The Racket Reference

Version 7.4

Matthew Flatt
and PLT

August 4, 2019

This manual defines the core Racket language and describes its most prominent libraries.
The companion manual The Racket Guide provides a friendlier (though less precise and less
complete) overview of the language.

#lang racket/base package: base
#lang racket

Unless otherwise noted, the bindings defined in this manual are exported by the
racket/base and racket languages.

The source of this
manual is available
on |GitHubl

The racket/base
library is much
smaller than the
racket library and
will typically load
faster.

The racket library
combines
racket/base,
racket/bool,
racket/bytes,
racket/class,
racket/cmdline,
racket/contract,
racket/dict,
racket/file,
racket/format,
racket/function,
racket/future,
racket/include,
racket/list,
racket/local,
racket/match,
racket/math,
racket/path,
racket/place,
racket/port,
racket/pretty,
racket/promise,
racket/sequence,
racket/set,
racket/shared,
racket/stream,
racket/string,
racket/system,
racket/tcp,
racket/udp,
racket/unit, and
racket/vector.

https://github.com/racket/racket/tree/master/pkgs/racket-doc/scribblings/reference
https://pkgs.racket-lang.org/package/base

Contents

1 Language Model| 12
[LT EvaluationModell 12
|I1.1.1 Sub-expression Evaluation and Continuations| 12
12 TaillPosition 12
[I.1.3 Multiple Return Values| 13

4 op-Level Variables| 14

. Objects and Imperative Update| 15

1.6 Object [dentity and COMPAMSOns| . - . « « o v v o oo 17
II.1.7 Garbage Collection| 17

1.1.8 Procedure Applications and Local Variables| 18
[LI9 VariablesandTocafions . . - « -« v v v vt v v v oo 20
ILL1.10Modules and Module-Level Varables|. 20
[LI.I11 _Continuation Frames and Marks|. 26
11.1.12 Prompts, Delimited Continuations, and Barriers| 27
MII3_Threads . - . - oo oot oo e e e 27
[1T4 Parameters]o it 28
[LII5 Exceptions| 28
[[LTT6 Custodians] . . . - o o v v oot e e e 29

[1.2° SyntaxModel], 30
|[1.2.1 Identifiers, Binding, and Scopes|. 30
[L.2.2 Syntax Objects|. 32

|| 23 Exﬁanswn 1 Earsméf] 33
[24 Compilation] 46

M235 NAMOSPACos] . - - « v o oo 46
1.2.6 Inferred Value Namesl 48
1.2 ross-Phase Persistent Module Declarations| 49
L3 TheReaded 50
1.3.1 Delimiters and Dispatch| 51
M32 Reading Symbol§ . . -« o o oo oo 53
[1.3.3 Reading Numbers| 53
[I.3.4 Reading Extflonums| 55
.......................... 56

|| §§ Eea@mé Ealrs an§ !zlsts| 56
[[37 Reading Strings] 57

[T38 ReadingQuotes| 59
[1.3.9 Reading Comments| 59
[I.3.10 Reading Vectors| 60

. Reading Structures|. L 61

3. Reading Hash Tables|, 61
[T313 Reading BOXES|. o . v v i i e 62
|1.3.14 Reading Characters| 62
[I.3.15 Reading Keywords|. 63
[[3.16 Reading Regular Expressions| 63

[1.3.17 Reading Graph Structure] 63

[1.3.18 Reading viaan Extension| 64
[1.3.19 Reading with C-style Infix-Dot Notation| 65
LA TREPHNEN - -« « o v v o e e et e e e e 66
1.4.1 Printing Symbols| 67
MA2 Prnfng NUmDers| . . . o o o o oooee e 68
[1.4.3 Printing Extflonums| 68
1.4.4 Printing Booleans|, 69
....................... 69
4.6 P O SINGS| e e e e 70
4. Printing Vectors| e 71
TA8 Prnfng STUCTIES . . « « « o o o oo oo 71
[1.49 Printing HashTables|. 72
[1.4.10 Printing Boxes| L. 73
4. Printing Characters| 73

4 P o K ds|. 73
T413 Printing Regular EXDIESSIONS] . . « « « o o o o oo oo 74
[1.4.14 Printing Paths|, 74

[L.4.15 Printing Unreadable Values| 74
[[.416 Printing Compiled Code] 74

[2__Notation for Documentation| 77
2.1 Notation for Module Documentationl 77
2.2 Notation for Syntactic Form Documentation| 77
2.3 Notation for Function Documentation] - - - - - - « « « « « oot . 79
2.4 Notation for Structure Type Documentation|. 81
2.5 Notation for Parameter Documentation| 81
2.6 Notation for Other Documentationl 82

3 Syntactic Forms| 83
3. Modules: module, module*,..| 83
3.2 Importing and Exporting: require and provide| 88

(21 Additional require Forms| 108
[B22 Additional provide Forms| 112

3.3 Literals: quote and #/datum| 112
.................... 13
....................... 115
[B.6 Tocations: #j4variable-referencel v . v v ... 116
3.7 Procedure Applications and #%app| 116
------------ 118

. ocal Binding: let, let*, letrec,..| 122
13.10 Local Definitions: locall 126
[3.11 _Constructing Graphs: shared| 126
[B:12 Conditionals: if,cond,and,andox] 129
13.13 Dispatch: case|. 132

[3.14 Definitions: define, define-syntax, .| 133
BI4T require Macros|. 137

[3.14.2 provide Macros|. 138
|§|§ Seguencmg: begin, begin0, and begin-for-syntax| 138
3.16 _Guarded Evaluation: when and unlessl 140
[3.17 _Assignment: set! and set!-values|. 141
[3.18 Tterations and Comprehensions: for, for/Iist, .| 142
3.18.1 Iteration and Comprehension Forms| 142

E i SZ Eenvmg New Iteration Forms| 153
|§I§; DoLoops| o 158

3.20 Quasiquoting: quasiquote, unquote, and unquote-splicing] 159
[B:2T Syntax Quoting: quote-syntax] 161
[3:22" TInteraction Wrapper: #jtop-interaction] 162
323 Blocks: block

3.24 Internal-Definition Limiting: #/stratified-body| 162

. Performance Hints: begin-encourage-inline 163
B26 TImporting Modules Lazily: Lazy-require 164
) D 167
4.1 Booleansand Equality|, 167
BIT Boolean Allases i 173
B2 Numbers 175
4.2.1 NumberTypes| 176
H22 Generlc NUMELICS - « « « v v vt v oot 183
B23 Flonumsl - .« o v v oot e e 215
B2 TXOUMS - - - o oo e e 221
M25 Extflonumsl. 225

B3 SUIMEY -« o v oo e e 230
@F31 String Constructors, Selectors, and Mutators| 231
4372 String COMPArisons| o v v v v et 235

K4.3.3 String Conversions|.o i e 239
K.3.4 Locale-Specific String Operations|. 241
4.3.5 Additional String Functions| 0oL 242
B3.6 Converting Values (0 SIINES . - « - « v o o oo oo 246

B4 " ByteStings| 259
41 Byte String Constructors, Selectors, and Mutators| 260
4.4.2 Byte String Comparisons| 265
4.4.3 Bytes to/from Characters, Decoding and Encoding| 266

g4 tes to Bytes Encoding Conversion| 271
G435 Additional Byt String FUnclions]« v v oo s 275
BSCRaraClers] o oot e 276
B51 Characters and Scalar Values| 276
4.5.2 Character Comparisons| 277
B33 Classifications] . - -« « v v vvoe e 281
454 Character Conversions| 282

4.6 bols| 284
4.7 Regular Expressions| 287
4.7.1 RegexpSyntax|. 288
4772 Additional Syntactic Constraints] 293
173 Regexp CONSIUGIONS] . - - - - -« o oo oo 294

. egexp Matching|, 298

K.7.5 RegexpSplitting| o 309
4.7.6 Regexp Substitution| L 310

A8 Keywords| 313
A0 Pairsand Listsl o 314
4.9.1 Pair Constructors and Selectors| 314
[4.9.2 ListOperations|. i 317

493 Tustlteration| 319

494 Listhltering| L oL o 322
105 LBCSearching] . . - . . o o oo 326
9.6 Pair AccessorShorthands] 329
4.9.7 Additional List Functions and Synonyms| 336
4.9.8 Immutable CyclicData 355
4.10 Mutable Pairsand Liastsl oo 356
[4.10.1 Mutable Pair Constructors and Selectors] 357
BIT Vectors] . .« o v v o e e e e e e e 358
4.11.1 Additional Vector Functionsl 361
BIZ7BOXES . - o v v o o e e 368
413 Hash Tables| 370
K4.13.1 Additional Hash Table Functionsl 381
[4.14 Sequences and Streams| 383
BIZT SeQUEMCES . . - o o oo 383
BIEZSIeamsl - - - o o v oooe e e 404
K143 Generatorsl 410
[AI5 Dictionaries] 415
4.15.1 Dictionary Predicates and Contracts|. 415
B152 Generic Dictionary INerface] o« oo 418
B153 DIctionary SeqUuences . . .« « o o oo 431
4154 Contracted Dictionartesl L. 432
MI55 CustomHashTables| 433
BI6Sets. . . o oo 438
4.16.1 HashSets| 438
4.16.2 Set Predicates and Contractsl. 441
4163 Generic SetInterfacel L. 443
4164 CustomHashSets| 454
K417 Procedures| 458
4.17.1 Keywordsand Arity| 460
T172 Reflecting on PRIIAVES] o oo 471
1173 Additional Higher-Order Functions| 471

418 Voidl e 479
4.19 Undefined 479

S Structures| 480

5.1 Defining Structure Types: struct| 481
[5.2 Creating Structure Types|. 4838
B3 Structure Type PIOPErties] - . . - - - -« o oo 492
B4 GenericInterfacesl o 494
5.5 Copying and Updating Structures| 500
L6 Stucture Utilities] L 501
D.6.1 Additional Structure Utilliges|o L 504

5.7 Structure Type Transformer Binding| 506
6 Classes and Objects| 511
6.1 Creating Interfaces|. 512
6. reating CIasses]t 513
621 Tnitialization Vadables|t ... 528

622 Fieldsl. 530

623 Methods 530

[6.3 Creating Objects| 536
[6.4Tield and Method Access 538
641 Methodsl 538

642 Fieldsl. 541
643 Genericsl L 542

65 Mixinso 543
6.6 Traitsl e 543
6.7 Object and Class Contracts| 547
. ect Equality and Hashing| 557
69 ODBjoct SeMaliZation] - - « . « « « o o oo 559
[6.10 ObjectPrinting|. 560
6.11 Object, Class, and Interface Utilities| 561
6,12 SUIrogates]o 569
Z_Units 572
[/.1 Creaing Units| 572
72 TVOKING UMM - . -« o v o oo oo oo e 576
[73—Linking Units and Creating Compound Units| 577
. nferred Linking| o 578
7.5 Generating A Unit from Context| 581
[7.6 Structural Matching| 0 L. 582
[77_ Extending the Syntax of STgnaiires] 583
T8 UnitUGHGEES - - - -« v o v e e e e e e e 583
[79 UnitContracts i i 584
[7.10 Single-Unit Modules|., 585
[7.11 Single-Signature Modules|, 585
[7.12° Transformer Helpers|, 586
8 Contracts 588
8.1 _ Data-structure Contracts| 589

8.3 Parametric Contracts| 626
8.4 Lazy Data-structure Contracts| 629
8. structure Type Property Contracts|. 630
8.6 Attaching Contracts to Values| 633

3.6.1 Nested Contract Boundaries

8.7 Building New Contract Combinators| 643
3 B Objects| e 652
......................... 657

8.7.3 Obligation Information in Check Syntax| 663
B74 Utlities for Bullding New Combinators|. 665

8.8 Contract Utilitiesl. 666
8.9 racket/contract/basel. e 673
[8.10 Collapsible Contracts| 673
8. egacy Contracts|. 677
BI2Z Random eneralion] « v o o oo e 678
9 Pattern Matching 682
9.1 Additional Matching Forms| 690
02 EXendmg matohll. . . .« o o oo e 694
9.3 Library Extensions|. 697
10_Control Flow| 699
[10.1 Multple Values| 699
[10.2° Exceptions| 700
[10.2.1 Error Message Conventions| 700

0.2. Raising Exceptions| 701
(023 Handling EXCEHONS] . . - . - -« o oo oo oo 710
M024 Configuring Default Handling] o o oo oo 712
[10.2.5 Built-in Exception Types| 714
[10.2.6 Additional Exception Functions| 722

0. Delayed Evaluation| 723
[[03 1 Additional Promise Kinds] 724
[10.4 Continuations| 725
[10.4.1 Additional Control Operators| 732
[[0.5 ContinuationMarks| 737
M06 Breaksl o oo ot 741
10.7 Exiting] e 744
111 Concurrency and Parallelism| 745
LI _Threadsl. o o oo 745
11.1.1 Creating Threads|. 745
[TT.T.2" Suspending, Resuming, and Killing Threads| 746
[11.1.3 Synchronizing Thread State] 748
11.1.4 Thread Mailboxes| 749

MLZI Eventsd . . .« . o oot 750
0122 Channelsl L 758
[I1.2.3 Semaphores| L 759

2. uffered Asynchronous Channels|. 761

. read-Local Storage] 765
0131 Thread Cellsl o o oo 765
[[132 Parametersl 767
DLAFutures o o 770
11.4.1 Creating and Touching Futures| 771

4. uture Semaphores|o 773

MT43 Future Performance LOREME] . . .« « o o o ov oo 773
OL5PIAacEs . - o o o o e e e e e e e 776
[I15.1 UsmgPlaces| 777

|| !.3.2 PlacesLogging]. i 783
|| |§ Engmes| 783

12 Macros| 786
12.1 Pattern-Based Syntax Matching| 786
............................ 798

. yntax Object Bindings| 808
[12.4 Syntax Transformers|. 812
12.4.1 require Transformers| 835

||Z§Z Erovide !ransformers 838
|| Z.Z.g Keyword-Argument Conversion Introspection| 841

[[235 Syntax Parameters] o oo v i v 842
[12.5.1 Syntax Parameter Inspection| 844

[12.6 Local Binding with Splicing Body| 845
........................... 847
B Syntax Taints|. 850
[12.9 Expanding Top-Level Forms]|. 853
[12.9.1 Information on Expanded Modules| 854
U210 FilelInclusion| 856
[12.11 Syntax Utihties] 857
.................... 857
(2112 Patternvariables] o o oo 859
[12.11.3 Errorreporting| i 859
[12.11.4 Recording disappeareduses| 860
[[2.I11.5 Miscellaneous utilities]o v vt ... 861

113 Input and Output| 863
..................................... 863

[I3.1.1 Encodings and Locales| 864
13.1.2 Managing Ports] 865
313 PortBuffersand Positions]« v v oo e v 867
[13.1.4 Counting Positions, Lines, and Columns| 869

[13.1.6 String Ports| 879
13.1.7 Pipes| 882
(318 Stucturesas POTTS . . -« « v v v vvoee e e e 883
(319 CustomPortsl. 883
113.1.10 More Port Constructors, Procedures, and Events| 903

[13.2° Byteand StringInput| 921
[13.3 Byte and String Output| 932
34 Reading - . . - o oo 936
13.5 Writing] e 943
6 P P O 950
[T3.6.T Basic Pretty-Print Options|o ... 952
[13.6.2 Per-Symbol Special Printing|. 953
[13.6.3 Limne-OutputHook| 955

[[3:6.4 Value Output Hook] 956
|| 3.6.3 Additional Custom-Output SUPPOrt v v v oot 957

(37 Reader EXIEnsion]« oo vvvvvo e e 959
[I377.1 Readtables| 959
13.7.2 R r-Extension Pr eS| . . o 965
[13.7.3 Special Comments|. 965
38 _PONEr EXEOSION . - - « « « « v o eoeoee e e e e e e e 966
3.9 Serialization| 968
13.10 Fast-Load Serializationl 979
[13.1T Cryptographic Hashing| 980
|14 Reflection and Security| 982
[14.1 Namespaces| 982
[14.2 Evaluation and Compilation| 991
(33 The racket/Toad Language]« oo 1003
......................... 1004
MA41 Resolving Module Names| o o o oo 1004
[14.4.2 Compiled Modules and References| 1008
[14.4.3 Dynamic Module Access| 1013
[14.5 Impersonators and Chaperones| 1017

[[451 Tmpersonator Constructors|. 1021
[[452 Chaperone Constructors| 1032

M4353 Tmpersonator PIODEItios] . . .« « « « o o o oo e 1040
[14.6 Security Guards| 1041
4.7 Custodians| 1043
[14.8 Thread Groups| 1046
4.9 Structure Inspectors| 1047
MA10 Code TSPOCIONS] - « « « + o o e e e e e 1050
AT Pumbersl oot e e e 1051
[[412 Sandboxed Evaluationl v v v vt 1053
[14.12.1 Security Considerations| 1058
MA12.2 Customizing EVAalualors] . - . « « « « o o v oo e e 1058

[14.13 The racket/repl Library|
||Z. 14 Linklets and the Core Zfomplleﬂ

[15_Operating System|
[[5.1_Paths]

[15.2 Filesystem|

115.2.4 Detecting Filesystem Changes|.

[15.2.5 Declaring Paths Needed at Run Time|

ore rie an

irectory Utilities|

[15.3 Networking|
1531 TCP

1532 UDP

[15.4.1 Simple Subprocesses|

[15.5 Logging

. reating Loggers|

[15.3.2 Logging Events|

115.9 Command-LineParsing|

|15.10 Additional Operating System Functions|.

[16 Memory Management]

[16.2 Ephemerons|

[16.4 Garbage Collection| .
[T6.5 Phantom Byte Strings)|

|17 Unsafe Operations|

|I'7.1 Unsafte Numeric Operations|

|1'7.2 Unsafe Character Operations|

117.3 Unsafe Data Extraction|

10

|1'7.4 Unsafe Extflonum Operations|
|II'7.5 Unsafe Impersonators and Chaperones|

(18 Running Racket]
|18.1 Running Racketor GRacket|

118.3 Interactive Help|o oo,
[18.4 Interactive Module Loading|
18.4.1 Entering Modules|
|| §.Z.Z Loading and Reloading Modules|

ebugging| L

11

1 Language Model

1.1 Evaluation Model

Racket evaluation can be viewed as the simplification of expressions to obtain values. For
example, just as an elementary-school student simplifies

1+1=2

Racket evaluation simplifies

(+11) - 2

The arrow — replaces the more traditional = to emphasize that evaluation proceeds in a
particular direction toward simpler expressions. In particular, a value, such as the number 2,
is an expression that evaluation simplifies no further.

1.1.1 Sub-expression Evaluation and Continuations

Some simplifications require more than one step. For example:

(-4 (+11) > (-42) > 2

An expression that is not a value can always be partitioned into two parts: a redex (“reducible
expression”), which is the part that can change in a single-step simplification (highlighted),
and the continuation, which is the evaluation context surrounding the redex. In (- 4 (+ 1
1)), theredex is (+ 1 1), and the continuation is (- 4 []), where [] takes the place of the
redex as it is reduced. That is, the continuation says how to “continue” after the redex is
reduced to a value.

Before some expressions can be evaluated, some or all of their sub-expressions must be
evaluated. For example, in the application (- 4 (+ 1 1)), the application of - cannot
be reduced until the sub-expression (+ 1 1) is reduced. Thus, the specification of each
syntactic form specifies how (some of) its sub-expressions are evaluated and then how the
results are combined to reduce the form away.

The dynamic extent of an expression is the sequence of evaluation steps during which the
expression contains the redex.

1.1.2 Tail Position

An expression exprl is in tail position with respect to an enclosing expression expr?2 if,
whenever expr1 becomes a redex, its continuation is the same as was the enclosing expr2’s

12

continuation.

For example, the (+ 1 1) expression is not in tail position with respect to (- 4 (+ 1
1)). To illustrate, we use the notation C[expr] to mean the expression that is produced by
substituting expr in place of [] in some continuation C:

Cl(- 4 (+ 1 1))] - C[(- 4 2)]

In this case, the continuation for reducing (+ 1 1) is C[(- 4 [])], not just C. The require-
ment specified in the first paragraph above is not met.

In contrast, (+ 1 1) is in tail position with respect to (if (zero? 0) (+ 1 1) 3) be-
cause, for any continuation C,

C[(if (zero? 0) (+ 1 1) 3)] — C[(if #t (+ 1 1) 3)] — C[(+ 1 1)]

The requirement specified in the first paragraph is met. The steps in this reduction sequence
are driven by the definition of if, and they do not depend on the continuation C. The “then”
branch of an if form is always in tail position with respect to the if form. Due to a similar
reduction rule for if and #f, the “else” branch of an if form is also in tail position.

Tail-position specifications provide a guarantee about the asymptotic space consumption of
a computation. In general, the specification of tail positions accompanies the description of
each syntactic form, such as if.

1.1.3 Multiple Return Values

A Racket expression can evaluate to multiple values, to provide symmetry with the fact that
a procedure can accept multiple arguments.

Most continuations expect a certain number of result values, although some continuations
can accept an arbitrary number. Indeed, most continuations, such as (+ [] 1), expect a
single value. The continuation (let-values ([(x y) []]) expr) expects two result
values; the first result replaces x in the body expr, and the second replaces y in expr. The
continuation (begin [] (+ 1 2)) accepts any number of result values, because it ignores
the result(s).

In general, the specification of a syntactic form indicates the number of values that it pro-
duces and the number that it expects from each of its sub-expressions. In addition, some
procedures (notably values) produce multiple values, and some procedures (notably call-
with-values) create continuations internally that accept a certain number of values.

13

1.1.4 Top-Level Variables

Given
x = 10

then an algebra student simplifies x + 1 as follows:

Racket works much the same way, in that a set of top-level variables (see also
[ables and Locations™)) are available for substitutions on demand during evaluation. For ex-

ample, given

(define x 10)

then

(+x1) - (+ 10 1) —> 11

In Racket, the way definitions are created is just as important as the way they are used.
Racket evaluation thus keeps track of both definitions and the current expression, and it
extends the set of definitions in response to evaluating forms such as define.

Each evaluation step, then, transforms the current set of definitions and program into a new
set of definitions and program. Before a define can be moved into the set of definitions, its
expression (i.e., its right-hand side) must be reduced to a value. (The left-hand side is not an
expression position, and so it is not evaluated.)

defined:

evaluate: (begin (define x (+ 9 1)) (+ x 1))
— defined:

evaluate: (begin (define x 10) (+ x 1))
— defined: (define x 10)

evaluate: (begin (void) (+ x 1))
— defined: (define x 10)

evaluate: (+ x 1)
— defined: (define x 10)

evaluate: (+ 10 1)
— defined: (define x 10)

evaluate: 11

Using set!, a program can change the value associated with an existing top-level variable:
defined: (define x 10)

evaluate: (begin (set! x 8) x)

14

— defined: (define x 8)
evaluate: (begin (void) x)

— defined: (define x 8)
evaluate: x

— defined: (define x 8)
evaluate: 8

1.1.5 Objects and Imperative Update

In addition to set! for imperative update of top-level variables, various procedures enable
the modification of elements within a compound data structure. For example, vector-set!
modifies the content of a vector.

To explain such modifications to data, we must distinguish between values, which are the
results of expressions, and objects, which hold the data referenced by a value.

A few kinds of objects can serve directly as values, including booleans, (void), and small
exact integers. More generally, however, a value is a reference to an object stored somewhere
else. For example, a value can refer to a particular vector that currently holds the value 10 in
its first slot. If an object is modified via one value, then the modification is visible through
all the values that reference the object.

In the evaluation model, a set of objects must be carried along with each step in evaluation,
just like the definition set. Operations that create objects, such as vector, add to the set of
objects:

objects:
defined:
evaluate: (begin (define x (vector 10 20))
(define y x)
(vector-set! x 0 11)
(vector-ref y 0))
— objects: (define (vector 10 20))
defined:
evaluate: (begin (define x)
(define y x)
(vector-set! x 0 11)
(vector-ref y 0))
— objects: (define (vector 10 20))
defined: (define x <o1>)
evaluate: (begin (void)
(define y x)
(vector-set! x 0 11)

(vector-ref y 0))

15

— objects:
defined:
evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:

— objects:
defined:

evaluate:
— objects:

defined:

evaluate:

(define <o1> (vector 10 20))

(define x <o1>)

(begin (define y x)
(vector-set! x 0 11)
(vector-ref y 0))

(define <o1> (vector 10 20))

(define x <o1>)

(begin (define y)
(vector-set! x 0 11)
(vector-ref y 0))

(define <o1> (vector 10 20))

(define x <o1>)

(define y <o1>)

(begin (void)

(vector-set! x 0 11)

(vector-ref y 0))
(define <o01> (vector 10 20))
(define x <o1>)

(define y)
(begin (vector-set! x 0 11)

(vector-ref y 0))
(define <o1> (vector 10 20))
(define x <o1>)

(define y <o1>)
(begin (vector-set! 0

(vector-ref y 0))
(define <o1> (vector 11 20))
(define x <o1>)

(define y <o1>)
(begin (void)

(vector-ref y 0))
(define <o01> (vector 11 20))
(define x <o1>)

(define y <o1>)

(vector-ref y 0)

(define <o1> (vector 11 20))
(define x <o1>)

(define y <o1>)

(vector-ref <oi1> 0)
(define <o1> (vector 11 20))
(define x <o1>)

(define y <o1>)

11

16

11)

The distinction between a top-level variable and an object reference is crucial. A top-level
variable is not a value, so it must be evaluated. Each time a variable expression is evaluated,
the value of the variable is extracted from the current set of definitions. An object reference,
in contrast, is a value and therefore needs no further evaluation. The evaluation steps above
use angle-bracketed <o1> for an object reference to distinguish it from a variable name.

An object reference can never appear directly in a text-based source program. A program
representation created with datum->syntax, however, can embed direct references to exist-
ing objects.

1.1.6 Object Identity and Comparisons

The eq? operator compares two values, returning #t when the values refer to the same
object. This form of equality is suitable for comparing objects that support imperative update
(e.g., to determine that the effect of modifying an object through one reference is visible
through another reference). Also, an eq? test evaluates quickly, and eq?-based hashing is
more lightweight than equal?-based hashing in hash tables.

In some cases, however, eq? is unsuitable as a comparison operator, because the generation
of objects is not clearly defined. In particular, two applications of + to the same two exact
integers may or may not produce results that are eq?, although the results are always equal®?.
Similarly, evaluation of a 1lambda form typically generates a new procedure object, but it
may re-use a procedure object previously generated by the same source 1ambda form.

The behavior of a datatype with respect to eq? is generally specified with the datatype and
its associated procedures.

1.1.7 Garbage Collection

In the program state

objects: (define <ol1> (vector 10 20))
(define <02> (vector 0))

defined: (define x <ol1>)

evaluate: (+ 1 x)

evaluation cannot depend on <o02>, because it is not part of the program to evaluate, and it
is not referenced by any definition that is accessible by the program. The object is said to
not be reachable. The object <o2> may therefore be removed from the program state by
garbage collection.

A few special compound datatypes hold weak references to objects. Such weak references
are treated specially by the garbage collector in determining which objects are reachable for
the remainder of the computation. If an object is reachable only via a weak reference, then

17

See
Management Tfor

functions related to
garbage collection.

the object can be reclaimed, and the weak reference is replaced by a different value (typically
#5).

As a special case, a fixnum is always considered reachable by the garbage collector. Many
other values are always reachable due to the way they are implemented and used: A character
in the Latin-1 range is always reachable, because equal? Latin-1 characters are always eq?,
and all of the Latin-1 characters are referenced by an internal module. Similarly, null,
#t, #f, eof, and #<void> and are always reachable. Values produced by quote remain
reachable when the quote expression itself is reachable.

1.1.8 Procedure Applications and Local Variables

Given
f(x) = x + 10

an algebra student simplifies £ (7) as follows:
£f(7) =7 + 10 = 17

The key step in this simplification is to take the body of the defined function £ and replace
each x with the actual value 7.

