
#%expression, 113
'#%kernel, 1213
#%module-begin, 87
#%plain-app, 118
#%plain-lambda, 122
#%plain-module-begin, 87
#%printing-module-begin, 87
#%provide, 107
#%require, 106
#%stratified-body, 162
#%top, 115
#%top-interaction, 162
#%variable-reference, 116
#&, 62
#', 59
#,, 59
#,@, 59
#0#, 63
#0=, 63
#:, 63
#:cross-phase-persistent, 88
#:empty-namespace, 88
#;, 60
#<<, 58
#\, 62
#\backspace, 62
#\linefeed, 62
#\newline, 62
#\nul, 62
#\null, 62

#\page, 62
#\return, 62
#\rubout, 62
#\space, 62
#\tab, 62
#\vtab, 62
#`, 59
#b, 54
#ci, 53
#cs, 53
#d, 54
#e, 54
#F, 56
#f, 56
#false, 56
#hash, 61
#hasheq, 61
#hasheqv, 61
#i, 54
#lang, 65
#o, 54
#px, 63
#reader, 64
#rx, 63
#T, 56
#t, 56
#true, 56
#x, 54
#|, 59
%, 733
', 59
(, 56
), 56
*, 183
*list/c, 602
+, 183
+inf.0, 175
+inf.f, 175
+inf.t, 226
+nan.0, 175
+nan.f, 175
+nan.t, 226

1241

+rv, 1219
,, 59
,@, 59
-, 183
--, 1218
--addon, 1217
--addon, 1217
--back, 1217
--binary, 1218
--collects, 1217
--compile-any, 1218
--compiled, 1217
--config, 1217
--cross, 1217
--cross, 1218
--eval, 1215
--help, 1218
--lib, 1216
--load, 1216
--main, 1216
--name, 1218
--no-compiled, 1217
--no-delay, 1218
--no-init-file, 1217
--no-jit, 1218
--no-lib, 1216
--no-user-path, 1217
--no-yield, 1217
--repl, 1216
--require, 1216
--require-script, 1216
--script, 1216
--search, 1217
--stdout, 1218
--syslog, 1218
--text-repl, 1217
--version, 1216
--warn, 1218
--wm-class, 1218
->, 614
->*, 618
->*m, 554

->d, 623
->dm, 554
->extfl, 228
->fl, 217
->i, 619
->m, 554
-A, 1217
-A, 1217
-b, 1218
-background, 1219
-bg, 1219
-C, 1217
-C, 1218
-c, 1217
-d, 1218
-display, 1219
-e, 1215
-f, 1216
-fg, 1219
-fn, 1219
-font, 1219
-foreground, 1219
-G, 1217
-geometry, 1219
-h, 1218
-I, 1217
-i, 1216
-iconic, 1219
-inf.0, 175
-inf.f, 175
-inf.t, 226
-J, 1218
-j, 1218
-K, 1217
-k, 1216
-L, 1218
-l, 1216
-M, 1218
-m, 1216
-N, 1218
-n, 1216
-name, 1219

1242

-O, 1218
-p, 1216
-psn_, 1219
-q, 1217
-R, 1217
-r, 1216
-reverse, 1219
-rv, 1219
-S, 1217
-selectionTimeout, 1219
-singleInstance, 1219
-synchronous, 1219
-t, 1216
-title, 1219
-U, 1217
-u, 1216
-V, 1217
-v, 1216
-W, 1218
-X, 1217
-xnllanguage, 1219
-xrm, 1219
-z, 1217
., 56
..., 797
".racketrc", 1106
/, 184
'3m, 1172
:do-in, 157
;, 59
<, 191
</c, 594
<=, 192
<=/c, 594
=, 191
=/c, 593
==, 697
=>, 131
>, 192
>/c, 594
>=, 193
>=/c, 594

[, 56
\, 51
\", 57
\', 58
\xdigit8y{1,3}, 58
\xnewliney, 58
\\, 58
\a, 57
\b, 57
\e, 57
\f, 57
\n, 57
\r, 57
\t, 57
\uxdigit16y

{1,4}, 58
\Uxdigit16y

{1,8}, 58
\uxdigit16y

{4,4}\uxdigit16y
{4,4}, 58

\v, 57
\xxdigit16y

{1,2}, 58
], 56
_, 797
`, 59
abort, 733
abort-current-continuation, 727
abort/cc, 732
'aborts, 273
abs, 186
absent, 554
absolute-path?, 1090
abstract, 523
accessor, 482
acos, 198
add-between, 346
add1, 186
Additional Byte String Functions, 275
Additional Control Operators, 732
Additional Custom-Output Support, 957
Additional Exception Functions, 722
Additional Hash Table Functions, 381
Additional Higher-Order Functions, 471
Additional List Functions and Synonyms,

336

1243

Additional Logging Functions, 1162
Additional Matching Forms, 690
Additional Operating System Functions,

1182
Additional Promise Kinds, 724
Additional provide Forms, 112
Additional require Forms, 108
Additional Sequence Constructors, 404
Additional Sequence Operations, 400
Additional String Functions, 242
Additional Structure Utilities, 504
Additional Syntactic Constraints, 293
Additional Vector Functions, 361
'addon-dir, 1107
alarm-evt, 756
all-defined-out, 100
all-from-out, 100
always-evt, 755
and, 131
and/c, 592
andmap, 320
angle, 200
any, 612
'any, 922
'any-one, 922
any/c, 590
append, 319
'append, 874
append*, 347
append-map, 350
applicable structure, 483
apply, 458
argmax, 353
argmin, 352
Arithmetic, 183
arithmetic-shift, 203
arity-at-least, 467
arity-at-least-value, 467
arity-at-least?, 467
arity-includes?, 478
arity=?, 477
armed, 850

asin, 198
assf, 328
assignment transformers, 40
Assignment: set! and set!-values, 141
assoc, 327
association list, 415
assq, 328
assv, 328
async-channel-get, 762
async-channel-put, 762
async-channel-put-evt, 762
async-channel-try-get, 762
async-channel/c, 763
async-channel?, 762
asynchronous channel, 761
atan, 198
atexit, 1051
Attaching Contracts to Values, 633
augment, 522
augment*, 526
augment-final, 523
augment-final*, 526
augmenting, 511
augride, 523
augride*, 526
authentic, 1032
automatic fields, 480
"AUX", 1102
available, 21
banner, 1174
base environment, 31
base phase, 47
Basic Pretty-Print Options, 952
begin, 138
begin-encourage-inline, 163
begin-for-syntax, 139
begin0, 139
between/c, 594
'binary, 872
binding, 30
binds, 30
Bitwise Operations, 201

1244

bitwise-and, 201
bitwise-bit-field, 203
bitwise-bit-set?, 202
bitwise-ior, 201
bitwise-not, 202
bitwise-xor, 202
Blame Objects, 652
blame objects, 652
blame-add-context, 653
blame-add-missing-party, 656
blame-context, 654
blame-contract, 654
blame-missing-party?, 655
blame-negative, 654
blame-original?, 655
blame-positive, 654
blame-replace-negative, 655
blame-source, 655
blame-swap, 655
blame-swapped?, 655
blame-update, 655
blame-value, 654
blame?, 652
block, 162
'block, 868
Blocks: block, 162
Boolean Aliases, 173
boolean=?, 173
boolean?, 167
booleans, 167
Booleans and Equality, 167
bound, 30
bound-identifier=?, 808
box, 368
box, 368
box-cas!, 369
box-immutable, 369
box-immutable/c, 598
box/c, 598
box?, 368
Boxes, 368
break, 741

break-enabled, 743
break-evaluator, 1069
break-parameterization?, 744
break-thread, 748
Breaks, 741
Buffered Asynchronous Channels, 761
build-chaperone-contract-property,

660
build-collapsible-contract-
property, 675

build-compound-type-name, 649
build-contract-property, 661
build-flat-contract-property, 659
build-list, 317
build-path, 1089
build-path/convention-type, 1090
build-string, 235
build-vector, 361
Building New Contract Combinators, 643
Built-in Exception Types, 714
Byte and String Input, 921
Byte and String Output, 932
byte converter, 271
byte string, 259
Byte String Comparisons, 265
Byte String Constructors, Selectors, and Mu-

tators, 260
byte strings, parsing, 57
byte strings, immutable, 259
byte strings, concatenate, 263
Byte Strings, 259
byte-pregexp, 297
byte-pregexp?, 295
byte-ready?, 932
byte-regexp, 296
byte-regexp?, 295
byte?, 261
bytes, 260
bytes, 259
Bytes to Bytes Encoding Conversion, 271
Bytes to/from Characters, Decoding and En-

coding, 266

1245

bytes->immutable-bytes, 260
bytes->list, 264
bytes->path, 1086
bytes->path-element, 1087
bytes->string/latin-1, 267
bytes->string/locale, 266
bytes->string/utf-8, 266
bytes-append, 263
bytes-append*, 275
bytes-close-converter, 272
bytes-convert, 272
bytes-convert-end, 274
bytes-converter?, 274
bytes-copy, 262
bytes-copy!, 262
bytes-environment-variable-name?,

1170
bytes-fill!, 263
bytes-join, 275
bytes-length, 261
bytes-no-nuls?, 1156
bytes-open-converter, 271
bytes-ref, 261
bytes-set!, 262
bytes-utf-8-index, 270
bytes-utf-8-length, 269
bytes-utf-8-ref, 269
bytes<?, 265
bytes=?, 265
bytes>?, 266
bytes?, 260
caaaar, 332
caaadr, 332
caaar, 330
caadar, 332
caaddr, 332
caadr, 330
caar, 329
cadaar, 333
cadadr, 333
cadar, 330
caddar, 333

cadddr, 333
caddr, 330
cadr, 329
call-by-value, 20
call-in-nested-thread, 746
call-in-sandbox-context, 1071
call-with-atomic-output-file, 1127
call-with-break-parameterization,

743
call-with-composable-continuation,

728
call-with-continuation-barrier, 729
call-with-continuation-prompt, 726
call-with-current-continuation, 727
call-with-custodian-shutdown, 1070
call-with-deep-time-limit, 1073
call-with-default-reading-
parameterization, 942

call-with-escape-continuation, 729
call-with-exception-handler, 710
call-with-file-lock/timeout, 1131
call-with-immediate-continuation-
mark, 739

call-with-input-bytes, 906
call-with-input-file, 875
call-with-input-file*, 876
call-with-input-string, 906
call-with-killing-threads, 1070
call-with-limits, 1072
call-with-output-bytes, 906
call-with-output-file, 875
call-with-output-file*, 876
call-with-output-string, 905
call-with-parameterization, 770
call-with-semaphore, 761
call-with-semaphore/enable-break,

761
call-with-trusted-sandbox-
configuration, 1059

call-with-values, 699
call/cc, 728
call/comp, 732
call/ec, 729

1246

call/prompt, 732
'can-update, 874
car, 315
cartesian-product, 353
case, 132
case->, 624
case->m, 554
case-insensitive, 53
case-lambda, 121
case-sensitivity, 53
catch, 28
'cc, 282
cdaaar, 334
cdaadr, 334
cdaar, 331
cdadar, 334
cdaddr, 334
cdadr, 331
cdar, 329
cddaar, 335
cddadr, 335
cddar, 331
cdddar, 335
cddddr, 335
cdddr, 331
cddr, 329
cdr, 316
ceiling, 189
'certify-mode, 851
'cf, 282
'cgc, 1172
Chaining Reader Language, 66
channel, 758
channel-get, 758
channel-put, 759
channel-put-evt, 759
channel-put-evt?, 759
channel-try-get, 759
channel/c, 608
channel?, 758
Channels, 758
chaperone, 1017

Chaperone Constructors, 1032
chaperone contract property, 662
Chaperone contracts, 588
chaperone-async-channel, 764
chaperone-box, 1035
chaperone-channel, 1037
chaperone-continuation-mark-key,

1039
chaperone-contract-property?, 663
chaperone-contract?, 667
chaperone-evt, 1037
chaperone-generics, 500
chaperone-hash, 1035
chaperone-hash-set, 454
chaperone-of?, 1020
chaperone-procedure, 1032
chaperone-procedure*, 1033
chaperone-prompt-tag, 1038
chaperone-struct, 1033
chaperone-struct-type, 1036
chaperone-struct-unsafe-undefined,

1211
chaperone-vector, 1034
chaperone-vector*, 1035
chaperone?, 1019
char->integer, 276
char-alphabetic?, 281
char-blank?, 282
char-ci<=?, 279
char-ci<?, 279
char-ci=?, 279
char-ci>=?, 280
char-ci>?, 280
char-downcase, 283
char-foldcase, 283
char-general-category, 282
char-graphic?, 281
char-in, 595
char-iso-control?, 282
char-lower-case?, 281
char-numeric?, 281
char-punctuation?, 281

1247

char-ready?, 932
char-symbolic?, 281
char-title-case?, 281
char-titlecase, 283
char-upcase, 282
char-upper-case?, 281
char-utf-8-length, 277
char-whitespace?, 282
char<=?, 278
char<?, 277
char=?, 277
char>=?, 278
char>?, 278
char?, 276
Character Comparisons, 277
Character Conversions, 282
Characters, 276
Characters, 276
Characters and Scalar Values, 276
check-duplicate-identifier, 809
check-duplicates, 347
check-not-unsafe-undefined, 1211
check-not-unsafe-undefined/assign,

1211
checked-procedure-check-and-
extract, 470

checked-struct-info?, 508
'chez-scheme, 1172
chmod, 1111
choice-evt, 752
class, 515
class, 511
class*, 513
class->interface, 564
class-field-accessor, 542
class-field-mutator, 542
class-info, 568
class-seal, 569
class-unseal, 569
class/c, 547
class/derived, 528
class?, 561

Classes and Objects, 511
Classifications, 281
cleanse, 1085
cleanse-path, 1091
'client, 1043
close-input-port, 865
close-output-port, 866
'cn, 282
'co, 282
Code Inspectors, 1050
code inspectors, 1050
code point, 276
coerce-chaperone-contract, 650
coerce-chaperone-contracts, 650
coerce-contract, 649
coerce-contract/f, 650
coerce-contracts, 650
coerce-flat-contract, 650
coerce-flat-contracts, 650
collapsible contract property, 675
Collapsible Contracts, 673
Collapsible contracts, 673
collapsible-contract-
continuation-mark-key, 674

collapsible-contract-property?, 675
collapsible-contract?, 674
collapsible-count-property, 676
collapsible-count-property-count,

676
collapsible-count-property-prev,

676
collapsible-count-property?, 676
collapsible-guard, 674
collapsible-ho/c, 675
collapsible-ho/c-latest-blame, 675
collapsible-ho/c-latest-ctc, 675
collapsible-ho/c-missing-party, 675
collapsible-ho/c?, 675
collapsible-leaf/c, 675
collapsible-leaf/c-blame-list, 675
collapsible-leaf/c-contract-list,

675

1248

collapsible-leaf/c-missing-party-
list, 675

collapsible-leaf/c-proj-list, 675
collapsible-leaf/c?, 675
collapsible-property, 676
collapsible-property-c-c, 676
collapsible-property-neg-party, 676
collapsible-property-ref, 676
collapsible-property?, 676
collapsible-wrapper-property, 676
collapsible-wrapper-property-
checking-wrapper, 676

collapsible-wrapper-property?, 676
collect-garbage, 1189
Collection Links, 1222
Collection links files, 1222
Collection Paths and Parameters, 1223
Collection Search Configuration, 1221
collection-file-path, 1224
collection-path, 1225
collections, 1220
'collects-dir, 1107
column locations, 870
column numbers, 869
"COM1", 1102
"COM2", 1102
"COM3", 1102
"COM4", 1102
"COM5", 1102
"COM6", 1102
"COM7", 1102
"COM8", 1102
"COM9", 1102
combinations, 351
combine-in, 92
combine-out, 102
Command Line, 1215
command-line, 1176
Command-Line Parsing, 1176
committed, 863
Compilation, 46
compilation handler, 1000

compile, 1000
compile-allow-set!-undefined, 1001
compile-context-preservation-
enabled, 1001

compile-enforce-module-constants,
1001

compile-linklet, 1075
compile-syntax, 1000
compile-target-machine?, 1002
compiled, 46
Compiled Modules and References, 1008
compiled-expression-recompile, 1001
compiled-expression?, 1001
compiled-load handler, 996
compiled-module-expression?, 1010
'compiler-hint:cross-module-
inline, 135