Racket procedure application works much the same way. A procedure is an object, so eval-
uating (£ 7) starts with a variable lookup:

objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (f 7)

— objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
evaluate: (<p1> 7)

Unlike in algebra, however, the value associated with a procedure argument variable can be
changed in the body of a procedure by using set!, as in the example (lambda (x) (begin
(set! x 3) x)). Since the value associated with argument variable x can be changed, the

value cannot be substituted for x when the procedure is first applied. We do not use the
term “parameter

Instead, a new location is created for each variable on each application. The argument value ~ Variable” to refer to

. the argument
is placed in the location, and each instance of the variable in the procedure body is replaced | o o0

with the new location: declared with a
. . function. This
objects: (define <p1> (lambda (x) (+ x 10))) choice avoids
defined: (define f <p1>) confusion with
parameters.

evaluate: (<p1> 7)
— objects: (define <p1> (lambda (x) (+ x 10)))

18

defined:

evaluate:
— objects:
defined:

evaluate:
— objects:

defined:

evaluate:

A location is the same as a top-level variable, but when a location is generated, it (concep-
tually) uses a name that has not been used before and that cannot be generated again or

(define
(define
(+ xloc
(define
(define
(define

f <p1>)
xloc 7)
10)

<pl> (lambda (x) (+ x 10)))

f <p1>)
xloc 7)

(+ 7 10)
(define <p1> (lambda (x) (+ x 10)))

(define
(define
17

accessed directly.

Generating a location in this way means that set! evaluates for local variables, including
argument variables, in the same way as for top-level variables, because the local variable is

f <p1>)
xloc 7)

always replaced with a location by the time the set! form is evaluated:

(set!

(set!

(set!

(set!

(set!

3)

3)

3)

3)

3)

x)))

x)))

x)))

x)))

x)))

objects: (define <pl> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
evaluate: (£ 7)
— objects: (define <pl> (lambda (x) (begin
defined: (define f <p1>)
evaluate: (<p1> 7)
— objects: (define <p1> (lambda (x) (begin
defined: (define f <p1>)
(define xloc 7)
evaluate: (begin (set! xloc 3) xloc)
— objects: (define <pl1> (lambda (x) (begin
defined: (define f <p1>)
(define xloc 3)
evaluate: (begin (void) xloc)
— objects: (define <p1> (lambda (x) (begin
defined: (define f <p1>)
(define xloc 3)
evaluate: xloc
— objects: (define <p1> (lambda (x) (begin
defined: (define f <p1>)
(define xloc 3)
evaluate: 3

The location-generation and substitution step of procedure application requires that the ar-
gument is a value. Therefore, in ((lambda (x) (+ x 10)) (+ 1 2)),the (+ 1 2) sub-

19

expression must be simplified to the value 3, and then 3 can be placed into a location for x.
In other words, Racket is a call-by-value language.

Evaluation of a local-variable form, such as (let ([x (+ 1 2)]) expr), is the same as
for a procedure call. After (+ 1 2) produces a value, it is stored in a fresh location that
replaces every instance of x in expr.

1.1.9 Variables and Locations

A variable is a placeholder for a value, and expressions in an initial program refer to vari-
ables. A top-level variable is both a variable and a location. Any other variable is always
replaced by a location at run-time; thus, evaluation of expressions involves only locations. A
single local variable (i.e., a non-top-level, non-module-level variable), such as an argument
variable, can correspond to different locations during different applications.

For example, in the program

(define y (+ (let ([x 5]) x) 6))

both y and x are variables. The y variable is a top-level variable, and the x is a local variable.
When this code is evaluated, a location is created for x to hold the value 5, and a location is
also created for y to hold the value 11.

The replacement of a variable with a location during evaluation implements Racket’s lexical
scoping. For example, when an argument variable x is replaced by the location xloc, it is
replaced throughout the body of the procedure, including any nested lambda forms. As a
result, future references to the variable always access the same location.

1.1.10 Modules and Module-Level Variables

Most definitions in Racket are in modules. In terms of evaluation, a module is essentially
a prefix on a defined name, so that different modules can define the same name. That is, a
module-level variable is like a top-level variable from the perspective of evaluation.

One difference between a module and a top-level definition is that a module can be declared
without instantiating its module-level definitions. Evaluation of a require instantiates (i.e.,
triggers the instantiation of) the declared module, which creates variables that correspond to
its module-level definitions.

For example, given the module declaration

(module m racket
(define x 10))

20

See
[for the syntax of
modules.

the evaluation of (require 'm) creates the variable x and installs 10 as its value. This x
is unrelated to any top-level definition of x (as if it were given a unique, module-specific
prefix).

Phases

The purpose of phases is to address the necessary separation of names defined at execution
time versus names defined at expansion time.

A module can be instantiated in multiple phases. A phase is an integer that, like a mod-
ule name, is effectively a prefix on the names of module-level definitions. Phase O is the
execution-time phase.

A top-level require instantiates a module at phase 0, if the module is not already instan-
tiated at phase 0. A top-level (require (for-syntax)) instantiates a module at
phase 1 (if it is not already instantiated at that phase); for-syntax also has a different
binding effect on further program parsing, as described in|§1.2.3.4 “Introducing Bindings™}

Within a module, some definitions are already shifted by a phase: the begin-for-syntax
form is similar to begin, but it shifts expressions and definitions by a relative phase +1.
Likewise, the define-for-syntax form is similar to define, but shifts the definition by
+1. Thus, if the module is instantiated at phase 1, the variables defined with begin-for-
syntax are created at phase 2, and so on. Moreover, this relative phase acts as another layer
of prefixing, so that x defined with define and x defined with define-for-syntax can
co-exist in a module without colliding. A begin-for-syntax form can be nested within a
begin-for-syntax form, in which case the inner definitions and expressions are in relative
phase +2, and so on. Higher phases are mainly related to program parsing instead of normal
evaluation.

If a module instantiated at phase n requires another module, then the required module is
first instantiated at phase 7, and so on transitively. (Module requires cannot form cycles.) If
a module instantiated at phase n requires another module ¥ for-syntax, then M becomes
available at phase n+1, and it later may be instantiated at phase n+1. If a module that is
available at phase n (for n>0) requires another module M for-template, then M becomes
available at phase n-1, and so on. Instantiations of available modules above phase O are
triggered on demand as described in[§1.2.3.9 “Module Expansion, Phases, and Visits™]

A final distinction among module instantiations is that multiple instantiations may exist
at phase 1 and higher. These instantiations are created by the parsing of module forms
(see[§1.2.3.9 “Module Expansion, Phases, and Visits™), and are, again, conceptually distin-
guished by prefixes.

Top-level variables can exist in multiple phases in the same way as within modules. For
example, define within begin-for-syntax creates a phase 1 variable. Furthermore, re-
flective operations like make-base-namespace and eval provide access to top-level vari-
ables in higher phases, while module instantiations (triggered by require) relative to such
top-levels are in correspondingly higher phases.

21

See also §16.2.6
“General Phase
Levels” in The
Racket Guide.

The Separate Compilation Guarantee

When a module is compiled, its phase 1 is instantiated. This can, in turn, trigger the transitive
instantiation of many other modules at other phases, including phase 1. Racket provides a
very strong guarantee about this instantiation called “The Separate Compilation Guarantee”:

Any effects of the instantiation of the module’s phase 1 due to compilation on
the Racket runtime system are discarded.

The guarantee concerns effects. There are two different kinds of effects: internal and exter-
nal.

Internal effects are exemplified by mutation. Mutation is the action of a function such as
set-box!, which changes the value contained in the box. The modified box is not observ-
able outside Racket, so the effect is said to be “internal.” By definition, internal effects are
not detectable outside the Racket program.

External effects are exemplified by input/output (I/O). I/O is the action of a function such
as tcp-connect, which communicates with the operating system to send network packets
outside the machine running Racket. The transmission of these packets is observable outside
Racket, in particular by the receiving computer or any routers in between. External effects
exist to be detectable outside the Racket program and are often detectable using physical
processes.

An effect is discarded when it is no longer detectable. For instance, the mutation of a box
from 3 to 4 is discarded when it ceases to be detectable that it was ever changed and thus
would still contain 3. Because external effects are intrinsically observable outside Racket,
they are irreversible and cannot be discarded.

Thus, The Separate Compilation Guarantee only concerns effects like mutation, because they
are exclusively effects “on the Racket runtime system” and not “on the physical universe.”

There are many things a Racket program can do that appear to be internal effects but are
actually external effects. For instance, bytes-set! is typically an internal effect, except
when the bytes are created by make-shared-bytes, which allocates in space observable
by other processes. Thus, effects which modify those bytes are not discardable, so bytes-
set!, in this case, has an external effect.

The opposite is also true: some things which appear to be external are actually internal.
For instance, if a Racket program starts multiple threads and uses mutation to communicate
between them, that mutation is purely internal, because Racket’s threads are defined entirely
internally (they are not related to operating system threads).

Furthermore, whenever a Racket program calls an unsafe function, the Racket runtime sys-
tem makes no promises about its effects. For instance, all foreign calls use £fi/unsafe, so
all foreign calls are unsafe and their effects cannot be discarded by Racket.

22

Finally, The Separate Compilation Guarantee only concerns instantiations at phase 1 during
compilation and not all phase 1 instantiations generally, such as when its phase 1 is required
and used for effects via reflective mechanisms.

The practical consequence of this guarantee is that because effects are never visible, no
module can detect whether a module it requires is already compiled. Thus, it can never
change the compilation of one module to have already compiled a different module. In
particular, if module A is shared by the phase 1 portion of modules X and Y, then any
internal effects while X is compiled are not visible during the compilation of Y, regardless
of whether X and Y are compiled during the same execution of Racket’s runtime system and
regardless of the order of compilation.

The following set of modules demonstrate this guarantee. First, we define a module with the
ability to observe effects via a box:

(module box racket/base
(provide (all-defined-out))
(define b (box 0)))

Next, we define two syntax transformers that use and mutate this box:

(module transformers racket/base
(provide (all-defined-out))
(require (for-syntax racket/base 'box))
(define-syntax (sett stx)
(set-box! b 2)
#' (void))
(define-syntax (gett stx)
#, (unbox b)))

Next, we define a module that uses these transformers:

(module user racket/base
(provide (all-defined-out))
(require 'transformers)
(sett)

(define gott (gett)))

Finally, we define a second module that uses these transformers and the user module:

(module test racket/base
(require 'box 'transformers 'user)
(displayln gott)
(displayln (gett))

23

(sett)
(displayln (gett))

(displayln (unbox b)))

This module displays:

* 2, because the (gett) in module user expanded to 2.
¢ 0, because the effects of compiling user were discarded.
¢ 2, because the effect of (sett) inside test has not yet been discarded.

* 0, because the effects of sett at phase 1 are irrelevant to the phase 0 use of b in
(unbox b).

Furthermore, this display will never change, regardless of which order these modules are
compiled in or whether they are compiled at the same time or separately.

In contrast, if these modules were changed to store the value of b in a file on the filesystem,
then the program would only display 2.

The Separate Compilation Guarantee is described in more detail in the paper “Composable
and Compilable Macros” [Flatt02], including informative examples. The paper “Advanced
Macrology and the implementation of Typed Scheme” [Culpepper07] also contains an ex-
tended example of why it is important and how to design effectful syntactic extensions in its
presence.

Cross-Phase Persistent Modules

Module declarations that fit a highly constrained form—including a (#J%declare
#:cross-phase-persistent) form in the module body—create cross-phase persistent
modules. A cross-phase persistent module’s instantiations across all phases share the vari-
ables produced by the first instantiation of the module. Additionally, cross-phase persistent
module instantiations persist across module registries when they share a common module
declaration.

Examples:

> (module cross '#Jkernel
(#Y%declare #:cross-phase-persistent)
(#Y%provide x)
(define-values (x) (gensym)))
> (module noncross '#J/kernel
(#)iprovide x)
(define-values (x) (gensym)))

24

> (define ns (current-namespace))
> (define (same-instence? mod)
(namespace-require mod)
(define a
(parameterize ([current-namespace (make-base-namespace)])
(namespace-attach-module-declaration ns mod)
(namespace-require mod)
(namespace-variable-value 'x)))
(define b
(parameterize ([current-namespace (make-base-namespace)])
(namespace-attach-module-declaration ns mod)
(namespace-require mod)
(namespace-variable-value 'x)))

(eq? a b))
> (same-instence? ''noncross)
#£f
> (same-instence? ''cross)
#t

The intent of a cross-phase persistent module is to support values that are recognizable after
phase crossings. For example, when a macro transformer running in phase 1 raises a syntax
error as represented by an exn:fail:syntax instance, the instance is recognizable by a
phase-0 exception handler wrapping a call to eval or expand that triggered the syntax error,
because the exn:fail:syntax structure type is defined by a cross-phase persistent module.

A cross-phase persistent module imports only other cross-phase persistent modules, and it
contains only definitions that bind variables to functions, structure types and related func-
tions, or structure-type properties and related functions. A cross-phase persistent module
never includes syntax literals (via quote-syntax) or variable references (via #%variable-
reference). See [§1.2.7 “Cross-Phase Persistent Module Declarations™| for the syntactic
specification of a cross-phase persistent module declaration.

A documented module should be assumed non—cross-phase persistent unless it is specified
as cross-phase persistent (such as racket/kernel).

Module Redeclarations

When a module is declared using a name with which a module is already declared, the new
declaration’s definitions replace and extend the old declarations. If a variable in the old
declaration has no counterpart in the new declaration, the old variable continues to exist, but
its binding is not included in the lexical information for the module body. If a new variable
definition has a counterpart in the old declaration, it effectively assigns to the old variable.

If a module is instantiated in the current namespace’s base phase before the module is rede-
clared, the redeclaration of the module is immediately instantiated in that phase.

25

If the current inspector does not manage a module’s declaration inspector (see[§14.10 “Code]
[nspectors™), then the module cannot be redeclared. Similarly, a cross-phase persistent mod-
ule cannot be redeclared. Even if redeclaration succeeds, instantiation of a module that is
previously instantiated may fail if instantiation for the redeclaration attempts to modify vari-
ables that are constant (see compile-enforce-module-constants).

Submodules

A module or modulex* form within a top-level module form declares a submodule. A sub-
module is accessed relative to its enclosing module, usually with a submod path. Submod-
ules can be nested to any depth.

Although a submodule is lexically nested within a module, it cannot necessarily access the
bindings of its enclosing module directly. More specifically, a submodule declared with
module cannot require from its enclosing module, but the enclosing module can require
the submodule. In contrast, a submodule declared with module* conceptually follows its
enclosing module, so can require from its enclosing module, but the enclosing module
cannot require the submodule. Unless a submodule imports from its enclosing module
or vice versa, then visits or instantiations of the two modules are independent, and their
implementations may even be loaded from bytecode sources at different times.

A submodule declared with module can import any preceding submodule declared with
module. A submodule declared with module* can import any preceding module declared
with module* and any submodule declared with module.

When a submodule declaration has the form (module* name #f), then all of the
bindings of the enclosing module’s bodies are visible in the submodule’s body, and the sub-
module implicitly imports the enclosing module. The submodule can provide any bindings
that it inherits from its enclosing module.

1.1.11 Continuation Frames and Marks

Every continuation C can be partitioned into continuation frames Cy, Ca, ..., Cyp such that
C = C1[Co[...[C,]]], and no frame C; can be itself partitioned into smaller continuations.
Evaluation steps add frames to and remove frames from the current continuation, typically
one at a time.

Each frame is conceptually annotated with a set of continuation marks. A mark consists
of a key and its value. The key is an arbitrary value, and each frame includes at most one
mark for any given key. Various operations set and extract marks from continuations, so that
marks can be used to attach information to a dynamic extent. For example, marks can be
used to record information for a “stack trace” to be presented when an exception is raised,
or to implement dynamic scope.

26

SeefI05]
[FContinuation]
[Marks™ for
continuation-mark
forms and

functions.

1.1.12 Prompts, Delimited Continuations, and Barriers

A prompt is a special kind of continuation frame that is annotated with a specific prompt
tag (essentially a continuation mark). Various operations allow the capture of frames in the
continuation from the redex position out to the nearest enclosing prompt with a particular
prompt tag; such a continuation is sometimes called a delimited continuation. Other opera-
tions allow the current continuation to be extended with a captured continuation (specifically,
a composable continuation). Yet other operations abort the computation to the nearest en-
closing prompt with a particular tag, or replace the continuation to the nearest enclosing
prompt with another one. When a delimited continuation is captured, the marks associated
with the relevant frames are also captured.

A continuation barrier is another kind of continuation frame that prohibits certain replace-
ments of the current continuation with another. Specifically, a continuation can be replaced
by another only when the replacement does not introduce any continuation barriers. A con-
tinuation barrier thus prevents “downward jumps” into a continuation that is protected by
a barrier. Certain operations install barriers automatically; in particular, when an excep-
tion handler is called, a continuation barrier prohibits the continuation of the handler from
capturing the continuation past the exception point.

An escape continuation is essentially a derived concept. It combines a prompt for escape
purposes with a continuation for mark-gathering purposes. As the name implies, escape
continuations are used only to abort to the point of capture.

1.1.13 Threads

Racket supports multiple threads of evaluation. Threads run concurrently, in the sense that
one thread can preempt another without its cooperation, but threads currently all run on the
same processor (i.e., the same underlying operating system process and thread). See also

Threads are created explicitly by functions such as thread. In terms of the evaluation
model, each step in evaluation actually deals with multiple concurrent expressions, up to
one per thread, rather than a single expression. The expressions all share the same objects
and top-level variables, so that they can communicate through shared state, and sequential
consistency is guaranteed (i.e., the result is consistent with some global sequence imposed
on all evaluation steps across threads). Most evaluation steps involve a single step in a
single expression, but certain synchronization primitives require multiple threads to progress
together in one step.

In addition to the state that is shared among all threads, each thread has its own private state
that is accessed through thread cells. A thread cell is similar to a normal mutable object,
but a change to the value inside a thread cell is seen only when extracting a value from that
cell in the same thread. A thread cell can be preserved; when a new thread is created, the

27

See
for
continuation and
prompt functions.

SeefIT________]
for
thread and
synchronization
functions.

creating thread’s value for a preserved thread cell serves as the initial value for the cell in
the created thread. For a non-preserved thread cell, a new thread sees the same initial value
(specified when the thread cell is created) as all other threads.

1.1.14 Parameters

Parameters are essentially a derived concept in Racket; they are defined in terms of contin-
uation marks and thread cells. However, parameters are also “built in,” due to the fact that
some primitive procedures consult parameter values. For example, the default output stream
for primitive output operations is specified by a parameter.

A parameter is a setting that is both thread-specific and continuation-specific. In the empty
continuation, each parameter corresponds to a preserved thread cell; a corresponding param-
eter procedure accesses and sets the thread cell’s value for the current thread.

In a non-empty continuation, a parameter’s value is determined through a parameteriza-
tion that is associated with the nearest enclosing continuation frame via a continuation mark
(whose key is not directly accessible). A parameterization maps each parameter to a pre-
served thread cell, and the combination of the thread cell and the current thread yields the
parameter’s value. A parameter procedure sets or accesses the relevant thread cell for its
parameter.

Various operations, such as parameterize or call-with-parameterization, install a
parameterization into the current continuation’s frame.

1.1.15 Exceptions

Exceptions are essentially a derived concept in Racket; they are defined in terms of continu-
ations, prompts, and continuation marks. However, exceptions are also “built in,” due to the
fact that primitive forms and procedures may raise exceptions.

An exception handler to catch exceptions can be associated with a continuation frame though
a continuation mark (whose key is not directly accessible). When an exception is raised, the
current continuation’s marks determine a chain of exception handler procedures that are
consulted to handle the exception. A handler for uncaught exceptions is designated through
a built-in parameter.

One potential action of an exception handler is to abort the current continuation up to an
enclosing prompt with a particular prompt tag. The default handler for uncaught exceptions,
in particular, aborts to a particular tag for which a prompt is always present, because the
prompt is installed in the outermost frame of the continuation for any new thread.

28

See
[Parameters™ for
parameter forms
and functions.

T (O —
FExceptions Tfor

exception forms,
functions, and

types.

1.1.16 Custodians

A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners,
UDP sockets, byte converters, and places. Whenever a thread, etc., is created, it is placed
under the management of the current custodian as determined by the current-custodian
parameter.

Except for the root custodian, every custodian itself is managed by a custodian, so that cus-
todians form a hierarchy. Every object managed by a subordinate custodian is also managed
by the custodian’s owner.

When a custodian is shut down via custodian-shutdown-all, it forcibly and immediately
closes the ports, TCP connections, etc., that it manages, as well as terminating (or suspend-
ing) its threads. A custodian that has been shut down cannot manage new objects. After the
current custodian is shut down, if a procedure is called that attempts to create a managed
resource (e.g., open-input-file, thread), then the exn:fail:contract exception is
raised.

A thread can have multiple managing custodians, and a suspended thread created with
thread/suspend-to-kill can have zero custodians. Extra custodians become asso-
ciated with a thread through thread-resume (see [§11.1.2 “Suspending, Resuming, and]
Killing Threads™). When a thread has multiple custodians, it is not necessarily killed by a
custodian-shutdown-all. Instead, shut-down custodians are removed from the thread’s
managing custodian set, and the thread is killed when its managing set becomes empty.

The values managed by a custodian are semi-weakly held by the custodian: a will can be ex-
ecuted for a value that is managed by a custodian; in addition, weak references via weak hash
tables, ephemerons, or weak boxes can be dropped on the 3m or CGC variants of Racket, but
not on the CS variant. For all variants, a custodian only weakly references its subordinate
custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the
custodian may be garbage collected, at which point its subordinates become immediately
subordinate to the collected custodian’s superordinate (owner) custodian.

In addition to the other entities managed by a custodian, a custodian box created with make-
custodian-box strongly holds onto a value placed in the box until the box’s custodian is
shut down. However, the custodian only weakly retains the box itself, so the box and its
content can be collected if there are no other references to them.

When Racket is compiled with support for per-custodian memory accounting (see
custodian-memory-accounting-available?), the current-memory-use procedure
can report a custodian-specific result. This result determines how much memory is occupied
by objects that are reachable from the custodian’s managed values, especially its threads, and
including its sub-custodians’ managed values. If an object is reachable from two custodians
where neither is an ancestor of the other, an object is arbitrarily charged to one or the other,
and the choice can change after each collection; objects reachable from both a custodian
and its descendant, however, are reliably charged to the custodian and not to the descen-

29

SeefT47 1]
ECustodfans™ for

custodian functions.

Custodians also
manage eventspaces
from
racket/gui/base.

dants, unless the custodian can reach the objects only through a descendant custodian or a
descendant’s thread. Reachability for per-custodian accounting does not include weak ref-
erences, references to threads managed by other custodians, references to other custodians,
or references to custodian boxes for other custodians.

1.2 Syntax Model

The syntax of a Racket program is defined by

* aread pass that processes a character stream into a syntax object; and

* an expand pass that processes a syntax object to produce one that is fully parsed.

For details on the read pass, see[§1.3 “The Reader’} Source code is normally read in read-
syntax mode, which produces a syntax object.

The expand pass recursively processes a syntax object to produce a complete parse of the
program. Binding information in a syntax object drives the expansion process, and when the
expansion process encounters a binding form, it extends syntax objects for sub-expression
with new binding information.

1.2.1 Identifiers, Binding, and Scopes

An identifier is a source-program entity. Parsing (i.e., expanding) a Racket program reveals
that some identifiers correspond to variables, some refer to syntactic forms (such as lambda,
which is the syntactic form for functions), some refer to transformers for macro expansion,
and some are quoted to produce symbols or syntax objects. An identifier binds another (i.e.,
it is a binding) when the former is parsed as a variable or syntactic form and the latter is
parsed as a reference to the former; the latter is bound.

For example, as a fragment of source, the text

(let ([x 5]) x)

includes two identifiers: 1et and x (which appears twice). When this source is parsed in a
context where let has its usual meaning, the first x binds the second x.

Bindings and references are determined through scope sets. A scope corresponds to a region
of the program that is either in part of the source or synthesized through elaboration of the
source. Nested binding contexts (such as nested functions) create nested scopes, while macro
expansion creates scopes that overlap in more complex ways. Conceptually, each scope is
represented by a unique token, but the token is not directly accessible. Instead, each scope
is represented by a value that is internal to the representation of a program.

30

§4.2 “Identifiers
and Binding” in The
Racket Guide
introduces binding.

A form is a fragment of a program, such as an identifier or a function call. A form is
represented as a syntax object, and each syntax object has an associated set of scopes (i.e.,
a scope set). In the above example, the representations of the xs include the scope that
corresponds to the 1let form.

When a form parses as the binding of a particular identifier, parsing updates a global table
that maps a combination of an identifier’s symbol and scope set to its meaning: a variable,
a syntactic form, or a transformer. An identifier refers to a particular binding when the
reference’s symbol and the identifier’s symbol are the same, and when the reference’s scope
set is a superset of the binding’s scope set. For a given identifier, multiple bindings may have
scope sets that are subsets of the identifier’s; in that case, the identifier refers to the binding
whose set is a superset of all others; if no such binding exists, the reference is ambiguous
(and triggers a syntax error if it is parsed as an expression). A binding shadows any binding
(i.e., it is shadowing any binding) that the same symbol but a subset of scopes.

For example, in

(let ([x 5]) x)

in a context where 1et corresponds to the usual syntactic form, the parsing of 1et introduces
a new scope for the binding of x. Since the second x receives that scope as part of the let
body, the first x binds the second x. In the more complex case

(let ([x 51)
(let ([x 61)
x))

the inner let creates a second scope for the second xs, so its scope set is a superset of the
first x’s scope set—which means that the binding for the second x shadows the one for the
first x, and the third x refers to the binding created by the second one.

A top-level binding is a binding from a definition at the top-level; a module binding is a
binding from a definition in a module; all other bindings are local bindings. Within a module,
references to top-level bindings are disallowed. An identifier without a binding is unbound.

Throughout the documentation, identifiers are typeset to suggest the way that they are parsed.
A hyperlinked identifier like 1ambda indicates a reference to a syntactic form or variable. A
plain identifier like x is a variable or a reference to an unspecified top-level variable.

Every binding has a phase level in which it can be referenced, where a phase level normally
corresponds to an integer (but the special label phase level does not correspond to an integer).
Phase level O corresponds to the run time of the enclosing module (or the run time of top-
level expressions). Bindings in phase level O constitute the base environment. Phase level
1 corresponds to the time during which the enclosing module (or top-level expression) is
expanded; bindings in phase level 1 constitute the transformer environment. Phase level
-1 corresponds to the run time of a different module for which the enclosing module is

31

imported for use at phase level 1 (relative to the importing module); bindings in phase level
-1 constitute the template environment. The label phase level does not correspond to any
execution time; it is used to track bindings (e.g., to identifiers within documentation) without
implying an execution dependency.

An identifier can have different bindings in different phase levels. More precisely, the scope
set associated with a form can be different at different phase levels; a top-level or module
context implies a distinct scope at every phase level, while scopes from macro expansion
or other syntactic forms are added to a form’s scope sets at all phases. The context of each
binding and reference determines the phase level whose scope set is relevant.

Changed in version 6.3 of package base: Changed local bindings to have a specific phase level, like top-level and

module bindings.

1.2.2 Syntax Objects

A syntax object combines a simpler Racket value, such as a symbol or pair, with lexical
information, source-location information, syntax properties, and tamper status. The lexical
information of a syntax object comprises a set of scope sets, one for each phase level. In
particular, an identifier is represented as a syntax object containing a symbol, and its lexical
information can be combined with the global table of bindings to determine its binding (if
any) at each phase level.

For example, a car identifier might have lexical information that designates it as the car
from the racket/base language (i.e., the built-in car). Similarly, a 1ambda identifier’s
lexical information may indicate that it represents a procedure form. Some other identifier’s
lexical information may indicate that it references a top-level variable.

When a syntax object represents a more complex expression than an identifier or simple
constant, its internal components can be extracted. Even for extracted identifiers, detailed
information about binding is available mostly indirectly; two identifiers can be compared to
determine whether they refer to the same binding (i.e., free-identifier=7), or whether
the identifiers have the same scope set so that each identifier would bind the other if one were
in a binding position and the other in an expression position (i.e., bound-identifier="7).

For example, when the program written as

(let ([x 51) (+ x 6))
is represented as a syntax object, then two syntax objects can be extracted for the two xs.
Both the free-identifier=7 and bound-identifier=7 predicates will indicate that the

xs are the same. In contrast, the let identifier is not free-identifier=7 or bound-
identifier=7 to either x.

The lexical information in a syntax object is independent of the rest of the syntax object, and

32

it can be copied to a new syntax object in combination with an arbitrary other Racket value.
Thus, identifier-binding information in a syntax object is predicated on the symbolic name
of the identifier as well as the identifier’s lexical information; the same question with the
same lexical information but different base value can produce a different answer.

For example, combining the lexical information from let in the program above to 'x would
not produce an identifier that is free-identifier="7 to either x, since it does not appear
in the scope of the x binding. Combining the lexical context of the 6 with 'x, in contrast,
would produce an identifier that is bound-identifier=7 to both xs.

The quote-syntax form bridges the evaluation of a program and the representation of a
program. Specifically, (quote-syntax datum #:1local) produces a syntax object that
preserves all of the lexical information that datum had when it was parsed as part of the
quote-syntax form. Note that (quote-syntax datum) form is similar, but it removes
certain scopes from the datum’s scope sets; see quote-syntax for more information.

1.2.3 Expansion (Parsing)

Expansion recursively processes a syntax object in a particular phase level, starting with
phase level 0. Bindings from the syntax object’s lexical information drive the expansion pro-
cess, and cause new bindings to be introduced for the lexical information of sub-expressions.
In some cases, a sub-expression is expanded in a deeper phase than the enclosing expression.

Fully Expanded Programs
A complete expansion produces a syntax object matching the following grammar:
(#%expression expr)

(module id module-path
(#%plain-module-begin

top-level-form = general-top-level-form
|
|

module-level-form ...))
| (begin top-level-form ...)
| (begin-for-syntax top-level-form ...)

module-level-form general-top-level-form

| (#Yprovide raw-provide-spec ...)

| (begin-for-syntax module-level-form ...)
| submodule-form

| (#%declare declaration-keyword ...)

submodule-form = (module id module-path
(#/plain-module-begin
module-level-form ...))

33

Beware that the
symbolic names of
identifiers in a fully
expanded program
may not match the
symbolic names in
the grammar. Only
the binding
(according to
free-identifier=7)
matters.

general-top-level-form =
|
|
|

formals =
|
|

A fully-expanded syntax object corresponds to a parse of a program (i.e., a parsed program),

(module* id module-path
(#%plain-module-begin
module-level-form ...))

(modulex id #f
(#plain-module-begin

module-level-form ...))

expr

(define-values (id ...) expr)

(define-syntaxes (id ...) expr)

(#%require raw-require-spec ...)

id

(#%plain-lambda formals expr ...+)

(case-lambda (formals expr ...+) ...)

(if expr expr expr)

(begin expr ...+)

(begin0 expr expr ...)

(let-values ([(id ...) expr] ...)
expr ...+)

(letrec-values ([(id ...) expr] ...)
expr ...+)

(set! id expr)

(quote datum)

(quote-syntax datum)

(quote-syntax datum #:local)
(with-continuation-mark expr expr expr)
(#%plain-app expr ...+)

(#%top . id)

(#)variable-reference id)
(#%variable-reference (#/top . id))
(#)variable-reference)

(id ...)
(id ...+ . id)
id

and lexical information on its identifiers indicates the parse.

More specifically, the typesetting of identifiers in the above grammar is significant. For
example, the second case for expr is a syntax-object list whose first element is an identifier,
where the identifier’s lexical information specifies a binding to the #;plain-lambda of the
racket/base language (i.e., the identifier is free-identifier=7 to one whose binding is
#/plain-lambda). In all cases, identifiers above typeset as syntactic-form names refer to

the bindings defined in|[§3 “Syntactic Forms™]

34

In a fully expanded program for a namespace whose base phase is 0, the relevant phase level
for a binding in the program is N if the bindings has N surrounding begin-for-syntax
and define-syntaxes forms—not counting any begin-for-syntax forms that wrap a
module or module* form for the body of the module or modulex*, unless amodule* form as
#f in place of a module-path after the id. The datum in a quote-syntax form preserves
its information for all phase levels.

A reference to a local binding in a fully expanded program has a scope set that matches
its binding identifier exactly. Additional scopes, if any, are removed. As a result, bound-
identifier=7 can be used to correlate local binding identifiers with reference identifiers,
while free-identifier=7 must be used to relate references to module bindings or top-
level bindings.

In addition to the grammar above, #),expression can appear in a fully local-expanded
expression position. For example, #/expression can appear in the result from local-
expand when the stop list is empty. Reference-identifier scope sets are reduced in local-
expanded expressions only when the local-expand stop list is empty.

Changed in version 6.3 of package base: Added the #:local variant of quote-syntax; removed

letrec-syntaxes+values from possibly appearing in a fully local-expanded form.
Expansion Steps

In a recursive expansion, each single step in expanding a syntax object at a particular phase
level depends on the immediate shape of the syntax object being expanded:

* Ifitis an identifier (i.e., a syntax-object symbol), then a binding is determined by the
identifier’s lexical information. If the identifier has a binding, that binding is used to
continue. If the identifier is unbound, a new syntax-object symbol '#7,top is created
using the lexical information of the identifier; if this #;top identifier has no binding,
then parsing fails with an exn:fail:syntax exception. Otherwise, the new identifier
is combined with the original identifier in a new syntax-object pair (also using the
same lexical information as the original identifier), and the #/top binding is used to
continue.

Changed in version 6.3 of package base: Changed the introduction of #%top in a top-level context to

unbound identifiers only.

e If it is a syntax-object pair whose first element is an identifier, and if the identifier
has a binding other than as a top-level variable, then the identifier’s binding is used to
continue.

« Ifitis asyntax-object pair of any other form, then a new syntax-object symbol '#/app
is created using the lexical information of the pair. If the resulting #%app identifier has
no binding, parsing fails with an exn:fail:syntax exception. Otherwise, the new
identifier is combined with the original pair to form a new syntax-object pair (also
using the same lexical information as the original pair), and the #%app binding is used
to continue.

35

« If it is any other syntax object, then a new syntax-object symbol '#J,datum is created
using the lexical information of the original syntax object. If the resulting #/,datum
identifier has no binding, parsing fails with an exn:fail:syntax exception. Other-
wise, the new identifier is combined with the original syntax object in a new syntax-
object pair (using the same lexical information as the original pair), and the #%datum
binding is used to continue.

Thus, the possibilities that do not fail lead to an identifier with a particular binding. This
binding refers to one of three things:

* A transformer, such as introduced by define-syntax or let-syntax. If the as-
sociated value is a procedure of one argument, the procedure is called as a syntax
transformer (described below), and parsing starts again with the syntax-object re-
sult. If the transformer binding is to any other kind of value, parsing fails with an
exn:fail:syntax exception. The call to the syntax transformer is parameterized
to set current-namespace to a namespace that shares bindings and variables with
the namespace being used to expand, except that its base phase is one greater.

¢ A variable binding, such as introduced by a module-level define or by let. In this
case, if the form being parsed is just an identifier, then it is parsed as a reference to the
corresponding variable. If the form being parsed is a syntax-object pair, then an #%app
is added to the front of the syntax-object pair in the same way as when the first item
in the syntax-object pair is not an identifier (third case in the previous enumeration),
and parsing continues.

* A core syntactic form, which is parsed as described for each form in
Parsing a core syntactic form typically involves recursive parsing of sub-

forms, and may introduce bindings that determine the parsing of sub-forms.

Expansion Context

Each expansion step occurs in a particular context, and transformers and core syntactic forms
may expand differently for different contexts. For example, a module form is allowed only
in a top-level context, and it fails in other contexts. The possible contexts are as follows:

* top-level context : outside of any module, definition, or expression, except that sub-
expressions of a top-level begin form are also expanded as top-level forms.

* module-begin context : inside the body of a module, as the only form within the
module.

* module context : in the body of a module (inside the module-begin layer).

e internal-definition context : in a nested context that allows both definitions and ex-
pressions.

e expression context : in a context where only expressions are allowed.

36

Different core syntactic forms parse sub-forms using different contexts. For example, a 1let
form always parses the right-hand expressions of a binding in an expression context, but it
starts parsing the body in an internal-definition context.

Introducing Bindings

Bindings are introduced during expansion when certain core syntactic forms are encoun-
tered:

* When a require form is encountered at the top level or module level, each symbol
specified by the form is paired with the scope set of the specification to introduce new
bindings. If not otherwise indicated in the require form, bindings are introduced at
the phase levels specified by the exporting modules: phase level 0 for each normal
provide, phase level 1 for each for-syntax provide, and so on. The for-meta
provide form allows exports at an arbitrary phase level (as long as a binding exists
within the module at the phase level).

A for-syntax sub-form within require imports similarly, but the resulting bindings
have a phase level that is one more than the exported phase levels, when exports for
the label phase level are still imported at the label phase level. More generally, a for-
meta sub-form within require imports with the specified phase level shift; if the
specified shift is #£, or if for-1label is used to import, then all bindings are imported
into the label phase level.

* When a define, define-values, define-syntax, or define-syntaxes form is
encountered at the top level or module level, a binding is added phase level O (i.e., the
base environment is extended) for each defined identifier.

* When a begin-for-syntax form is encountered at the top level or module level,
bindings are introduced as for define-values and define-syntaxes, but at phase
level 1 (i.e., the transformer environment is extended). More generally, begin-for-
syntax forms can be nested, an each begin-for-syntax shifts its body definition
by one phase level.

* When a let-values form is encountered, the body of the let-values form is ex-
tended (by creating new syntax objects) with a fresh scope. The scope is added
to the identifiers themselves, so that the identifiers in binding position are bound-
identifier=7 to uses in the fully expanded form, and so they are not bound-
identifier=7 to other identifiers. The new bindings are at the phase level at which
the let-values form is expanded.

* When a letrec-values or letrec-syntaxes+values form is encountered, bind-
ings are added as for let-values, except that the right-hand-side expressions are also
extended with the new scope.

* Definitions in internal-definition contexts introduce new scopes and bindings as de-
scribed in[§1.2.3.8 “Internal Definitions’]

37

For example, in

(let-values ([(x) 10]1) (+ x y))

the binding introduced for x applies to the x in the body, because a fresh scope is created and
added to both the binding x and reference x. The same scope is added to the y, but since it
has a different symbol than the binding x, it does not refer to the new binding. Any x outside
of this 1let-values form does not receive the fresh scope and therefore does not refer to the
new binding.

Transformer Bindings

In a top-level context or module context, when the expander encounters a define-
syntaxes form, the binding that it introduces for the defined identifiers is a transformer
binding. The value of the binding exists at expansion time, rather than run time (though the
two times can overlap), though the binding itself is introduced with phase level O (i.e., in the
base environment).

The value for the binding is obtained by evaluating the expression in the define-syntaxes
form. This expression must be expanded (i.e., parsed) before it can be evaluated, and it is
expanded at phase level 1 (i.e., in the transformer environment) instead of phase level 0.

If the resulting value is a procedure of one argument or the result of make-set!-
transformer on a procedure, then it is used as a syntax transformer (a.k.a. macro). The
procedure is expected to accept a syntax object and return a syntax object. A use of the bind-
ing (at phase level 0) triggers a call of the syntax transformer by the expander; see [§1.2.3.7]
[*Expansion Steps’|

Before the expander passes a syntax object to a transformer, the syntax object is extended
with a fresh macro-introduction scope (that applies to all sub-syntax objects) to distinguish
syntax objects at the macro’s use site from syntax objects that are introduced by the macro;
in the result of the transformer the presence of the scope is flipped, so that introduced syntax
objects retain the scope, and use-site syntax objects do not have it. In addition, if the use
of a transformer is in the same definition context as its binding, the use-site syntax object
is extended with an additional fresh use-site scope that is not flipped in the transformer’s
result, so that only use-site syntax objects have the use-site scope.

The scope-introduction process for macro expansion helps keep binding in an expanded pro-
gram consistent with the lexical structure of the source program. For example, the expanded
form of the program

(define x 12)
(define-syntax m
(syntax-rules ()
[(C id) (et ([x 10]1) id)1))

(m %)

38

is

(define x 12)
(define-syntax m)
(let-values ([(x) 10]1) x)

However, the result of the last expression is 12, not 10. The reason is that the transformer
bound to m introduces the binding x, but the referencing x is present in the argument to
the transformer. The introduced x is left with one fresh scope, while the reference x has a
different fresh scope, so the binding x is not bound-identifier="7 to the body x.

A use-site scope on a binding identifier is ignored when the definition is in the same context
where the use-site scope was introduced. This special treatment of use-site scopes allows a
macro to expand to a visible definition. For example, the expanded form of the program

(define-syntax m
(syntax-rules ()
[(_ id) (define id 5)1))
(m %)
X

is

(define-syntax m)
(define x 5)
X

where the x in the define form has a use-site scope that is not present on the final x. The
final x nevertheless refers to the definition, because the use-site scope is effectively removed
before installing the definition’s binding. In contrast, the expansion of

(define-syntax m
(syntax-rules ()
[(_ id) (Qet ([x 41)
(let ([id 51)
x))1))

(m %)

is

(define-syntax m)
(let ([x 41D
(et ([x 51)
x))

39

where the second x has a use-site scope that prevents it from binding the final x. The use-
site scope is not ignored in this case, because the binding is not part of the definition context
where (m x) was expanded.

The set! form works with the make-set!-transformer and prop:set!-transformer
property to support assignment transformers that transform set! expressions. An assign-
ment transformer contains a procedure that is applied by set! in the same way as a normal
transformer by the expander.

The make-rename-transformer procedure or prop:rename-transformer property cre-
ates a value that is also handled specially by the expander and by set! as a trans-
former binding’s value. When id is bound to a rename transformer produced by make-
rename-transformer, it is replaced with the target identifier passed to make-rename-
transformer. In addition, as long as the target identifier does not have a true value for the
'not-free-identifier=7 syntax property, the binding table is extended to indicate that
id is an alias for the identifier in the rename transformer. The free-identifier=? func-
tion follows aliasing chains to determine equality of bindings, the identifier-binding
function similarly follows aliasing chains, and the provide form exports id as the target
identifier. Finally, the syntax-local-value function follows rename transformer chains
even when binding aliases are not installed.

In addition to using scopes to track introduced identifiers, the expander tracks the expansion
history of a form through syntax properties such as 'origin. See[§12.7 “Syntax Object|

Properties”| for more information.

Finally, the expander uses a tamper status to control the way that unexported and protected
module bindings are used. See [§12.8 “Syntax Taints™| for more information on a tamper
status.

The expander’s handling of letrec-syntaxes+values is similar to its handling of
define-syntaxes. A letrec-syntaxes+values can be expanded in an arbitrary phase
level n (not just 0), in which case the expression for the transformer binding is expanded at
phase level n+1.

The expressions in a begin-for-syntax form are expanded and evaluated in the same
way as for define-syntaxes. However, any introduced bindings from definition within
begin-for-syntax are at phase level 1 (not a transformer binding at phase level 0).

Local Binding Context

Although the binding of an identifier can be uniquely determined from the combination of its
lexical information and the global binding table, the expander also maintains a local binding
context that records additional information about local bindings to ensure they are not used
outside of the lexical region in which they are bound.

Due to the way local binding forms like 1et add a fresh scope to both bound identifiers and
body forms, it isn’t ordinarily possible for an identifier to reference a local binding without

40

appearing in the body of the 1et. However, if macros use compile-time state to stash bound
identifiers, or use local-expand to extract identifiers from an expanded binding form, they
can violate this constraint. For example, the following stash-id and unstash-id macros
cooperate to move a reference to a locally-bound x identifier outside of the lexical region in
which it is bound:

> (begin-for-syntax
(define stashed-id #f))
> (define-syntax (stash-id stx)
(syntax-case stx (O
[(Cid)
(begin
(set! stashed-id #'id)
#' (void))1))
> (define-syntax (unstash-id stx)
stashed-id)
> (let ([x 42])
(stash-id x)
(unstash-id))
42
> (unstash-id)
identifier used out of context: #<syntax:eval:5:0 x>

In general, an identifier’s lexical information is not sufficient to know whether or not its
binding is available in the enclosing context, since the scope set for the identifier stored in
stashed-id unambiguously refers to a binding in the global binding table. This can be
observed by the fact that identifier-binding produces 'lexical, not #f:

> (define-syntax (stashed-id-binding stx)
#°'#, (identifier-binding stashed-id))

> (stashed-id-binding)

'lexical

However, the reference produced by (unstash-id) in the above program is still illegal,
even if itisn’t technically unbound. To record the fact that x’s binding is in scope only within
the body of its corresponding let form, the expander adds x’s binding to the local binding
context while expanding the 1et body. More generally, the expander adds all local variable
bindings to the local binding context while expanding expressions in which a reference to
the variable would be legal. When the expander encounters an identifier bound to a local
variable, and the associated binding is not in the current local binding context, it raises a
syntax error.

The local binding context also tracks local transformer bindings (i.e. bindings bound by
forms like let-syntax) in a similar way, except that the context also stores the compile-
time value associated with the transformer. When an identifier that is locally bound as a

41

transformer is used in application position as a syntax transformer, or its compile-time value
is looked up using syntax-local-value, the local binding context is consulted to retrieve
the value. If the binding is in scope, its associated compile-time value is used; otherwise, the
expander raises a syntax error.

Examples:

> (define-syntax (stashed-id-local-value stx)
#°'#, (syntax-local-value stashed-id))
> (let-syntax ([y 42])
(stash-id y)
(stashed-id-local-value))
42
> (stashed-id-local-value)
syntax-local-value: identifier is not bound to syntax:
#<syntax:eval:11:0 y>

Partial Expansion

In certain contexts, such as an internal-definition context or module context, partial expan-
sion is used to determine whether forms represent definitions, expressions, or other declara-
tion forms. Partial expansion works by cutting off the normal recursive expansion when the
relevant binding is for a primitive syntactic form.

As a special case, when expansion would otherwise add an #%app, #/,datum, or #%top iden-
tifier to an expression, and when the binding turns out to be the primitive #app, #/%datum,
or #/,;top form, then expansion stops without adding the identifier.

Internal Definitions

An internal-definition context supports local definitions mixed with expressions. Forms
that allow internal definitions document such positions using the body meta-variable.
Definitions in an internal-definition context are equivalent to local binding via letrec-
syntaxes+values; macro expansion converts internal definitions to a letrec-
syntaxes+values form.

Expansion relies on partial expansion of each body in an internal-definition sequence. Par-
tial expansion of each body produces a form matching one of the following cases:

¢ Adefine-values form: The binding table is immediately enriched with bindings for
the define-values form. Further expansion of the definition is deferred, and partial
expansion continues with the rest of the body.

* A define-syntaxes form: The right-hand side is expanded and evaluated (as for a
letrec-syntaxes+values form), and a transformer binding is installed for the body
sequence before partial expansion continues with the rest of the body.

42

* A primitive expression form other than begin: Further expansion of the expression is
deferred, and partial expansion continues with the rest of the body.

* A begin form: The sub-forms of the begin are spliced into the internal-definition
sequence, and partial expansion continues with the first of the newly-spliced forms (or
the next form, if the begin had no sub-forms).

After all body forms are partially expanded, if no definitions were encountered, then
the expressions are collected into a begin form as the internal-definition context’s ex-
pansion. Otherwise, at least one expression must appear after the last definition, and
any expr that appears between definitions is converted to (define-values () (be-
gin expr (values))); the definitions are then converted to bindings in a letrec-
syntaxes+values form, and all expressions after the last definition become the body of
the letrec-syntaxes+values form.

Before partial expansion begins, expansion of an internal-definition context begins with the
introduction of a fresh outside-edge scope on the content of the internal-definition context.
This outside-edge scope effectively identifies syntax objects that are present in the original
form. An inside-edge scope is also created and added to the original content; furthermore,
the inside-edge scope is added to the result of any partial expansion. This inside-edge scope
ensures that all bindings introduced by the internal-definition context have a particular scope
in common.

Module Expansion, Phases, and Visits

Expansion of amodule form proceeds in a similar way to expansion of an internal-definition
context: an outside-edge scope is created for the original module content, and an inside-
edge scope is added to both the original module and any form that appears during a partial
expansion of the module’s top-level forms to uncover definitions and imports.

A require form not only introduces bindings at expansion time, but also visits the refer-
enced module when it is encountered by the expander. That is, the expander instantiates
any variables defined in the module within begin-for-syntax, and it also evaluates all
expressions for def ine-syntaxes transformer bindings.

Module visits propagate through requires in the same way as module instantiation. More-
over, when a module is visited at phase 0, any module that it requires for-syntax is
instantiated at phase 1, while further requires for-template leading back to phase O
causes the required module to be visited at phase O (i.e., not instantiated).

During compilation, the top-level of module context is itself implicitly visited. Thus, when
the expander encounters (require (for-syntax)),itimmediately instantiates the
required module at phase 1, in addition to adding bindings at phase level 1 (i.e., the trans-
former environment). Similarly, the expander immediately evaluates any form that it en-
counters within begin-for-syntax.

Phases beyond 0 are visited on demand. For example, when the right-hand side of a phase-0

43

let-syntax is to be expanded, then modules that are available at phase 1 are visited. More
generally, initiating expansion at phase n visits modules at phase n, which in turn instantiates
modules at phase n+1. These visits and instantiations apply to available modules in the
enclosing namespace’s module registry; a per-registry lock prevents multiple threads from
concurrently instantiating and visiting available modules.

When the expander encounters require and (require (for-syntax)) within a
module context, the resulting visits and instantiations are specific to the expansion of the
enclosing module, and are kept separate from visits and instantiations triggered from a top-
level context or from the expansion of a different module. Along the same lines, when a
module is attached to a namespace through namespace-attach-module, modules that it
requires are transitively attached, but instances are attached only at phases at or below the
namespace’s base phase.

Macro-Introduced Bindings

When a top-level definition binds an identifier that originates from a macro expansion, the
definition captures only uses of the identifier that are generated by the same expansion due
to the fresh scope that is generated for the expansion.

Examples:

> (define-syntax def-and-use-of-x
(syntax-rules ()
[(def-and-use-of-x val)
; X below originates from this macro:
(begin (define x val) x)1))

> (define x 1)
> X
1
> (def-and-use-of-x 2)
2
> X
1
> (define-syntax def-and-use
(syntax-rules ()
[(def-and-use x val)
"x" below was provided by the macro use:
(begin (define x val) x)1))
> (def-and-use x 3)
3
> X
3

For a top-level definition (outside of a module), the order of evaluation affects the binding
of a generated definition for a generated identifier use. If the use precedes the definition,

44

then the use is resolved with the bindings that are in place that at point, which will not be
a macro-generated binding. (No such dependency on order occurs within a module, since a
module binding covers the entire module body.) To support the declaration of an identifier
before its use, the define-syntaxes form avoids binding an identifier if the body of the
define-syntaxes declaration produces zero results.

Examples:

> (define bucket-1 0)
> (define bucket-2 0)
> (define-syntax def-and-set!-use-of-x
(syntax-rules ()
[(def-and-set!-use-of-x val)
(begin (set! bucket-1 x) (define x val) (set! bucket-
x))1))
(define x 1)
(def-and-set!-use-of-x 2)
X

bucket-1

bucket-2

VNV =~V EFEV V VN

(define-syntax defs-and-uses/fail
(syntax-rules (O
[(def-and-use)
(begin
; Initial reference to even precedes definition:
(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? x) #t (odd (subl x))))
(odd 17))1))
> (defs-and-uses/fail)
even: undefined;
cannot reference an identifier before its definition
in module: top-level
> (define-syntax defs-and-uses
(syntax-rules ()
[(def-and-use)
(begin
; Declare before definition via no-values define-
syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? x) #t (odd (subl x))))
(odd 17))1))
> (defs-and-uses)

45

#t

Macro-generated require and provide clauses also introduce and reference generation-
specific bindings (due to the added scope) with the same ordering effects as for definitions.
The bindings depend on the scope set attached to specific parts of the form:

* Inrequire, for a require-spec of the form (rename-in [orig-id bind-id])
or (only-in [orig-id bind-id]), the bind-id supplies the scope set for
the binding. In require for other require-specs, the generator of the require-
spec determines the scope set.

* In provide, for a provide-spec of the form id, the exported identifier is the one
that binds id, but the external name is the plain, symbolic part of id. The excep-
tions for all-except-out are similarly determined, as is the orig-id binding of
a rename-out form, and plain symbols are used for the external names. For all-
defined-out, only identifiers with definitions having only the scopes of (all-
defined-out) form are exported; the external name is the plain symbol from the
definition.

1.2.4 Compilation

Before expanded code is evaluated, it is first compiled. A compiled form has essentially the
same information as the corresponding expanded form, though the internal representation
naturally dispenses with identifiers for syntactic forms and local bindings. One significant
difference is that a compiled form is almost entirely opaque, so the information that it con-
tains cannot be accessed directly (which is why some identifiers can be dropped). At the
same time, a compiled form can be marshaled to and from a byte string, so it is suitable for
saving and re-loading code.

Although individual read, expand, compile, and evaluate operations are available, the oper-
ations are often combined automatically. For example, the eval procedure takes a syntax
object and expands it, compiles it, and evaluates it.

1.2.5 Namespaces

A namespace is both a starting point for parsing and a starting point for running compiled
code. A namespace also has a module registry that maps module names to module decla-
rations (see[§1.1.10 “Modules and Module-Level Variables™). This registry is shared by all
phase levels, and it applies both to parsing and to running compiled code.

As a starting point for parsing, a namespace provides scopes (one per phase level, plus one
that spans all phase levels). Operations such as namespace-require create initial bindings
using the namespace’s scopes, and the further expansion and evaluation in the namespace

46

NN E—
Namespaces’ | for

functions that
manipulate
namespaces.

can create additional bindings. Evaluation of a form with a namespace always adds the
namespace’s phase-specific scopes to the form and to any result of expanding the top-level
form; as a result, every binding identifier has at least one scope. The namespace’s additional
scope, which is added at all phase levels, is added only on request (e.g., by using eval as
opposed to eval-syntax). Except for namespaces generated by a module (see module-
>namespace), every namespace uses the same scope as the one added to all phase levels,
while the scopes specific to a phase level are always distinct.

As a starting point evaluating compiled code, each namespace encapsulates a distinct set of
top-level variables at various phases, as well as a potentially distinct set of module instances
in each phase. That is, even though module declarations are shared for all phase levels,
module instances are distinct for each phase. Each namespace has a base phase, which
corresponds to the phase used by reflective operations such as eval and dynamic-require.
In particular, using eval on a require form instantiates a module in the namespace’s base
phase.

After a namespace is created, module instances from existing namespaces can be attached
to the new namespace. In terms of the evaluation model, top-level variables from differ-
ent namespaces essentially correspond to definitions with different prefixes, but attaching
a module uses the same prefix for the module’s definitions in namespaces where it is at-
tached. The first step in evaluating any compiled expression is to link its top-level variable
and module-level variable references to specific variables in the namespace.

At all times during evaluation, some namespace is designated as the current namespace. The
current namespace has no particular relationship, however, with the namespace that was used
to expand the code that is executing, or with the namespace that was used to link the compiled
form of the currently evaluating code. In particular, changing the current namespace during
evaluation does not change the variables to which executing expressions refer. The current
namespace only determines the behavior of reflective operations to expand code and to start
evaluating expanded/compiled code.

Examples:

> (define x 'orig) ; define in the original namespace
; The following let expression is compiled in the original
; namespace, so direct references to x see 'orig.

> (let ([n (make-base-namespace)]) ; make new namespace
(parameterize ([current-namespace n])
(eval '(define x 'new)) ; evals in the new namespace
(display x) ; displays 'orig
(display (eval 'x)))) ; displays 'new
orignew

If an identifier is bound to syntax or to an import, then defining the identifier as a variable
shadows the syntax or import in future uses of the environment. Similarly, if an identifier is
bound to a top-level variable, then binding the identifier to syntax or an import shadows the

47

variable; the variable’s value remains unchanged, however, and may be accessible through
previously evaluated expressions.

Examples:

(define x 5)
(define (f) x)
x

(define-syntax x (syntax-id-rules () [_ 10]))

>
>

>

5

> (f)
5

>

> x

10
(£)

(define x 7)
X

(£)
(module m racket (define x 8) (provide x))

(require 'm)
X

(£)

NV 0OV VYV NV NV VoYV

Like a top-level namespace, each module form has an associated scope to span all phase
levels of the module’s content, plus a scope at each phase level. The latter is added to every
form, original or appearing through partial macro expansion, within the module’s immediate
body. Those same scopes are propagated to a namespace created by module->namespace
for the module. Meanwhile, parsing of a module form begins by removing the all scopes that
correspond to the enclosing top-level or (in the case of submodules) module and modulex*
forms.