'complete, 273
'complete, 274
complete, 1090
complete-path?, 1090
completion value, 778
Complex Numbers, 199
complex numbers, 175
complex?, 177
composable continuation, 27
compose, 458
compose1, 458
compound-unit, 577
compound-unit/infer, 579
"CON", 1102
Concurrency and Parallelism, 745
cond, 129
Conditionals: if, cond, and, and or, 129
'config-dir, 1107
Configuration options, 1217
'configure-runtime, 1220
Configuring Default Handling, 712
conjoin, 473
conjugate, 212
cons, 315
cons/c, 600

1249

cons/dc, 601
cons?, 336
const, 471
Constructing Graphs: shared, 126
constructor, 482
context, 36
continuation, 12
continuation barrier, 27
continuation frames, 26
Continuation Frames and Marks, 26
Continuation Marks, 737
continuation marks, 26
Continuation Marks: with-
continuation-mark, 158

continuation-mark-key/c, 610
continuation-mark-key?, 740
continuation-mark-set->context, 740
continuation-mark-set->list, 738
continuation-mark-set->list*, 738
continuation-mark-set-first, 739
continuation-mark-set?, 740
continuation-marks, 737
continuation-prompt-available?, 729
continuation-prompt-tag?, 730
continuation?, 730
Continuations, 725
'continues, 273
'continues, 274
contract, 642
Contract combinators, 588
contract property, 662
Contract Utilities, 666
contract-continuation-mark-key, 671
contract-custom-write-property-
proc, 671

contract-equivalent?, 665
contract-exercise, 679
contract-first-order, 666
contract-first-order-okay-to-
give-up?, 671

contract-first-order-passes?, 666
contract-first-order-try-less-

hard, 672
contract-late-neg-projection, 668
contract-name, 667
contract-out, 633
contract-pos/neg-doubling, 651
contract-proc, 678
contract-projection, 668
contract-property?, 663
contract-random-generate, 678
contract-random-generate-env?, 681
contract-random-generate-fail, 680
contract-random-generate-fail?, 681
contract-random-generate-get-
current-environment, 681

contract-random-generate-stash, 681
contract-random-generate/choose,

680
contract-stronger?, 665
contract-struct, 629
contract-val-first-projection, 668
contract?, 666
contracted, 575
Contracted Dictionaries, 432
Contracts, 588
Contracts, 588
Contracts and Impersonators on Asyn-

chronous Channels, 763
Contracts as structs, 657
control, 734
Control Flow, 699
control-at, 734
control0, 735
control0-at, 736
convert-relative-module-path, 837
convert-stream, 920
Converting Values to Strings, 246
copy-directory/files, 1123
copy-file, 1113
copy-port, 920
Copying and Updating Structures, 500
Copying Streams, 920
correlated objects, 1074

1250

correlated->datum, 1083
correlated-column, 1083
correlated-e, 1083
correlated-line, 1083
correlated-position, 1083
correlated-property, 1083
correlated-property-symbol-keys,

1083
correlated-source, 1083
correlated-span, 1083
correlated?, 1083
cos, 197
cosh, 213
count, 349
count property, 676
Counting Positions, Lines, and Columns,

869
Creating and Touching Futures, 771
Creating and Using Asynchronous Channels,

761
Creating Classes, 513
Creating formatted identifiers, 857
Creating Interfaces, 512
Creating Loggers, 1158
Creating Objects, 536
Creating Ports, 907
Creating Structure Types, 488
Creating Threads, 745
Creating Units, 572
'cross, 1173
cross-phase persistent, 24
Cross-Phase Persistent Module Declarations,

49
Cross-Phase Persistent Modules, 24
crypto-random-bytes, 206
Cryptographic Hashing, 980
'cs, 282
'cs, 1172
cupto, 736
current custodian, 29
current logger, 1157
current namespace, 47

current plumber, 1052
current-blame-format, 656
current-break-parameterization, 743
current-code-inspector, 1051
current-command-line-arguments,

1174
current-command-line-arguments,

1219
current-compile, 1000
current-compile-target-machine,

1002
current-compiled-file-roots, 998
current-continuation-marks, 738
current-contract-region, 640
current-custodian, 1044
current-date, 1167
current-directory, 1114
current-directory-for-user, 1114
current-drive, 1114
current-environment-variables, 1170
current-error-port, 866
current-eval, 991
current-evt-pseudo-random-
generator, 758

current-force-delete-permissions,
1113

current-future, 772
current-gc-milliseconds, 1166
current-get-interaction-input-
port, 999

current-inexact-milliseconds, 1164
current-input-port, 866
current-inspector, 1047
current-library-collection-links,

1226
current-library-collection-paths,

1225
current-load, 993
current-load-extension, 995
current-load-relative-directory,

997
current-load/use-compiled, 996
current-locale, 865

1251

current-logger, 1158
current-memory-use, 1190
current-milliseconds, 1166
current-module-declare-name, 1007
current-module-declare-source, 1007
current-module-name-resolver, 1005
current-module-path-for-load, 1008
current-namespace, 983
current-output-port, 866
current-parameterization, 770
current-plumber, 1052
current-prefix-in, 1237
current-prefix-out, 1237
current-preserved-thread-cell-
values, 767

current-print, 1000
current-process-milliseconds, 1166
current-prompt-read, 999
current-pseudo-random-generator,

205
current-read-interaction, 999
current-reader-guard, 942
current-readtable, 942
current-recorded-disappeared-uses,

860
current-require-module-path, 837
current-seconds, 1164
current-security-guard, 1043
current-subprocess-custodian-mode,

1150
current-syntax-context, 859
current-thread, 746
current-thread-group, 1046
current-thread-initial-stack-size,

1175
current-trace-notify, 1234
current-trace-print-args, 1235
current-trace-print-results, 1237
current-write-relative-directory,

949
curry, 474
curryr, 475
custodian, 29

custodian box, 29
custodian-box-value, 1046
custodian-box?, 1046
custodian-limit-memory, 1045
custodian-managed-list, 1044
custodian-memory-accounting-
available?, 1045

custodian-require-memory, 1045
custodian-shut-down?, 1044
custodian-shutdown-all, 1044
custodian?, 1043
Custodians, 29
Custodians, 1043
Custom Hash Sets, 454
Custom Hash Tables, 433
Custom Ports, 883
custom ports, 883
custom-print-quotable-accessor, 968
custom-print-quotable?, 968
custom-write-accessor, 968
custom-write?, 968
Customizing Evaluators, 1058
Data-structure Contracts, 589
Datatypes, 167
date, 1165
Date Utilities, 1167
date*, 1166
date*->seconds, 1168
date*-nanosecond, 1166
date*-time-zone-name, 1166
date*?, 1166
date->julian/scaliger, 1169
date->seconds, 1168
date->string, 1167
date-day, 1165
date-display-format, 1168
date-dst?, 1165
date-hour, 1165
date-minute, 1165
date-month, 1165
date-second, 1165
date-time-zone-offset, 1165

1252

date-week-day, 1165
date-year, 1165
date-year-day, 1165
date?, 1165
datum, 50
datum->correlated, 1083
datum->syntax, 802
datum-intern-literal, 805
Debugging, 1230
declared, 20
Declaring Paths Needed at Run Time, 1117
Deep time, 1059
default method, 495
default-continuation-prompt-tag,

727
define, 133
define-compound-unit, 580
define-compound-unit/infer, 580
define-contract-struct, 630
define-custom-hash-types, 433
define-custom-set-types, 454
define-for-syntax, 136
define-generics, 494
define-inline, 163
define-local-member-name, 534
define-logger, 1158
define-match-expander, 694
define-member-name, 535
define-module-boundary-contract,

641
define-namespace-anchor, 982
define-opt/c, 670
define-provide-syntax, 138
define-rename-transformer-
parameter, 843

define-require-syntax, 137
define-runtime-module-path, 1120
define-runtime-module-path-index,

1120
define-runtime-path, 1117
define-runtime-path-list, 1119
define-runtime-paths, 1119

define-sequence-syntax, 156
define-serializable-class, 560
define-serializable-class*, 559
define-serializable-struct, 975
define-serializable-
struct/versions, 976

define-signature, 574
define-signature-form, 583
define-struct, 487
define-struct/contract, 638
define-struct/derived, 487
define-syntax, 135
define-syntax-parameter, 842
define-syntax-rule, 797
define-syntaxes, 135
define-unit, 579
define-unit-binding, 580
define-unit-from-context, 581
define-unit/contract, 584
define-unit/new-import-export, 582
define-unit/s, 582
define-values, 134
define-values-for-export, 575
define-values-for-syntax, 137
define-values/invoke-unit, 577
define-values/invoke-unit/infer,

581
define/augment, 527
define/augment-final, 528
define/augride, 527
define/contract, 637
define/final-prop, 664
define/generic, 497
define/match, 691
define/overment, 527
define/override, 527
define/override-final, 527
define/private, 528
define/public, 526
define/public-final, 527
define/pubment, 527
define/subexpression-pos-prop, 665

1253

define/with-syntax, 859
Defining Structure Types: struct, 481
Definitions: define, define-syntax, ...,

133
degrees->radians, 211
delay, 723
delay/idle, 725
delay/name, 724
delay/strict, 724
delay/sync, 724
delay/thread, 725
Delayed Evaluation, 723
'delete, 1042
delete-directory, 1115
delete-directory/files, 1123
delete-file, 1109
delimited continuation, 27
Delimiters and Dispatch, 51
denominator, 190
depth marker, 787
derived class, 511
Derived Dictionary Methods, 424
Deriving New Iteration Forms, 153
deserialize, 970
deserialize-module-guard, 974
'desk-dir, 1107
Detecting Filesystem Changes, 1115
dict->list, 430
dict-can-functional-set?, 418
dict-can-remove-keys?, 417
dict-clear, 429
dict-clear!, 429
dict-copy, 429
dict-count, 428
dict-empty?, 428
dict-for-each, 428
dict-has-key?, 424
dict-implements/c, 416
dict-implements?, 416
dict-iter-contract, 433
dict-iterate-first, 422
dict-iterate-key, 423

dict-iterate-next, 423
dict-iterate-value, 423
dict-key-contract, 433
dict-keys, 430
dict-map, 427
dict-mutable?, 417
dict-ref, 419
dict-ref!, 426
dict-remove, 422
dict-remove!, 421
dict-set, 421
dict-set!, 420
dict-set*, 425
dict-set*!, 424
dict-update, 427
dict-update!, 426
dict-value-contract, 433
dict-values, 430
dict?, 415
Dictionaries, 415
dictionary, 415
Dictionary Predicates and Contracts, 415
Dictionary Sequences, 431
Directories, 1114
directory-exists?, 1114
directory-list, 1115
'disappeared-binding, 848
'disappeared-use, 848
disarm, 850
Opening a null output port, 910
discarded, 22
disjoin, 473
'dispatch-macro, 960
Dispatch: case, 132
display, 944
display-lines, 905
display-lines-to-file, 1122
display-to-file, 1122
displayln, 945
division by inexact zero, 175
'dll, 1172
do, 158

1254

Do Loops, 158
'doc-dir, 1107
double-flonum?, 179
drop, 342
drop-common-prefix, 345
drop-right, 344
dropf, 343
dropf-right, 344
dump-memory-stats, 1190
dup-input-port, 913
dup-output-port, 914
dye packs, 850
dynamic extension, 995
dynamic extent, 12
Dynamic Module Access, 1013
dynamic->*, 625
dynamic-enter!, 1229
dynamic-get-field, 541
dynamic-object/c, 555
dynamic-place, 778
dynamic-place*, 779
dynamic-require, 1013
dynamic-require-for-syntax, 1015
dynamic-rerequire, 1229
dynamic-send, 539
dynamic-set-field!, 541
dynamic-wind, 730
effects, 22
eighth, 338
else, 130
empty, 336
empty-sequence, 400
empty-stream, 406
empty?, 336
'enclosing-module-name, 84
Encodings and Locales, 864
engine, 784
engine, 783
engine-kill, 785
engine-result, 784
engine-run, 784
engine?, 784

Engines, 783
enter!, 1228
Entering Modules, 1228
Environment and Runtime Information,

1171
environment variable set, 1169
Environment Variables, 1169
environment-variables-copy, 1171
environment-variables-names, 1171
environment-variables-ref, 1170
environment-variables-set!, 1170
environment-variables?, 1169
eof, 867
eof-evt, 917
eof-object?, 867
ephemeron, 1184
ephemeron-value, 1185
ephemeron?, 1185
Ephemerons, 1184
eprintf, 946
eq-hash-code, 381
eq?, 169
equal-hash-code, 381
equal-secondary-hash-code, 381
equal<%>, 558
equal?, 168
equal?/recur, 170
eqv-hash-code, 381
eqv?, 168
error, 701
'error, 273
'error, 873
error display handler, 713
error escape handler, 712
error message convention, 700
Error Message Conventions, 700
Error reporting, 859
error value conversion handler, 713
error-display-handler, 712
error-escape-handler, 712
error-print-context-length, 713
error-print-source-location, 714

1255

error-print-width, 713
error-value->string-handler, 713
escape continuation, 27
eval, 992
eval-jit-enabled, 1002
eval-linklet, 1078
eval-syntax, 992
Evaluation and Compilation, 991
evaluation handler, 992
Evaluation Model, 12
evaluation order, 116
evaluator-alive?, 1068
even?, 180
Events, 750
evt/c, 611
evt?, 751
'exact, 1147
exact number, 175
exact->inexact, 182
exact-ceiling, 213
exact-floor, 213
exact-integer?, 178
exact-nonnegative-integer?, 178
exact-positive-integer?, 178
exact-round, 213
exact-truncate, 213
exact?, 181
except, 575
except-in, 91
except-out, 101
exception handler, 28
Exceptions, 28
Exceptions, 700
Exceptions, 28
'exec-file, 1107
executable-yield-handler, 744
'execute, 1042
'execute, 1111
'exists, 1042
exit, 744
exit handler, 744
Exit Status, 1214

exit-handler, 744
Exiting, 744
exn, 714
exn->string, 722
exn-continuation-marks, 714
exn-message, 714
exn:break, 719
exn:break-continuation, 719
exn:break:hang-up, 719
exn:break:hang-up?, 719
exn:break:terminate, 719
exn:break:terminate?, 719
exn:break?, 719
exn:fail, 715
exn:fail:contract, 715
exn:fail:contract:arity, 715
exn:fail:contract:arity?, 715
exn:fail:contract:blame, 656
exn:fail:contract:blame-object, 656
exn:fail:contract:blame?, 656
exn:fail:contract:continuation, 716
exn:fail:contract:continuation?,

716
exn:fail:contract:divide-by-zero,

715
exn:fail:contract:divide-by-zero?,

715
exn:fail:contract:non-fixnum-
result, 716

exn:fail:contract:non-fixnum-
result?, 716

exn:fail:contract:variable, 716
exn:fail:contract:variable-id, 716
exn:fail:contract:variable?, 716
exn:fail:contract?, 715
exn:fail:filesystem, 717
exn:fail:filesystem:errno, 718
exn:fail:filesystem:errno-errno,

718
exn:fail:filesystem:errno?, 718
exn:fail:filesystem:exists, 717
exn:fail:filesystem:exists?, 717
exn:fail:filesystem:missing-

1256

module, 718
exn:fail:filesystem:missing-
module-path, 718

exn:fail:filesystem:missing-
module?, 718

exn:fail:filesystem:version, 717
exn:fail:filesystem:version?, 717
exn:fail:filesystem?, 717
exn:fail:network, 718
exn:fail:network:errno, 718
exn:fail:network:errno-errno, 718
exn:fail:network:errno?, 718
exn:fail:network?, 718
exn:fail:object, 568
exn:fail:object?, 568
exn:fail:out-of-memory, 718
exn:fail:out-of-memory?, 718
exn:fail:read, 717
exn:fail:read-srclocs, 717
exn:fail:read:eof, 717
exn:fail:read:eof?, 717
exn:fail:read:non-char, 717
exn:fail:read:non-char?, 717
exn:fail:read?, 717
exn:fail:resource-resource, 1073
exn:fail:resource?, 1073
exn:fail:sandbox-terminated-
reason, 1058

exn:fail:sandbox-terminated?, 1058
exn:fail:support, 497
exn:fail:support?, 497
exn:fail:syntax, 716
exn:fail:syntax-exprs, 716
exn:fail:syntax:missing-module, 716
exn:fail:syntax:missing-module-
path, 716

exn:fail:syntax:missing-module?,
716

exn:fail:syntax:unbound, 716
exn:fail:syntax:unbound?, 716
exn:fail:syntax?, 716
exn:fail:unsupported, 719

exn:fail:unsupported?, 719
exn:fail:user, 719
exn:fail:user?, 719
exn:fail?, 715
exn:misc:match?, 694
exn:missing-module-accessor, 722
exn:missing-module?, 722
exn:srclocs-accessor, 721
exn:srclocs?, 721
exn?, 714
exp, 196
expand, 853
expand, 30
expand-export, 839
expand-import, 835
expand-once, 854
expand-syntax, 854
expand-syntax-once, 854
expand-syntax-to-top-form, 854
expand-to-top-form, 854
expand-user-path, 1092
Expanding Top-Level Forms, 853
Expansion, 33
Expansion (Parsing), 33
Expansion Context, 36
Expansion Steps, 35
explode-path, 1094
export, 576
export, 841
export-local-id, 841
export-mode, 841
export-orig-stx, 841
export-out-sym, 841
export-protect?, 841
export?, 841
expression context, 36
Expression Wrapper: #%expression, 113
expt, 194
extend, 512
Extending match, 694
Extending the Syntax of Signatures, 583
extends, 576