1.2.6 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values,
such as procedures. For example, evaluating the following expression:

(et ([f (lambda () 0)1) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The

48

error message is able to report £ as the name of the procedure. In this case, Racket decides,
at compile-time, to name as 'f all procedures created by the 1let-bound lambda.

Names are inferred whenever possible for procedures. Names closer to an expression take
precedence. For example, in

(define my-f
(let ([f (lambda () 0)]1) £))

the procedure bound to my-f will have the inferred name 'f.

When an 'inferred-name property is attached to a syntax object for an expression (see
[§12.7 “Syntax Object Properties™), the property value is used for naming the expression,
and it overrides any name that was inferred from the expression’s context. Normally, the
property value should be a symbol. A 'inferred-name property value of #<void> hides a
name that would otherwise be inferred from context (perhaps because a binding identifier’s
was automatically generated and should not be exposed).

To support the propagation and merging of consistent properties during expansions, the value
of the 'inferred-name property can be a tree formed with cons where all of the leaves are
the same. For example, (cons 'name 'name) is equivalent to 'name, and (cons (void)
(void)) is equivalent to #<void>.

When an inferred name is not available, but a source location is available, a name is con-
structed using the source location information. Inferred and property-assigned names are
also available to syntax transformers, via syntax-local-name.

1.2.7 Cross-Phase Persistent Module Declarations

A module is cross-phase persistent only if it fits the following grammar, which uses
non-terminals from |§1.2.3.1 “Fully Expanded Programs” only if it includes (#Jde-
clare #:cross-phase-persistent), only it includes no uses of quote-syntax or
#),variable-reference, and only if no module-level binding is set!ed.

cross-module = (module id module-path
(#%plain-module-begin
cross-form ...))

cross-form (#/declare #:cross-phase-persistent)

| (begin cross-form ...)

| (#)provide raw-provide-spec ...)

| submodule-form

| (define-values (id ...) cross-expr)
| (#%require raw-require-spec ...)

49

See
procedure-rename
to override a
procedure’s inferred
name at runtime.

id
(quote cross-datum)
(#/plain-lambda formals expr ...+)

Cross-expr

|
|
| (case-lambda (formals expr ...+) ...)
| (#%plain-app cons cross-expr ...+)
;plain-a ist cross-expr ...+
(#%plain-app 1li D)
splain-app make-struct-type cross-expr ...+
(#/plain-app mak yp p)
#/plain-app make-struct-type-propert
(#)p PP ype-property
cross-expr ...+)

| (#%plain-app gensym)

| (#%plain-app gensym string)

| (#%plain-app string->uninterned-symbol string)
cross-datum = number
| boolean
| identifier
| string
| bytes
| O

This grammar applies after expansion, but because a cross-phase persistent module imports
only from other cross-phase persistent modules, the only relevant expansion steps are the
implicit introduction of #);plain-module-begin, implicit introduction of #),plain-app,
and implicit introduction and/or expansion of #/,datum.

1.3 The Reader

Racket’s reader is a recursive-descent parser that can be configured through a readtable and
various other parameters. This section describes the reader’s parsing when using the default
readtable.

Reading from a stream produces one datum. If the result datum is a compound value, then
reading the datum typically requires the reader to call itself recursively to read the component
data.

The reader can be invoked in either of two modes: read mode, or read-syntax mode.
In read-syntax mode, the result is always a syntax object that includes source-location
and (initially empty) lexical information wrapped around the sort of datum that read mode
would produce. In the case of pairs, vectors, and boxes, the content is also wrapped re-
cursively as a syntax object. Unless specified otherwise, this section describes the reader’s
behavior in read mode, and read-syntax mode does the same modulo wrapping of the
final result.

Reading is defined in terms of Unicode characters; see[§13.1 ~Ports”| for information on how
a byte stream is converted to a character stream.

50

Symbols, keywords, strings, byte strings, regexps, characters, and numbers produced by
the reader in read-syntax mode are interned, which means that such values in the result
of read-syntax are always eq? when they are equal? (whether from the same call or
different calls to read-syntax). Symbols and keywords are interned in both read and
read-syntax mode. Sending an interned value across a place channel does not necessarily
produce an interned value at the receiving place. See also datum-intern-literal and
datum->syntax.

1.3.1 Delimiters and Dispatch

Along with whitespace, the following characters are delimiters:
ARnmARw,, g

A delimited sequence that starts with any other character is typically parsed as either a sym-
bol, number, or extflonum, but a few non-delimiter characters play special roles:

* # has a special meaning as an initial character in a delimited sequence; its meaning
depends on the characters that follow; see below.

* | starts a subsequence of characters to be included verbatim in the delimited sequence
(i.e., they are never treated as delimiters, and they are not case-folded when case-
insensitivity is enabled); the subsequence is terminated by another |, and neither the
initial nor terminating | is part of the subsequence.

* \ outside of a | pair causes the following character to be included verbatim in a de-
limited sequence.

More precisely, after skipping whitespace, the reader dispatches based on the next character
or characters in the input stream as follows:

(starts a pair or list; see(§1.3.6 “Reading Pairs and Lists”)|
[starts a pair or list; see[§1.3.6 “Reading Pairs and Lists”)
{ starts a pair or list; see[§1.3.6 “Reading Pairs and Lists
) matches (or raises exn:fail:read
]
1

”l

matches [or raises exn:fail:read
matches { or raises exn:fail:read
"' starts a string; see|§1.3.7 “Reading Strings”]
' starts a quote; see|§1.3.8 “Reading Quotes”
* starts a quasiquote; see|31.3.8 “Reading Quotes”
, starts a [splicing] unquote; see[§1.3.8 “Reading Quotes”]
; starts a line comment; see[§1.3.9 “Reading Comments”]
#t or #T true; see[§$1.3.5 “Reading Booleans’|

#£ or #F false; see[§1.3.5 “Reading Booleans”)|
#(starts a vector; see[§1.3.10 “Reading Vectors”]

51

#[
#{
#£1 (or #F1(
#£1[or #F1[
#£1{ or #F1{
#£x (or #Fx(
#fx[or #Fx [
#fx{ or #Fx{
#s(
#s[
#s{
#\
#II
#%
#:
#&
#1
#;
#l
#!
#1/
#!
4
#,
#~
#i or #I
#e or #E
#x or #X
#o or #0
#d or #D
#b or #B
#<<
#rx
#px

#ci, #cI, #Ci, or #CI
#cs, #cS, #Cs, or #CS

#hash
#reader
#lang
#(digitjoy* (
#(digit;o)* [
#(digitjoyt{
#£1{digit;o)* (
#£1{digit;o)" [
#£1{digit;p)*{
#F1{digit;9)* (

starts a vector; see|§1.3.10 “Reading Vectors’]|
starts a vector; see|§1.3.10 “Reading Vectors’]|

starts a flvector; see[§1.3.10 “"Reading Vectors”)|
starts a flvector; see
starts a flvector; see
starts a fxvector; see[§1.3.10 “Reading Vectors’]

starts a fxvector; see[§1.3.10 “Reading Vectors’]
starts a fxvector; see§1.3.10 “Reading Vectors’

starts a structure literal; see[§1.3.1T “Reading Structures™]
starts a structure literal; see
starts a structure literal; see
starts a character; see[$1.3.14 “Reading Characters’)
starts a byte string; see[§1.3.7 “Reading Strings’|

starts a symbol; see[§1.3.2 “Reading Symbols”)|

starts a keyword; see[§1.3.15 “Reading Keywords”]

starts a box; see|§ | 3]3 ffEeané ones |

starts a block comment; see[§1.3.9 “Reading Comments’|
starts an S-expression comment; see[§1.3.9 “Reading Comments’]

starts a syntax quote; see[31.3.8 “Reading Quotes”]|

starts a line comment; see

starts a line comment; see

may start a reader extension; see[§1.3.18 “Reading via an Extension]

starts a syntax quasiquote; see[§1.3.8 “Reading Quotes’]

starts a syntax [splicing] unquote; see[§1.3.3 “Reading Quotes”|
starts compiled code; see|§1.4. Printing Compiled Code
starts a number; see[§1.3.3 “Reading Numbers”]

starts a number; see[§1.3.3 “Reading Numbers”]

starts a number or extflonum; seemm
starts a number or extflonum; see|§1.3.3 “Reading Numbers’|
starts a number or extflonum; see|31.3.3 “Readlng Numbers”|
starts a number or extﬂonum see

starts a string; see [§T3.7 “Reading Strings |
starts a regular expression; see|§ I .3. 16 =’Readmg Regular Expressions”)|

starts a regular expression; see[§1.3.16 “Reading Regular Expressions’]

switches case sensitivity; see|§1.3.2 “Reading Symbols”)|

switches case sensitivity; see[§1.3.2 “Reading Symbols™|

starts a hash table; see eading Hash Tables

starts a reader extension use; see[§1.3.18 “Reading via an Extension’ |
starts a reader extension use; see[§1.3.18 “Reading via an Extension”]
starts a vector; see|§1.3.10 “Reading Vectors’]|

starts a vector; see|31.3.10 “Reading Vectors”)
starts a vector; see

starts a flvector; see
starts a flvector; see[§1.3.10 “Reading Vectors"|

starts a flvector; see[§1.3.10 “Reading Vectors]|
starts a flvector; see|§1.3.10 “Reading Vectors’|

52

#F1{digit;p)" [starts a flvector; see[§1.3.10 “Reading Vectors’|
#F1{digit;p)*{ starts a flvector; see[§1.3.10 “Reading Vectors'|

#fx(digit;p)* (starts a fxvector; see[§1.3.10 “Reading Vectors”]
#fx{digitjg)* [starts a fxvector; see[§1.3.10 “Reading Vectors|
#fx(digit;o)*{ starts a fxvector; see
#Fx{digit;p)* (starts a fxvector; see[§1.3.10 “Reading Vectors™|

#Fx{digit;p)* [starts a fxvector; see[§1.3.10 “Reading Vectors™|

#Fx(digitjo)*{ starts a fxvector; see[§1.3.10 “Reading Vectors’]

#<digit10>{ 1.8}= binds a graph tag; see(§1.3.17 “Reading Graph Structure”]|

#(digit10>{ 1814 usesa graph tag; see[§1.3.17 “Reading Graph Structure”)|
otherwise starts a symbol; see[§1.3.2 “Reading Symbols”|

1.3.2 Reading Symbols

A sequence that does not start with a delimiter or # is parsed as either a symbol, a number (see
[§T.3.3"Reading Numbers™), or a extflonum (see [§1.3.4 “Reading Extilonums”)), except that
. by itself is never parsed as a symbol or number (unless the read-accept-dot parameter
is set to #f). A #J, also starts a symbol. The resulting symbol is interned. A successful
number or extflonum parse takes precedence over a symbol parse.

When the read-case-sensitive parameter is set to #£f, characters in the sequence that
are not quoted by | or \ are first case-normalized. If the reader encounters #ci, #CI, #Ci,
or #cI, then it recursively reads the following datum in case-insensitive mode. If the reader
encounters #cs, #CS, #Cs, or #cS, then it recursively reads the following datum in case-
sensitive mode.

Examples:

Apple reads equal to (string->symbol "Apple")
Ap#ple reads equal to (string->symbol "Ap#ple")
Ap ple reads equal to (string->symbol "Ap")

Ap| |ple reads equal to (string->symbol "Ap ple")
Ap\ ple reads equal to (string->symbol "Ap ple")

#ci Apple reads equal to (string->symbol "apple')
#ci |Alpple readsequalto (string->symbol "Apple")
#ci \Apple readsequalto (string->symbol "Apple")
#ci#tcs Apple reads equal to (string->symbol "Apple")
#/Apple reads equal to (string->symbol "#JApple")

1.3.3 Reading Numbers

A sequence that does not start with a delimiter is parsed as a number when it matches the
following grammar case-insensitively for {number;y) (decimal), where n is a meta-meta-
variable in the grammar. The resulting number is interned in read-syntax mode.

53

§3.6 “Symbols” in
The Racket Guide
introduces the
syntax of symbols.

§3.2 “Numbers” in
The Racket Guide
introduces the
syntax of numbers.

A number is optionally prefixed by an exactness specifier, #e (exact) or #i (inexact), which
specifies its parsing as an exact or inexact number; see for information
on number exactness. As the non-terminal names suggest, a number that has no exactness
specifier and matches only {inexact-numbery,) is normally parsed as an inexact number, oth-
erwise it is parsed as an exact number. If the read-decimal-as-inexact parameter is set
to #£, then all numbers without an exactness specifier are instead parsed as exact.

If the reader encounters #b (binary), #o (octal), #d (decimal), or #x (hexadecimal), it must be
followed by a sequence that is terminated by a delimiter or end-of-file, and that is either an
extflonum (see|§1.3.4 “Reading Extflonums”)) or matches the {(general-number,), {general-
numberg), {general-number), or {general-number sy grammar, respectively.

A #e or #i followed immediately by #b, #o, #d, or #x is treated the same as the reverse
order: #b, #o, #d, or #x followed by #e or #1i.

An {exponent-mark;, y in an inexact number serves both to specify an exponent and to spec-
ify a numerical precision. If single-flonums are supported (see and the
read-single-flonum parameter is set to #t, the marks f and s specify single-flonums. If
read-single-flonum is set to #f, or with any other mark, a double-precision flonum is
produced. If single-flonums are not supported and read-single-flonum is set to #t, then
the exn:fail:unsupported exception is raised when a single-flonum would otherwise be
produced. Special infinity and not-a-number flonums and single-flonums are distinct; spe-
cials with the . 0 suffix, like +nan. 0, are double-precision flonums, while specials with the
. suffix, like +nan. 0, are single-flonums if enabled though read-single-flonum.

A # in an {inexact, y number is the same as 0, but # can be used to suggest that the digit’s
actual value is unknown.

All letters in a number representation are parsed case-insensitively, independent of the
read-case-sensitive parameter. For example, #I#D+InF.F+31I is parsed the same as
#i#d+inf.f+3i. In the grammar below, each literal lowercase letter stands for both itself
and its uppercase form.

{numbery) ::= {exactyy | (inexacty)
{exacty) {exact-rational,) | {exact-complex,)
{exact-rational,) [(sign)] (unsigned-rationaly)
(unsigned-rational,) ::= {unsigned-integer,)

| {unsigned-integery) / {unsigned-integery)
{exact-integery) ::= [(signy] {unsigned-integer,)y
(unsigned-integer,) ::= (digity)*
{exact-complexy,) {exact-rational,) {sign)y {unsigned-rational,y i
(inexactyy ::= (inexact-real,y | {inexact-complexy)
(inexact-realy,) [(sign)] (inexact-normaly,)

| (signy (inexact-special,)
(inexact-unsigned,) ::= (inexact-normal,) | {inexact-special,)
(inexact-normaly,) (inexact-simpley)y [{exp-marky) {exact-integery)]
(inexact-simpley) (digits#,)y [.] #*

54

| [(unsigned-integery,y] . {digits#,)
| digits#,y / {digits#,)

inf.0

nan.f

(inexact-special,y
(digitsity)
(inexact-complexy)

(sign)

(digitjs)

(digito)

(digitg)

(digity)
{exp-mark;s)
{exp-markjp)
{exp-markg)
{exp-marky)
{general-numbery,)

(digity)™ #*

| nan.0 |

inf.f |

[(inexact-realy)] (signy {inexact-unsigned,y i

{inexact-real,y @ (inexact-realy)

+ | =

= (digitjp) |

<digil8> |
<digi12> |

=0 | 1
=s | 1

Il

(exp-mark)
{exp-mark ;)
{exp-mark)y

[{exactnessy] {numbery,)

a

8
2

d

(exactness)y =#e | #i

Examples:

-1 reads equal to -1

1/2 reads equalto (/ 1 2)

1.0 reads equal to (exact->inexact 1)

1+2i reads equal to (make-rectangular 1 2)

1/2+3/4i readsequal to (make-rectangular (/ 1 2) (/ 3 4))
1.0+3.0e71i reads equal to (exact->inexact (make-rectangular 1 30000000))
2eb reads equal to (exact->inexact 200000)

#ib reads equal to (exact->inexact 5)

#e2eb reads equal to 200000

#x2eb reads equal to 741

#b101 reads equal to 5

1.3.4 Reading Extflonums

An extflonum has the same syntax as an {(inexact-realy) that includes an {exp-marky), but
with t or T in place of the {exp-marky). In addition, +inf.t, -inf.t, +nan.t, -nan.t are
extflonums. A #b (binary), #o (octal), #d (decimal), or #x (hexadecimal) radix specification
can prefix an extflonum, but #i or #e cannot, and a extflonum cannot be used to form a
complex number. The read-decimal-as-inexact parameter has no effect on extflonum

reading.

55

1.3.5 Reading Booleans

A #true, #t, #T followed by a delimiter is the input syntax for the boolean constant “true,”
and #false, #£, or #F followed by a delimiter is the complete input syntax for the boolean
constant “false.”

1.3.6 Reading Pairs and Lists

When the reader encounters a (, [, or {, it starts parsing a pair or list; see |§4.9 “Pairs and
for information on pairs and lists.

To parse the pair or list, the reader recursively reads data until a matching), 1, or } (respec-
tively) is found, and it specially handles a delimited .. Pairs (), [], and {} are treated the
same way, so the remainder of this section simply uses “parentheses” to mean any of these
pair.

If the reader finds no delimited . among the elements between parentheses, then it produces
a list containing the results of the recursive reads.

If the reader finds two data between the matching parentheses that are separated by a de-
limited ., then it creates a pair. More generally, if it finds two or more data where the last
datum is preceded by a delimited ., then it constructs nested pairs: the next-to-last element
is paired with the last, then the third-to-last datum is paired with that pair, and so on.

If the reader finds three or more data between the matching parentheses, and if a pair of
delimited . s surrounds any other than the first and last elements, the result is a list containing
the element surrounded by .s as the first element, followed by the others in the read order.
This convention supports a kind of infix notation at the reader level.

In read-syntax mode, the recursive reads for the pair/list elements are themselves in read-
syntax mode, so that the result is a list or pair of syntax objects that is itself wrapped as
a syntax object. If the reader constructs nested pairs because the input included a single
delimited ., then only the innermost pair and outermost pair are wrapped as syntax objects.

Whether wrapping a pair or list, if the pair or list was formed with [and], then a 'paren-
shape property is attached to the result with the value #\ [. If the read-square-bracket-
with-tag parameter is set to #t, then the resulting pair or list is wrapped by the equivalent
of (cons '#Jbrackets pair-or-list).

Similarly, if the list or pair was formed with { and }, then a 'paren-shape property is
attached to the result with the value #\{. If the read-curly-brace-with-tag parameter
is set to #t, then the resulting pair or list is wrapped by the equivalent of (cons '#)braces
pair-or-list).

If a delimited . appears in any other configuration, then the exn:fail:read exception is

56

raised. Similarly, if the reader encounters a), 1, or } that does not end a list being parsed,
then the exn:fail:read exception is raised.

Examples:

O reads equal to (1list)

(12 3) reads equal to (1ist 1 2 3)

{1 2 3%} readsequal to (list 1 2 3)

[1 2 3] reads equal to (list 1 2 3)

(1 (2) 3) readsequalto (list 1 (list 2) 3)
1. 3) reads equal to (cons 1 3)

(1 . (3)) readsequalto (list 1 3)

(1 . 2 . 3) readsequalto (list 2 1 3)

If the read-square-bracket-as-paren and read-square-bracket-with-tag param-
eters are set to #f, then when the reader encounters [and], the exn:fail:read exception
israised. Similarly, if the read-curly-brace-as-paren and read-curly-brace-with-
tag parameters are set to #£, then when the reader encounters { and }, the exn:fail:read
exception is raised.

If the read-accept-dot parameter is set to #f, then a delimited triggers an
exn:fail:read exception. If the read-accept-infix-dot parameter is set to #f, then
multiple delimited . s trigger an exn:fail:read exception, instead of the infix conversion.

1.3.7 Reading Strings

When the reader encounters ", it begins parsing characters to form a string. The string
continues until it is terminated by another " (that is not escaped by \). The resulting string
is interned in read-syntax mode.

Within a string sequence, the following escape sequences are recognized:

e \a:
e \b:

alarm (ASCII 7)

backspace (ASCII 8)
o \t:
* \n:
* \wv:
o \f:
e \r:
* \e:
* N:

tab (ASCIL 9)

linefeed (ASCII 10)
vertical tab (ASCII 11)
formfeed (ASCII 12)
return (ASCII 13)
escape (ASCII 27)

double-quotes (without terminating the string)

57

§3.4 “Strings
(Unicode)” in The
Racket Guide
introduces the
syntax of strings.

* \': quote (i.e., the backslash has no effect)
* \\: backslash (i.e., the second is not an escaping backslash)

. \<digitg>{1’3}: Unicode for the octal number specified by digitg!!3} (ie., 1 to 3
{digitg)s), where each (digitgy is 0, 1, 2, 3, 4, 5, 6, or 7. A longer form takes prece-
dence over a shorter form, and the resulting octal number must be between 0 and 255
decimal, otherwise the exn:fail:read exception is raised.

* \x(digit;s)!"*}: Unicode for the hexadecimal number specified by (digit;s)!12},
where each (digit;s)is 0,1, 2, 3,4,5,6,7,8,9, a, b, c, d, e, or f (case-insensitive).
The longer form takes precedence over the shorter form.

. \u<digit16>{1’4}: like \x, but with up to four hexadecimal digits (longer sequences
take precedence). The resulting hexadecimal number must be a valid argument to
integer->char, otherwise the exn:fail:read exception is raised—unless the en-
coding continues with another \u to form a surrogate-style encoding.

o \u(digit;s)!** N\ uldigit;s)**: like \u, but for two hexadecimal numbers, where
the first is in the range #xD800 to #xDBFF and the second is in the range #xDCO0 to
#xDFFF; the resulting character is the one represented by the numbers as a UTF-16
surrogate pair.

 \U(digit;s)!18): like \x, but with up to eight hexadecimal digits (longer sequences
take precedence). The resulting hexadecimal number must be a valid argument to
integer->char, otherwise the exn:fail:read exception is raised.

* \(newline): elided, where (newline) is either a linefeed, carriage return, or carriage
return—linefeed combination. This convention allows single-line strings to span mul-
tiple lines in the source.

If the reader encounters any other use of a backslash in a string constant, the
exn:fail:read exception is raised.

A string constant preceded by # is parsed as a byte string. (That is, #" starts a byte-string
literal.) See[§4.4 “Byte Strings”|for information on byte strings. The resulting byte string is
interned in read-syntax mode. Byte-string constants support the same escape sequences
as character strings, except \u and \U. Otherwise, each character within the byte-string
quotes must have a Unicode code-point number in the range 0 to 255, which is used as the
corresponding byte’s value; if a character is not in that range, the exn: fail : read exception
is raised.

When the reader encounters #<<, it starts parsing a here string. The characters following
#<< until a newline character define a terminator for the string. The content of the string
includes all characters between the #<< line and a line whose only content is the specified
terminator. More precisely, the content of the string starts after a newline following #<<,
and it ends before a newline that is followed by the terminator, where the terminator is itself
followed by either a newline or end-of-file. No escape sequences are recognized between

58

§3.5 “Bytes and
Byte Strings” in
The Racket Guide
introduces the
syntax of byte
strings.

the starting and terminating lines; all characters are included in the string (and terminator)
literally. A return character is not treated as a line separator in this context. If no characters
appear between #<< and a newline or end-of-file, or if an end-of-file is encountered before a
terminating line, the exn:fail:read exception is raised.

Examples:

"Apple" reads equal to "Apple"

"\x41pple" readsequalto "Apple"

"\"Apple\"" reads equal to "\x22Apple\x22"

"\\ " reads equal to "\x5C"

#"Apple" reads equal to (bytes 65 112 112 108 101)

1.3.8 Reading Quotes

When the reader encounters ', it recursively reads one datum and forms a new list containing
the symbol 'quote and the following datum. This convention is mainly useful for reading
Racket code, where 's can be used as a shorthand for (quote s).

Several other sequences are recognized and transformed in a similar way. Longer prefixes
take precedence over short ones:

! adds quote

* adds quasiquote

s adds unquote

,@ adds unquote-splicing
#' adds syntax

#° adds quasisyntax

#, adds unsyntax

#,0 adds unsyntax-splicing

Examples:
'apple readsequalto (list 'quote 'apple)
(1 ,2) readsequalto (list 'quasiquote (list 1 (list 'unquote 2)))

The °, ,, and , @ forms are disabled when the read-accept-quasiquote parameter is set
to #£, in which case the exn:fail:read exception is raised instead.

1.3.9 Reading Comments

A ; starts a line comment. When the reader encounters ;, it skips past all characters until the
next linefeed (ASCII 10), carriage return (ASCII 13), next-line (Unicode 133), line-separator
(Unicode 8232), or paragraph-separator (Unicode 8233) character.

A #| starts a nestable block comment. When the reader encounters #|, it skips past all

59

characters until a closing |#. Pairs of matching #| and |# can be nested.

A #; starts an S-expression comment. When the reader encounters #;, it recursively reads
one datum, and then discards it (continuing on to the next datum for the read result).

A #! (whichis #! followed by a space) or #!/ starts a line comment that can be continued
to the next line by ending a line with \. This form of comment normally appears at the
beginning of a Unix script file.

Examples:

; comment reads equal to nothing
#l a |# 1 reads equal to 1

#| #| a |# 1 |# 2 readsequalto 2

#;1 2 reads equal to 2
#!/bin/sh reads equal to nothing
#! /bin/sh reads equal to nothing

1.3.10 Reading Vectors

When the reader encounters a #(, #[, or #{, it starts parsing a vector; see

for information on vectors. A #£1 in place of # starts an flvector, but is not allowed in read-
syntax mode; see(§4.2.3.2 “Flonum Vectors™| for information on flvectors. A #fx in place
of # starts an fxvector, but is not allowed in read-syntax mode; see [§4.2.4.2 “Fixnum|
[Vectors™ for information on fxvectors. The #[, #{, #£1[, #f1{, #fx[, and #fx{ forms can
be disabled through the read-square-bracket-as-paren and read-curly-brace-as-
paren parameters.

The elements of the vector are recursively read until a matching),], or } is found, just as for
lists (see|31.3.6 “Reading Pairs and Lists™). A delimited . is not allowed among the vector
elements. In the case of flvectors, the recursive read for element is implicitly prefixed with
#i and must produce a flonum. In the case of fxvectors, the recursive read for element is
implicitly prefixed with #e and must produce a fixnum.

An optional vector length can be specified between #, #f1, #fx and (, [, or {. The size
is specified using a sequence of decimal digits, and the number of elements provided for
the vector must be no more than the specified size. If fewer elements are provided, the last
provided element is used for the remaining vector slots; if no elements are provided, then 0
is used for all slots.

In read-syntax mode, each recursive read for vector elements is also in read-syntax
mode, so that the wrapped vector’s elements are also wrapped as syntax objects, and the
vector is immutable.

Examples:

#(1 apple 3) reads equal to (vector 1 'apple 3)
#3("apple" "banana') readsequalto (vector "apple" "banana" "banana')

60

#30) reads equal to (vector 0 0 0)

1.3.11 Reading Structures

When the reader encounters a #s(, #s[, or #s{, it starts parsing an instance of a prefab
structure type; see for information on structure types. The #s[and #s{
forms can be disabled through the read-square-bracket-as-paren and read-curly-
brace-as-paren parameters.

The elements of the structure are recursively read until a matching),], or } is found, just as
for lists (see|§1.3.6 “Reading Pairs and Lists™). A single delimited . is not allowed among
the elements, but two .s can be used as in a list for an infix conversion.

The first element is used as the structure descriptor, and it must have the form (when quoted)
of a possible argument to make-prefab-struct; in the simplest case, it can be a symbol.
The remaining elements correspond to field values within the structure.

In read-syntax mode, the structure type must not have any mutable fields. The structure’s
elements are read in read-syntax mode, so that the wrapped structure’s elements are also
wrapped as syntax objects.

If the first structure element is not a valid prefab structure type key, or if the number of
provided fields is inconsistent with the indicated prefab structure type, the exn:fail:read
exception is raised.