1257

extension-load handler, 995
externalizable<%>, 560
extfl*, 226
extfl+, 226
extfl-, 226
extfl->exact, 228
extfl->exact-integer, 228
extfl->floating-point-bytes, 230
extfl->inexact, 228
extfl/, 226
extfl<, 227
extfl<=, 227
extfl=, 227
extfl>, 227
extfl>=, 227
extflabs, 227
extflacos, 228
extflasin, 228
extflatan, 228
extflceiling, 227
extflcos, 227
extflexp, 228
extflexpt, 228
extflfloor, 227
extfllog, 228
extflmax, 227
extflmin, 227
extflonum, 226
Extflonum Arithmetic, 226
Extflonum Byte Strings, 230
Extflonum Constants, 228
Extflonum Vectors, 228
extflonum-available?, 226
extflonum?, 226
Extflonums, 225
extflround, 227
extflsin, 227
extflsqrt, 228
extfltan, 227
extfltruncate, 227
extflvector, 229
extflvector, 228

extflvector-copy, 229
extflvector-length, 229
extflvector-ref, 229
extflvector-set!, 229
extflvector?, 229
Extra Constants and Functions, 211
extract-struct-info, 509
failure procedure, 682
failure-cont, 694
failure-result/c, 672
fallback method, 496
false, 173
false/c, 596
false?, 173
fasl->s-exp, 979
Fast-Load Serialization, 979
fcontrol, 733
field, 518
Field and Method Access, 538
field-bound?, 541
field-names, 567
Fields, 541
Fields, 530
fifth, 338
file, 96
File Inclusion, 856
file modification date and time, 1111
File Ports, 871
file->bytes, 1121
file->bytes-lines, 1122
file->lines, 1121
file->list, 1121
file->string, 1121
file->value, 1121
file-exists?, 1109
'file-level, 1173
file-name-from-path, 1096
file-or-directory-identity, 1112
file-or-directory-modify-seconds,

1111
file-or-directory-permissions, 1111
file-position, 868

1258

file-position*, 869
file-size, 1113
file-stream port, 871
file-stream-buffer-mode, 868
file-stream-port?, 866
file-truncate, 869
filename-extension, 1097
Files, 1109
Filesystem, 1105
filesystem change event, 1116
filesystem-change-evt, 1116
filesystem-change-evt-cancel, 1116
filesystem-change-evt?, 1115
filesystem-root-list, 1115
filter, 322
filter-map, 349
filter-not, 351
filter-read-input-port, 916
filtered-in, 109
filtered-out, 112
finalizers, 1186
find-executable-path, 1108
find-files, 1124
find-library-collection-links, 1223
find-library-collection-paths, 1223
find-relative-path, 1098
find-seconds, 1168
find-system-path, 1105
findf, 327
first, 336
first-or/c, 591
fixnum, 176
Fixnum Arithmetic, 221
Fixnum Vectors, 223
fixnum-for-every-system?, 223
fixnum?, 179
Fixnums, 221
fl*, 215
fl+, 215
fl-, 215
fl->exact-integer, 217
fl->fx, 223

fl/, 215
fl<, 216
fl<=, 216
fl=, 216
fl>, 216
fl>=, 216
flabs, 215
flacos, 217
flasin, 216
flat contract property, 663
Flat contracts, 588
flat-contract, 612
flat-contract-predicate, 612
flat-contract-property?, 663
flat-contract-with-explanation, 589
flat-contract?, 667
flat-murec-contract, 612
flat-named-contract, 590
flat-rec-contract, 611
flatan, 217
flatten, 347
flceiling, 216
flcos, 216
flexp, 217
flexpt, 217
flfloor, 216
flimag-part, 218
fllog, 217
flmax, 216
flmin, 216
floating-point-bytes->extfl, 230
floating-point-bytes->real, 210
Flonum Arithmetic, 215
Flonum Vectors, 218
flonum?, 179
Flonums, 215
flonums, 175
floor, 188
flrandom, 218
flreal-part, 218
flround, 216
flsin, 216

1259

flsqrt, 217
fltan, 216
fltruncate, 216
flush callbacks, 1051
flush handle, 1052
flush-output, 868
flvector, 218
flvector, 218
flvector-copy, 219
flvector-length, 219
flvector-ref, 219
flvector-set!, 219
flvector?, 218
fold-files, 1125
foldl, 321
foldr, 322
for, 142
for*, 152
for*/and, 153
for*/async, 772
for*/extflvector, 229
for*/first, 153
for*/flvector, 220
for*/fold, 153
for*/fold/derived, 155
for*/foldr, 153
for*/foldr/derived, 155
for*/fxvector, 225
for*/hash, 153
for*/hasheq, 153
for*/hasheqv, 153
for*/last, 153
for*/list, 153
for*/lists, 153
for*/mutable-set, 440
for*/mutable-seteq, 440
for*/mutable-seteqv, 441
for*/or, 153
for*/product, 153
for*/set, 440
for*/seteq, 440
for*/seteqv, 440

for*/stream, 408
for*/sum, 153
for*/vector, 153
for*/weak-set, 441
for*/weak-seteq, 441
for*/weak-seteqv, 441
for-clause-syntax-protect, 158
for-each, 321
for-label, 105
for-meta, 105
for-syntax, 105
for-template, 105
for/and, 146
for/async, 772
for/extflvector, 229
for/first, 148
for/flvector, 220
for/fold, 149
for/fold/derived, 153
for/foldr, 149
for/foldr/derived, 155
for/fxvector, 225
for/hash, 145
for/hasheq, 145
for/hasheqv, 145
for/last, 148
for/list, 144
for/lists, 147
for/mutable-set, 440
for/mutable-seteq, 440
for/mutable-seteqv, 440
for/or, 146
for/product, 147
for/set, 440
for/seteq, 440
for/seteqv, 440
for/stream, 408
for/sum, 147
for/vector, 145
for/weak-set, 441
for/weak-seteq, 441
for/weak-seteqv, 441

1260

force, 723
'force, 1173
form, 31
format, 946
format-id, 857
format-symbol, 858
fourth, 337
fprintf, 945
'framework, 1172
free-identifier=?, 808
free-label-identifier=?, 809
free-template-identifier=?, 809
free-transformer-identifier=?, 809
'fs-change, 1173
fsemaphore-count, 773
fsemaphore-post, 773
fsemaphore-try-wait?, 773
fsemaphore-wait, 773
fsemaphore?, 773
Fully Expanded Programs, 33
fully-expanded, 34
function contract, 614
Function Contracts, 614
future, 771
future, 771
Future Performance Logging, 773
future semaphore, 773
Future Semaphores, 773
future?, 772
Futures, 770
futures-enabled?, 771
fx*, 221
fx+, 221
fx-, 221
fx->fl, 223
fx<, 222
fx<=, 222
fx=, 222
fx>, 222
fx>=, 222
fxabs, 221
fxand, 222

fxior, 222
fxlshift, 222
fxmax, 223
fxmin, 222
fxmodulo, 221
fxnot, 222
fxquotient, 221
fxremainder, 221
fxrshift, 222
fxvector, 223
fxvector, 223
fxvector-copy, 224
fxvector-length, 224
fxvector-ref, 224
fxvector-set!, 224
fxvector?, 223
fxxor, 222
Garbage Collection, 1187
Garbage Collection, 17
garbage collection, 17
'gc, 1172
gc-info, 1188
gcd, 187
gen:custom-write, 966
gen:dict, 418
gen:equal+hash, 171
gen:set, 443
gen:stream, 409
generate-member-key, 535
generate-temporaries, 805
generate-temporary, 861
Generating A Unit from Context, 581
generator, 410
generator, 410
generator-state, 414
generator?, 410
Generators, 410
generic, 542
generic, 542
Generic Dictionary Interface, 418
generic instance, 496
generic interface, 494

1261

Generic Interfaces, 494
generic method, 495
Generic Numerics, 183
Generic Set Interface, 443
generic-instance/c, 499
generic-set?, 441
generic?, 562
Generics, 542
gensym, 286
get-error-output, 1070
get-field, 541
get-impersonator-prop:collapsible,

676
get-output, 1070
get-output-bytes, 881
get-output-string, 882
get-preference, 1128
get-uncovered-expressions, 1071
get-user-custodian, 1069
get/build-collapsible-late-neg-
projection, 674

get/build-late-neg-projection, 651
get/build-val-first-projection, 650
getenv, 1171
gethostname, 1182
getpid, 1183
global port print handler, 950
global-port-print-handler, 950
gracket, 1213
GRacket.app, 1213
GRacket.exe, 1213
greatest common divisor, 187
group-by, 353
group-execute-bit, 1132
group-read-bit, 1132
group-write-bit, 1132
guard-evt, 754
Guarded Evaluation: when and unless, 140
gui?, 1072
handle-evt, 753
handle-evt?, 756
Handling Exceptions, 710

has-blame?, 668
has-contract?, 668
has-impersonator-
prop:collapsible?, 676

hash, 371
hash, 370
hash set, 438
Hash Sets, 438
hash table, 370
Hash Tables, 370
hash->linklet-bundle, 1080
hash->linklet-directory, 1079
hash->list, 377
hash-clear, 376
hash-clear!, 376
hash-copy, 381
hash-copy-clear, 376
hash-count, 378
hash-empty?, 378
hash-eq?, 371
hash-equal?, 371
hash-eqv?, 371
hash-for-each, 378
hash-has-key?, 374
hash-iterate-first, 379
hash-iterate-key, 379
hash-iterate-key+value, 380
hash-iterate-next, 379
hash-iterate-pair, 380
hash-iterate-value, 380
hash-keys, 377
hash-keys-subset?, 378
hash-map, 376
hash-placeholder?, 356
hash-ref, 374
hash-ref!, 374
hash-remove, 375
hash-remove!, 375
hash-set, 373
hash-set!, 373
hash-set*, 373
hash-set*!, 373

1262

hash-union, 382
hash-union!, 382
hash-update, 375
hash-update!, 375
hash-values, 377
hash-weak?, 371
hash/c, 605
hash/dc, 608
hash?, 371
hasheq, 371
hasheqv, 371
help, 1227
here strings, 58
heredoc, 57
HOME, 1106
'home-dir, 1105
HOMEDRIVE, 1106
HOMEPATH, 1106
'host-collects-dir, 1108
'host-config-dir, 1107
identifier, 30
identifier-binding, 810
identifier-binding-symbol, 812
identifier-label-binding, 812
identifier-prune-lexical-context,

806
identifier-prune-to-source-module,

806
identifier-remove-from-
definition-context, 823

identifier-template-binding, 811
identifier-transformer-binding, 811
identifier?, 798
Identifiers, Binding, and Scopes, 30
identity, 471
IEEE floating-point numbers, 175
if, 129
if/c, 672
imag-part, 200
Immutable Cyclic Data, 355
immutable?, 170
impersonate-async-channel, 764

impersonate-box, 1026
impersonate-channel, 1029
impersonate-continuation-mark-key,

1031
impersonate-generics, 499
impersonate-hash, 1027
impersonate-hash-set, 453
impersonate-procedure, 1021
impersonate-procedure*, 1023
impersonate-prompt-tag, 1029
impersonate-struct, 1024
impersonate-vector, 1025
impersonate-vector*, 1026
impersonator, 1017
Impersonator Constructors, 1021
Impersonator contracts, 589
Impersonator Properties, 1040
impersonator properties, 1018
impersonator property accessor, 1040
impersonator property descriptor, 1040
impersonator property predicate, 1040
impersonator-contract?, 667
impersonator-ephemeron, 1020
impersonator-of?, 1019
impersonator-prop:application-
mark, 1041

impersonator-prop:blame, 658
impersonator-prop:collapsible, 676
impersonator-prop:contracted, 658
impersonator-property-accessor-
procedure?, 1041

impersonator-property?, 1041
impersonator?, 1018
Impersonators and Chaperones, 1017
implementation?, 565
implementation?/c, 557
implemented generic method, 496
implements, 511
implies, 174
import, 576
import, 836
import-local-id, 836

1263

import-mode, 836
import-orig-mode, 836
import-orig-stx, 836
import-req-mode, 836
import-source, 837
import-source-mod-path-stx, 837
import-source-mode, 837
import-source?, 837
import-src-mod-path, 836
import-src-sym, 836
import?, 836
Importing and Exporting: require and
provide, 88

Importing Modules Lazily: lazy-require,
164

in-bytes, 389
in-bytes-lines, 390
in-combinations, 352
in-cycle, 396
in-dict, 431
in-dict-keys, 431
in-dict-pairs, 432
in-dict-values, 432
in-directory, 393
in-extflvector, 229
in-flvector, 220
in-fxvector, 224
in-generator, 412
in-hash, 390
in-hash-keys, 390
in-hash-pairs, 391
in-hash-values, 391
in-immutable-hash, 392
in-immutable-hash-keys, 392
in-immutable-hash-pairs, 392
in-immutable-hash-values, 392
in-immutable-set, 441
in-indexed, 395
in-input-port-bytes, 389
in-input-port-chars, 389
in-lines, 389
in-list, 386

in-mlist, 387
in-mutable-hash, 392
in-mutable-hash-keys, 392
in-mutable-hash-pairs, 392
in-mutable-hash-values, 392
in-mutable-set, 441
in-naturals, 386
in-parallel, 396
in-permutations, 352
in-port, 389
in-powerset, 352
in-producer, 394
in-range, 385
in-rearrangements, 352
in-sequences, 395
in-set, 452
in-slice, 404
in-stream, 406
in-string, 388
in-syntax, 404
in-value, 395
in-values*-sequence, 396
in-values-sequence, 396
in-vector, 387
in-weak-hash, 393
in-weak-hash-keys, 393
in-weak-hash-pairs, 393
in-weak-hash-values, 393
in-weak-set, 441
include, 856
include-at/relative-to, 857
include-at/relative-to/reader, 857
include/reader, 857
index-of, 340
index-where, 341
indexes-of, 341
indexes-where, 341
inexact number, 175
inexact->exact, 182
inexact-real?, 179
inexact?, 181
'infer, 1173

1264

Inferred Linking, 578
Inferred Value Names, 48
'inferred-name, 49
infinite-generator, 412
infinite?, 214
infinity, 175
infix, 56
Information on Expanded Modules, 854
inherit, 524
inherit-field, 518
inherit/inner, 525
inherit/super, 525
inheritance, 511
Inherited and Superclass Methods, 532
init, 517
Init Libraries, 1214
init-depend, 576
'init-dir, 1106
init-field, 517
'init-file, 1106
init-rest, 518
Initialization, 1213
Initialization Variables, 528
initiate, 385
inner, 532
inode, 878
inode, 1112
Input and Output, 863
input port, 863
input ports, pattern matching, 287
input-port-append, 907
input-port?, 865
inside-edge scope, 43
inspect, 517
inspector, 1047
inspector-superior?, 1047
inspector?, 1047
instance-data, 1081
instance-describe-variable!, 1082
instance-name, 1080
instance-set-variable-value!, 1081
instance-unset-variable!, 1082

instance-variable-names, 1081
instance-variable-value, 1081
instance?, 1080
instanceof/c, 555
instantiate, 537
instantiate-linklet, 1078
instantiates, 20
instantiation, 20
integer->char, 276
integer->integer-bytes, 209
integer-bytes->integer, 209
integer-in, 594
integer-length, 204
integer-sqrt, 193
integer-sqrt/remainder, 194
integer?, 177
integers, 175
Interacting with Evaluators, 1068
interaction port handler, 999
Interaction Wrapper: #%top-interaction,