1.3.12 Reading Hash Tables

A #hash starts an immutable hash-table constant with key matching based on equal?. The
characters after hash must parse as a list of pairs (see|§1.3.6 “Reading Pairs and Lists™)) with
a specific use of delimited . : it must appear between the elements of each pair in the list and
nowhere in the sequence of list elements. The first element of each pair is used as the key
for a table entry, and the second element of each pair is the associated value.

A #hasheq starts a hash table like #hash, except that it constructs a hash table based on eq?
instead of equal?.

A #hashequ starts a hash table like #hash, except that it constructs a hash table based on
eqv? instead of equal?.

In all cases, the table is constructed by adding each mapping to the hash table from left to
right, so later mappings can hide earlier mappings if the keys are equivalent.

Examples, where make- . . . stands for make-immutable-hash:
#hash () reads equal to (make-... '())

61

#hasheq () reads equal to (make-...eq '())

#hash(("a" . 5)) reads equal to (make-... '(("a" . 5)))
#hasheq((a . 5) (b . 7)) readsequalto (make-...eq '((a . 5) (b . 7)))
#hasheq((a . 5) (a . 7)) readsequalto (make-...eq '((a . 7)))

1.3.13 Reading Boxes

When the reader encounters a #&, it starts parsing a box; see for information
on boxes. The content of the box is determined by recursively reading the next datum.

In read-syntax mode, the recursive read for the box content is also in read-syntax mode,
so that the wrapped box’s content is also wrapped as a syntax object, and the box is im-
mutable.

Examples:
#&17 reads equal to (box 17)

1.3.14 Reading Characters
§3.3 “Characters”
in The Racket

A #\ starts a character constant, which has one of the following forms: Guide introduces
the syntax of
characters.

e #\nul or #\null: NUL (ASCII 0); the next character must not be alphabetic.
» #\backspace: backspace (ASCII 8); the next character must not be alphabetic.
e #\tab: tab (ASCII 9); the next character must not be alphabetic.

e #\newline or #\linefeed: linefeed (ASCII 10); the next character must not be
alphabetic.

e #\vtab: vertical tab (ASCII 11); the next character must not be alphabetic.

* #\page: page break (ASCII 12); the next character must not be alphabetic.

e #\return: carriage return (ASCII 13); the next character must not be alphabetic.
» #\space: space (ASCII 32); the next character must not be alphabetic.

e #\rubout: delete (ASCII 127); the next character must not be alphabetic.

. #\<digitg>{3’3}: Unicode for the octal number specified by three octal digits—as in
string escapes (see(§1.3.7 “Reading Strings™)), but constrained to exactly three digits.

« #\uldigit;s)!1**: Unicode for the hexadecimal number specified by (digit;s)! 1!, as
in string escapes (see(§1.3.7 “Reading Strings’).

o #\U{digit;s)!1-0}: like #\u, but with up to six hexadecimal digits.

62

» #\{c): the character {c), as long as #\{c) and the characters following it do not match
any of the previous cases, and as long as {c) or the character after {c) is not alphabetic.

Examples:

#\newline reads equal to (integer->char 10)
#\n reads equal to (integer->char 110)
#\u3BB reads equal to (integer->char 955)
#\ reads equal to (integer->char 955)

1.3.15 Reading Keywords

A #: starts a keyword. The parsing of a keyword after the #: is the same as for a symbol,
including case-folding in case-insensitive mode, except that the part after #: is never parsed
as a number. The resulting keyword is interned.

Examples:
#:Apple reads equal to (string->keyword "Apple")
#:1 reads equal to (string->keyword "1")

1.3.16 Reading Regular Expressions

A #rx or #px starts a regular expression. The characters immediately after #rx or #px must
parse as a string or byte string (see§1.3.7 “Reading Strings™)). A #rx prefix starts a regular
expression as would be constructed by regexp, #px as constructed by pregexp, #rx# as
constructed by byte-regexp, and #px# as constructed by byte-pregexp. The resulting
regular expression is interned in read-syntax mode.

Examples:
#rx" . x" reads equal to (regexp ".*")
#px" [\\s]*" readsequalto (pregexp "[\\s]x*")
#Hrx#" " reads equal to (byte-regexp #".x*")

#px#" [\\s]*" reads equal to (byte-pregexp #"[\\s]*")

1.3.17 Reading Graph Structure

A #(digit ;o)1 18} = tags the following datum for reference via #(digit;o)!!-8}#, which allows
the reader to produce a datum that has graph structure. Neither form is allowed in read-
syntax mode.

For a specific (digit;p)! 18} in a single read result, each #(digit;)! 18} # reference is replaced
by the datum read for the corresponding #(digit;o)!!8}=; the definition #(digit;p)!!18}=
also produces just the datum after it. A #<digit10>{ 18} definition can appear at most once,

63

and a #(digit;o)!18}= definition must appear before a #(digit;o)!!-8}# reference appears,
otherwise the exn:fail:read exception is raised. If the read-accept-graph parameter
is set to #£, then #(digit;o) 18} = or #(digit;o)! -8} # triggers a exn:fail:read exception.

Although a comment parsed via #; discards the datum afterward, #(digir 10>{ 1.8} = definitions
in the discarded datum still can be referenced by other parts of the reader input, as long as
both the comment and the reference are grouped together by some other form (i.e., some
recursive read); a top-level #; comment neither defines nor uses graph tags for other top-
level forms.

Examples:
(#1=100 #1# #1#) readsequal to (1ist 100 100 100)
#0=(1 . #0#) reads equal to (let* ([ph (make-placeholder #f)]

[v (cons 1 ph)])
(placeholder-set! ph v)
(make-reader-graph v))

1.3.18 Reading via an Extension

When the reader encounters #reader, it loads an external reader procedure and applies it to
the current input stream.

The reader recursively reads the next datum after #reader, and passes it to the procedure
that is the value of the current-reader-guard parameter; the result is used as a module
path. The module path is passed to dynamic-require with either 'read or 'read-syntax
(depending on whether the reader is in read or read-syntax mode). The module is loaded
in a root namespace of the current namespace.

The arity of the resulting procedure determines whether it accepts extra source-location in-
formation: a read procedure accepts either one argument (an input port) or five, and a
read-syntax procedure accepts either two arguments (a name value and an input port) or
six. In either case, the four optional arguments are the reader’s module path (as a syntax
object in read-syntax mode) followed by the line (positive exact integer or #f), column
(non-negative exact integer or #f), and position (positive exact integer or #f) of the start of
the #reader form. The input port is the one whose stream contained #reader, where the
stream position is immediately after the recursively read module path.

The procedure should produce a datum result. If the result is a syntax object in read mode,
then it is converted to a datum using syntax->datum; if the result is not a syntax object in
read-syntax mode, then it is converted to one using datum->syntax. See also [§13.7.2]
[‘Reader-Extension Procedures”| for information on the procedure’s results.

If the read-accept-reader parameter is set to #£, then if the reader encounters #reader,
the exn:fail:read exception is raised.

64

§17.2 “Reader
Extensions” in The
Racket Guide
introduces reader
extension.

§6.2.2 “The #lang
Shorthand” in The
Racket Guide
introduces #lang.

The #lang reader form is similar to #reader, but more constrained: the #lang must be
followed by a single space (ASCII 32), and then a non-empty sequence of alphanumeric
ASCII, +, -, _, and/or / characters terminated by whitespace or an end-of-file. The se-
quence must not start or end with /. A sequence #lang (name) is equivalent to either
#reader (submod {(name) reader) or #reader (name)/lang/reader, where the for-
mer is tried first guarded by a module-declared? check (but after filtering by current-
reader-guard, so both are passed to the value of current-reader-guard if the latter
is used). Note that the terminating whitespace (if any) is not consumed before the external
reading procedure is called.

Finally, #! is an alias for #1ang followed by a space when #! is followed by alphanumeric
ASCII, +, -, or _. Use of this alias is discouraged except as needed to construct programs
that conform to certain grammars, such as that of RORS [Sperber07].

By convention, #1ang normally appears at the beginning of a file, possibly after comment
forms, to specify the syntax of a module.

If the read-accept-reader or read-accept-lang parameter is set to #f, then if the
reader encounters #lang or equivalent #!, the exn:fail:read exception is raised.

1.3.19 Reading with C-style Infix-Dot Notation

When the read-cdot parameter is set to #t, then a variety of changes occur in the reader.
First, symbols can no longer include the character ., unless the . is quoted with | or \.

Second, numbers can no longer include the character ., unless the number is prefixed with
#e, #1, #Db, #o, #d, #x, or an equivalent prefix as discussed in§1.3.3 “Reading Numbers™} If
these numbers are followed by a . intended to be read as a C-style infix dot, then a delimiter
must precede the ..

Finally, after reading any datum x, the reader will seek through whitespace and comments
and look for zero or more sequences of a . followed by another datum y. It will then group
x and y together in a #%dot form so that x. y reads equal to (#/dot x y).

If x. y has another . after it, the reader will accumulate more . -separated datums, grouping
them from left-to-right. For example, x.y.z reads equal to (#%dot (#J%dot x y) =z).

In read-syntax mode, the #Jdot symbol has the source location information of the .
character and the entire list has the source location information spanning from the start of x
to the end of y.

S-Expression Reader Language

#lang s-exp package: base

65

§17.3 “Defining
new #lang
Languages” in The
Racket Guide
introduces the

dikation languages
fomERsHgodule-reader

library provides a
domain-specific
language for writing
language readers.

§17.1.2 “Using
#lang s-exp”in
The Racket Guide
introduces the
S-exp
meta-language.

https://pkgs.racket-lang.org/package/base

The s-exp “language” is a kind of meta-language. It reads the S-expression that follows
#lang s-exp and uses it as the language of a module form. It also reads all remaining
S-expressions until an end-of-file, using them for the body of the generated module.

That is,

#lang s-exp module-path
form

is equivalent to

(module name-id module-path
form ...)

where name-id is derived from the source input port’s name: if the port name is a filename
path, the filename without its directory path and extension is used for name-id, otherwise
name-id is anonymous-module.

Chaining Reader Language
#lang reader package: base

The reader “language” is a kind of meta-language. It reads the S-expression that follows
#lang reader and uses it as a module path (relative to the module being read) that effec-
tively takes the place of reader. In other words, the reader meta-language generalizes the
syntax of the module specified after #1ang to be a module path, and without the implicit
addition of /lang/reader to the path.

1.4 The Printer

The Racket printer supports three modes:

* write mode prints core datatypes in such a way that using read on the output pro-
duces a value that is equal? to the printed value;

* display mode prints core datatypes in a more “end-user” style rather than “program-
mer” style; for example, a string displays as its content characters without surround-
ing "s or escapes;

* print mode by default—when print-as-expression is #t—prints most datatypes
in such a way that evaluating the output as an expression produces a value that is
equal? to the printed value; when print-as-expression is set to #f, then print
mode is like write mode.

66

§17.3.2 “Using
#lang reader” in
The Racket Guide
introduces the
reader
meta-language.

https://pkgs.racket-lang.org/package/base

In print mode when print-as-expression is #t (as is the default), a value prints at a
quoting depth of either O (unquoted) or 1 (quoted). The initial quoting depth is accepted as
an optional argument by print, and printing of some compound datatypes adjusts the print
depth for component values. For example, when a list is printed at quoting depth 0 and all
of its elements are quotable, the list is printed with a ' prefix, and the list’s elements are
printed at quoting depth 1.

When the print-graph parameter is set to #t, then the printer first scans an object to detect
cycles. The scan traverses the components of pairs, mutable pairs, vectors, boxes (when
print-box is #t), hash tables (when print-hash-table is #t and when key are held
strongly), fields of structures exposed by struct->vector (when print-struct is #t),
and fields of structures exposed by printing when the structure’s type has the prop: custom-
write property. If print-graph is #t, then this information is used to print sharing through
graph definitions and references (see [§1.3.17 “Reading Graph Structure™). If a cycle is
detected in the initial scan, then print-graph is effectively set to #t automatically.

With the exception of displaying byte strings, printing is defined in terms of Unicode char-

acters; see for information on how a character stream is written to a port’s
underlying byte stream.

1.4.1 Printing Symbols

Symbols containing spaces or special characters write using escaping \ and quoting |s.
When the read-case-sensitive parameter is set to #f, then symbols containing upper-
case characters also use escaping \ and quoting |s. In addition, symbols are quoted with
|'s or leading \ when they would otherwise print the same as a numerical constant or as a
delimited . (when read-accept-dot is #t).

When read-accept-bar-quote is #t, |s are used in printing when one | at the beginning
and one | at the end suffice to correctly print the symbol. Otherwise, \s are always used to
escape special characters, instead of quoting them with |s.

When read-accept-bar-quote is #f, then | is not treated as a special character. The
following are always special characters:

iNNNEEn uEgl

In addition, # is a special character when it appears at the beginning of the symbol, and when
it is not followed by %.

Symbols display without escaping or quoting special characters. That is, the display form
of a symbol is the same as the display form of symbol->string applied to the symbol.

Symbols print the same as they write, unless print-as-expression is set to #t (as is
the default) and the current quoting depth is O. In that case, the symbol’s printed form is

67

prefixed with '. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.2 Printing Numbers

A number prints the same way in write, display, and print modes. For the purposes of
printing enclosing datatypes, a number is quotable.

A complex number that is not a real number always prints as (m)+{(nyi or {my-{n)i, where
{m) and {n) (for a non-negative imaginary part) or -(ny (for a negative imaginary part) are
the printed forms of its real and imaginary parts, respectively.

An exact O prints as 0. A positive, exact integer prints as a sequence of digits that does
not start with 0. A positive, exact, real, non-integer number prints as {(m)/{n), where {m)
and {(n) are the printed forms of the number’s numerator and denominator (as determined
by numerator and denominator). A negative exact number prints with a - prefix on the
printed form of the number’s exact negation. When printing a number as hexadecimal (e.g.,
via number->string), digits a though f are printed in lowercase. A #e or radix marker
such as #d does not prefix the number.

A double-precision inexact number (i.e., a flonum) that is a rational number prints with
either a . decimal point, an e exponent marker and non-zero exponent, or both. The form
is selected to keep the output short, with the constraint that reading the printed form back in
produces an equal? number. A #i does not prefix the number, and # is never used in place
of a digit. A + does not prefix a positive number, but a + or - is printed before the exponent
if e is present. Positive infinity prints as +inf .0, negative infinity prints as -inf.0, and
not-a-number prints as +nan. 0.

A single-precision inexact number that is a rational number prints like a double-precision
number, but always with an exponent, using £ in place of e to indicate the number’s preci-
sion; if the number would otherwise print without an exponent, O (with no +) is printed as the
exponent part. Single-precision positive infinity prints as +inf . £, negative infinity prints as
-inf . f, and not-a-number prints as +nan. f.

1.4.3 Printing Extflonums

An extflonum prints the same way in write, display, and print modes. For the purposes
of printing enclosing datatypes, an extflonum is quotable.

An extflonum prints in the same way a single-precision inexact number (see
[Numbers™), but always with a t or T exponent marker or as a suffix for +inf.t, -inf.t, or
+nan.t. When extflonum operations are supported, printing always uses lowercase t; when
extflonum operations are not supported, an extflonum prints the same as its reader (see[§1.3]

e Reader”) source, since reading is the only way to produce an extflonum.

68

1.4.4 Printing Booleans

The boolean constant #t prints as #true or #t in all modes (display, write, and print),
depending on the value of print-boolean-long-form, and the constant #f prints as
#false or #£f. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.5 Printing Pairs and Lists

In write and display modes, an empty list prints as (). A pair normally prints starting
with (followed by the printed form of its car. The rest of the printed form depends on the
cdr:

o If the cdr is a pair or the empty list, then the printed form of the pair completes with
the printed form of the cdr, except that the leading (in the cdr’s printed form is
omitted.

e Otherwise, the printed for of the pair continues with a space, ., another space, the
printed form of the cdr, and a).

If print-reader-abbreviations is set to #t, then pair printing in write mode is ad-
justed in the case of a pair that starts a two-element list whose first element is 'quote,
'quasiquote, 'unquote, 'unquote-splicing, 'syntax, 'quasisyntax, 'unsyntax,
or 'unsyntax-splicing. In that case, the pair is printed with the corresponding reader
syntax: ', 7, ,, ,@, #', #°, #,, or #,0, respectively. After the reader syntax, the second
element of the list is printed. When the list is a tail of an enclosing list, the tail is printed af-
ter a . in the enclosing list (after which the reader abbreviations work), instead of including
the tail as two elements of the enclosing list. If the reader syntax , or #, is followed by a
symbol that prints with a leading @, then the printer adds an extra space before the @.

The printed form of a pair is the same in both write and display modes, except as the
printed form of the pair’s car and cdr vary with the mode. The print form is also the same
if print-as-expression is #f or the quoting depth is 1.

For print mode when print-as-expression is #t and the quoting depth is 0, then the
empty list prints as ' (). For a pair whose car and cdr are quotable, the pair prints in write
mode but with a ' prefix; the pair’s content is printed with quoting depth 1. Otherwise,
when the car or cdr is not quotable, then pair prints with either cons (when the cdr is
not a pair), 1ist (when the pair is a list), or 1ist* (otherwise) after the opening (, any
. that would otherwise be printed is suppressed, and the pair content is printed at quoting
depth 0. In all cases, when print-as-expression is #t for print mode, then the value
of print-reader-abbreviations is ignored and reader abbreviations are always used for
lists printed at quoting depth 1.

By default, mutable pairs (as created with mcons) print the same as pairs for write and

69

display, except that { and } are used instead of (and). Note that the reader treats {...}
and (...) equivalently on input, creating immutable pairs in both cases. Mutable pairs in
print mode with print-as-expression as #f or a quoting depth of 1 also use { and }.
In print mode with print-as-expression as #t and a quoting depth of 0, a mutable pair
prints as (mcons , the mcar and mcdr printed at quoting depth O and separated by a space,
and a closing).

If the print-pair-curly-braces parameter is set to #t, then pairs print using { and }
when not using print mode with print-as-expression as #t and a quoting depth of 0.
If the print-mpair-curly-braces parameter is set to #f, then mutable pairs print using
(and) in that mode.

For the purposes of printing enclosing datatypes, an empty list is always quotable, a pair is
quotable when its car and cdr are quotable, and a mutable list is never quotable.

Changed in version 6.9.0.6 of package base: Added a space when printing , or #, followed by a symbol that prints
with a leading @.

1.4.6 Printing Strings

All strings display as their literal character sequences.

The write or print form of a string starts with " and ends with another ". Between the
"s, each character is represented. Each graphic or blank character is represented as itself,
with two exceptions: " is printed as \", and \ is printed as \\. Each non-graphic, non-blank
character (according to char-graphic? and char-blank?) is printed using the escape se-
quences described in [§1.3.7 “Reading Strings”} using \a, \b, \t, \n, \v, \f, \r, or \e
if possible, otherwise using \u with four hexadecimal digits or \U with eight hexadecimal
digits (using the latter only if the character value does not fit into four digits).

All byte strings display as their literal byte sequence; this byte sequence may not be a valid
UTEF-8 encoding, so it may not correspond to a sequence of characters.

The write or print form of a byte string starts with #" and ends with a ". Between the "s,
each byte is written using the corresponding ASCII decoding if the byte is between 0 and
127 and the character is graphic or blank (according to char-graphic? and char-blank?).
Otherwise, the byte is written using \a, \b, \t, \n, \v, \f, \r, or \e if possible, otherwise
using \ followed by one to three octal digits (only as many as necessary).

For the purposes of printing enclosing datatypes, a string or a byte string is quotable.

70

1.4.7 Printing Vectors

In display mode, the printed form of a vector is # followed by the printed form of vector-
>1ist applied to the vector. In write mode, the printed form is the same, except that when
the print-vector-length parameter is #t, a decimal integer is printed after the #, and a
repeated last element is printed only once.

Vectors print the same as they write, unless print-as-expression is set to #t and the
current quoting depth is 0. In that case, if all of the vector’s elements are quotable, then the
vector’s printed form is prefixed with ' and its elements printed with quoting depth 1. If its
elements are not all quotable, then the vector prints as (vector , the elements at quoting
depth 0, and a closing). A vector is quotable when all of its elements are quotable.

In write or display mode, a flvector prints like a vector, but with a #£1 prefix instead of
#. A fxvector similarly prints with a #fx prefix instead of #. The print-vector-length
parameter affects flvector and fxvector printing the same as vector printing. In print mode,
flvectors and fxvectors are not quotable, and they print like a vector at quoting depth O using
a (flvector or (fxvector prefix, respectively.

1.4.8 Printing Structures

When the print-struct parameter is set to #t, then the way that structures print depends
on details of the structure type for which the structure is an instance:

« If the structure type is a prefab structure type, then it prints in write or display
mode using #s (followed by the prefab structure type key, then the printed form of
each field in the structure, and then).

In print mode when print-as-expression is set to #t and the current quoting
depth is 0, if the structure’s content is all quotable, then the structure’s printed form
is prefixed with ' and its content is printed with quoting depth 1. If any of its content
is not quotable, then the structure type prints the same as a non-prefab structure type.

An instance of a prefab structure type is quotable when all of its content is quotable.

* If the structure has a prop: custom-write property value, then the associated proce-
dure is used to print the structure, unless the print-unreadable parameter is set to
#1.

For print mode, an instance of a structure type with a prop: custom-write property
is treated as quotable if it has the prop:custom-print-quotable property with a
value of 'always. If it has 'maybe as the property value, then the structure is treated
as quotable if its content is quotable, where the content is determined by the values
recursively printed by the structure’s prop: custom-write procedure. Finally, if the
structure has 'self as the property value, then it is treated as quotable.

71

In print mode when print-as-expression is #t, the structure’s prop: custom-
write procedure is called with either O or 1 as the quoting depth, normally depending
on the structure’s prop:custom-print-quotable property value. If the property
value is 'always, the quoting depth is normally 1. If the property value is 'maybe,
then the quoting depth is 1 if the structure is quotable, or normally O otherwise. If
the property value is 'self, then the quoting depth may be O or 1; it is normally 0
if the structure is not printed as a part of an enclosing quotable value, even though
the structure is treated as quotable. Finally, if the property value is 'never, then the
quoting depth is normally 0. The quoting depth can vary from its normal value if the
structure is printed with an explicit quoting depth of 1.

« If the structure’s type is transparent or if any ancestor is transparent (i.e., struct? on
the instance produces #t), then the structure prints as the vector produced by struct-
>vector in display mode, in write mode, or in print mode when print-as-
expression is set to #f or when the quoting depth is 0.

In print mode with print-as-expression as #t and a quoting depth of 0, the
structure content is printed with a (followed by the structure’s type name (as de-
termined by object-name) in write mode; the remaining elements are printed at
quoting depth 0 and separated by a space, and finally a closing).

A transparent structure type that is not a prefab structure type is never quotable.

« For any other structure type, the structure prints as an unreadable value; see [§1.4.13|
[*Printing Unreadable Values™ for more information.

If the print-struct parameter is set to #f, then all structures without a prop: custom-
write property print as unreadable values (see[§1.4.15 “Printing Unreadable Values™) and
count as quotable.

1.4.9 Printing Hash Tables

When the print-hash-table parameter is set to #t, in write and display modes, a hash
table prints starting with #hash (, #hasheqv (, or #hasheq (for a table using equal?, eqv?,
or eq? key comparisons, respectively, as long as the hash table retains keys strongly. After
the prefix, each key—value mapping is shown as (, the printed form of a key, a space, ., a
space, the printed form the corresponding value, and), with an additional space if the key—
value pair is not the last to be printed. After all key—value pairs, the printed form completes
with).

In print mode when print-as-expression is #f or the quoting depth is 1, the printed
form is the same as for write. Otherwise, if the hash table’s keys and values are all quotable,
the table prints with a ' prefix, and the table’s key and values are printed at quoting depth
1. If some key or value is not quotable, the hash table prints as (hash , (hasheqv , or
(hasheq followed by alternating keys and values printed at quoting depth 1 and separated

72

by spaces, and finally a closing). A hash table is quotable when all of its keys and values
are quotable.

When the print-hash-table parameter is set to #f or when a hash table retains its keys
weakly, a hash table prints as #<hash> and counts as quotable.

1.4.10 Printing Boxes

When the print-box parameter is set to #t, a box prints as #& followed by the printed form
of its content in write, display, or print mode when print-as-expression is #f or
the quoting depth is 1.

In print mode when print-as-expression is #t and the quoting depth is 0, a box prints
with a ' prefix and its value is printed at quoting depth 1 when its content is quotable,
otherwise the box prints a (box followed by the content at quoting depth 0 and a closing).
A box is quotable when its content is quotable.

When the print-box parameter is set to #£, a box prints as #<box> and counts as quotable.

1.4.11 Printing Characters

Characters with the special names described in [§1.3.14 “Reading Characters”| write and
print using the same name. (Some characters have multiple names; the #\newline and
#\nul names are used instead of #\1inefeed and #\null.) Other graphic characters (ac-
cording to char-graphic?) write as #\ followed by the single character, and all others
characters are written in #\u notation with four digits or #\U notation with eight digits (us-
ing the latter only if the character value does not fit in four digits).

All characters display directly as themselves (i.e., a single character).

For the purposes of printing enclosing datatypes, a character is quotable.

1.4.12 Printing Keywords

Keywords write, print, and display the same as symbols (see [§1.4.1 “Printing Sym-|
except with a leading #: (after any ' prefix added in print mode), and without spe-
cial handling for an initial # or when the printed form would match a number or a delimited
. (since #: distinguishes the keyword).

For the purposes of printing enclosing datatypes, a keyword is quotable.

73

1.4.13 Printing Regular Expressions

Regexp values write, display, and print starting with #px (for pregexp-based regexps)
or #rx (for regexp-based regexps) followed by the write form of the regexp’s source string
or byte string.

For the purposes of printing enclosing datatypes, a regexp value is quotable.

1.4.14 Printing Paths

Paths write and print as #<path:....>. A path displays the same as the string pro-
duced by path->string. For the purposes of printing enclosing datatypes, a path counts as
quotable.

Although a path can be converted to a string with path->string or to a byte string with
path->bytes, neither is clearly the right choice for printing a path and reading it back. If the
path value is meant to be moved among platforms, then a string is probably the right choice,
despite the potential for losing information when converting a path to a string. For a path
that is intended to be re-read on the same platform, a byte string is probably the right choice,
since it preserves information in an unportable way. Paths do not print in a readable way so
that programmers are not misled into thinking that either choice is always appropriate.

1.4.15 Printing Unreadable Values

For any value with no other printing specification, assuming that the print-unreadable
parameter is set to #t, the output form is #<{something)>, where (something) is specific to
the type of the value and sometimes to the value itself. If print-unreadable is set to #f,
then attempting to print an unreadable value raises exn:fail.

For the purposes of printing enclosing datatypes, a value that prints unreadably nevertheless
counts as quotable.

1.4.16 Printing Compiled Code

Compiled code as produced by compile prints using #~. Compiled code printed with #~
is essentially assembly code for Racket, and reading such a form produces a compiled form
when the read-accept-compiled parameter is set to #t.

Compiled code parsed from #~ is marked as non-runnable if the current code inspector (see
current-code-inspector) is not the original code inspector; on attempting to evaluate
or reoptimize non-runnable bytecode, exn:fail exception is raised. Otherwise, compiled
code parsed from #~ may contain references to unexported or protected bindings from a

74

module. Conceptually, the references in bytecode are associated with the current code in-
spector, where the code will only execute if that inspector controls the relevant module in-
vocation (see [§14.10 “Code Inspectors”)—but the original code inspector controls all other
inspectors, anyway.

A compiled-form object may contain uninterned symbols (see that were

created by gensym or string->uninterned-symbol. When the compiled object is read
via #~, each uninterned symbol in the original form is mapped to a new uninterned sym-
bol, where multiple instances of a single symbol are consistently mapped to the same new
symbol. The original and new symbols have the same printed representation. Unreadable
symbols, which are typically generated indirectly during expansion and compilation, are
saved and restored consistently through #~.

The dynamic nature of uninterned symbols and their localization within #~ can cause prob-
lems when gensym or string->uninterned-symbol is used to construct an identifier for
a top-level or module binding (depending on how the identifier and its references are com-
piled). To avoid problems, generate distinct identifiers either with generate-temporaries
or by applying the result of make-syntax-introducer to an existing identifier; those func-
tions lead to top-level and module variables with unreadable symbolic names, and the names
are deterministic as long as expansion is otherwise deterministic.

A compiled form may contain path literals. Although paths are not normally printed in a way
that can be read back in, path literals can be written and read as part of compiled code. The
current-write-relative-directory parameter is used to convert the path to a relative
path as is it written, and then current-load-relative-directory parameter is used to
convert any relative path back as it is read. The relative-path conversion applies on reading
whether the path was originally relative or not.

For a path in a syntax object’s source, if the current-load-relative-directory pa-
rameter is not set of the path is not relative to the value of the current-load-relative-
directory parameter, then the path is coerced to a string that preserves only part of the path
(an in effort to make it less tied to the build-time filesystem, which can be different than the
run-time filesystem).

Finally, a compiled form may contain srcloc structures if the source field of the structure is
a path for some system, a string, a byte string, a symbol, or #f. For a path value (matching
the current platform’s convention), if the path cannot be recorded as a relative path based on
current-write-relative-directory, then it is converted to a string with at most two
path elements; if the path contains more than two elements, then the string contains . . ./,
the next-to-last element, / and the last element. The intent of the constraints on srcloc
values and the conversion of the source field is to preserve some source information but not
expose or record a path that makes no sense on a different filesystem or platform.

For internal testing purposes, when the PLT_VALIDATE_LOAD environment variable is set,
the reader runs a validator on bytecode parsed from #~. The validator may catch mis-
compilations or bytecode-file corruption. The validator may run lazily, such as checking a
procedure only when the procedure is called.

75

Changed in version 6.90.0.21 of package base: Adjusted the effect of changing the code inspector on parsed
bytecode, causing the reader to mark the loaded code as generally unrunnable instead of rejecting at read time
references to unsafe operations.

Changed in version 7.0: Allowed some srcloc values embedded in compiled code.

76

2 Notation for Documentation

This chapter introduces essential terminology and notation that is used throughout Racket
documentation.

2.1 Notation for Module Documentation

Since Racket programs are organized into modules, documentation reflects that organization
with an annotation at the beginning of a section or subsection that describes the bindings that
a particular module provides.

For example, the section that describes the functionality provided by racket/1list starts
(require racket/list) package: base
Instead of require, some modules are introduced with #1lang:

#lang racket/base package: base

Using #lang means that the module is normally used as the language of a whole module—
that is, by a module that starts #lang followed by the language—instead of imported with
require. Unless otherwise specified, however, a module name documented with #lang can
also be used with require to obtain the language’s bindings.

The module annotation also shows the package that the module belongs to on the right-hand
side. For more details about packages, see Package Management in Racket.

Sometimes, a module specification appears at the beginning of a document or at the start of
a section that contains many subsections. The document’s section or section’s subsections
are meant to “inherit” the module declaration of the enclosing document or section. Thus,
bindings documented in[The Racket Reference|are available from racket and racket/base
unless otherwise specified in a section or subsection.

2.2 Notation for Syntactic Form Documentation
§4.1 “Notation” in
The Racket Guide
Syntactic forms are specified with a grammar. Typically, the grammar starts with an open introduces this

parenthesis followed by the syntactic form’s name, as in the grammar for if: notation for
syntactic forms.

(if test-expr then-expr else-expr)

71

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

Since every form is expressed in terms of syntax objects, parentheses in a grammar specifi-
cation indicate a syntax object wrapping a list, and the leading if is an identifier that starts
the list whose binding is the if binding of the module being documented—in this case,
racket/base. Square brackets in the grammar indicate a syntax-object list in the same way
as parentheses, but in places square brackets are normally used by convention in a program’s
source.

Italic identifiers in the grammar are metavariables that correspond to other grammar produc-
tions. Certain metavariable names have implicit grammar productions:

* A metavariable that ends in id stands for an identifier.
* A metavariable that ends in keyword stands for a syntax-object keyword.

* A metavariable that ends with expr stands for any form, and the form will be parsed
as an expression.

* A metavariable that ends with body stands for any form; the form will be parsed as
either a local definition or an expression. A body can parse as a definition only if it
is not preceded by any expression, and the last body must be an expression; see also
§1.2.3.8 “Internal Definitions”]

* A metavariable that ends with datum stands for any form, and the form is normally
uninterpreted (e.g., quoted).

¢ A metavariable that ends with number or boolean stands for any syntax-object (i.e.,

literal) number or boolean, respectively.

In a grammar, form ... stands for any number of forms (possibly zero) matching form,
while form ...+ stands for one or more forms matching form.

Metavariables without an implicit grammar are defined by productions alongside the syntac-
tic form’s overall grammar. For example, in

(lambda formals body ...+)

formals = id
| (id ...)
| (id ...+ . rest-id)

the formals metavariable stands for either an identifier, zero or more identifiers in a syntax-
object list, or a syntax object corresponding to a chain of one or more pairs where the chain
ends in an identifier instead of an empty list.

Some syntactic forms have multiple top-level grammars, in which case the documentation
of the syntactic forms shows multiple grammars. For example,

78

(init-rest id)
(init-rest)

indicates that init-rest can either be alone in its syntax-object list or followed by a single
identifier.

Finally, a grammar specification that includes expr metavariables may be augmented with
run-time contracts on some of the metavariables, which indicate a predicate that the result of
the expression must satisfy at run time. For example,

(parameterize ([parameter-expr value-expr] ...)
body ...+)

parameter-expr : parameter?

indicates that the result of each parameter-expr must be a value v for which
(parameter? v) returns true.

2.3 Notation for Function Documentation

Procedures and other values are described using a notation based on contracts. In essence,
these contracts describe the interfaces of the documented library using Racket predicates and
expressions.

For example, the following is the header of the definition of a typical procedure:

(char->integer char) — exact-integer?
char : char?

The function being defined, char->integer, is typeset as if it were being applied. The
metavariables that come after the function name stand in for arguments. The white text in
the corner identifies the kind of value that is being documented.

Each metavariable is described with a contract. In the preceding example, the metavariable
char has the contract char?. This contract specifies that any argument char that answers
true to the char? predicate is valid. The documented function may or may not actually
check this property, but the contract signals the intent of the implementer.

The contract on the right of the arrow, exact-integer? in this case, specifies the expected
result that is produced by the function.

79

Contract specifications can be more expressive than just names of predicates. Consider the
following header for argmax:

(argmax proc lst) — any
proc : (-> any/c real?)
1st : (and/c pair? list?)

The contract (-> any/c real?) denotes a function contract specifying that proc’s argu-
ment can be any single value and the result should be a real number. The contract (and/c
pair? 1ist?) for I1st specifies that 1st should pass both pair? and 1ist? (i.e., that it is
a non-empty list).

Both -> and and/c are examples of contract combinators. Contract combinators such as
or/c, cons/c, listof, and others are used throughout the documentation. Clicking on the
hyperlinked combinator name will provide more information on its meaning.

A Racket function may be documented as having one or more optional arguments. The read
function is an example of such a function:

(read [in]) — any
in : input-port? = (current-input-port)

The brackets surrounding the in argument in the application syntax indicates that it is an
optional argument.

The header for read specifies a contract for the parameter in as usual. To the right of the
contract, it also specifies a default value (current-input-port) that is used if read is
called with no arguments.

Functions may also be documented as accepting mandatory or optional keyword-based ar-
guments. For example, the sort function has two optional, keyword-based arguments:

(sort 1Ist
less-than?
[#:key extract-key
#:cache-keys? cache-keys?]) — list?
1st : list?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f

The brackets around the extract-key and cache-keys? arguments indicate that they are
optional as before. The contract section of the header shows the default values that are
provided for these keyword arguments.

80

2.4 Notation for Structure Type Documentation

A structure type is also documented using contract notation:

(struct color (red green blue alpha))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))
alpha : (and/c natural-number/c (<=/c 255))

The structure type is typeset as it were declared in the source code of a program using the
struct form. Each field of the structure is documented with a corresponding contract that
specifies the values that are accepted for that field.

In the example above, the structure type color has four fields: red, green, blue, and
alpha. The constructor for the structure type accepts field values that satisfy (and/c
natural-number/c (<=/c 255)), i.e., non-negative exact integers up to 255.

Additional keywords may appear after the field names in the documentation for a structure
type:

(struct data-source (connector args extensions)
#:mutable)
connector : (or/c 'postgresql 'mysql 'sqlite3 'odbc)
args : list?
extensions : (listof (list/c symbol? any/c))

Here, the #:mutable keyword indicates that the fields of instances of the data-source
structure type can be mutated with their respective setter functions.

2.5 Notation for Parameter Documentation

A parameter is documented the same way as a function:

(current-command-line-arguments) — (vectorof string?)
(current-command-line-arguments argv) — void?
argv : (vectorof (and/c string? immutable?))

Since parameters can be referenced or set, there are two entries in the header above. Calling
current-command-line-arguments with no arguments accesses the parameter’s value,

81

which must be a vector whose elements pass both string? and immutable?. Calling
current-command-line-arguments with a single argument sets the parameter’s value,
where the value must be a vector whose elements pass string? (and a guard on the param-
eter coerces the strings to immutable form, if necessary).

2.6 Notation for Other Documentation

Some libraries provide bindings to constant values. These values are documented with a
separate header:

object) : class?

The racket/class library provides the object? value, which is the root of the class hier-
archy in Racket. Its documentation header just indicates that it is a value that satisfies the
predicate class?.

82

3 Syntactic Forms

This section describes the core syntax forms that appear in a fully expanded expression, plus
many closely related non-core forms. See(§1.2.3.1 “Fully Expanded Programs”|for the core
grammar.

Notation

Each syntactic form is described by a BNF-like notation that describes a combination of
(syntax-wrapped) pairs, symbols, and other data (not a sequence of characters). These gram-
matical specifications are shown as in the following specification of a something form:

(something id thing-expr ...)

thing-expr . number?

Within such specifications,

* ... indicates zero or more repetitions of the preceding datum; more generally, N
consecutive . . .s a row indicate a consecutive repetition of the preceding N datums.

e ...+ indicates one or more repetitions of the preceding datum.

* Italic meta-identifiers play the role of non-terminals. Some meta-identifier names im-
ply syntactic constraints:

A meta-identifier that ends in id stands for an identifier.

A meta-identifier that ends in keyword stands for a keyword.

A meta-identifier that ends with expr (such as thing-expr) stands for a sub-
form that is expanded as an expression.

A meta-identifier that ends with body stands for a sub-form that is expanded in
an internal-definition context (see(§1.2.3.8 “Internal Definitions”).

» Contracts indicate constraints on sub-expression results. For example, thing-expr
number? indicates that the expression thing-expr must produce a number.

3.1 Modules: module, modulex, ...

(module id module-path form ...)

Declares a top-level module or a submodule. For a top-level module, if the current-
module-declare-name parameter is set, the parameter value is used for the module name

83

§6.2.1 “The
module Form” in
The Racket Guide
introduces module.

and id is ignored, otherwise (quote id) is the name of the declared module. For a sub-
module, id is the name of the submodule to be used as an element within a submod module
path.

The module-path form must be as for require, and it supplies the initial bindings for the
body forms. That is, it is treated like a (require module-path) prefix before the forms,
except that the bindings introduced by module-path can be shadowed by definitions and
requires in the module body forms.

If a single form is provided, then it is partially expanded in a module-begin context. If
the expansion leads to #/%plain-module-begin, then the body of the #Jplain-module-
begin is the body of the module. If partial expansion leads to any other primitive form, then
the form is wrapped with #/module-begin using the lexical context of the module body;
this identifier must be bound by the initial module-path import, and its expansion must
produce a #/,plain-module-begin to supply the module body. Finally, if multiple forms
are provided, they are wrapped with #/module-begin, as in the case where a single form
does not expand to #%plain-module-begin.

After such wrapping, if any, and before any expansion, an 'enclosing-module-name
property is attached to the #/module-begin syntax object (see[§12.7 “Syntax Object Prop-|
ferties™); the property’s value is a symbol corresponding to id.

Each form is partially expanded (see [§1.2.3.7 “Partial Expansion™) in a module context.
Further action depends on the shape of the form:

e If it is a begin form, the sub-forms are flattened out into the module’s body and
immediately processed in place of the begin.

e If it is a define-syntaxes form, then the right-hand side is evaluated (in phase 1),
and the binding is immediately installed for further partial expansion within the mod-
ule. Evaluation of the right-hand side is parameterized to set current-namespace
asin let-syntax.

 Ifitis a begin-for-syntax form, then the body is expanded (in phase 1) and eval-
uated. Expansion within a begin-for-syntax form proceeds with the same partial-
expansion process as for amodule body, but in a higher phase, and saving all #%pro-
vide forms for all phases until the end of the module’s expansion. Evaluation of the
body is parameterized to set current-namespace as in let-syntax.

e If the form is a #)require form, bindings are introduced immediately, and the im-
ported modules are instantiated or visited as appropriate.

e If the form is a #)provide form, then it is recorded for processing after the rest of the
body.

o If the form is a define-values form, then the binding is installed immediately, but
the right-hand expression is not expanded further.

84

For a module-like
form that works in
definitions context
other than the top
level or a module
body, see
define-package.

e If the form is a module form, then it is immediately expanded and declared for the
extent of the current top-level enclosing module’s expansion.

e If the form is a module* form, then it is not expanded further.

 Similarly, if the form is an expression, it is not expanded further.

After all forms have been partially expanded this way, then the remaining expression forms
(including those on the right-hand side of a definition) are expanded in an expression context.
After all expression forms, #/,provide forms are processed in the order in which they appear
(independent of phase) in the expanded module. Finally, all nodule* forms are expanded in
order, so that each becomes available for use by subsequent module* forms; the enclosing
module itself is also available for use by module* submodules.

The scope of all imported identifiers covers the entire module body, except for nested mod-
ule and module* forms (assuming a non-#f module-path in the latter case). The scope
of any identifier defined within the module body similarly covers the entire module body
except for such nested module and module* forms. The ordering of syntax definitions does
not affect the scope of the syntax names; a transformer for A can produce expressions con-
taining B, while the transformer for B produces expressions containing A, regardless of the
order of declarations for A and B. However, a syntactic form that produces syntax definitions
must be defined before it is used.

No identifier can be imported or defined more than once at any phase level within a single
module, except that a definition via define-values or define-syntaxes can shadow a
preceding import via #/;require; unless the shadowed import is from the module’s initial
module-path, a warning is logged to the initial logger. Every exported identifier must be
imported or defined. No expression can refer to a top-level variable. A module* form in
which the enclosing module’s bindings are visible (i.e., a nested modulex* with #f instead
of amodule-path) can define or import bindings that shadow the enclosing module’s bind-
ings.

The evaluation of a module form does not evaluate the expressions in the body of the module
(except sometimes for redeclarations; see [§1.1.10.4 “Module Redeclarations™). Evaluation
merely declares a module, whose full name depends both on id or (current-module-
declare-name).

A module body is executed only when the module is explicitly instantiated via require or
dynamic-require. On invocation, imported modules are instantiated in the order in which
they are required into the module (although earlier instantiations or transitive requires
can trigger the instantiation of a module before its order within a given module). Then,
expressions and definitions are evaluated in order as they appear within the module. Each
evaluation of an expression or definition is wrapped with a continuation prompt (see call-
with-continuation-prompt) for the default prompt tag and using a prompt handler that
re-aborts and propagates its argument to the next enclosing prompt. Each evaluation of a
definition is followed, outside of the prompt, by a check that each of the definition’s variables

85

has a value; if the portion of the prompt-delimited continuation that installs values is skipped,
then the exn:fail:contract:variable? exception is raised.

Accessing a module-level variable before it is defined signals a run-time error, just like ac-
cessing an undefined global variable. If a module (in its fully expanded form) does not con-
tain a set! for an identifier that defined within the module, then the identifier is a constant
after it is defined; its value cannot be changed afterward, not even through reflective mech-
anisms. The compile-enforce-module-constants parameter, however, can be used to
disable enforcement of constants.

When a syntax object representing a module form has a 'module-language syntax prop-
erty attached, and when the property value is a vector of three elements where the first is a
module path (in the sense of module-path?) and the second is a symbol, then the property
value is preserved in the corresponding compiled and/or declared module. The third com-
ponent of the vector should be printable and readable, so that it can be preserved in mar-
shaled bytecode. The racket/base and racket languages attach '#(racket/language-
info get-info #f) to a module form. See also module-compiled-language-info,
module->language-info, and racket/language-info.

See also [§1.1.10 “Modules and Module-Level Variables™ [81.2.3.9 “Module Expansion,
Phases, and Visits | and[§12.9.1 “Information on Expanded Modules™|

Example:

> (module duck racket/base
(provide num-eggs quack)
(define num-eggs 2)
(define (quack n)
(unless (zero? n)
(printf "quack\n")
(quack (subl n)))))

Changed in version 6.3 of package base: Changed define-syntaxes and define-values to shadow any pre-

ceding import, and dropped the use of ' submodule syntax property values on nested module or module* forms.

(module* id module-path form ...)
(module* id #f form ...)

Like module, but only for declaring a submodule within a module, and for submodules that
may require the enclosing module.

Instead of a module-path after id, #f indicates that all bindings from the enclosing module
are visible in the submodule. In that case, begin-for-syntax forms that wrap the modulex*
form shift the phase level of the enclosing module’s bindings relative to the submodule. The
macro expander handles such nesting by shifting the phase level of the module* form so that
its body starts at phase level 0, expanding, and then reverting the phase level shift; beware

86

§6.2.3
“Submodules” in
The Racket Guide
introduces
modulex.

that this process can leave syntax objects as 'origin syntax property values out-of-sync
with the expanded module.

When a module* form has a module-path, the submodule expansion starts by removing
the scopes of the enclosing module, the same as the module form. No shifting compensates
for any begin-for-syntax forms that may wrap the submodule.

(module+ id form ...)

Declares and/or adds to a submodule named id.

Each addition for id is combined in order to form the entire submodule using (module*
id #f) atthe end of the enclosing module. If there is only one module+ for a given
id, then (module+ id form ...) is equivalent to (module* id #f form ...), but
still moved to the end of the enclosing module.

When a module contains multiple submodules declared with module+, then the relative
order of the initial module+ declarations for each submodule determines the relative order
of the modulex* declarations at the end of the enclosing module.

A submodule must not be defined using module+ and module or module*. That is, if a
submodule is made of module+ pieces, then it must be made only of module+ pieces.

(#)module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

The #/module-begin form of racket/base wraps every top-level expression to print non-
#<void> results using current-print.

The #/module-begin form of racket/base also declares a configure-runtime sub-
module (before any other form), unless some form is either an immediate module or mod-
ule* form with the name configure-runtime. If a configure-runtime submodule is
added, the submodule calls the configure function of racket/runtime-config.

(#%printing-module-begin form ...)
Legal only in a module begin context.
Like #/module-begin, but without adding a configure-runtime submodule.

(#%plain-module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

(#%declare declaration-keyword ...)

declaration-keyword = #:cross-phase-persistent
| #:empty-namespace

87

§6.2.4 “Main and
Test Submodules”
in The Racket
Guide introduces
module+.

Declarations that affect run-time or reflective properties of the module:

e #:cross-phase-persistent — declares the module as cross-phase persistent, and
reports a syntax error if the module does not meet the import or syntactic constraints
of a cross-phase persistent module.

e #:empty-namespace — declares that module->namespace for this module should
produce a namespace with no bindings; limiting namespace support in this way can
reduce the lexical information that otherwise must be preserved for the module.

A #Ydeclare form must appear in a module context or a module-begin context. Each
declaration-keyword can be declared at most once within a module body.

Changed in version 6.3 of package base: Added #: empty-namespace.

3.2 Importing and Exporting: require and provide

(require require-spec ...)

88

§6.4 “Imports:
require” in The
Racket Guide
introduces
require.

require-spec module-path

(only-in require-spec id-maybe-renamed ...)
(except-in require-spec id ...)

(prefix-in prefix-id require-spec)
(rename-in require-spec [orig-id bind-id]

(combine-in require-spec ...)

(only-meta-in phase-level require-spec ...)
(for-syntax require-spec ...)

(for-template require-spec ...)

(for-label require-spec ...)

(for-meta phase-level require-spec ...)

|
|
|
|
|
| (relative-in module-path require-spec ...)
|
|
|
|
|

derived-require-spec

module-path root-module-path

| (submod root-module-path submod-path-element
|

(submod "." submod-path-element ...)
(submod ".." submod-path-element ...)
root-module-path (quote id)

| rel-string

| (1ib rel-string ...+)

| id

| (file string)

| (planet id)

| (planet string)

| (planet rel-string
(user-string pkg-string vers)
rel-string ...)

submod-path-element = id

id-maybe-renamed = id
| [orig-id bind-id]

phase-level = exact-integer
| #f
vers

| nat
| nat minor-vers
minor-vers = nat
| (nat nat)
| (= nat)
| (+ nat)
|

(- nat) %9

In a top-level context, require instantiates modules (see [§1.1.10 “Modules and Module-|
[Cevel Variables™). In a top-level context or module context, expansion of require visits
modules (see(§1.2.3.9 “Module Expansion, Phases, and Visits™)). In both contexts and both
evaluation and expansion, require introduces bindings into a namespace or a module (see
[§1.2.3.4 “Introducing Bindings™). A require form in a expression context or internal-
definition context is a syntax error.

A require-spec designates a particular set of identifiers to be bound in the importing
context. Each identifier is mapped to a particular export of a particular module; the identifier
to bind may be different from the symbolic name of the originally exported identifier. Each
identifier also binds at a particular phase level.

No identifier can be bound multiple times in a given phase level by an import, unless all of
the bindings refer to the same original definition in the same module. In a module context,
an identifier can be either imported or defined for a given phase level, but not both.

The syntax of require-spec can be extended via define-require-syntax, and when
multiple require-specs are specified in a require, the bindings of each require-spec
are visible for expanding later require-specs. The pre-defined forms (as exported by
racket/base) are as follows:

module-path

Imports all exported bindings from the named module, using the export iden-
tifiers as the local identifiers. (See below for information on module-path.)
The lexical context of the module-path form determines the context of the
introduced identifiers.

(only-in require-spec id-maybe-renamed ...)

Like require-spec, but constrained to those exports for which the identifiers
to bind match id-maybe-renamed: as id oras orig-id in [orig-id bind-
id]. If the id or orig-id of any id-maybe-renamed is not in the set that
require-spec describes, a syntax error is reported.

Examples:

> (require (only-in racket/tcp
tcp-listen
[tcp-accept my-accept]))
> tcp-listen
#<procedure:tcp-listen>
> my-accept
#<procedure:tcp-accept>
> tcp-accept

90

tep-accept: undefined;
cannot reference an identifier before its definition
in module: top-level

(except-in require-spec id ...)

Like require-spec, but omitting those imports for which ids are the identi-
fiers to bind; if any id is not in the set that require-spec describes, a syntax
error is reported.

Examples:

> (require (except-in racket/tcp
tcp-listen))
> tcp-accept
#<procedure:tcp-accept>
> tcp-listen
tep-listen: undefined;
cannot reference an identifier before its definition
in module: top-level

(prefix-in prefix-id require-spec)

Like require-spec, but adjusting each identifier to be bound by prefixing it
with prefix-id. The lexical context of the prefix-id is ignored, and instead
preserved from the identifiers before prefixing.

Examples:

> (require (prefix-in tcp: racket/tcp))
> tcp:tcp-accept
#<procedure:tcp-accept>

> tcp:tcp-listen
#<procedure:tcp-listen>

(rename-in require-spec [orig-id bind-id] ...)
Like require-spec, but replacing the identifier to bind orig-id with bind-

id; if any orig-id is not in the set that require-spec describes, a syntax
error is reported.

Examples:

91

> (require (rename-in racket/tcp
(tcp-accept accept)
(tcp-listen listen)))

> accept

#<procedure:tcp-accept>

> listen

#<procedure:tcp-listen>

(combine-in require-spec ...)

The union of the require-specs. If two or more imports from the require-
specs have the same identifier name but they do not refer to the same original
binding, a syntax error is reported.

Examples:

> (require (combine-in (only-in racket/tcp tcp-accept)
(only-in racket/tcp tcp-listen)))

> tcp-accept

#<procedure:tcp-accept>

> tcp-listen

#<procedure:tcp-listen>

(relative-in module-path require-spec ...)

Like the union of the require-specs, but each relative module path in a
require-spec is treated as relative to module-path instead of the enclosing
context.

The require transformer that implements relative-in sets current-
require-module-path to adjust module paths in the require-specs.

(only-meta-in phase-level require-spec ...)

Like the combination of require-specs, but removing any binding that is not
for phase-level, where #f for phase-level corresponds to the label phase
level.

The following example imports bindings only at phase level 1, the transform
phase:

> (module nest racket
(provide (for-syntax meta-eggs)
(for-meta 1 meta-chicks)
num-eggs)

92

(define-for-syntax meta-eggs 2)
(define-for-syntax meta-chicks 3)
(define num-eggs 2))

> (require (only-meta-in 1 'nest))

> (define-syntax (desc stx)
(printf "~s ~s\n" meta-eggs meta-chicks)
#' (void))

> (desc)

23

> num-eggs
num-eggs: undefined;
cannot reference an identifier before its definition
in module: top-level

The following example imports only bindings at phase level 0, the normal phase.

> (require (only-meta-in O 'nest))
> num-eggs
2

(for-meta phase-level require-spec ...)

Like the combination of require-specs, but the binding specified by each
require-spec is shifted by phase-level. The label phase level corresponds
to #£, and a shifting combination that involves #f produces #f.

Examples:
> (module nest racket

(provide num-eggs)
(define num-eggs 2))

> (require (for-meta O 'mest))
> num-eggs
2
> (require (for-meta 1 'mest))
> (define-syntax (roost stx)
(datum->syntax stx num-eggs))
> (roost)
2
(for-syntax require-spec ...)
Same as (for-meta 1 require-spec ...).

93

(for-template require-spec ...)

Same as (for-meta -1 require-spec ...).

(for-label require-spec ...)
Same as (for-meta #f require-spec ...). If an identifier in any of the
require-specs is bound at more than one phase level, a syntax error is re-
ported.

derived-require-spec

See define-require-syntax for information on expanding the set of
require-spec forms.

A module-path identifies a module, either a root module or a submodule that is declared
lexically within another module. A root module is identified either through a concrete name
in the form of an identifier, or through an indirect name that can trigger automatic loading of
the module declaration. Except for the (quote id) case below, the actual resolution of a
root module path is up to the current module name resolver (see current-module-name-
resolver), and the description below corresponds to the default module name resolver.

(quote id)

Refers to a submodule previously declared with the name id or a module previ-
ously declared interactively with the name id. When id refers to a submodule,
(quote id) isequivalentto (submod "." id).

Examples:

; a module declared interactively as test:
> (require 'test)

rel-string

A path relative to the containing source (as determined by current-load-
relative-directory or current-directory). Regardless of the current
platform, rel-string is always parsed as a Unix-format relative path: / is
the path delimiter (multiple adjacent /s are not allowed), . . accesses the parent
directory, and . accesses the current directory. The path cannot be empty or
contain a leading or trailing slash, path elements before than the last one cannot

94

§6.3 “Module
Paths” in The
Racket Guide
introduces module
paths.

include a file suffix (i.e., a . in an element other than . or ..), and the only
allowed characters are ASCII letters, ASCII digits, -, +, _, ., /, and %. Further-
more, a 7 is allowed only when followed by two lowercase hexadecimal digits,
and the digits must form a number that is not the ASCII value of a letter, digit,

-, +,0r _. The % provision is
. . .. intended to support
If rel-string ends with a ".ss" suffix, it is converted to a ".rkt" suffix. 4 One-to-one
The compiled-load handler may reverse that conversion if a ".rkt" file does encoding of
not exist and a " . ss" exists. arbitrary strings as
path elements (after
Examples: UTF-8 encoding).
Such encodings are
; a module named "x.rkt" in the same not decoded to

arrive at a filename,

; directory as the enclosing module's file: .
but instead

> (require "x.rkt") preserved in the file
; a module named "x.rkt" in the parent directory access.

; of the enclosing module file's directory:

> (require "../x.rkt")

(1ib rel-string ...+)

A path to a module installed into a collection (see [§18.2 “Libraries and Col
lections™). The rel-strings in lib are constrained similar to the plain rel-
string case, with the additional constraint that a rel-string cannot contain
. or .. directory indicators.