162
Interactive Help, 1227
Interactive Module Loading, 1228
interface, 512
interface, 511
interface*, 513
interface->method-names, 566
interface-extension?, 566
interface?, 562
Internal and External Names, 533
Internal Definitions, 42
internal-definition context, 36
Internal-Definition Limiting:
#%stratified-body, 162

internal-definition-context-apply,
861

internal-definition-context-
binding-identifiers, 822

internal-definition-context-
introduce, 823

internal-definition-context-seal,
823

internal-definition-context?, 821

1265

interned, 51
Introducing Bindings, 37
invariant-assertion, 639
invoke-unit, 576
invoke-unit/infer, 581
invoked, 572
Invoking Units, 576
IP_MULTICAST_LOOP, 1146
IP_MULTICAST_TTL, 1146
is-a?, 564
is-a?/c, 557
Iteration and Comprehension Forms, 142
iteration pattern variable, 794
Iterations and Comprehensions: for,
for/list, ..., 142

iterator, 384
JIT , 1002
julian/scaliger->string, 1169
Kernel Forms and Functions, 1237
keyword, 313
keyword->string, 313
keyword-apply, 460
Keyword-Argument Conversion Introspec-

tion, 841
keyword<?, 314
keyword?, 313
Keywords, 313
Keywords and Arity, 460
kill-evaluator, 1069
kill-thread, 747
label phase level, 32
lambda, 118
LANG, 1174
Language Model, 12
Language Run-Time Configuration, 1219
last, 339
last-pair, 339
late neg projection, 647
lazy, 723
Lazy Data-structure Contracts, 629
lazy-require, 164
lazy-require-syntax, 165

LC_ALL, 1174
LC_TYPE, 1174
lcm, 188
least common multiple, 188
Legacy Contracts, 677
legacy-match-expander?, 696
length, 317
let, 122
let*, 123
let*-values, 124
let-syntax, 124
let-syntaxes, 125
let-values, 123
let/cc, 729
let/ec, 729
letrec, 123
letrec-syntax, 125
letrec-syntaxes, 125
letrec-syntaxes+values, 125
letrec-values, 124
'lexical, 810
lexical information, 32
lexical scoping, 20
lib, 95
liberal expansion, 835
liberal-define-context?, 835
Libraries and Collections, 1220
library, 1220
Library Extensions, 697
'line, 868
line locations, 869
line numbers, 869
Line-Output Hook, 955
'linefeed, 922
link, 576
'link, 1172
link-exists?, 1109
linked, 572
Linking Units and Creating Compound

Units, 577
linklet, 1073
linklet bundle, 1074

1266

linklet directory, 1074
linklet instance, 1074
linklet-bundle->hash, 1080
linklet-bundle?, 1079
linklet-directory->hash, 1079
linklet-directory?, 1079
linklet-export-variables, 1079
linklet-import-variables, 1079
linklet?, 1075
Linklets and the Core Compiler, 1073
list, 317
list, 314
List Filtering, 322
List Iteration, 319
List Operations, 317
List Searching, 326
list*, 317
list*of, 599
list->bytes, 264
list->mutable-set, 440
list->mutable-seteq, 440
list->mutable-seteqv, 440
list->set, 440
list->seteq, 440
list->seteqv, 440
list->string, 235
list->vector, 360
list->weak-set, 440
list->weak-seteq, 440
list->weak-seteqv, 440
list-contract?, 667
list-prefix?, 345
list-ref, 318
list-set, 340
list-tail, 318
list-update, 340
list/c, 601
list?, 316
listen-port-number?, 1137
listof, 598
Literals: quote and #%datum, 112
'll, 282

'lm, 282
'lo, 282
load, 994
load handler, 993
load-extension, 995
load-on-demand-enabled, 1003
load-relative, 994
load-relative-extension, 995
load/cd, 995
load/use-compiled, 997
Loading and Reloading Modules, 1229
local, 126
Local Binding Context, 40
local binding context, 40
Local Binding with Splicing Body, 845
Local Binding: let, let*, letrec, ..., 122
local bindings, 31
Local Definitions: local, 126
local variable, 20
local-expand, 816
local-expand/capture-lifts, 820
local-require, 98
local-transformer-expand, 819
local-transformer-expand/capture-
lifts, 820

locale, 864
Locale-Specific String Operations, 241
locale-string-encoding, 275
Locating Paths, 1105
location, 18
Locations: #%variable-reference, 116
log, 196
log receiver, 1156
log-all-levels, 1160
log-debug, 1161
log-error, 1161
log-fatal, 1161
log-info, 1161
log-level-evt, 1160
log-level/c, 1162
log-level?, 1159
log-max-level, 1160

1267

log-message, 1159
log-receiver?, 1161
log-warning, 1161
logger, 1156
logger-name, 1158
logger?, 1158
Logging, 1156
Logging Events, 1159
logical operators, 201
LOGNAME, 1106
'low-latency, 1173
Low-level Contract Boundaries, 640
"LPT1", 1102
"LPT2", 1102
"LPT3", 1102
"LPT4", 1102
"LPT5", 1102
"LPT6", 1102
"LPT7", 1102
"LPT8", 1102
"LPT9", 1102
'lt, 282
'lu, 282
'machine, 1173
'macosx, 1172
macro, 38
Macro-Introduced Bindings, 44
macro-introduction scope, 38
Macros, 786
magnitude, 200
make-arity-at-least, 467
make-async-channel, 762
make-base-empty-namespace, 982
make-base-namespace, 982
make-bytes, 260
make-channel, 758
make-chaperone-contract, 645
make-constructor-style-printer, 504
make-continuation-mark-key, 738
make-continuation-prompt-tag, 727
make-contract, 644
make-custodian, 1044

make-custodian-box, 1045
make-custom-hash, 436
make-custom-hash-types, 435
make-custom-set-types, 456
make-date, 1165
make-date*, 1166
make-derived-parameter, 769
make-deserialize-info, 976
make-directory, 1114
make-directory*, 1126
make-do-sequence, 397
make-empty-namespace, 982
make-environment-variables, 1170
make-ephemeron, 1185
make-evaluator, 1053
make-exn, 714
make-exn:break, 719
make-exn:break:hang-up, 719
make-exn:break:terminate, 719
make-exn:fail, 715
make-exn:fail:contract, 715
make-exn:fail:contract:arity, 715
make-exn:fail:contract:blame, 656
make-exn:fail:contract:continuation,

716
make-exn:fail:contract:divide-by-
zero, 715

make-exn:fail:contract:non-
fixnum-result, 716

make-exn:fail:contract:variable,
716

make-exn:fail:filesystem, 717
make-exn:fail:filesystem:errno, 718
make-exn:fail:filesystem:exists,

717
make-exn:fail:filesystem:missing-
module, 718

make-exn:fail:filesystem:version,
717

make-exn:fail:network, 718
make-exn:fail:network:errno, 718
make-exn:fail:object, 568
make-exn:fail:out-of-memory, 718

1268

make-exn:fail:read, 717
make-exn:fail:read:eof, 717
make-exn:fail:read:non-char, 717
make-exn:fail:syntax, 716
make-exn:fail:syntax:missing-
module, 716

make-exn:fail:syntax:unbound, 716
make-exn:fail:unsupported, 719
make-exn:fail:user, 719
make-export, 841
make-extflvector, 229
make-file-or-directory-link, 1113
make-flat-contract, 646
make-flrectangular, 218
make-flvector, 219
make-fsemaphore, 773
make-fxvector, 224
make-generic, 543
make-handle-get-preference-locked,

1130
make-hash, 372
make-hash-placeholder, 356
make-hasheq, 372
make-hasheq-placeholder, 356
make-hasheqv, 372
make-hasheqv-placeholder, 356
make-immutable-custom-hash, 437
make-immutable-hash, 373
make-immutable-hasheq, 373
make-immutable-hasheqv, 373
make-impersonator-property, 1040
make-import, 836
make-import-source, 837
make-input-port, 884
make-input-port/read-to-peek, 908
make-inspector, 1047
make-instance, 1080
make-interned-syntax-introducer,

833
make-keyword-procedure, 464
make-known-char-range-list, 282
make-limited-input-port, 909

make-list, 339
make-lock-file-name, 1132
make-log-receiver, 1162
make-logger, 1158
make-mixin-contract, 557
make-module-evaluator, 1054
make-none/c, 669
make-object, 537
make-output-port, 896
make-parameter, 767
make-parameter-rename-transformer,

844
make-parent-directory*, 1126
make-phantom-bytes, 1191
make-pipe, 882
make-pipe-with-specials, 910
make-placeholder, 355
make-plumber, 1052
make-polar, 199
make-prefab-struct, 503
make-proj-contract, 677
make-provide-pre-transformer, 839
make-provide-transformer, 839
make-pseudo-random-generator, 205
make-reader-graph, 355
make-readtable, 960
make-rectangular, 199
make-rename-transformer, 814
make-require-transformer, 835
make-resolved-module-path, 1004
make-security-guard, 1041
make-semaphore, 760
make-serialize-info, 977
make-set!-transformer, 813
make-shared-bytes, 264
make-shared-extflvector, 229
make-shared-flvector, 220
make-shared-fxvector, 225
make-sibling-inspector, 1047
make-special-comment, 965
make-srcloc, 721
make-string, 231

1269

make-struct-field-accessor, 491
make-struct-field-mutator, 491
make-struct-info, 508
make-struct-type, 488
make-struct-type-property, 492
make-syntax-delta-introducer, 833
make-syntax-introducer, 832
make-temporary-file, 1127
make-tentative-pretty-print-
output-port, 958

make-thread-cell, 765
make-thread-group, 1046
make-vector, 358
make-weak-box, 1184
make-weak-custom-hash, 437
make-weak-hash, 372
make-weak-hasheq, 372
make-weak-hasheqv, 372
make-will-executor, 1187
Managing Ports, 865
Manipulating Paths, 1085
map, 319
match, 682
match expander, 694
match*, 690
match*/derived, 697
match-define, 693
match-define-values, 694
match-equality-test, 697
match-expander?, 696
match-lambda, 692
match-lambda*, 692
match-lambda**, 692
match-let, 692
match-let*, 693
match-let*-values, 693
match-let-values, 693
match-letrec, 693
match-letrec-values, 693
match/derived, 697
match/values, 691
matching-identifiers-in, 108

matching-identifiers-out, 112
max, 187
'mc, 282
mcar, 357
mcdr, 357
mcons, 357
'me, 282
member, 326
member-name-key, 535
member-name-key-hash-code, 535
member-name-key=?, 535
member-name-key?, 535
memf, 327
Memory Management, 1184
memq, 326
memv, 326
merge, 674
merge-input, 910
metavariables, 78
Method Definitions, 530
'method-arity-error, 121
'method-arity-error, 459
method-in-interface?, 566
Methods, 530
Methods, 538
min, 187
Miscellaneous, 1072
Miscellaneous utilities, 861
mixin, 543
mixin, 543
mixin-contract, 557
Mixins, 543
'mn, 282
module, 83
module binding, 31
module context, 36
Module Expansion, Phases, and Visits, 43
module name resolver, 1005
Module Names and Loading, 1004
module path, 1004
module path index, 1008
module path resolver, 1005

1270

Module Redeclarations, 25
module registry, 46
module*, 86
module+, 87
module->exports, 1016
module->imports, 1016
module->indirect-exports, 1016
module->language-info, 1015
module->namespace, 988
module-begin context, 36
'module-body-context, 855
'module-body-context-simple?, 856
'module-body-inside-context, 856
module-compiled-cross-phase-
persistent?, 1012

module-compiled-exports, 1011
module-compiled-imports, 1011
module-compiled-indirect-exports,

1012
module-compiled-language-info, 1012
module-compiled-name, 1010
module-compiled-submodules, 1010
module-declared?, 1015
'module-direct-for-meta-requires,

855
'module-direct-for-syntax-
requires, 855

'module-direct-for-template-
requires, 855

'module-direct-requires, 855
'module-indirect-for-meta-
provides, 855

'module-indirect-provides, 855
'module-language, 1012
'module-language, 86
module-level variable, 20
module-path-index-join, 1010
module-path-index-resolve, 1009
module-path-index-split, 1009
module-path-index-submodule, 1010
module-path-index?, 1009
module-path?, 1005
module-predefined?, 1017

module-provide-protected?, 989
'module-syntax-provides, 855
'module-variable-provides, 855
modules, re-define, 25
modules, imports, 88
modules, exports, 88
modules, 20
Modules and Module-Level Variables, 20
Modules: module, module*, ..., 83
modulo, 186
More File and Directory Utilities, 1120
More Path Utilities, 1096
More Port Constructors, Procedures, and

Events, 903
mpair?, 357
multi-in, 111
Multiple Return Values, 13
Multiple Values, 699
multiple values, 13
'must-truncate, 873
mutable list, 357
mutable pair, 356
Mutable Pair Constructors and Selectors,

357
Mutable Pairs and Lists, 356
mutable-set, 439
mutable-seteq, 439
mutable-seteqv, 439
mutator, 482
nack-guard-evt, 754
namespace, 46
namespace-anchor->empty-namespace,

983
namespace-anchor->namespace, 983
namespace-anchor?, 983
namespace-attach-module, 986
namespace-attach-module-
declaration, 988

namespace-base-phase, 983
namespace-mapped-symbols, 985
namespace-module-identifier, 984
namespace-module-registry, 988

1271

namespace-require, 985
namespace-require/constant, 986
namespace-require/copy, 986
namespace-require/expansion-time,

986
namespace-set-variable-value!, 984
namespace-symbol->identifier, 983
namespace-syntax-introduce, 989
namespace-undefine-variable!, 985
namespace-unprotect-module, 988
namespace-variable-value, 984
namespace?, 982
Namespaces, 982
Namespaces, 46
nan?, 214
nand, 173
natural-number/c, 595
natural?, 215
'nd, 282
negate, 472
negative-integer?, 214
negative?, 180
Nested Contract Boundaries, 636
Networking, 1133
never-evt, 755
new, 537
new-prompt, 736
new-@/c, 628
new-D/c, 628
newline, 932
ninth, 338
'nl, 282
'no, 282
'nominal-id, 815
non-empty-listof, 599
non-empty-string?, 246
'non-terminating-macro, 960
'non-terminating-macro, 961
'none, 851
'none, 868
none/c, 590
nonnegative-integer?, 215

nonpositive-integer?, 214
nor, 174
normal-case-path, 1093
normalize-arity, 476
normalize-path, 1098
normalized-arity?, 475
not, 167
not-a-number, 175
'not-free-identifier=?, 814
'not-provide-all-defined, 815
not/c, 593
Notation for Documentation, 77
Notation for Function Documentation, 79
Notation for Module Documentation, 77
Notation for Other Documentation, 82
Notation for Parameter Documentation, 81
Notation for Structure Type Documentation,

81
Notation for Syntactic Form Documentation,

77
"NUL", 1102
null, 316
null?, 315
Number Comparison, 191
Number Types, 176
Number–String Conversions, 207
number->string, 207
number?, 176
numbers, parsing, 53
numbers, machine representations, 207
numbers, little-endian, 207
numbers, floating-point, 207
numbers, converting, 207
numbers, big-endian, 207
Numbers, 175
numbers, 175
numerator, 190
Object and Class Contracts, 547
Object Equality and Hashing, 557
Object Identity and Comparisons, 17
Object Printing, 560
Object Serialization, 559

1272

object%, 513
Object, Class, and Interface Utilities, 561
object->vector, 564
object-contract, 555
object-info, 568
object-interface, 564
object-method-arity-includes?, 567
object-name, 1049
object-or-false=?, 563
object/c, 555
object=-hash-code, 563
object=?, 562
object?, 561
objects, 15
Objects and Imperative Update, 15
Obligation Information in Check Syntax,

663
odd?, 181
one-of/c, 596
only, 575
only-in, 90
only-meta-in, 92
'opaque, 851
open, 575
open-input-bytes, 879
open-input-file, 872
open-input-output-file, 874
open-input-string, 879
open-output-bytes, 880
open-output-file, 873
open-output-nowhere, 910
open-output-string, 880
Operating System, 1085
opt/c, 670
or, 131
or/c, 590
order-of-magnitude, 213
'orig-dir, 1108
'origin, 847
ormap, 321
'os, 1172
Other Randomness Utilities, 206

other-execute-bit, 1132
other-read-bit, 1132
other-write-bit, 1132
output port, 863
output-port?, 865
outside-edge scope, 43
overment, 521
overment*, 526
override, 520
override*, 526
override-final, 521
override-final*, 526
overriding, 511
packages, 1220
pair, 314
Pair Accessor Shorthands, 329
Pair Constructors and Selectors, 314
pair?, 314
Pairs and Lists, 314
parameter procedure, 28
parameter-procedure=?, 770
parameter/c, 604
parameter?, 770
parameterization, 28
parameterization?, 770
parameterize, 768
parameterize*, 769
parameterize-break, 743
Parameters, 28
Parameters, 767
Parameters, 28
Parametric Contracts, 626
parametric->/c, 627
'paren-shape, 56
parent internal-definition context, 821
parse, 34
parse-command-line, 1180
parsed, 34
Partial Expansion, 42
partial expansion, 42
partition, 349
patched, 128

1273

PATH, 1109
path, 1085
path element, 1099
path or string, 1085
path->bytes, 1087
path->complete-path, 1090
path->directory-path, 1091
path->string, 1086
path-add-extension, 1095
path-add-suffix, 1095
path-convention-type, 1088
path-element->bytes, 1088
path-element->string, 1088
path-element?, 1099
path-for-some-system?, 1086
path-get-extension, 1096
path-has-extension?, 1097
path-list-string->path-list, 1108
path-only, 1099
path-replace-extension, 1094
path-replace-suffix, 1095
path-string?, 1085
path-up, 110
path<?, 1088
path?, 1085
pathlist-closure, 1124
Paths, 1085
Pattern Matching, 682
pattern matching, 287
pattern variable, 787
Pattern variables, 859
Pattern-Based Syntax Matching, 786
'pc, 282
'pd, 282
'pe, 282
peek-byte, 930
peek-byte-or-special, 930
peek-bytes, 927
peek-bytes!, 927
peek-bytes!-evt, 919
peek-bytes-avail!, 927
peek-bytes-avail!*, 928

peek-bytes-avail!-evt, 919
peek-bytes-avail!/enable-break, 928
peek-bytes-evt, 919
peek-char, 929
peek-char-or-special, 930
peek-string, 926
peek-string!, 927
peek-string!-evt, 919
peek-string-evt, 919
peeked, 863
peeking-input-port, 911
Per-Symbol Special Printing, 953
Performance Hints: begin-encourage-
inline, 163

permutations, 352
'pf, 282
phantom byte string, 1190
Phantom Byte Strings, 1190
phantom-bytes?, 1191
phase level, 31
Phases, 21
phases, 21
pi, 211
'pi, 282
pi.f, 211
pi.t, 228
pipe, 882
pipe-content-length, 883
Pipes, 882
place, 779
place, 776
place channels, 776
place descriptor, 777
place locations, 782
place*, 780
place-break, 781
place-channel, 781
place-channel-get, 781
place-channel-put, 781
place-channel-put/get, 781
place-channel?, 777
place-dead-evt, 780

1274

place-enabled?, 777
place-kill, 781
place-location?, 782
place-message-allowed?, 781
place-wait, 780
place/context, 780
place?, 777
placeholder-get, 356
placeholder-set!, 356
placeholder?, 355
Places, 776
Places Logging, 783
planet, 97
PLT_COMPILE_ANY, 1002
PLT_COMPILED_FILE_CHECK, 998
PLT_DELAY_FROM_ZO, 942
PLT_INCREMENTAL_GC, 1187
PLT_VALIDATE_COMPILE, 1000
PLT_VALIDATE_LOAD, 75
PLTADDONDIR, 1107
PLTCOLLECTS, 1223
PLTCOMPILEDROOTS, 998
PLTCONFIGDIR, 1107
PLTDISABLEGC, 1187
PLTNOMZJIT, 1003
PLTSTDERR, 1157
PLTSTDOUT, 1157
PLTSYSLOG, 1157
PLTUSERHOME, 1106
plumber, 1051
plumber-add-flush!, 1052
plumber-flush-all, 1052
plumber-flush-handle-remove!, 1053
plumber-flush-handle?, 1052
plumber?, 1051
Plumbers, 1051
'po, 282
poll, 750
poll-guard-evt, 755
Port Buffers and Positions, 867
port display handler, 950
Port Events, 917

port positions, 869
port print handler, 950
port read handler, 943
Port String and List Conversions, 903
port write handler, 950
port->bytes, 904
port->bytes-lines, 905
port->lines, 904
port->list, 903
port->string, 904
port-closed-evt, 866
port-closed?, 866
port-commit-peeked, 931
port-count-lines!, 870
port-count-lines-enabled, 871
port-counts-lines?, 870
port-display-handler, 949
port-file-identity, 878
port-file-unlock, 878
port-next-location, 870
port-number?, 1137
port-print-handler, 950
port-progress-evt, 931
port-provides-progress-evts?, 931
port-read-handler, 942
port-try-file-lock?, 877
port-write-handler, 949
port-writes-atomic?, 935
port-writes-special?, 935
port?, 865
ports, flushing, 868
Ports, 863
Ports, 863
position, 869
positive-integer?, 214
positive?, 180
Powers and Roots, 193
powerset, 351
pre-expand-export, 839
predicate, 482
predicate/c, 626
'pref-dir, 1106

1275

'pref-file, 1106
prefab, 480
prefab-key->struct-type, 504
prefab-key?, 504
prefab-struct-key, 502
preferences-lock-file-mode, 1130
prefix, 576
prefix-in, 91
prefix-out, 101
pregexp, 296
pregexp?, 295
preserved, 27
preserved, 847
Pretty Printing, 950
pretty-display, 952
pretty-format, 952
pretty-print, 951
pretty-print-.-symbol-without-
bars, 953

pretty-print-abbreviate-read-
macros, 953

pretty-print-columns, 952
pretty-print-current-style-table,

954
pretty-print-depth, 953
pretty-print-exact-as-decimal, 953
pretty-print-extend-style-table,

954
pretty-print-handler, 952
pretty-print-newline, 955
pretty-print-post-print-hook, 957
pretty-print-pre-print-hook, 957
pretty-print-print-hook, 957
pretty-print-print-line, 955
pretty-print-remap-stylable, 955
pretty-print-show-inexactness, 953
pretty-print-size-hook, 956
pretty-print-style-table?, 954
pretty-printing, 957
pretty-write, 951
Primitive Dictionary Methods, 419
primitive-closure?, 471

primitive-result-arity, 471
primitive?, 471
print, 944
print handler, 1000
print-as-expression, 948
print-boolean-long-form, 948
print-box, 948
print-graph, 947
print-hash-table, 948
print-mpair-curly-braces, 947
print-pair-curly-braces, 947
print-reader-abbreviations, 948
print-struct, 947
print-syntax-width, 949
print-unreadable, 947
print-vector-length, 948
printable/c, 596
printable<%>, 561
Printer Extension, 966
printf, 946
Printing Booleans, 69
Printing Boxes, 73
Printing Characters, 73
Printing Compiled Code, 74
Printing Extflonums, 68
Printing Hash Tables, 72
Printing Keywords, 73
Printing Numbers, 68
Printing Pairs and Lists, 69
Printing Paths, 74
Printing Regular Expressions, 74
Printing Strings, 70
Printing Structures, 71
Printing Symbols, 67
Printing Unreadable Values, 74
Printing Vectors, 71
println, 945
private, 523
private*, 526
"PRN", 1102
Procedure Applications and #%app, 116
Procedure Applications and Local Variables,

1276

18
Procedure Expressions: lambda and case-
lambda, 118

procedure->method, 459
procedure-arity, 460
procedure-arity-includes/c, 605
procedure-arity-includes?, 462
procedure-arity-mask, 461
procedure-arity?, 461
procedure-closure-contents-eq?, 459
procedure-extract-target, 469
procedure-impersonator*?, 1021
procedure-keywords, 463
procedure-reduce-arity, 462
procedure-reduce-arity-mask, 463
procedure-reduce-keyword-arity, 465
procedure-reduce-keyword-arity-
mask, 466

procedure-rename, 459
procedure-result-arity, 464
procedure-specialize, 470
procedure-struct-type?, 469
procedure?, 458
Procedures, 458
process, 1153
process*, 1155
process*/ports, 1155
process/ports, 1155
Processes, 1146
processor-count, 772
progress-evt?, 932
promise, 723
promise-forced?, 724
promise-running?, 724
promise/c, 612
promise/name?, 724
promise?, 723
prompt, 734
prompt, 27
prompt read handler, 999
prompt tag, 27
prompt-at, 734

prompt-tag/c, 609
prompt0, 735
prompt0-at, 736
Prompts, Delimited Continuations, and Bar-

riers, 27
prop:arity-string, 469
prop:authentic, 1032
prop:blame, 658
prop:chaperone-contract, 657
prop:chaperone-unsafe-undefined,

1212
prop:checked-procedure, 470
prop:collapsible-contract, 674
prop:contract, 657
prop:contracted, 658
prop:custom-print-quotable, 968
prop:custom-write, 967
prop:dict, 419
prop:dict/contract, 432
prop:equal+hash, 173
prop:evt, 757
prop:exn:missing-module, 722
prop:exn:srclocs, 719
prop:expansion-contexts, 823
prop:flat-contract, 657
prop:impersonator-of, 1031
prop:input-port, 883
prop:legacy-match-expander, 696
prop:liberal-define-context, 835
prop:match-expander, 696
prop:object-name, 1050
prop:output-port, 883
prop:place-location, 782
prop:procedure, 467
prop:provide-pre-transformer, 840
prop:provide-transformer, 840
prop:rename-transformer, 815
prop:require-transformer, 836
prop:sequence, 398
prop:serializable, 977
prop:set!-transformer, 813
prop:stream, 409

1277

prop:struct-auto-info, 510
prop:struct-info, 509
proper-subset?, 451
property accessor, 492
property predicate, 492
property/c, 612
protect-out, 103
'protected, 848
provide, 98
provide Macros, 138
provide pre-transformer, 838
provide transformer, 838
provide Transformers, 838
provide-pre-transformer?, 840
provide-signature-elements, 583
provide-transformer?, 840
provide/contract, 635
'provide/contract-original-
contract, 634

proxy design pattern, 570
'ps, 282
pseudo-random-generator->vector,

205
pseudo-random-generator-vector?,

206
pseudo-random-generator?, 205
public, 519
public*, 525
public-final, 520
public-final*, 526
pubment, 519
pubment*, 525
put-input, 1070
put-preferences, 1129
putenv, 1171
PWD, 1114
quasiquote, 159
Quasiquoting: quasiquote, unquote, and
unquote-splicing, 159

quasisyntax, 795
quasisyntax/loc, 796
quotable, 67

quote, 112
quote-syntax, 161
quote-syntax/prune, 796
quotient, 184
quotient/remainder, 185
quoting depth, 67
racket, 1
'racket, 1172
racket, 1213
Racket.exe, 1213
racket/async-channel, 761
racket/base, 1
racket/block, 162
racket/bool, 173
racket/bytes, 275
racket/class, 511
racket/cmdline, 1176
racket/contract, 588
racket/contract/base, 673
racket/contract/base, 673
racket/contract/collapsible, 673
racket/contract/combinator, 643
racket/contract/parametric, 626
racket/contract/region, 636
racket/contract:contract, 663
racket/contract:contract-on-boundary, 664
racket/contract:internal-contract, 664
racket/contract:negative-position, 664
racket/contract:positive-position, 664
racket/control, 732
racket/date, 1167
racket/dict, 415
racket/engine, 783
racket/enter, 1228
racket/exn, 722
racket/extflonum, 225
racket/fasl, 979
racket/file, 1120
racket/fixnum, 221
racket/flonum, 215
racket/format, 246
racket/function, 471

1278

racket/future, 770
racket/generator, 410
racket/generic, 494
racket/hash, 381
racket/help, 1227
racket/include, 856
racket/init, 1214
racket/interactive, 1214
racket/kernel, 1237
racket/kernel/init, 1238
racket/keyword-transform, 841
racket/language-info, 1214
racket/lazy-require, 164
racket/linklet, 1073
racket/list, 336
racket/load, 1003
racket/local, 126
racket/logging, 1162
racket/match, 682
racket/math, 211
racket/os, 1182
racket/path, 1096
racket/performance-hint, 163
racket/place, 776
racket/port, 903
racket/pretty, 950
racket/promise, 723
racket/provide, 112
racket/provide-syntax, 138
racket/provide-transform, 838
racket/random, 206
racket/repl, 1073
racket/require, 108
racket/require-syntax, 137
racket/require-transform, 835
racket/rerequire, 1229
racket/runtime-config, 1214
racket/runtime-path, 1117
racket/sandbox, 1053
racket/sequence, 400
racket/serialize, 968
racket/set, 438

racket/shared, 126
racket/signature, 585
racket/splicing, 845
racket/stream, 404
racket/string, 242
racket/struct, 504
racket/struct-info, 506
racket/stxparam, 842
racket/stxparam-exptime, 844
racket/surrogate, 569
racket/syntax, 857
racket/system, 1152
racket/tcp, 1133
racket/trace, 1230
racket/trait, 543
racket/udp, 1137
racket/undefined, 479
racket/unit, 572
racket/unit-exptime, 586
racket/unsafe/ops, 1192
racket/unsafe/undefined, 1210
racket/vector, 361
"racketrc.rktl", 1106
radians->degrees, 212
raise, 701
raise-argument-error, 703
raise-arguments-error, 704
raise-arity-error, 707
raise-arity-mask-error, 707
raise-blame-error, 652
raise-contract-error, 678
raise-mismatch-error, 706
raise-range-error, 705
raise-result-arity-error, 708
raise-result-error, 704
raise-support-error, 496
raise-syntax-error, 708
raise-type-error, 706
raise-user-error, 702
Raising Exceptions, 701
random, 204
Random generation, 678

1279

Random Numbers, 204
random-ref, 206
random-sample, 207
random-seed, 205
range, 350
rational numbers, 175
rational?, 177
rationalize, 190
reachable, 17
read, 936
'read, 1042
'read, 1111
read, 30
read interaction handler, 999
read-accept-bar-quote, 940
read-accept-box, 940
read-accept-compiled, 940
read-accept-dot, 941
read-accept-graph, 940
read-accept-infix-dot, 941
read-accept-lang, 941
read-accept-quasiquote, 941
read-accept-reader, 941
read-byte, 921
read-byte-or-special, 929
read-bytes, 924
read-bytes!, 925
read-bytes!-evt, 918
read-bytes-avail!, 925
read-bytes-avail!*, 926
read-bytes-avail!-evt, 918
read-bytes-avail!/enable-break, 926
read-bytes-evt, 917
read-bytes-line, 923
read-bytes-line-evt, 919
read-case-sensitive, 939
read-cdot, 941
read-char, 921
read-char-or-special, 929
read-curly-brace-as-paren, 939
read-curly-brace-with-tag, 939
read-decimal-as-inexact, 940

read-eval-print-loop, 998
read-language, 937
read-line, 922
read-line-evt, 918
read-on-demand-source, 942
read-single-flonum, 940
read-square-bracket-as-paren, 939
read-square-bracket-with-tag, 939
read-string, 923
read-string!, 924
read-string!-evt, 918
read-string-evt, 918
read-syntax, 936
read-syntax/recursive, 937
read/recursive, 936
reader, 66
Reader Extension, 959
reader extension procedures, 959
reader language, 938
reader macro, 960
Reader-Extension Procedures, 965
Reading, 936
Reading Booleans, 56
Reading Boxes, 62
Reading Characters, 62
Reading Comments, 59
Reading Extflonums, 55
Reading Graph Structure, 63
Reading Hash Tables, 61
Reading Keywords, 63
Reading Numbers, 53
Reading Pairs and Lists, 56
Reading Quotes, 59
Reading Regular Expressions, 63
Reading Strings, 57
Reading Structures, 61
Reading Symbols, 53
Reading Vectors, 60
Reading via an Extension, 64
Reading with C-style Infix-Dot Notation, 65
readtable, 959
readtable-mapping, 961

1280

readtable?, 960
Readtables, 959
ready for synchronization, 750
real numbers, 175
real->decimal-string, 208
real->double-flonum, 182
real->extfl, 228
real->floating-point-bytes, 210
real->single-flonum, 182
real-in, 594
real-part, 199
real?, 177
rearm, 851
rearrangements, 352
Receiving Logged Events, 1161
recompile-linklet, 1077
recontract-out, 634
record-disappeared-uses, 861
Recording disappeared uses, 860
recursive-contract, 669
RED, 1103
redex, 12
redirect-generics, 500
reencode-input-port, 912
reencode-output-port, 913
reference, 30
Reflecting on Primitives, 471
Reflection and Security, 982
regexp, 295
Regexp Constructors, 294
Regexp Matching, 298
Regexp Splitting, 309
Regexp Substitution, 310
Regexp Syntax, 288
regexp value, 287
regexp-match, 298
regexp-match*, 300
regexp-match-evt, 920
regexp-match-exact?, 304
regexp-match-peek, 304
regexp-match-peek-immediate, 306
regexp-match-peek-positions, 305

regexp-match-peek-positions*, 307
regexp-match-peek-positions-
immediate, 306

regexp-match-peek-positions-
immediate/end, 309

regexp-match-peek-positions/end,
308

regexp-match-positions, 302
regexp-match-positions*, 303
regexp-match-positions/end, 308
regexp-match/end, 307
regexp-match?, 303
regexp-max-lookbehind, 297
regexp-quote, 297
regexp-replace, 310
regexp-replace*, 311
regexp-replace-quote, 313
regexp-replaces, 312
regexp-split, 309
regexp-try-match, 301
regexp?, 294
regexps, 287
Regular Expressions, 287
Regular expressions, 287
REL, 1103
'relative, 1093
relative-in, 92
relative-path?, 1090
relocate-input-port, 914
relocate-output-port, 915
remainder, 185
remf, 354
remf*, 354
remove, 323
remove*, 324
remove-duplicates, 348
remq, 323
remq*, 324
remv, 324
remv*, 325
rename, 576
rename transformer, 40