The specific interpretation of the path depends on the number and shape of the
rel-strings:

* If a single rel-string is provided, and if it consists of a single element
(i.e., no /) with no file suffix (i.e., no .), then rel-string names a col-
lection, and "main.rkt" is the library file name.

Examples:

; the main swindle library:

> (require (lib "swindle"))
; the same:
> (require (lib "swindle/main.rkt"))

o If a single rel-string is provided, and if it consists of multiple /-
separated elements, then each element up to the last names a collection,
subcollection, etc., and the last element names a file. If the last element
has no file suffix, ".rkt" is added, while a ".ss" suffix is converted to
".rkt".

Examples:

"turbo.rkt" from the "swindle" collection:

95

id

> (require (lib "swindle/turbo"))

; the same:

> (require (lib "swindle/turbo.rkt"))
; the same:

\

(require (1ib "swindle/turbo.ss"))

* If a single rel-string is provided, and if it consists of a single element

with a file suffix (i.e, with a .), then rel-string names a file within
the "mz1ib" collection. A ".ss" suffix is converted to ".rkt". (This
convention is for compatibility with older version of Racket.)

Examples:

; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss"))

Otherwise, when multiple rel-strings are provided, the first rel-
string is effectively moved after the others, and all rel-strings are
appended with / separators. The resulting path names a collection, then
subcollection, etc., ending with a file name. No suffix is added automati-
cally, but a ".ss" suffix is converted to ".rkt". (This convention is for
compatibility with older version of Racket.)

Examples:

; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss" "mzlib"))

A shorthand for a 1ib form with a single rel-string whose characters are
the same as in the symbolic form of id. In addition to the constraints of a 1ib
rel-string, id must not contain ..

Example:

> (require racket/tcp)

(file string)

Similar to the plain rel-string case, but string is a path—possibly
absolute—using the current platform’s path conventions and expand-user-
path. A ".ss" suffix is converted to " .rkt".

Example:

> (require (file "~/tmp/x.rkt"))

96

(planet id)
(planet string)
(planet rel-string (user-string pkg-string vers)

rel-string ...)

Specifies a library available via the PLaneT server.

The first form is a shorthand for the last one, where the id’s character sequence
must match the following {spec) grammar:

(specy ::= {ownery / {pkg) (lib)
{owner) = (elem)
{pkg> = (elemy | <{elem) : {version)

(versiony ::

(inty | (inty = (minor)

{minory ::= {nty | <= {nty | >= Gmty | = (nt)

(Uib)

(path)

| inty = {int)

= (emptyy |/ {path)

(elem) | {elemy / {path)

and where an (elem) is a non-empty sequence of characters that are ASCII
letters, ASCII digits, -, +, _, or % followed by lowercase hexadecimal digits
(that do not encode one of the other allowed characters), and an {int) is a non-
empty sequence of ASCII digits. As this shorthand is expended, a ".plt"
extension is added to {pkg), and a ".rkt" extension is added to {path); if no
{pathy is included, "main.rkt" is used in the expansion.

A (planet string) form is like a (planet id) form with the identifier
converted to a string, except that the string can optionally end with a file
extension (i.e., a .) for a (path). A ".ss" file extension is converted to " . rkt".

In the more general last form of a planet module path, the rel-strings are
similar to the 1ib form, except that the (user-string pkg-string vers)
names a PLaneT-based package instead of a collection. A version specification
can include an optional major and minor version, where the minor version can
be a specific number or a constraint: (nat nat) specifies an inclusive range,
(= nat) specifies an exact match, (+ nat) specifies a minimum version and
is equivalent to just nat, and (- nat) specifies a maximum version. The =, +,
and - identifiers in a minor-version constraint are recognized symbolically.

Examples:

; "main.rkt" in package "farm" by "mcdonald":

> (require (planet mcdonald/farm))

; "main.rkt" in version >= 2.0 of "farm" by "mcdonald":
(require (planet mcdonald/farm:2))

"main.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5))

"duck.rkt" in version >= 2.5 of "farm" by "mcdonald":
(require (planet mcdonald/farm:2:5/duck))

\

A\

97

(submod root-module-path submod-path-element ...)
(submod "." submod-path-element ...)
(submod ".." submod-path-element ...)

Identifies a submodule within the module specified by root-module-path
or relative to the current module in the case of (submod "."), where
(submod ".." submod-path-element ...) isequivalentto (submod "."
".." submod-path-element ...).Submodules have symbolic names, and
a sequence of identifiers as submod-path-elements determine a path of suc-
cessively nested submodules with the given names. A " . ." as a submod-path-
element names the enclosing module of a submodule, and it’s intended for use
in (submod ".") and (submod "..") forms.

As require prepares to handle a sequence of require-specs, it logs a “prefetch” message
to the current logger at the 'info level, using the name 'module-prefetch, and including
message data that is a list of two elements: a list of module paths that appear to be imported,
and a directory path to use for relative module paths. The logged list of module paths may
be incomplete, but a compilation manager can use approximate prefetch information to start
on compilations in parallel.

Changed in version 6.0.1.10 of package base: Added prefetch logging.

(local-require require-spec ...)

Like require, but for use in a internal-definition context to import just into the local context.
Only bindings from phase level 0 are imported.

Examples:

> (let O
(local-require racket/control)
fcontrol)

#<procedure:fcontrol>

> fcontrol

feontrol: undefined;

cannot reference an identifier before its definition
in module: top-level

(provide provide-spec ...)

98

§6.5 “Exports:
provide” in The
Racket Guide
introduces
provide.

id

(all-defined-out)

(all-from-out module-path ...)

(rename-out [orig-id export-id] ...)
(except-out provide-spec provide-spec ...)
(prefix-out prefix-id provide-spec)

provide-spec =
I
|
|
|
| (struct-out id)
|
|
|
|
|
|
|

(combine-out provide-spec ...)
(protect-out provide-spec ...)
(for-meta phase-level provide-spec ...)
(for-syntax provide-spec ...)
(for-template provide-spec ...)

(for-label provide-spec ...)
derived-provide-spec

phase-level = exact-integer
| #f

Declares exports from a module. A provide form must appear in a module context or a
module-begin context.

A provide-spec indicates one or more bindings to provide. For each exported binding,
the external name is a symbol that can be different from the symbolic form of the identifier
that is bound within the module. Also, each export is drawn from a particular phase level
and exported at the same phase level; by default, the relevant phase level is the number of
begin-for-syntax forms that enclose the provide form.

The syntax of provide-spec can be extended by bindings to provide transformers or pro-
vide pre-transformers, such as via def ine-provide-syntazx, but the pre-defined forms are
as follows.

id

Exports id, which must be bound within the module (i.e., either defined or
imported) at the relevant phase level. The symbolic form of id is used as the
external name, and the symbolic form of the defined or imported identifier must
match (otherwise, the external name could be ambiguous).

Examples:

> (module nest racket
(provide num-eggs)
(define num-eggs 2))

> (require 'nest)

> num-eggs

2

99

If id has a transformer binding to a rename transformer, then the transformer
affects the exported binding. See make-rename-transformer for more infor-
mation.

(all-defined-out)

Exports all identifiers that are defined at the relevant phase level within the ex-
porting module, and that have the same lexical context as the (all-defined-
out) form, excluding bindings to rename transformers where the target identi-
fier has the 'not-provide-all-defined syntax property. The external name
for each identifier is the symbolic form of the identifier. Only identifiers accessi-
ble from the lexical context of the (all-defined-out) form are included; that
is, macro-introduced imports are not re-exported, unless the (all-defined-
out) form was introduced at the same time.

Examples:

> (module nest racket
(provide (all-defined-out))
(define num-eggs 2))

> (require 'mest)

> num-eggs

2

(all-from-out module-path ...)

Exports all identifiers that are imported into the exporting module using a
require-spec built on each module-path (see(§3.2 “Importing and Export-|
[ing: require and provide’]) with no phase-level shift. The symbolic name for
export is derived from the name that is bound within the module, as opposed
to the symbolic name of the export from each module-path. Only identifiers
accessible from the lexical context of the module-path are included; that is,
macro-introduced imports are not re-exported, unless the module-path was
introduced at the same time.

Examples:

> (module nest racket
(provide num-eggs)
(define num-eggs 2))
> (module hen-house racket
(require 'mnest)
(provide (all-from-out 'mest)))
> (require 'hen-house)
> num-eggs
2

100

(rename-out [orig-id export-id] ...)

Exports each orig-id, which must be bound within the module at the relevant
phase level. The symbolic name for each export is export-id instead of orig-
id.

Examples:

> (module nest racket
(provide (rename-out [count num-eggs]))
(define count 2))

> (require 'nest)

> num-eggs

2

> count

count: undefined;

cannot reference an identifier before its definition
in module: top-level

(except-out provide-spec provide-spec ...)

Like the first provide-spec, but omitting the bindings listed in each subse-
quent provide-spec. If one of the latter bindings is not included in the initial
provide-spec, a syntax error is reported. The symbolic export name informa-
tion in the latter provide-specs is ignored; only the bindings are used.

Examples:

> (module nest racket

(provide (except-out (all-defined-out)
num-chicks))

(define num-eggs 2)
(define num-chicks 3))

> (require 'mest)

> num-eggs

2

> num-chicks

num-chicks: undefined;

cannot reference an identifier before its definition
in module: top-level

(prefix-out prefix-id provide-spec)

Like provide-spec, but with each symbolic export name from provide-
spec prefixed with prefix-id.

Examples:

101

Vv

(module nest racket
(provide (prefix-out chicken: num-eggs))
(define num-eggs 2))

(require 'mest)

vV Vv

chicken:num-eggs

(struct-out id)

Exports the bindings associated with a structure type id. Typically, id is bound
with (struct id); more generally, id must have a transformer bind-
ing of structure-type information at the relevant phase level; see
[ture Type Transformer Binding’| Furthermore, for each identifier mentioned
in the structure-type information, the enclosing module must define or import
one identifier that is free-identifier=7. If the structure-type information in-
cludes a super-type identifier, and if the identifier has a transformer binding of
structure-type information, the accessor and mutator bindings of the super-type
are not included by struct-out for export.

Examples:

> (module nest racket
(provide (struct-out egg))
(struct egg (color wt)))

> (require 'nest)

> (egg-color (egg 'blue 10))

'blue

(combine-out provide-spec ...)

The union of the provide-specs.

Examples:

> (module nest racket
(provide (combine-out num-eggs num-chicks))
(define num-eggs 2)
(define num-chicks 1))

(require 'nest)

num-eggs

num-chicks

102

(protect-out provide-spec ...)

Like the union of the provide-specs, except that the exports are protected; re-
quiring modules may refer to these bindings, but may not extract these bindings
from macro expansions or access them via eval without access privileges. For
more details, see[§14.10 “Code Inspectors” The provide-spec must specify
only bindings that are defined within the exporting module.

Examples:

> (module nest racket
(provide num-eggs (protect-out num-chicks))
(define num-eggs 2)
(define num-chicks 3))
> (define weak-inspector (make-inspector (current-code-
inspector)))
> (define (weak-eval x)
(parameterize ([current-code-inspector weak-
inspector])
(define weak-ns (make-base-namespace))
(namespace-attach-module (current-namespace)
''nest
weak-ns)
(parameterize ([current-namespace weak-ns])
(namespace-require ''nest)
(eval x))))
> (require 'mest)
> (1ist num-eggs num-chicks)
(2 3
> (weak-eval 'num-eggs)
2
> (weak-eval 'num-chicks)
?: access disallowed by code inspector to protected variable
Jfrom module: 'nest
at: num-chicks

See also §15.4 “Code Inspectors for Trusted and Untrusted Code”.

(for-meta phase-level provide-spec ...)

Like the union of the provide-specs, but adjusted to apply to the phase level
specified by phase-Ilevel relative to the current phase level (where #f corre-
sponds to the label phase level). In particular, an id or rename-out form as
a provide-spec refers to a binding at phase-level relative to the current
level, an all-defined-out exports only definitions at phase-level relative

103

to the current phase level, and an all-from-out exports bindings imported
with a shift by phase-Ilevel.

Examples:

> (module nest racket
(begin-for-syntax
(define eggs 2))
(define chickens 3)
(provide (for-syntax eggs)
chickens))
> (require 'mest)
> (define-syntax (test-eggs stx)
(printf "Eggs are ~a\n" eggs)
#'0)
> (test-eggs)
Eggs are 2
0
> chickens
3
> (module broken-nest racket
(define eggs 2)
(define chickens 3)
(provide (for-syntax eggs)
chickens))
eval:7:0: provide: provided identifier is not defined or
required
at: eggs
in: (#%provide (expand (provide-trampoline (for-syntax
eggs) chickens)))
> (module nest2 racket
(begin-for-syntax
(define eggs 2))
(provide (for-syntax eggs)))
> (require (for-meta 2 racket/base)
(for-syntax 'nest2))
> (define-syntax (test stx)
(define-syntax (show-eggs stx)
(printf "Eggs are ~a\n" eggs)
#'0)
(begin
(show-eggs)
#'0))
Eggs are 2
> (test)
0

104

(for-syntax provide-spec ...)

Same as (for-meta 1 provide-spec

(for-template provide-spec ...)

Same as (for-meta -1 provide-spec

(for-label provide-spec ...)

Same as (for-meta #f provide-spec

derived-provide-spec

See define-provide-syntax for information on expanding the set of

provide-spec forms.

Each export specified within a module must have a distinct symbolic export name, though
the same binding can be specified with the multiple symbolic names.

(for-meta phase-level require-spec

See require and provide.

(for-syntax require-spec ...)

See require and provide.

(for-template require-spec ...)

See require and provide.

(for-label require-spec ...)

See require and provide.

105

)

(#%require raw-require-

raw-require-spec

phase-level =

phaseless-spec

raw-module-path

raw-root-module-path

spec ...)

phaseless-spec

(for-meta phase-level phaseless-spec ...)
(for-syntax phaseless-spec ...)
(for-template phaseless-spec ...)

(for-label phaseless-spec ...)

(just-meta phase-level raw-require-spec ...)

exact-integer
#f

raw-module-path
(only raw-module-path id ...)
(prefix prefix-id raw-module-path)
(all-except raw-module-path id ...)
(prefix-all-except prefix-id

raw-module-path id ...)
(rename raw-module-path local-id exported-id)

raw-root-module-path

(submod raw-root-module-path id ...+)
(submod "." id ...+)
(quote id)

rel-string
(1ib rel-string ...)
id
(file string)
(planet rel-string
(user-string pkg-string vers ...))
literal-path

The primitive import form, to which require expands. A raw-require-spec is simi-
lar to a require-spec in a require form, except that the syntax is more constrained,
not composable, and not extensible. Also, sub-form names like for-syntax and 1ib are
recognized symbolically, instead of via bindings. Although not formalized in the grammar
above, a just-meta form cannot appear within a just-meta form, but it can appear under
for-meta, for-syntax, for-template, or for-label

Each raw-require-spec corresponds to the obvious require-spec, but the rename sub-
form has the identifiers in reverse order compared to rename-in.

For most raw-require-specs, the lexical context of the raw-require-spec determines
the context of introduced identifiers. The exception is the rename sub-form, where the

106

lexical context of the local-id is preserved.

A literal-path as a raw-root-module-path corresponds to a path in the sense of
path?. Since path values are never produced by read-syntax, they appear only in pro-
grammatically constructed expressions. They also appear naturally as arguments to func-
tions such as namespace-require, with otherwise take a quoted raw-module-spec.

(#)iprovide raw-provide-spec ...)

raw-provide-spec phaseless-spec

| (for-meta phase-level phaseless-spec ...)
| (for-syntax phaseless-spec ...)

| (for-label phaseless-spec ...)

| (protect raw-provide-spec ...)

phase-level = exact-integer
| #f

phaseless-spec = id
| (rename local-id export-id)

| (struct struct-id (field-id ...))

| (all-from raw-module-path)

| (all-from-except raw-module-path id ...)

| (all-defined)

| (all-defined-except id ...)

| (prefix-all-defined prefix-id)

| (prefix-all-defined-except prefix-id id ...)
| (protect phaseless-spec ...)

| (expand (id . datum))

The primitive export form, to which provide expands. A raw-module-path is as for
#)irequire. A protect sub-form cannot appear within a protect sub-form.

Like #%require, the sub-form keywords for #)provide are recognized symbolically, and
nearly every raw-provide-spec has an obvious equivalent provide-spec via provide,
with the exception of the struct and expand sub-forms.

A (struct struct-id (field-id ...)) sub-form expands to struct-id, make-
struct-id, struct:struct-id, struct-id?, struct-id-field-id for each field-
id, and set-struct-id-field-id! for each field-id. The lexical context of the
struct-id is used for all generated identifiers.

Unlike #)%require, the #),provide form is macro-extensible via an explicit expand sub-
form; the (id . datum) part is locally expanded as an expression (even though it is not
actually an expression), stopping when a begin form is produced; if the expansion result is
(begin raw-provide-spec ...),itis spliced in place of the expand form, otherwise a

107

syntax error is reported. The expand sub-form is not normally used directly; it provides a
hook for implementing provide and provide transformers.

The all-from and all-from-except forms re-export only identifiers that are accessi-
ble in lexical context of the all-from or all-from-except form itself. That is, macro-
introduced imports are not re-exported, unless the all-from or all-from-except form
was introduced at the same time. Similarly, al1-defined and its variants export only defi-
nitions accessible from the lexical context of the phaseless-spec form.

3.2.1 Additional require Forms

(require racket/require) package: [base

The bindings documented in this section are provided by the racket/require library, not
racket/base or racket.

The following forms support more complex selection and manipulation of sets of imported
identifiers.

(matching-identifiers-in regexp require-spec)

Like require-spec, but including only imports whose names match regexp. The regexp
must be a literal regular expression (see[§4.7 “Regular Expressions’).

Examples:

> (module zoo racket/base
(provide tunafish swordfish blowfish
monkey lizard ant)
(define tunafish 1)
(define swordfish 2)
(define blowfish 3)
(define monkey 4)
(define lizard 5)
(define ant 6))
(require racket/require)
(require (matching-identifiers-in #rx"\\wxfish" 'zoo))
tunafish

swordfish

blowfish

WV NV =V V.V

> monkey
monkey: undefined;

108

https://pkgs.racket-lang.org/package/base

cannot reference an identifier before its definition
in module: top-level

(subtract-in require-spec subtracted-spec ...)

Like require-spec, but omitting those imports that would be imported by one of the
subtracted-specs.

Examples:

> (module earth racket
(provide land sea air)
(define land 1)
(define sea 2)
(define air 3))
> (module mars racket
(provide aliens)
(define aliens 4))
> (module solar-system racket
(require 'earth 'mars)
(provide (all-from-out 'earth)
(all-from-out 'mars)))
> (require racket/require)
> (require (subtract-in 'solar-system 'earth))
> land
land: undefined;
cannot reference an identifier before its definition
in module: top-level
> aliens
4

(filtered-in proc-expr require-spec)

Applies an arbitrary transformation on the import names (as strings) of require-spec.
The proc-expr must evaluate at expansion time to a single-argument procedure, which is
applied on each of the names from require-spec. For each name, the procedure must
return either a string for the import’s new name or #£ to exclude the import.

For example,

(require (filtered-in
(lambda (name)
(and (regexp-match? #rx"~[a-z-]+$" name)

(regexp-replace #rx"-" (string-
titlecase name) "")))
racket/base))

109

imports only bindings from racket/base that match the pattern #rx"~[a-z-]+$", and it
converts the names to “camel case.”

(path-up rel-string ...)

Specifies paths to modules named by the rel-strings similar to using the rel-strings
directly, except that if a required module file is not found relative to the enclosing source,
it is searched for in the parent directory, and then in the grand-parent directory, etc., all the

way to the root directory. The discovered path relative to the enclosing source becomes part
of the expanded form.

This form is useful in setting up a “project environment.” For example, using the following
"config.rkt" file in the root directory of your project:

#lang racket/base
(require racket/require-syntax
(for-syntax "utils/in-here.rkt"))

(provide utils-in)
(define-require-syntax utils-in in-here-transformer)

and using "utils/in-here.rkt" under the same root directory:

#lang racket/base
(require racket/runtime-path)
(provide in-here-transformer)
(define-runtime-path here ".")
(define (in-here-transformer stx)
(syntax-case stx ()

[(_ sym)

(identifier? #'sym)

(let ([path (build-path here (format "~a.rkt" (syntax-
e #'sym)))]1)

(datum->syntax stx ~(file , (path->string path)) stx))]))

then path-up works for any other module under the project directory to find
"config.rkt":

(require racket/require
(path-up "config.rkt")
(utils-in foo))

Note that the order of requires in the example is important, as each of the first two bind the
identifier used in the following.

An alternative in this scenario is to use path-up directly to find the utility module:

110

(require racket/require
(path-up "utils/foo.rkt"))

but then sub-directories that are called "utils" override the one in the project’s root. In
other words, the previous method requires only a single unique name.
(multi-in subs ...+)

subs = sub-path
| (sub-path ...)

sub-path = rel-string
| id

Specifies multiple files to be required from a hierarchy of directories or collections. The set
of required module paths is computed as the Cartesian product of the subs groups, where
each sub-path is combined with other sub-paths in order using a / separator. A sub-
path as a subs is equivalent to (sub-path). All sub-paths in a given multi-in form
must be either strings or identifiers.

Examples:

(require (multi-in racket (dict list)))

is equivalent to (require racket/dict racket/list)

(require (multi-in "math" "matrix" "utils.rkt"))

is equivalent to (require "math/matrix/utils.rkt")

(require (multi-in "utils" ("math.rkt" "matrix.rkt")))

is equivalent to (require "utils/math.rkt" "utils/matrix.rkt")

(require (multi-in ("math" "matrix") "utils.rkt"))

is equivalent to (require "math/utils.rkt" "matrix/utils.rkt")

(require (multi-in ("math" "matrix") ("utils.rkt" "helpers.rkt")))

is equivalent to (require "math/utils.rkt" "math/helpers.rkt"
"matrix/utils.rkt" "matrix/helpers.rkt")

111

3.2.2 Additional provide Forms

(require racket/provide) package: [base

The bindings documented in this section are provided by the racket/provide library, not
racket/base or racket.

(matching-identifiers-out regexp provide-spec)

Like provide-spec, but including only exports of bindings with an external name that
matches regexp. The regexp must be a literal regular expression (see [§4.7 “Regular Ex-|

[pressions”).

(filtered-out proc-expr provide-spec)

Analogous to filtered-in, but for filtering and renaming exports.
For example,

(provide (filtered-out
(lambda (name)
(and (regexp-match? #rx"~[a-z-]+$" name)
(regexp-replace
#rx"-" (string-titlecase name) "")))
(all-defined-out)))

exports only bindings that match the pattern #rx"~ [a-z-]1+$", and it converts the names to
“camel case.”

3.3 Literals: quote and #/,datum

Many forms are implicitly quoted (via #%datum) as literals. See[§1.2.3.2 “Expansion Steps

nl

for more information. §4.10 “Quoting:
quote and '” in
(quote datum) The Racket Guide

introduces quote.

Produces a constant value corresponding to datum (i.e., the representation of the program
fragment) without its lexical information, source location, etc. Quoted pairs, vectors, and
boxes are immutable.

Examples:

> (quote x)
'x

112

https://pkgs.racket-lang.org/package/base

> (quote (+ 1 2))
'(+12)

> (+12)

3

(#%datum . datum)

Expands to (quote datum), as long as datum is not a keyword. If datum is a keyword, a
syntax error is reported.

See also(§1.2.3.2 “Expansion Steps’|for information on how the expander introduces #7da-
tum identifiers.

Examples:

> (#)datum . 10)

10

> (#%datum . x)

'x

> (#Y%datum . #:x)

eval:6:0: #%datum: keyword misused as an expression
at: #:x

3.4 Expression Wrapper: #J/,expression

(#)iexpression expr)

Produces the same result as expr. Using #%expression forces the parsing of a form as an
expression.

Examples:

> (#expression (+ 1 2))

3

> (#)iexpression (define x 10))

eval:8:0: define: not allowed in an expression context

in: (define x 10)

The #%expression form is helpful in recursive definition contexts where expanding a sub-
sequent definition can provide compile-time information for the current expression. For ex-
ample, consider a define-sym-case macro that simply records some symbols at compile-
time in a given identifier.

113

(define-syntax (define-sym-case stx)
(syntax-case stx (O
[(_ id sym ...)
(andmap identifier? (syntax->list #'(sym ...)))
#' (define-syntax id
"(sym ...))1))

and then a variant of case that checks to make sure the symbols used in the expression match
those given in the earlier definition:

(define-syntax (sym-case stx)
(syntax-case stx (O
[(_ id val-expr [(sym) expr] ...)
(let O
(define expected-ids
(syntax-local-value
#'id
0O
(raise-syntax-error
'sym-case
"expected an identifier bound via define-sym-case"
stx
#'1d))))
(define actual-ids (syntax->datum #'(sym ...)))
(unless (equal? expected-ids actual-ids)
(raise-syntax-error
'sym-case
(format "expected the symbols ~s"
expected-ids)
stx))
#'(case val-expr [(sym) expr] ...))]1))

If the definition follows the use like this, then the define-sym-case macro does not have
a chance to bind id and the sym-case macro signals an error:

> (let O
(sym-case land-creatures 'bear
[(bear) 1]
[(fox) 21)

(define-sym-case land-creatures bear fox))
eval:11:0: sym-case: expected an identifier bound via
define-sym-case

at: land-creatures
in: (sym-case land-creatures (quote bear) ((bear) 1)

((fox) 2))

114

But if the sym-case is wrapped in an #,expression, then the expander does not need to
expand it to know it is an expression and it moves on to the define-sym-case expression.

> (let O
(#Y%expression (sym-case sea-creatures 'whale
[(whale) 1]
[(squid) 2]))
(define-sym-case sea-creatures whale squid)
'more...)
'more. ..

Of course, a macro like sym-case should not require its clients to add #}expression;
instead it should check the basic shape of its arguments and then expand to #%expression
wrapped around a helper macro that calls syntax-local-value and finishes the expansion.

3.5 Variable References and #/,top
id

Refers to a top-level, module-level, or local binding, when id is not bound as a transformer
(see[§1.2.3 “Expansion”). At run-time, the reference evaluates to the value in the location
associated with the binding.

When the expander encounters an id that is not bound by a module-level or local binding,
it converts the expression to (#%top . id) giving #)top the lexical context of the id;
typically, that context refers to #J/top. See also[§1.2.3.2 “Expansion Steps”|

Examples:

> (define x 10)

> X

10

> (let ([x 5]) x)

5

> ((lambda (x) x) 2)
2

(#%top . id)

Equivalent to id when id is bound to a module-level or top-level variable. In a top-level
context, (#/top . id) always refers to a top-level variable, even if id is unbound or
otherwise bound.

115

Within a module form, (#/top . id) expands to just id—with the obligation that id is
defined within the module and has no local binding in its context. At phase level 0, (#/top

id) is an immediate syntax error if id is not bound. At phase level 1 and higher, a syntax
error is reported if id is not defined at the corresponding phase by the end of module-body
partial expansion.

See also(§1.2.3.2 “Expansion Steps’|for information on how the expander introduces #/top
identifiers.

Examples:

> (define x 12)
> (let ([x 5]) (#%top . %))
5

Changed in version 6.3 of package base: Changed the introduction of #Jtop in a top-level context to unbound

identifiers only.

3.6 Locations: #),variable-reference

(#)variable-reference id)
(#%variable-reference (#Jtop . id))
(#Yvariable-reference)

Produces an opaque variable reference value representing the location of id, which must
be bound as a variable. If no id is supplied, the resulting value refers to an “anonymous”
variable defined within the enclosing context (i.e., within the enclosing module, or at the top
level if the form is not inside a module).

A variable reference can be used with variable-reference->empty-namespace,
variable-reference->resolved-module-path, and variable-reference-
>namespace, but facilities like define-namespace-anchor and namespace-anchor-
>namespace wrap those to provide a clearer interface. A variable reference is also useful to
low-level extensions; see Inside: Racket C API.

3.7 Procedure Applications and #%app
§4.3 “Function
Calls” in The
(proc-expr arg ...) Racket Guide
introduces
procedure

Applies a procedure, when proc-expr is not an identifier that has a transformer binding ~@applications.
(seels1.2.3 “Expansion”).