1281

rename-contract, 671
rename-file-or-directory, 1110
rename-in, 91
rename-inner, 525
rename-out, 101
rename-super, 525
rename-transformer-target, 815
rename-transformer?, 814
REPL, 998
'replace, 873
replace-evt, 755
require, 88
require Macros, 137
require transformer, 835
require Transformers, 835
require-transformer?, 836
reroot-path, 1096
reset, 735
reset-at, 735
reset0, 735
reset0-at, 736
resolve-path, 1091
resolved, 1009
resolved module path, 1004
resolved-module-path-name, 1005
resolved-module-path?, 1004
Resolving Module Names, 1004
rest, 337
'return, 922
'return-linefeed, 922
reverse, 319
root namespace, 982
round, 188
'run-file, 1107
'running, 1149
Running Racket, 1213
Running Racket or GRacket, 1213
runtime-paths, 1120
runtime-require, 1120
s-exp, 65
s-exp->fasl, 979
S-Expression Reader Language, 65

'same, 1089
sandbox-coverage-enabled, 1061
sandbox-error-output, 1061
sandbox-eval-handlers, 1067
sandbox-eval-limits, 1066
sandbox-exit-handler, 1065
sandbox-gui-available, 1063
sandbox-init-hook, 1059
sandbox-input, 1060
sandbox-make-code-inspector, 1067
sandbox-make-environment-
variables, 1068

sandbox-make-inspector, 1067
sandbox-make-logger, 1068
sandbox-make-namespace, 1063
sandbox-make-plumber, 1068
sandbox-memory-limit, 1065
sandbox-namespace-specs, 1062
sandbox-network-guard, 1064
sandbox-output, 1060
sandbox-override-collection-paths,

1063
sandbox-path-permissions, 1063
sandbox-propagate-breaks, 1062
sandbox-propagate-exceptions, 1062
sandbox-reader, 1059
sandbox-run-submodules, 1067
sandbox-security-guard, 1063
Sandboxed Evaluation, 1053
'sc, 282
'scalable, 1173
scalar value, 276
scope, 30
scope set, 31
second, 337
seconds->date, 1164
Security Considerations, 1058
security guard, 1041
Security Guards, 1041
security-guard?, 1041
select, 750
self, 516

1282

semaphore, 759
semaphore-peek-evt, 760
semaphore-peek-evt?, 760
semaphore-post, 760
semaphore-try-wait?, 760
semaphore-wait, 760
semaphore-wait/enable-break, 760
semaphore?, 759
Semaphores, 759
send, 538
send*, 539
send+, 540
send-generic, 542
send/apply, 539
send/keyword-apply, 539
separate compilation guarantee, 22
sequence, 383
Sequence Conversion, 399
Sequence Predicate and Constructors, 385
sequence->generator, 414
sequence->list, 400
sequence->repeated-generator, 415
sequence->stream, 399
sequence-add-between, 402
sequence-andmap, 401
sequence-append, 400
sequence-count, 401
sequence-filter, 402
sequence-fold, 401
sequence-for-each, 401
sequence-generate, 399
sequence-generate*, 399
sequence-length, 400
sequence-map, 401
sequence-ormap, 401
sequence-ref, 400
sequence-tail, 400
sequence/c, 402
sequence?, 385
Sequences, 383
Sequences and Streams, 383
Sequencing: begin, begin0, and begin-

for-syntax, 138
serializable-struct, 974
serializable-struct/versions, 975
serializable?, 968
Serialization, 968
serialize, 968
serialized=?, 973
'server, 1043
set, 736
set, 439
set, 438
Set Methods, 444
Set Predicates and Contracts, 441
set!, 141
set!-transformer-procedure, 813
set!-transformer?, 812
set!-values, 141
set->list, 452
set->stream, 446
set-add, 445
set-add!, 445
set-box!, 369
set-box*!, 369
set-clear, 447
set-clear!, 447
set-copy, 446
set-copy-clear, 447
set-count, 445
set-empty?, 445
set-eq?, 439
set-equal?, 439
set-eqv?, 439
set-eval-handler, 1069
set-eval-limits, 1069
set-field!, 541
set-first, 446
set-for-each, 452
set-implements/c, 442
set-implements?, 441
set-intersect, 448
set-intersect!, 449
set-map, 452

1283

set-mcar!, 357
set-mcdr!, 357
set-member?, 445
set-mutable?, 439
set-phantom-bytes!, 1191
set-port-next-location!, 871
set-remove, 445
set-remove!, 445
set-rest, 446
set-subset?, 451
set-subtract, 449
set-subtract!, 449
set-symmetric-difference, 449
set-symmetric-difference!, 450
set-union, 447
set-union!, 448
set-weak?, 439
set/c, 442
set=?, 450
set?, 439
seteq, 439
seteqv, 439
Sets, 438
seventh, 338
sgn, 212
sha1-bytes, 980
sha224-bytes, 980
sha256-bytes, 980
shadowing, 31
shadows, 31
Shallow time, 1059
shared, 126
'shared, 1172
shared memory space, 776
shared-bytes, 264
shared-extflvector, 229
shared-flvector, 220
shared-fxvector, 225
shell-execute, 1150
ShellExecute, 1150
shift, 735
shift-at, 735

shift0, 735
shift0-at, 736
shrink-path-wrt, 1100
shuffle, 351
SIGHUP, 741
SIGINT, 741
signature, 572
signature-members, 586
SIGTERM, 741
Simple Subprocesses, 1152
simple-form-path, 1099
simplify-path, 1092
sin, 197
single-flonum-available?, 179
single-flonum?, 179
single-flonums, 175
Single-Signature Modules, 585
Single-Unit Modules, 585
sinh, 213
sixth, 338
'sk, 282
skip-projection-wrapper?, 651
sleep, 748
'sm, 282
'so, 282
'so-mode, 1173
'so-suffix, 1173
some-system-path->string, 1099
sort, 325
spawn, 736
special, 863
Special Comments, 965
special-comment-value, 966
special-comment?, 965
special-filter-input-port, 917
spliced, 1222
splicing-let, 845
splicing-let-syntax, 845
splicing-let-syntaxes, 845
splicing-let-values, 845
splicing-letrec, 845
splicing-letrec-syntax, 845

1284

splicing-letrec-syntaxes, 845
splicing-letrec-syntaxes+values,

845
splicing-letrec-values, 845
splicing-local, 845
splicing-parameterize, 845
splicing-syntax-parameterize, 846
split-at, 342
split-at-right, 344
split-common-prefix, 346
split-path, 1093
splitf-at, 343
splitf-at-right, 344
splitter, 736
sqr, 212
sqrt, 193
square root, 193
srcloc, 721
srcloc->string, 722
srcloc-column, 721
srcloc-line, 721
srcloc-position, 721
srcloc-source, 721
srcloc-span, 721
srcloc?, 721
stack dump, 740
stack trace, 740
'static, 1172
stop-after, 396
stop-before, 396
stream, 405
stream, 404
stream*, 405
stream->list, 406
stream-add-between, 408
stream-andmap, 407
stream-append, 407
stream-cons, 405
stream-count, 408
stream-empty?, 405
stream-filter, 408
stream-first, 405

stream-fold, 407
stream-for-each, 407
stream-length, 406
stream-map, 407
stream-ormap, 407
stream-ref, 406
stream-rest, 405
stream-tail, 406
stream-take, 407
stream/c, 409
stream?, 405
Streams, 404
string, 231
string, 230
String Comparisons, 235
String Constructors, Selectors, and Mutators,

231
String Conversions, 239
string port, 879
String Ports, 879
string->bytes/latin-1, 268
string->bytes/locale, 268
string->bytes/utf-8, 267
string->immutable-string, 231
string->keyword, 314
string->list, 234
string->number, 207
string->path, 1086
string->path-element, 1087
string->some-system-path, 1100
string->symbol, 285
string->uninterned-symbol, 286
string->unreadable-symbol, 286
string-append, 234
string-append*, 243
string-ci<=?, 238
string-ci<?, 237
string-ci=?, 237
string-ci>=?, 239
string-ci>?, 238
string-contains?, 246
string-copy, 233

1285

string-copy!, 233
string-downcase, 239
string-environment-variable-name?,

1171
string-fill!, 234
string-foldcase, 240
string-join, 243
string-len/c, 595
string-length, 232
string-locale-ci<?, 242
string-locale-ci=?, 242
string-locale-ci>?, 242
string-locale-downcase, 242
string-locale-upcase, 242
string-locale<?, 241
string-locale=?, 241
string-locale>?, 241
string-no-nuls?, 1156
string-normalize-nfc, 241
string-normalize-nfd, 240
string-normalize-nfkc, 241
string-normalize-nfkd, 241
string-normalize-spaces, 244
string-port?, 879
string-prefix?, 246
string-ref, 232
string-replace, 244
string-set!, 232
string-split, 244
string-suffix?, 246
string-titlecase, 240
string-trim, 245
string-upcase, 239
string-utf-8-length, 268
string<=?, 236
string<?, 236
string=?, 235
string>=?, 237
string>?, 236
string?, 231
strings, pattern matching, 287
strings, parsing, 57

strings, immutable, 230
strings, concatenate, 234
Strings, 230
struct, 481
struct*, 697
struct->list, 506
struct->vector, 501
struct-accessor-procedure?, 502
struct-auto-info-lists, 510
struct-auto-info?, 510
struct-constructor-procedure?, 502
struct-copy, 500
struct-field-index, 486
struct-guard/c, 635
struct-info, 1048
struct-info?, 508
struct-mutator-procedure?, 502
struct-out, 102
struct-predicate-procedure?, 502
struct-type-info, 1048
struct-type-make-constructor, 1049
struct-type-make-predicate, 1049
struct-type-property-accessor-
procedure?, 494

struct-type-property/c, 630
struct-type-property?, 494
struct-type?, 502
struct/c, 602
struct/ctc, 583
struct/dc, 603
struct:arity-at-least, 467
struct:collapsible-count-property,

676
struct:collapsible-ho/c, 675
struct:collapsible-leaf/c, 675
struct:collapsible-property, 676
struct:collapsible-wrapper-
property, 676

struct:date, 1165
struct:date*, 1166
struct:exn, 714
struct:exn:break, 719

1286

struct:exn:break:hang-up, 719
struct:exn:break:terminate, 719
struct:exn:fail, 715
struct:exn:fail:contract, 715
struct:exn:fail:contract:arity, 715
struct:exn:fail:contract:blame, 656
struct:exn:fail:contract:continuation,

716
struct:exn:fail:contract:divide-
by-zero, 715

struct:exn:fail:contract:non-
fixnum-result, 716

struct:exn:fail:contract:variable,
716

struct:exn:fail:filesystem, 717
struct:exn:fail:filesystem:errno,

718
struct:exn:fail:filesystem:exists,

717
struct:exn:fail:filesystem:missing-
module, 718

struct:exn:fail:filesystem:version,
717

struct:exn:fail:network, 718
struct:exn:fail:network:errno, 718
struct:exn:fail:object, 568
struct:exn:fail:out-of-memory, 718
struct:exn:fail:read, 717
struct:exn:fail:read:eof, 717
struct:exn:fail:read:non-char, 717
struct:exn:fail:support, 497
struct:exn:fail:syntax, 716
struct:exn:fail:syntax:missing-
module, 716

struct:exn:fail:syntax:unbound, 716
struct:exn:fail:unsupported, 719
struct:exn:fail:user, 719
struct:export, 841
struct:import, 836
struct:import-source, 837
struct:srcloc, 721
struct:struct-info, 509
struct?, 501

Structural Matching, 582
structure, 480
Structure Inspectors, 1047
structure subtypes, 480
structure type, 480
structure type descriptor, 481
Structure Type Properties, 492
structure type property, 492
Structure Type Property Contracts, 630
structure type property descriptor, 492
Structure Type Transformer Binding, 506
Structure Utilities, 501
structures, equality, 480
Structures, 480
Structures as Ports, 883
Sub-expression Evaluation and Continua-

tions, 12
sub1, 186
subbytes, 262
subclass?, 565
subclass?/c, 557
submod, 98
submodule, 26
Submodules, 26
subprocess, 1146
subprocess, 1148
subprocess-group-enabled, 1150
subprocess-kill, 1149
subprocess-pid, 1149
subprocess-status, 1148
subprocess-wait, 1148
subprocess?, 1149
subset?, 451
substring, 232
subtract-in, 109
suggest/c, 613
super, 532
super-instantiate, 537
super-make-object, 537
super-new, 538
superclass, 511
'supported, 1173

1287

supported generic method, 496
surrogate, 570
Surrogates, 569
Suspending, Resuming, and Killing Threads,

746
'SW_HIDE, 1151
'sw_hide, 1151
'SW_MAXIMIZE, 1151
'sw_maximize, 1151
'SW_MINIMIZE, 1151
'sw_minimize, 1151
'SW_RESTORE, 1151
'sw_restore, 1151
'SW_SHOW, 1151
'sw_show, 1151
'SW_SHOWDEFAULT, 1151
'sw_showdefault, 1151
'SW_SHOWMAXIMIZED, 1151
'sw_showmaximized, 1151
'SW_SHOWMINIMIZED, 1151
'sw_showminimized, 1151
'SW_SHOWMINNOACTIVE, 1151
'sw_showminnoactive, 1151
'SW_SHOWNA, 1151
'sw_showna, 1151
'SW_SHOWNOACTIVATE, 1151
'sw_shownoactivate, 1151
'SW_SHOWNORMAL, 1152
'sw_shownormal, 1152
symbol, 284
symbol->string, 285
symbol-interned?, 285
symbol-unreadable?, 285
symbol<?, 287
symbol=?, 173
symbol?, 284
symbols, unique, 284
symbols, generating, 284
Symbols, 284
symbols, 596
sync, 751
sync/enable-break, 752

sync/timeout, 751
sync/timeout/enable-break, 752
synchronizable event, 750
Synchronization, 750
synchronization result, 750
Synchronizing Thread State, 748
syntactic form, 36
Syntactic Forms, 83
syntax, 791
syntax binding set, 804
Syntax Model, 30
syntax object, 32
Syntax Object Bindings, 808
Syntax Object Content, 798
Syntax Object Properties, 847
Syntax Objects, 32
syntax pair, 801
syntax parameter, 842
Syntax Parameter Inspection, 844
Syntax Parameters, 842
syntax property, 847
Syntax Quoting: quote-syntax, 161
Syntax Taints, 850
syntax transformer, 38
Syntax Transformers, 812
Syntax Utilities, 857
syntax->datum, 802
syntax->list, 801
syntax-arm, 852
syntax-binding-set, 804
syntax-binding-set->syntax, 804
syntax-binding-set-extend, 804
syntax-binding-set?, 804
syntax-case, 786
syntax-case*, 789
syntax-column, 799
syntax-debug-info, 807
syntax-disarm, 852
syntax-e, 800
syntax-id-rules, 797
syntax-line, 799
syntax-local-bind-syntaxes, 822

1288

syntax-local-certifier, 831
syntax-local-context, 829
syntax-local-eval, 861
syntax-local-expand-expression, 819
syntax-local-get-shadower, 830
syntax-local-identifier-as-
binding, 831

syntax-local-introduce, 832
syntax-local-lift-context, 827
syntax-local-lift-expression, 826
syntax-local-lift-module, 827
syntax-local-lift-module-end-
declaration, 827

syntax-local-lift-provide, 828
syntax-local-lift-require, 828
syntax-local-lift-values-
expression, 826

syntax-local-make-definition-
context, 821

syntax-local-make-delta-
introducer, 831

syntax-local-match-introduce, 696
syntax-local-module-defined-
identifiers, 834

syntax-local-module-exports, 830
syntax-local-module-required-
identifiers, 834

syntax-local-name, 829
syntax-local-phase-level, 829
syntax-local-provide-certifier, 841
syntax-local-provide-introduce, 138
syntax-local-require-certifier, 838
syntax-local-require-introduce, 138
syntax-local-submodules, 830
syntax-local-transforming-module-
provides?, 834

syntax-local-value, 824
syntax-local-value/immediate, 825
syntax-local-value/record, 860
syntax-original?, 799
syntax-parameter-value, 844
syntax-parameterize, 843
syntax-pattern-variable?, 798

syntax-position, 799
syntax-procedure-alias-property,

841
syntax-procedure-converted-
arguments-property, 842

syntax-property, 848
syntax-property-preserved?, 849
syntax-property-remove, 849
syntax-property-symbol-keys, 849
syntax-protect, 852
syntax-rearm, 852
syntax-recertify, 807
syntax-rules, 796
syntax-shift-phase-level, 805
syntax-source, 799
syntax-source-module, 800
syntax-span, 799
syntax-taint, 853
syntax-tainted?, 851
syntax-track-origin, 849
syntax-transforming-module-
expression?, 831

syntax-transforming-with-lifts?,
831

syntax-transforming?, 831
syntax/c, 602
syntax/loc, 796
syntax?, 798
'sys-dir, 1107
system, 1152
system*, 1152
system*/exit-code, 1153
system-big-endian?, 211
system-idle-evt, 756
system-language+country, 1174
system-library-subpath, 1174
system-path-convention-type, 1089
system-type, 1171
system/exit-code, 1153
tag, 576
Tail Position, 12
tail position, 12

1289

'taint-mode, 851
'taint-mode, 851
tainted, 850
take, 342
take-common-prefix, 345
take-right, 343
takef, 342
takef-right, 344
tamper status, 850
tan, 197
tanh, 213
'target-machine, 1173
TCP, 1133
TCP listener, 1133
TCP port, 1137
tcp-abandon-port, 1136
tcp-accept, 1135
tcp-accept-evt, 1136
tcp-accept-ready?, 1136
tcp-accept/enable-break, 1135
tcp-addresses, 1137
tcp-close, 1136
tcp-connect, 1134
tcp-connect/enable-break, 1135
tcp-listen, 1133
tcp-listener?, 1136
tcp-port?, 1137
TEMP, 1106
'temp-dir, 1106
template environment, 32
tentative-pretty-print-port-
cancel, 958

tentative-pretty-print-port-
transfer, 958

tenth, 339
terminal-port?, 867
'terminating-macro, 960
'text, 872
The Printer, 66
The Racket Reference, 1
The racket/load Language, 1003
The racket/repl Library, 1073

The Reader, 50
The Separate Compilation Guarantee, 22
the-unsupplied-arg, 626
third, 337
this, 516
this%, 516
thread, 745
Thread Cells, 765
thread cells, 27
thread descriptor, 745
thread group, 1046
Thread Groups, 1046
Thread Mailboxes, 749
thread-cell-ref, 766
thread-cell-set!, 766
thread-cell-values?, 767
thread-cell?, 765
thread-dead-evt, 748
thread-dead?, 748
thread-group?, 1046
Thread-Local Storage, 765
thread-receive, 749
thread-receive-evt, 750
thread-resume, 747
thread-resume-evt, 749
thread-rewind-receive, 750
thread-running?, 748
thread-send, 749
thread-suspend, 747
thread-suspend-evt, 749
thread-try-receive, 750
thread-wait, 748
thread/suspend-to-kill, 746
thread?, 746
threads, run state, 748
threads, breaking, 741
threads, breaking, 748
Threads, 27
Threads, 745
threads, 27
thunk, 472
thunk*, 472

1290

Time, 1164
time, 1167
time-apply, 1167
TMP, 1106
TMPDIR, 1106
top-level binding, 31
top-level context, 36
top-level variable, 20
Top-Level Variables, 14
touch, 771
trace, 1230
trace-call, 1234
trace-define, 1232
trace-define-syntax, 1233
trace-lambda, 1233
trace-let, 1233
Tracing, 1230
trait, 543
trait, 543
trait->mixin, 544
trait-alias, 546
trait-exclude, 545
trait-exclude-field, 546
trait-rename, 546
trait-rename-field, 546
trait-sum, 545
trait?, 544
Traits, 543
transformer, 36
Transformer Bindings, 38
transformer environment, 31
Transformer Helpers, 586
'transparent, 851
'transparent-binding, 851
transplant-input-port, 915
transplant-output-port, 916
Trigonometric Functions, 197
true, 173
truncate, 189
'truncate, 873
'truncate/replace, 873
UDP, 1137

UDP socket, 1138
udp-addresses, 1144
udp-bind!, 1138
udp-bound?, 1143
udp-close, 1143
udp-connect!, 1139
udp-connected?, 1143
udp-multicast-interface, 1145
udp-multicast-join-group!, 1145
udp-multicast-leave-group!, 1145
udp-multicast-loopback?, 1146
udp-multicast-set-interface!, 1145
udp-multicast-set-loopback!, 1146
udp-multicast-set-ttl!, 1146
udp-multicast-ttl, 1146
udp-open-socket, 1138
udp-receive!, 1141
udp-receive!*, 1142
udp-receive!-evt, 1144
udp-receive!/enable-break, 1142
udp-receive-ready-evt, 1143
udp-send, 1140
udp-send*, 1140
udp-send-evt, 1144
udp-send-ready-evt, 1143
udp-send-to, 1139
udp-send-to*, 1140
udp-send-to-evt, 1143
udp-send-to/enable-break, 1140
udp-send/enable-break, 1141
udp-set-receive-buffer-size!, 1142
udp?, 1143
unbound, 31
unbox, 369
unbox*, 369
uncaught-exception handler, 710
uncaught-exception-handler, 710
unconstrained-domain->, 625
Undefined, 479
undefined, 479
'undefined-error-name, 123
uninterned, 284

1291

unit, 572
unit contract, 584
Unit Contracts, 584
Unit Utilities, 583
unit-from-context, 581
unit-static-init-dependencies, 587
unit-static-signatures, 586
unit/c, 584
unit/new-import-export, 582
unit/s, 582
unit?, 583
Units, 572
Units, 572
'unix, 1089
'unix, 1172
Unix and Mac OS Paths, 1100
Unix Path Representation, 1101
unless, 140
unquote, 161
unquote-splicing, 161
unquoted-printing string, 710
unquoted-printing-string, 709
unquoted-printing-string-value, 709
unquoted-printing-string?, 709
unreadable symbol, 284
unsafe, 1192
Unsafe Character Operations, 1196
Unsafe Data Extraction, 1197
Unsafe Extflonum Operations, 1205
Unsafe Impersonators and Chaperones, 1207
unsafe mode, 1076
Unsafe Numeric Operations, 1192
Unsafe Operations, 1192
Unsafe Undefined, 1210
unsafe-box*-cas!, 1198
unsafe-bytes-length, 1199
unsafe-bytes-ref, 1199
unsafe-bytes-set!, 1199
unsafe-car, 1197
unsafe-cdr, 1197
unsafe-chaperone-procedure, 1209
unsafe-chaperone-vector, 1210

unsafe-char->integer, 1197
unsafe-char<=?, 1197
unsafe-char<?, 1196
unsafe-char=?, 1196
unsafe-char>=?, 1197
unsafe-char>?, 1196
unsafe-cons-list, 1197
unsafe-extfl*, 1205
unsafe-extfl+, 1205
unsafe-extfl-, 1205
unsafe-extfl->fx, 1207
unsafe-extfl/, 1205
unsafe-extfl<, 1206
unsafe-extfl<=, 1206
unsafe-extfl=, 1205
unsafe-extfl>, 1206
unsafe-extfl>=, 1206
unsafe-extflabs, 1205
unsafe-extflacos, 1206
unsafe-extflasin, 1206
unsafe-extflatan, 1206
unsafe-extflceiling, 1206
unsafe-extflcos, 1206
unsafe-extflexp, 1207
unsafe-extflexpt, 1207
unsafe-extflfloor, 1206
unsafe-extfllog, 1207
unsafe-extflmax, 1206
unsafe-extflmin, 1206
unsafe-extflround, 1206
unsafe-extflsin, 1206
unsafe-extflsqrt, 1207
unsafe-extfltan, 1206
unsafe-extfltruncate, 1206
unsafe-extflvector-length, 1207
unsafe-extflvector-ref, 1207
unsafe-extflvector-set!, 1207
unsafe-f64vector-ref, 1200
unsafe-f64vector-set!, 1200
unsafe-fl*, 1194
unsafe-fl+, 1194
unsafe-fl-, 1194

1292

unsafe-fl->fx, 1196
unsafe-fl/, 1194
unsafe-fl<, 1194
unsafe-fl<=, 1194
unsafe-fl=, 1194
unsafe-fl>, 1194
unsafe-fl>=, 1194
unsafe-flabs, 1194
unsafe-flacos, 1195
unsafe-flasin, 1195
unsafe-flatan, 1195
unsafe-flceiling, 1195
unsafe-flcos, 1195
unsafe-flexp, 1195
unsafe-flexpt, 1195
unsafe-flfloor, 1195
unsafe-flimag-part, 1196
unsafe-fllog, 1195
unsafe-flmax, 1195
unsafe-flmin, 1194
unsafe-flrandom, 1196
unsafe-flreal-part, 1196
unsafe-flround, 1195
unsafe-flsin, 1195
unsafe-flsqrt, 1195
unsafe-fltan, 1195
unsafe-fltruncate, 1195
unsafe-flvector-length, 1200
unsafe-flvector-ref, 1200
unsafe-flvector-set!, 1200
unsafe-fx*, 1192
unsafe-fx+, 1192
unsafe-fx-, 1192
unsafe-fx->extfl, 1207
unsafe-fx->fl, 1196
unsafe-fx<, 1193
unsafe-fx<=, 1193
unsafe-fx=, 1193
unsafe-fx>, 1193
unsafe-fx>=, 1193
unsafe-fxabs, 1192
unsafe-fxand, 1193

unsafe-fxior, 1193
unsafe-fxlshift, 1193
unsafe-fxmax, 1194
unsafe-fxmin, 1194
unsafe-fxmodulo, 1192
unsafe-fxnot, 1193
unsafe-fxquotient, 1192
unsafe-fxremainder, 1192
unsafe-fxrshift, 1193
unsafe-fxvector-length, 1199
unsafe-fxvector-ref, 1200
unsafe-fxvector-set!, 1200
unsafe-fxxor, 1193
unsafe-immutable-hash-iterate-
first, 1202

unsafe-immutable-hash-iterate-key,
1202

unsafe-immutable-hash-iterate-
key+value, 1203

unsafe-immutable-hash-iterate-
next, 1202

unsafe-immutable-hash-iterate-
pair, 1203

unsafe-immutable-hash-iterate-
value, 1203

unsafe-impersonate-procedure, 1207
unsafe-impersonate-vector, 1210
unsafe-list-ref, 1197
unsafe-list-tail, 1197
unsafe-make-flrectangular, 1196
unsafe-make-srcloc, 1205
unsafe-mcar, 1197
unsafe-mcdr, 1197
unsafe-mutable-hash-iterate-first,

1201
unsafe-mutable-hash-iterate-key,

1201
unsafe-mutable-hash-iterate-
key+value, 1202

unsafe-mutable-hash-iterate-next,
1201

unsafe-mutable-hash-iterate-pair,
1202

1293

unsafe-mutable-hash-iterate-value,
1202

unsafe-s16vector-ref, 1200
unsafe-s16vector-set!, 1200
unsafe-set-box!, 1198
unsafe-set-box*!, 1198
unsafe-set-mcar!, 1197
unsafe-set-mcdr!, 1197
unsafe-string-length, 1199
unsafe-string-ref, 1199
unsafe-string-set!, 1199
unsafe-struct*-cas!, 1201
unsafe-struct*-ref, 1201
unsafe-struct*-set!, 1201
unsafe-struct-ref, 1201
unsafe-struct-set!, 1201
unsafe-u16vector-ref, 1200
unsafe-u16vector-set!, 1201
unsafe-unbox, 1198
unsafe-unbox*, 1198
unsafe-undefined, 1211
unsafe-vector*-cas!, 1199
unsafe-vector*-length, 1198
unsafe-vector*-ref, 1198
unsafe-vector*-set!, 1198
unsafe-vector-length, 1198
unsafe-vector-ref, 1198
unsafe-vector-set!, 1198
unsafe-weak-hash-iterate-first,

1203
unsafe-weak-hash-iterate-key, 1203
unsafe-weak-hash-iterate-
key+value, 1204

unsafe-weak-hash-iterate-next, 1203
unsafe-weak-hash-iterate-pair, 1204
unsafe-weak-hash-iterate-value,

1204
unsupplied-arg?, 626
unsyntax, 796
unsyntax-splicing, 796
untrace, 1234
'up, 1089

'update, 873
use-collection-link-paths, 1226
use-compiled-file-check, 998
use-compiled-file-paths, 998
use-site scope, 38
use-user-specific-search-paths,

1226
USER, 1106
user’s home directory, 1106
user-execute-bit, 1132
user-read-bit, 1132
user-write-bit, 1132
USERPROFILE, 1106
Using Places, 777
UTF-8-permissive, 271
Utilities for Building New Combinators, 665
valid hash index, 379
value, 12
Value Output Hook, 956
value-blame, 668
value-contract, 667
values, 699
variable, 20
variable reference, 116
Variable References and #%top, 115
variable-reference->empty-
namespace, 990

variable-reference->instance, 1082
variable-reference->module-base-
phase, 991

variable-reference->module-
declaration-inspector, 991

variable-reference->module-path-
index, 990

variable-reference->module-source,
990

variable-reference->namespace, 990
variable-reference->phase, 991
variable-reference->resolved-
module-path, 990

variable-reference-constant?, 989
variable-reference-from-unsafe?,

991

1294

variable-reference?, 989
Variables and Locations, 20
vector, 358
vector, 358
vector*-length, 359
vector*-ref, 359
vector*-set!, 359
vector->immutable-vector, 360
vector->list, 359
vector->pseudo-random-generator,

205
vector->pseudo-random-generator!,

206
vector->values, 361
vector-append, 362
vector-argmax, 366
vector-argmin, 365
vector-cas!, 359
vector-copy, 364
vector-copy!, 360
vector-count, 365
vector-drop, 363
vector-drop-right, 363
vector-fill!, 360
vector-filter, 365
vector-filter-not, 365
vector-immutable, 358
vector-immutable/c, 597
vector-immutableof, 597
vector-length, 358
vector-map, 361
vector-map!, 362
vector-member, 366
vector-memq, 367
vector-memv, 366
vector-ref, 359
vector-set!, 359
vector-set*!, 361
vector-set-performance-stats!, 1175
vector-sort, 367
vector-sort!, 368
vector-split-at, 363

vector-split-at-right, 364
vector-take, 362
vector-take-right, 363
vector/c, 597
vector?, 358
vectorof, 596
Vectors, 358
version, 1174
visits, 43
'vm, 1172
Void, 479
void, 479
void?, 479
weak box, 1184
Weak Boxes, 1184
weak references, 17
weak-box-value, 1184
weak-box?, 1184
weak-set, 439
weak-seteq, 440
weak-seteqv, 439
when, 140
will, 1186
will executor, 1186
will-execute, 1187
will-executor?, 1187
will-register, 1187
will-try-execute, 1187
Wills and Executors, 1186
'windows, 1089
'windows, 1172
Windows Path Representation, 1105
Windows Paths, 1101
with-collapsible-contract-
continuation-mark, 674

with-continuation-mark, 158
with-contract, 636
with-contract-continuation-mark,

651
with-deep-time-limit, 1073
with-disappeared-uses, 860
with-handlers, 711

1295

with-handlers*, 712
with-input-from-bytes, 907
with-input-from-file, 876
with-input-from-string, 907
with-intercepted-logging, 1162
with-limits, 1072
with-logging-to-port, 1163
with-method, 540
with-output-to-bytes, 906
with-output-to-file, 877
with-output-to-string, 906
with-syntax, 790
with-syntax*, 862
'word, 1172
would-be-future, 772
wrap-evt, 753
writable<%>, 561
write, 943
'write, 1042
'write, 1111
write-byte, 932
write-bytes, 933
write-bytes-avail, 933
write-bytes-avail*, 934
write-bytes-avail-evt, 935
write-bytes-avail/enable-break, 934
write-char, 932
write-special, 934
write-special-avail*, 934
write-special-evt, 935
write-string, 933
write-to-file, 1122
writeln, 944
Writing, 943
wrong-syntax, 859
xor, 174
yield, 411
zero?, 180
'zl, 282
'zp, 282
'zs, 282
{, 56

|, 51
}, 56
„.a, 257
„.s, 259
„.v, 258
„?, 797
„@, 797
„a, 247
„e, 251
„r, 252
„s, 250
„v, 249
λ, 118

1296

	1 Language Model
	1.1 Evaluation Model
	1.1.1 Sub-expression Evaluation and Continuations
	1.1.2 Tail Position
	1.1.3 Multiple Return Values
	1.1.4 Top-Level Variables
	1.1.5 Objects and Imperative Update
	1.1.6 Object Identity and Comparisons
	1.1.7 Garbage Collection
	1.1.8 Procedure Applications and Local Variables
	1.1.9 Variables and Locations
	1.1.10 Modules and Module-Level Variables
	1.1.11 Continuation Frames and Marks
	1.1.12 Prompts, Delimited Continuations, and Barriers
	1.1.13 Threads
	1.1.14 Parameters
	1.1.15 Exceptions
	1.1.16 Custodians

	1.2 Syntax Model
	1.2.1 Identifiers, Binding, and Scopes
	1.2.2 Syntax Objects
	1.2.3 Expansion (Parsing)
	1.2.4 Compilation
	1.2.5 Namespaces
	1.2.6 Inferred Value Names
	1.2.7 Cross-Phase Persistent Module Declarations

	1.3 The Reader
	1.3.1 Delimiters and Dispatch
	1.3.2 Reading Symbols
	1.3.3 Reading Numbers
	1.3.4 Reading Extflonums
	1.3.5 Reading Booleans
	1.3.6 Reading Pairs and Lists
	1.3.7 Reading Strings
	1.3.8 Reading Quotes
	1.3.9 Reading Comments
	1.3.10 Reading Vectors
	1.3.11 Reading Structures
	1.3.12 Reading Hash Tables
	1.3.13 Reading Boxes
	1.3.14 Reading Characters
	1.3.15 Reading Keywords
	1.3.16 Reading Regular Expressions
	1.3.17 Reading Graph Structure
	1.3.18 Reading via an Extension
	1.3.19 Reading with C-style Infix-Dot Notation

	1.4 The Printer
	1.4.1 Printing Symbols
	1.4.2 Printing Numbers
	1.4.3 Printing Extflonums
	1.4.4 Printing Booleans
	1.4.5 Printing Pairs and Lists
	1.4.6 Printing Strings
	1.4.7 Printing Vectors
	1.4.8 Printing Structures
	1.4.9 Printing Hash Tables
	1.4.10 Printing Boxes
	1.4.11 Printing Characters
	1.4.12 Printing Keywords
	1.4.13 Printing Regular Expressions
	1.4.14 Printing Paths
	1.4.15 Printing Unreadable Values
	1.4.16 Printing Compiled Code

	2 Notation for Documentation
	2.1 Notation for Module Documentation
	2.2 Notation for Syntactic Form Documentation
	2.3 Notation for Function Documentation
	2.4 Notation for Structure Type Documentation
	2.5 Notation for Parameter Documentation
	2.6 Notation for Other Documentation

	3 Syntactic Forms
	3.1 Modules: IdentifierColorblackmodule, IdentifierColorblackmodule*, ...
	3.2 Importing and Exporting: IdentifierColorblackrequire and IdentifierColorblackprovide
	3.2.1 Additional IdentifierColorblackrequire Forms
	3.2.2 Additional IdentifierColorblackprovide Forms

	3.3 Literals: IdentifierColorblackquote and IdentifierColorblack#%datum
	3.4 Expression Wrapper: IdentifierColorblack#%expression
	3.5 Variable References and IdentifierColorblack#%top
	3.6 Locations: IdentifierColorblack#%variable-reference
	3.7 Procedure Applications and IdentifierColorblack#%app
	3.8 Procedure Expressions: IdentifierColorblacklambda and IdentifierColorblackcase-lambda
	3.9 Local Binding: IdentifierColorblacklet, IdentifierColorblacklet*, IdentifierColorblackletrec, ...
	3.10 Local Definitions: IdentifierColorblacklocal
	3.11 Constructing Graphs: IdentifierColorblackshared
	3.12 Conditionals: IdentifierColorblackif, IdentifierColorblackcond, IdentifierColorblackand, and IdentifierColorblackor
	3.13 Dispatch: IdentifierColorblackcase
	3.14 Definitions: IdentifierColorblackdefine, IdentifierColorblackdefine-syntax, ...
	3.14.1 IdentifierColorblackrequire Macros
	3.14.2 IdentifierColorblackprovide Macros

	3.15 Sequencing: IdentifierColorblackbegin, IdentifierColorblackbegin0, and IdentifierColorblackbegin-for-syntax
	3.16 Guarded Evaluation: IdentifierColorblackwhen and IdentifierColorblackunless
	3.17 Assignment: IdentifierColorblackset! and IdentifierColorblackset!-values
	3.18 Iterations and Comprehensions: IdentifierColorblackfor, IdentifierColorblackfor/list, ...
	3.18.1 Iteration and Comprehension Forms
	3.18.2 Deriving New Iteration Forms
	3.18.3 Do Loops

	3.19 Continuation Marks: IdentifierColorblackwith-continuation-mark
	3.20 Quasiquoting: IdentifierColorblackquasiquote, IdentifierColorblackunquote, and IdentifierColorblackunquote-splicing
	3.21 Syntax Quoting: IdentifierColorblackquote-syntax
	3.22 Interaction Wrapper: IdentifierColorblack#%top-interaction
	3.23 Blocks: IdentifierColorblackblock
	3.24 Internal-Definition Limiting: IdentifierColorblack#%stratified-body
	3.25 Performance Hints: IdentifierColorblackbegin-encourage-inline
	3.26 Importing Modules Lazily: IdentifierColorblacklazy-require

	4 Datatypes
	4.1 Booleans and Equality
	4.1.1 Boolean Aliases

	4.2 Numbers
	4.2.1 Number Types
	4.2.2 Generic Numerics
	4.2.3 Flonums
	4.2.4 Fixnums
	4.2.5 Extflonums

	4.3 Strings
	4.3.1 String Constructors, Selectors, and Mutators
	4.3.2 String Comparisons
	4.3.3 String Conversions
	4.3.4 Locale-Specific String Operations
	4.3.5 Additional String Functions
	4.3.6 Converting Values to Strings

	4.4 Byte Strings
	4.4.1 Byte String Constructors, Selectors, and Mutators
	4.4.2 Byte String Comparisons
	4.4.3 Bytes to/from Characters, Decoding and Encoding
	4.4.4 Bytes to Bytes Encoding Conversion
	4.4.5 Additional Byte String Functions

	4.5 Characters
	4.5.1 Characters and Scalar Values
	4.5.2 Character Comparisons
	4.5.3 Classifications
	4.5.4 Character Conversions

	4.6 Symbols
	4.7 Regular Expressions
	4.7.1 Regexp Syntax
	4.7.2 Additional Syntactic Constraints
	4.7.3 Regexp Constructors
	4.7.4 Regexp Matching
	4.7.5 Regexp Splitting
	4.7.6 Regexp Substitution

	4.8 Keywords
	4.9 Pairs and Lists
	4.9.1 Pair Constructors and Selectors
	4.9.2 List Operations
	4.9.3 List Iteration
	4.9.4 List Filtering
	4.9.5 List Searching
	4.9.6 Pair Accessor Shorthands
	4.9.7 Additional List Functions and Synonyms
	4.9.8 Immutable Cyclic Data

	4.10 Mutable Pairs and Lists
	4.10.1 Mutable Pair Constructors and Selectors

	4.11 Vectors
	4.11.1 Additional Vector Functions

	4.12 Boxes
	4.13 Hash Tables
	4.13.1 Additional Hash Table Functions

	4.14 Sequences and Streams
	4.14.1 Sequences
	4.14.2 Streams
	4.14.3 Generators

	4.15 Dictionaries
	4.15.1 Dictionary Predicates and Contracts
	4.15.2 Generic Dictionary Interface
	4.15.3 Dictionary Sequences
	4.15.4 Contracted Dictionaries
	4.15.5 Custom Hash Tables

	4.16 Sets
	4.16.1 Hash Sets
	4.16.2 Set Predicates and Contracts
	4.16.3 Generic Set Interface
	4.16.4 Custom Hash Sets

	4.17 Procedures
	4.17.1 Keywords and Arity
	4.17.2 Reflecting on Primitives
	4.17.3 Additional Higher-Order Functions

	4.18 Void
	4.19 Undefined

	5 Structures
	5.1 Defining Structure Types: IdentifierColorblackstruct
	5.2 Creating Structure Types
	5.3 Structure Type Properties
	5.4 Generic Interfaces
	5.5 Copying and Updating Structures
	5.6 Structure Utilities
	5.6.1 Additional Structure Utilities

	5.7 Structure Type Transformer Binding

	6 Classes and Objects
	6.1 Creating Interfaces
	6.2 Creating Classes
	6.2.1 Initialization Variables
	6.2.2 Fields
	6.2.3 Methods

	6.3 Creating Objects
	6.4 Field and Method Access
	6.4.1 Methods
	6.4.2 Fields
	6.4.3 Generics

	6.5 Mixins
	6.6 Traits
	6.7 Object and Class Contracts
	6.8 Object Equality and Hashing
	6.9 Object Serialization
	6.10 Object Printing
	6.11 Object, Class, and Interface Utilities
	6.12 Surrogates

	7 Units
	7.1 Creating Units
	7.2 Invoking Units
	7.3 Linking Units and Creating Compound Units
	7.4 Inferred Linking
	7.5 Generating A Unit from Context
	7.6 Structural Matching
	7.7 Extending the Syntax of Signatures
	7.8 Unit Utilities
	7.9 Unit Contracts
	7.10 Single-Unit Modules
	7.11 Single-Signature Modules
	7.12 Transformer Helpers

	8 Contracts
	8.1 Data-structure Contracts
	8.2 Function Contracts
	8.3 Parametric Contracts
	8.4 Lazy Data-structure Contracts
	8.5 Structure Type Property Contracts
	8.6 Attaching Contracts to Values
	8.6.1 Nested Contract Boundaries
	8.6.2 Low-level Contract Boundaries

	8.7 Building New Contract Combinators
	8.7.1 Blame Objects
	8.7.2 Contracts as structs
	8.7.3 Obligation Information in Check Syntax
	8.7.4 Utilities for Building New Combinators

	8.8 Contract Utilities
	8.9 blueIdentifierColorracket/contract/base
	8.10 Collapsible Contracts
	8.11 Legacy Contracts
	8.12 Random generation

	9 Pattern Matching
	9.1 Additional Matching Forms
	9.2 Extending IdentifierColorblackmatch
	9.3 Library Extensions

	10 Control Flow
	10.1 Multiple Values
	10.2 Exceptions
	10.2.1 Error Message Conventions
	10.2.2 Raising Exceptions
	10.2.3 Handling Exceptions
	10.2.4 Configuring Default Handling
	10.2.5 Built-in Exception Types
	10.2.6 Additional Exception Functions

	10.3 Delayed Evaluation
	10.3.1 Additional Promise Kinds

	10.4 Continuations
	10.4.1 Additional Control Operators

	10.5 Continuation Marks
	10.6 Breaks
	10.7 Exiting

	11 Concurrency and Parallelism
	11.1 Threads
	11.1.1 Creating Threads
	11.1.2 Suspending, Resuming, and Killing Threads
	11.1.3 Synchronizing Thread State
	11.1.4 Thread Mailboxes

	11.2 Synchronization
	11.2.1 Events
	11.2.2 Channels
	11.2.3 Semaphores
	11.2.4 Buffered Asynchronous Channels

	11.3 Thread-Local Storage
	11.3.1 Thread Cells
	11.3.2 Parameters

	11.4 Futures
	11.4.1 Creating and Touching Futures
	11.4.2 Future Semaphores
	11.4.3 Future Performance Logging

	11.5 Places
	11.5.1 Using Places
	11.5.2 Places Logging

	11.6 Engines

	12 Macros
	12.1 Pattern-Based Syntax Matching
	12.2 Syntax Object Content
	12.3 Syntax Object Bindings
	12.4 Syntax Transformers
	12.4.1 IdentifierColorblackrequire Transformers
	12.4.2 IdentifierColorblackprovide Transformers
	12.4.3 Keyword-Argument Conversion Introspection

	12.5 Syntax Parameters
	12.5.1 Syntax Parameter Inspection

	12.6 Local Binding with Splicing Body
	12.7 Syntax Object Properties
	12.8 Syntax Taints
	12.9 Expanding Top-Level Forms
	12.9.1 Information on Expanded Modules

	12.10 File Inclusion
	12.11 Syntax Utilities
	12.11.1 Creating formatted identifiers
	12.11.2 Pattern variables
	12.11.3 Error reporting
	12.11.4 Recording disappeared uses
	12.11.5 Miscellaneous utilities

	13 Input and Output
	13.1 Ports
	13.1.1 Encodings and Locales
	13.1.2 Managing Ports
	13.1.3 Port Buffers and Positions
	13.1.4 Counting Positions, Lines, and Columns
	13.1.5 File Ports
	13.1.6 String Ports
	13.1.7 Pipes
	13.1.8 Structures as Ports
	13.1.9 Custom Ports
	13.1.10 More Port Constructors, Procedures, and Events

	13.2 Byte and String Input
	13.3 Byte and String Output
	13.4 Reading
	13.5 Writing
	13.6 Pretty Printing
	13.6.1 Basic Pretty-Print Options
	13.6.2 Per-Symbol Special Printing
	13.6.3 Line-Output Hook
	13.6.4 Value Output Hook
	13.6.5 Additional Custom-Output Support

	13.7 Reader Extension
	13.7.1 Readtables
	13.7.2 Reader-Extension Procedures
	13.7.3 Special Comments

	13.8 Printer Extension
	13.9 Serialization
	13.10 Fast-Load Serialization
	13.11 Cryptographic Hashing

	14 Reflection and Security
	14.1 Namespaces
	14.2 Evaluation and Compilation
	14.3 The blueIdentifierColorracket/load Language
	14.4 Module Names and Loading
	14.4.1 Resolving Module Names
	14.4.2 Compiled Modules and References
	14.4.3 Dynamic Module Access

	14.5 Impersonators and Chaperones
	14.5.1 Impersonator Constructors
	14.5.2 Chaperone Constructors
	14.5.3 Impersonator Properties

	14.6 Security Guards
	14.7 Custodians
	14.8 Thread Groups
	14.9 Structure Inspectors
	14.10 Code Inspectors
	14.11 Plumbers
	14.12 Sandboxed Evaluation
	14.12.1 Security Considerations
	14.12.2 Customizing Evaluators
	14.12.3 Interacting with Evaluators
	14.12.4 Miscellaneous

	14.13 The blueIdentifierColorracket/repl Library
	14.14 Linklets and the Core Compiler

	15 Operating System
	15.1 Paths
	15.1.1 Manipulating Paths
	15.1.2 More Path Utilities
	15.1.3 Unix and Mac OS Paths
	15.1.4 Windows Paths

	15.2 Filesystem
	15.2.1 Locating Paths
	15.2.2 Files
	15.2.3 Directories
	15.2.4 Detecting Filesystem Changes
	15.2.5 Declaring Paths Needed at Run Time
	15.2.6 More File and Directory Utilities

	15.3 Networking
	15.3.1 TCP
	15.3.2 UDP

	15.4 Processes
	15.4.1 Simple Subprocesses

	15.5 Logging
	15.5.1 Creating Loggers
	15.5.2 Logging Events
	15.5.3 Receiving Logged Events
	15.5.4 Additional Logging Functions

	15.6 Time
	15.6.1 Date Utilities

	15.7 Environment Variables
	15.8 Environment and Runtime Information
	15.9 Command-Line Parsing
	15.10 Additional Operating System Functions

	16 Memory Management
	16.1 Weak Boxes
	16.2 Ephemerons
	16.3 Wills and Executors
	16.4 Garbage Collection
	16.5 Phantom Byte Strings

	17 Unsafe Operations
	17.1 Unsafe Numeric Operations
	17.2 Unsafe Character Operations
	17.3 Unsafe Data Extraction
	17.4 Unsafe Extflonum Operations
	17.5 Unsafe Impersonators and Chaperones
	17.6 Unsafe Undefined

	18 Running Racket
	18.1 Running Racket or GRacket
	18.1.1 Initialization
	18.1.2 Exit Status
	18.1.3 Init Libraries
	18.1.4 Command Line
	18.1.5 Language Run-Time Configuration

	18.2 Libraries and Collections
	18.2.1 Collection Search Configuration
	18.2.2 Collection Links
	18.2.3 Collection Paths and Parameters

	18.3 Interactive Help
	18.4 Interactive Module Loading
	18.4.1 Entering Modules
	18.4.2 Loading and Reloading Modules

	18.5 Debugging
	18.5.1 Tracing

	18.6 Kernel Forms and Functions

	Bibliography
	Index
	Index