116

More precisely, the expander converts this form to (#/app proc-expr arg ...), giving
#%app the lexical context that is associated with the original form (i.e., the pair that com-
bines proc-expr and its arguments). Typically, the lexical context of the pair indicates the
procedure-application #%app that is described next. See also[§1.2.3.2 “Expansion Steps’}

Examples:

> (+12)

3

> ((lambda (x #:arg y) (list y x)) #:arg 2 1)
"'(2 1)

(#%happ proc-expr arg ...)

Applies a procedure. Each arg is one of the following:

arg-expr

The resulting value is a non-keyword argument.

keyword arg-expr

The resulting value is a keyword argument using keyword. Each keyword in
the application must be distinct.

The proc-expr and arg-exprs are evaluated in order, left to right. If the result of proc-
expr is a procedure that accepts as many arguments as non-keyword arg-exprs, if it
accepts arguments for all of the keywords in the application, and if all required keyword-
based arguments are represented among the keywords in the application, then the procedure
is called with the values of the arg-exprs. Otherwise, the exn:fail:contract exception
is raised.

The continuation of the procedure call is the same as the continuation of the application
expression, so the results of the procedure are the results of the application expression.

The relative order of keyword-based arguments matters only for the order of arg-expr
evaluations; the arguments are associated with argument variables in the applied procedure
based on the keywords, and not their positions. The other arg-expr values, in contrast, are
associated with variables according to their order in the application form.

See also[§1.2.3.2 “Expansion Steps”|for information on how the expander introduces #%app
identifiers.

Examples:

117

> (#%happ + 1 2)
3
> (#%app (lambda (x #:arg y) (list y x)) #:arg 2 1)
(2 D
> (#)app cons)
cons: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 0

(#%plain-app proc-expr arg-expr ...)
(#)plain-app)

Like #%app, but without support for keyword arguments. As a special case, (#)plain-app)
produces ' ().

3.8 Procedure Expressions: lambda and case-lambda
§4.4 “Functions:

lambda” in The

(lambda kw-formals body ...+) Racket Guide
(A kw-formals body ...+) introduces
procedure
expressions.
kw-formals = (arg ...) P
| (arg ...+ . rest-id)
| rest-id
arg = id
| [id default-expr]
| keyword id
|

keyword [id default-expr]

Produces a procedure. The kw-formals determines the number of arguments and which
keyword arguments that the procedure accepts.

Considering only the first arg case, a simple kw-formals has one of the following three
forms:

(id ...)

The procedure accepts as many non-keyword argument values as the number of
ids. Each id is associated with an argument value by position.

118

(id ...+ . rest-id)

The procedure accepts any number of non-keyword arguments greater or equal
to the number of ids. When the procedure is applied, the ids are associated
with argument values by position, and all leftover arguments are placed into a
list that is associated to rest-id.

rest-id

The procedure accepts any number of non-keyword arguments. All arguments
are placed into a list that is associated with rest-id.

More generally, an arg can include a keyword and/or default value. Thus, the first two cases
above are more completely specified as follows:

(arg ...)

Each arg has the following four forms:
id

Adds one to both the minimum and maximum number of non-
keyword arguments accepted by the procedure. The id is associated
with an actual argument by position.

[id default-expr]

Adds one to the maximum number of non-keyword arguments ac-
cepted by the procedure. The id is associated with an actual argu-
ment by position, and if no such argument is provided, the default-
expr is evaluated to produce a value associated with id. No arg
with a default-expr can appear before an id without a default-
expr and without a keyword.

keyword id
The procedure requires a keyword-based argument using keyword.

The id is associated with a keyword-based actual argument using
keyword.

119

keyword [id default-expr]

The procedure accepts a keyword-based argument using keyword.
The id is associated with a keyword-based actual argument using
keyword, if supplied in an application; otherwise, the default-
expr is evaluated to obtain a value to associate with id.

The position of a keyword arg in kw-formals does not matter, but each spec-
ified keyword must be distinct.

(arg ...+ . rest-id)

Like the previous case, but the procedure accepts any number of non-keyword
arguments beyond its minimum number of arguments. When more arguments
are provided than non-keyword arguments among the args, the extra argu-
ments are placed into a list that is associated to rest-id.

The kw-formals identifiers are bound in the bodys. When the procedure is applied, a new
location is created for each identifier, and the location is filled with the associated argu-
ment value. The locations are created and filled in order, with default-exprs evaluated as
needed to fill locations.

If any identifier appears in the bodys that is not one of the identifiers in kw-formals, then
it refers to the same location that it would if it appeared in place of the 1ambda expression.
(In other words, variable reference is lexically scoped.)

When multiple identifiers appear in a kw-formals, they must be distinct according to
bound-identifier="7.

If the procedure produced by 1ambda is applied to fewer or more by-position or by-keyword
arguments than it accepts, to by-keyword arguments that it does not accept, or without re-
quired by-keyword arguments, then the exn:fail:contract exception is raised.

The last body expression is in tail position with respect to the procedure body.

Examples:

> ((lambda (x) x) 10)
10
> ((lambda (x y) (list y x)) 1 2)
(2 1
> ((lambda (x [y 51) (list y x)) 1 2)
(2 1)
> (let ([f (lambda (x #:arg y) (list y x))]1)
(1list (f 1 #:arg 2)
(f #:arg 2 1))

120

In other words,
argument bindings
with default-value
expressions are
evaluated analogous
to let*.

(2 1) (2 1)

When compiling a lambda or case-lambda expression, Racket looks for a 'method-
arity-error property attached to the expression (see [§12.7 “Syntax Object Properties”).
If it is present with a true value, and if no case of the procedure accepts zero arguments,
then the procedure is marked so that an exn:fail:contract:arity exception involving
the procedure will hide the first argument, if one was provided. (Hiding the first argument
is useful when the procedure implements a method, where the first argument is implicit in
the original source). The property affects only the format of exn:fail:contract:arity
exceptions, not the result of procedure-arity.

When a keyword-accepting procedure is bound to an identifier in certain ways, and when
the identifier is used in the function position of an application form, then the application
form may be expanded in such a way that the original binding is obscured as the target of
the application. To help expose the connection between the function application and func-
tion declaration, an identifier in the expansion of the function application is tagged with a
syntax property accessible via syntax-procedure-alias-property if it is effectively
an alias for the original identifier. An identifier in the expansion is tagged with a syn-
tax property accessible via syntax-procedure-converted-arguments-property if it
is like the original identifier except that the arguments are converted to a flattened form:
keyword arguments, required by-position arguments, by-position optional arguments, and
rest arguments—all as required, by-position arguments; the keyword arguments are sorted
by keyword name, each optional keyword argument is followed by a boolean to indicate
whether a value is provided, and #f£ is used for an optional keyword argument whose value
is not provided; optional by-position arguments include #£f for each non-provided argument,
and then the sequence of optional-argument values is followed by a parallel sequence of
booleans to indicate whether each optional-argument value was provided.

(case-lambda [formals body ...+] ...)

formals = (id ...)
| (id ...+ . rest-id)
| rest-id
Produces a procedure. Each [formals body ...+] clause is analogous to a single

lambda procedure; applying the case-lambda-generated procedure is the same as apply-
ing a procedure that corresponds to one of the clauses—the first procedure that accepts the
given number of arguments. If no corresponding procedure accepts the given number of
arguments, the exn:fail:contract exception is raised.

Note that a case-1ambda clause supports only formals, not the more general kw-formals
of lambda. That is, case-lambda does not directly support keyword and optional argu-
ments.

Example:

121

> (let ([f (case-lambda
[O 10]
[(x) x]
[(x y) (1ist y x)]
[r rDHD)
(list (£)
(f 1)
(f 1 2)
(f123)))
(101 (2 1) (1 2 3))

(#%plain-lambda formals body ...+)

Like 1ambda, but without support for keyword or optional arguments.

3.9 Local Binding: let, let*, letrec, ...

§4.6 “Local

Binding” in The
(let ([id val-expr] ...) body ...+) Racket Guide
(let proc-id ([id init-expr] ...) body ...+) introduces local

binding.

The first form evaluates the val-exprs left-to-right, creates a new location for each id, and
places the values into the locations. It then evaluates the bodys, in which the ids are bound.
The last body expression is in tail position with respect to the let form. The ids must be
distinct according to bound-identifier="7.

Examples:

> (let ([x 5]) x)
5
> (let ([x 51)
(let ([x 2]
[y x1)
(list y x)))
"'(5 2)

The second form evaluates the init-exprs; the resulting values become arguments in an
application of a procedure (lambda (id ...) body ...+), where proc-id is bound
within the bodys to the procedure itself.

Example:

> (let fac ([n 10])
(if (zero? n)

122

1
(¥ n (fac (subl n)))))
3628800

(let* ([id val-expr] ...) body ...+)

Like let, but evaluates the val-exprs one by one, creating a location for each id as soon
as the value is available. The ids are bound in the remaining val-exprs as well as the
bodys, and the ids need not be distinct; later bindings shadow earlier bindings.

Example:

> (letx ([x 1]
[y (+x DD
(list y %))
(21

(letrec ([id val-expr] ...) body ...+)

Like let, including left-to-right evaluation of the val-exprs, but the locations for all ids
are created first, all ids are bound in all val-exprs as well as the bodys, and each id is
initialized immediately after the corresponding val-expr is evaluated. The ids must be
distinct according to bound-identifier=7.

Referencing or assigning to an id before its initialization raises
exn:fail:contract:variable. If an id (i.e., the binding instance or id) has an
'undefined-error-name syntax property whose value is a symbol, the symbol is used as
the name of the variable for error reporting, instead of the symbolic form of id.

Example:

> (letrec ([is-even? (lambda (n)
(or (zero? n)
(is-0dd? (subl n))))]
[is-odd? (lambda (n)
(and (not (zero? n))
(is-even? (subl n))))1)
(is-o0dd? 11))
#t

Changed in version 6.0.1.2 of package base: Changed reference or assignment of an uninitialized id to an error.

(let-values ([(id ...) val-expr] ...) body ...+)

123

Like let, except that each val-expr must produce as many values as corresponding ids,
otherwise the exn:fail:contract exception is raised. A separate location is created for
each id, all of which are bound in the bodys.

Example:

> (let-values ([(x y) (quotient/remainder 10 3)])
(1ist y %))
(1 3)

(letx-values ([(id ...) val-expr] ...) body ...+)

Like 1let*, except that each val-expr must produce as many values as corresponding ids.
A separate location is created for each id, all of which are bound in the later val-exprs
and in the bodys.

Example:

> (let*-values ([(x y) (quotient/remainder 10 3)]
[(z) (1ist y 1)
z)
'(13)

(letrec-values ([(id ...) val-expr] ...) body ...+)

Like letrec, except that each val-expr must produce as many values as corresponding
ids. A separate location is created for each id, all of which are bound in all val-exprs
and in the bodys.

Example:

> (letrec-values ([(is-even? is-o0dd?)
(values
(lambda (n)
(or (zero? n)
(is-0dd? (subl n))))
(lambda (n)
(or (= n 1)
(is-even? (subl n)))))]1)
(is-0dd? 11))
#t

(let-syntax ([id trams-expr] ...) body ...+)

124

See also
splicing-let-syntax.

Creates a transformer binding (see [§1.2.3.5 *Iransformer Bindings™)) of each id with the
value of trans-expr, which is an expression at phase level 1 relative to the surrounding
context. (See[81.2.1 “Identifiers, Binding, and Scopes’|for information on phase levels.)

The evaluation of each trans-expr is parameterized to set current-namespace to a
namespace that shares bindings and variables with the namespace being used to expand the
let-syntax form, except that its base phase is one greater.

Each id is bound in the bodys, and not in other trans-exprs.

(letrec-syntax ([id trans-expr] ...) body ...+)

See also
. . Lo splicing-letrec-syntax.
Like let-syntax, except that each id is also bound within all trans-exprs.

(let-syntaxes ([(id ...) trams-expr] ...) body ...+)

See also
. . splicing-let-syntaxes.
Like let-syntax, but each trans-expr must produce as many values as corresponding

ids, each of which is bound to the corresponding value.

(letrec-syntaxes ([(id ...) trans-expr] ...) body ...+)
See also

. . L splicing-letrec-syntaxes.
Like let-syntax, except that each id is also bound within all trans-exprs.

(letrec-syntaxes+values ([(trans-id ...) trans-expr] ...)
([(val-id ...) val-expr] ...)
body ...+)

Combines letrec-syntaxes with a variant of letrec-values: each trans-id and val-
id is bound in all trans-exprs and val-exprs.

The letrec-syntaxes+values form is the core form for local compile-time bindings,
since forms like letrec-syntax and internal-definition contexts expand to it. In a fully
expanded expression (see [§1.2.3.1 “Fully Expanded Programs™), the trans-id bindings
are discarded and the form reduces to a combination of letrec-values or let-values.

For variables bound by letrec-syntaxes+values, the location-creation rules differ
slightly from letrec-values. The [(val-id ...) val-expr] binding clauses are par-
titioned into minimal sets of clauses that satisfy the following rule: if a clause has a val-id
binding that is referenced (in a full expansion) by the val-expr of an earlier clause, the
two clauses and all in between are in the same set. If a set consists of a single clause whose
val-expr does not refer to any of the clause’s val-ids, then locations for the val-ids are
created after the val-expr is evaluated. Otherwise, locations for all val-ids in a set are
created just before the first val-expr in the set is evaluated. For the purposes of forming
sets, a (quote-syntax datum #:local) form counts as a reference to all bindings in the
letrec-syntaxes+values form

125

The end result of the location-creation rules is that scoping and evaluation order are the
same as for letrec-values, but the compiler has more freedom to optimize away location
creation. The rules also correspond to a nesting of 1et-values and letrec-values, which
is how letrec-syntaxes+values for a fully-expanded expression.

See also local, which supports local bindings with define, define-syntax, and more.

3.10 Local Definitions: local

(require racket/local) package: base

The bindings documented in this section are provided by the racket/local and racket
libraries, but not racket/base.

(local [definition ...] body ...+)

Like letrec-syntaxes+values, except that the bindings are expressed in the same way
as in the top-level or in a module body: using define, define-values, define-syntax,
struct, etc. Definitions are distinguished from non-definitions by partially expanding def -
inition forms (see[§1.2.3.7 “Partial Expansion™). As in the top-level or in a module body,
a begin-wrapped sequence is spliced into the sequence of definitions.

3.11 Constructing Graphs: shared

(require racket/shared) package: base

The bindings documented in this section are provided by the racket/shared and racket
libraries, but not racket/base.

(shared ([id expr] ...) body ...+)
Binds ids with shared structure according to exprs and then evaluates the body-exprs,
returning the result of the last expression.

The shared form is similar to letrec, except that special forms of expr are recognized
(after partial macro expansion) to construct graph-structured data, where the corresponding
letrec would instead produce a use-before-initialization error.

Each expr (after partial expansion) is matched against the following shared-expr gram-
mar, where earlier variants in a production take precedence over later variants:

shared-expr = shell-expr
| plain-expr

126

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

shell-expr (cons in-immutable-expr in-immutable-expr)
(1ist in-immutable-expr ...)
(1ist* in-immutable-expr ...)
(append early-expr ... in-immutable-expr)

|
|
|
| (vector-immutable in-immutable-expr ...)
| (box-immutable in-immutable-expr)

| (mcons patchable-expr patchable-expr)

| (vector patchable-expr ...)

| (box patchable-expr)

| (prefix:make-id patchable-expr ...)

= shell-id

| shell-expr

| early-expr

in-immutable-expr

shell-id = id
patchable-expr = expr
early-expr = expr
plain-expr = expr

The prefix:make-id identifier above matches three kinds of references. The first kind is
any binding whose name has make- in the middle, and where prefix:id has a transformer
binding to structure information with a full set of mutator bindings; see[§5.7 “Structure Type|
[Transformer Binding”} The second kind is an identifier that itself has a transformer binding
to structure information. The third kind is an identifier that has a ' constructor-for syntax
property whose value is an identifier with a transformer binding to structure information. A
shell-id, meanwhile, must be one of the ids bound by the shared form to a shell-
expr.

When the exprs of the shared form are parsed as shared-expr (taking into account the or-
der of the variants for parsing precedence), the sub-expressions that were parsed via early-
expr will be evaluated first when the shared form is evaluated. Among such expressions,
they are evaluated in the order as they appear within the shared form. However, any ref-
erence to an id bound by shared produces a use-before-initialization errror, even if the
binding for the id appears before the corresponding early-expr within the shared form.

The shell-ids and shell-exprs (not counting patchable-expr and early-expr sub-
expressions) are effectively evaluated next:

e A shell-id reference produces the same value as the corresponding id will produce
within the bodys, assuming that id is never mutated with set!. This special handling
of a shell-id reference is one way in which shared supports the creation of cyclic
data, including immutable cyclic data.

127

e A shell-expr of the form (mcons patchable-expr patchable-expr), (vec-
tor patchable-expr ...), (box patchable-expr), or (prefix:make-id
patchable-expr ...) produces a mutable value whose content positions are ini-
tialized to undefined. Each content position is patched (i.e., updated) after the cor-
responding patchable-expr expression is later evaluated.

Next, the plain-exprs are evaluated as for letrec, where a reference to an id raises
exn:fail:contract:variable if it is evaluated before the right-hand side of the id bind-
ing.

Finally, the patchable-exprs are evaluated and their values replace undefineds in the
results of shell-exprs. At this point, all ids are bound, so patchable-exprs can create
data cycles (but only with cycles that can be created via mutation).

Examples:

> (shared ([a (cons 1 a)])
a)

#0="'(1 . #O#)

> (shared ([a (cons 1 b)]

[b (cons 2 a)l)

a)

#0="'(1 2 . #0#)

> (shared ([a (cons 1 b)]

[b 71)
a)
' .7
> (shared ([a a]) ; no indirection...
a)
a: undefined;

cannot use before initialization
> (shared ([a (cons 1 b)] ; b is early...
[b al)
a)
a: undefined;
cannot use before initialization
> (shared ([a (mcons 1 b)] ; b is patchable...
[b al)
a)
#0=(mcons 1 #O#)
> (shared ([a (vector b b b)]
[b (box 1)1)
(set-box! b 5)
a)
"#(#&5 #&5 #45)
> (shared ([a (box Db)]

128

[b (vector (unbox a) ; unbox after a is patched
(unbox c))] ; unbox before c is patched
[c (box b))
b)
#0="#(#0# #<undefined>)

3.12 Conditionals: if, cond, and, and or
§4.7 “Conditionals”
in The Racket
(if test-expr then-expr else-expr) Guide introduces
conditionals.

Evaluates test-expr. If it produces any value other than #£, then then-expr is evaluated,
and its results are the result for the if form. Otherwise, else-expr is evaluated, and its
results are the result for the if form. The then-expr and else-expr are in tail position
with respect to the if form.

Examples:

> (if (positive? -5) (error "doesn't get here") 2)

2

> (if (positive? 5) 1 (error "doesn't get here"))
1

> (if 'we-have-no-bananas "yes" "no")

llyesll

(cond cond-clause ...)

cond-clause = [test-expr then-body ...+]
| [else then-body ...+]
| [test-expr => proc-expr]
| [test-expr]
§4.7.3 “Chaining
. Tests: cond” in The
A cond-clause that starts with else must be the last cond-clause. Racket Guide

introduces cond.
If no cond-clauses are present, the result is #<void>.

If only a [else then-body ...+] is present, then the then-bodys are evaluated. The
results from all but the last then-body are ignored. The results of the last then-body,
which is in tail position with respect to the cond form, are the results for the whole cond
form.

Otherwise, the first test-expr is evaluated. If it produces #£, then the result is the same as
a cond form with the remaining cond-clauses, in tail position with respect to the original
cond form. Otherwise, evaluation depends on the form of the cond-clause:

129

[test-expr then-body ...+]

The then-bodys are evaluated in order, and the results from all but the last
then-body are ignored. The results of the last then-body, which is in tail
position with respect to the cond form, provides the result for the whole cond
form.

[test-expr => proc-expr]

The proc-expr is evaluated, and it must produce a procedure that accepts one
argument, otherwise the exn:fail:contract exception is raised. The proce-
dure is applied to the result of test-expr in tail position with respect to the
cond expression.

[test-expr]

The result of the test-expr is returned as the result of the cond form. The
test-expr is not in tail position.

Examples:

> (cond)
> (cond
[else 5])
5
> (cond
[(positive? -5) (error "doesn't get here")]
[(zero? -5) (error "doesn't get here, either")]
[(positive? 5) 'herel])
'here
> (cond
[(member 2 '(1 2 3)) => (lambda (1) (map - 1))1)
'(-2 -3)
> (cond
[(member 2 '(1 2 3))1)
'(2 3)

else

Recognized specially within forms like cond. An else form as an expression is a syntax
eITor.

130

Recognized specially within forms like cond. A => form as an expression is a syntax error.

(and expr ...)
§4.7.2 “Combining
Tests: and and or”
If no exprs are provided, then result is #t. in The Racket Guide
introduces and.

If a single expr is provided, then it is in tail position, so the results of the and expression
are the results of the expr.

Otherwise, the first expr is evaluated. If it produces #f, the result of the and expression is
#£. Otherwise, the result is the same as an and expression with the remaining exprs in tail
position with respect to the original and form.

Examples:

> (and)
#t
(and 1)

(and (values 1 2))

(and #f (error "doesn't get here"))
#E

> (and #t 5)

5

(or expr ...)
§4.7.2 “Combining
Tests: and and or”
If no exprs are provided, then result is #£. in The Racket Guide
introduces or.

If a single expr is provided, then it is in tail position, so the results of the or expression are
the results of the expr.

Otherwise, the first expr is evaluated. If it produces a value other than #f, that result is the
result of the or expression. Otherwise, the result is the same as an or expression with the
remaining exprs in tail position with respect to the original or form.

Examples:

> (or)

#£f

> (or 1)

1

> (or (values 1 2))

131

(or 5 (error "doesn't get here"))

(or #f 5)

g Vv OV N -

3.13 Dispatch: case

(case val-expr case-clause ...)

case-clause = [(datum ...) then-body ...+]
| [else then-body ...+]

Evaluates val-expr and uses the result to select a case-clause. The selected clause is the
first one with a datum whose quoted form is equal? to the result of val-expr. If no such
datum is present, the else case-clause is selected; if no else case-clause is present,
either, then the result of the case form is #<void>.

For the selected case-clause, the results of the last then-body, which is in tail position
with respect to the case form, are the results for the whole case form.

A case-clause that starts with else must be the last case-clause.
The case form can dispatch to a matching case-clause in O(log N) time for N datums.
Examples:

> (case (+ 7 5)
[(1 2 3) 'smalll
[(10 11 12) 'bigl)
'big
> (case (- 7 5)
[(1 2 3) 'smalll
[(10 11 12) 'bigl)
'small
> (case (string-append "do" "g")
[("cat" "dog" "mouse") "animal"]
[else "mineral or vegetable"])
"animal"
> (case (list 'y 'x)
[((a b) (x y)) 'forwards]
[((b a) (y x)) 'backwards])
'backwards

132

The case form of
racket differs
from that of R6RS:
Scheme or R5RS:
Legacy Scheme by
being based

equal? instead of
eqv? (in addition to
allowing internal
definitions).

> (case 'x
[(X) ”eX”]
[('x) "quoted ex"])

"ex
> (case (list 'quote 'x)
[(x) "ex"]
[('x) "quoted ex"])
"quoted ex"

(define (classify c)

(case (char-general-category c)
[(11 1u 1t 1n 1lo) "letter"]
[(nd nl no) "number"]

[else "other"]))

> (classify #\A)
"letter"
> (classify #\1)
"number"
> (classify #\!)
"other"

3.14 Definitions: define, define-syntax, ...
§4.5 “Definitions:

define” in The

(define id expr) Racket Guide
(define (head args) body ...+) introduces

definitions.
head = id

| (head args)

args = arg ...
| arg rest-id
arg arg-id

| [arg-id default-expr]
| keyword arg-id
| keyword [arg-id default-expr]

The first form binds id to the result of expr, and the second form binds id to a procedure.
In the second case, the generated procedure is (CVT (head args) body ...+), using
the CVT meta-function defined as follows:

(lambda kw-formals . datum)
(lambda kw-formals expr)
if (CVT head . datum) = expr

(CVT (id . kw-formals) . datum)
(CVT (head . kw-formals) . datum)

133

In an internal-definition context, a def ine form introduces a local binding; see[§1.2.3.8 “In]
[ternal Definitions” At the top level, the top-level binding for id is created after evaluating
expr, if it does not exist already, and the top-level mapping of id (in the namespace linked
with the compiled definition) is set to the binding at the same time.

In a context that allows liberal expansion of define, id is bound as syntax if expr is an
immediate 1ambda form with keyword arguments or args include keyword arguments.

Examples:

(define x 10)

> X
10

(define (f x)
(+ x 1))

> (f 10)
11

(define ((f x) [y 201)
+ xy)

> ((f 10) 30)
40

> ((f 10))
30

(define-values (id ...) expr)

Evaluates the expr, and binds the results to the ids, in order, if the number of re-
sults matches the number of ids; if expr produces a different number of results, the
exn:fail:contract exception is raised.

In an internal-definition context (see |[§1.2.3.8 “Internal Definitions™), a define-values
form introduces local bindings. At the top level, the top-level binding for each id is created
after evaluating expr, if it does not exist already, and the top-level mapping of each id (in
the namespace linked with the compiled definition) is set to the binding at the same time.

Examples:

> (define-values () (values))

> (define-values (x y z) (values 1 2 3))
> z

3

134

If a define-values form for a function definition in a module body has a 'compiler-
hint:cross-module-inline syntax property with a true value, then the Racket treats the
property as a performance hint. See §19.5 “Function-Call Optimizations” in The Racket
Guide for more information, and see also begin-encourage-inline.

(define-syntax id expr)
(define-syntax (head args) body ...+)

The first form creates a transformer binding (see [§1.2.3.5 “Transformer Bindings™) of id
with the value of expr, which is an expression at phase level 1 relative to the surrounding
context. (See|§1.2.1 “Identifiers, Binding, and Scopes”| for information on phase levels.)
Evaluation of expr side is parameterized to set current-namespace as in let-syntax.

The second form is a shorthand the same as for define; it expands to a definition of the first
form where the expr is a lambda form.

In an internal-definition context (see [§1.2.3.8 “Internal Definitions’)), a define-syntax
form introduces a local binding.

Examples:

> (define-syntax foo
(syntax-rules ()
(Ca...)
(printf "~a\n" (list a ...)))))
> (foo 1 2 3 4)
(123 4)
> (define-syntax (bar syntax-object)
(syntax-case syntax-object ()
((_a...)
#' (printf "~a\n" (list a ...)))))
> (bar 1 2 3 4)
(1234

(define-syntaxes (id ...) expr)

Like define-syntax, but creates a transformer binding for each id. The expr should
produce as many values as ids, and each value is bound to the corresponding id.

When expr produces zero values for a top-level define-syntaxes (i.e., not in a module
or internal-definition position), then the ids are effectively declared without binding; see
[§1.2.3.10 *Macro-Introduced Bindings™|

In an internal-definition context (see|81.2.3.8 “Internal Definitions™), a define-syntaxes
form introduces local bindings.

Examples:

135

> (define-syntaxes (fool foo2 foo03)
(let ([transformerl (lambda (syntax-object)
(syntax-case syntax-object ()
L) #'110)]
[transformer2 (lambda (syntax-object)
(syntax-case syntax-object ()
[#'21))]
[transformer3 (lambda (syntax-object)
(syntax-case syntax-object ()
[CO) #'310)1)
(values transformeril
transformer2
transformer3)))
(fool)

(fo02)

(f003)

W VvV NV e~V

(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)

Like define, except that the binding is at phase level 1 instead of phase level O rela-
tive to its context. The expression for the binding is also at phase level 1. (See [§T.2.1]
["Identifiers, Binding, and Scopes”]| for information on phase levels.) The form is a short-
hand for (begin-for-syntax (define id expr)) or (begin-for-syntax (define
(head args) body ...+)).

Within a module, bindings introduced by define-for-syntax must appear before their
uses or in the same define-for-syntax form (i.e., the define-for-syntax form must
be expanded before the use is expanded). In particular, mutually recursive functions bound
by define-for-syntax must be defined by the same define-for-syntax form.

Examples:

> (define-for-syntax helper 2)

> (define-syntax (make-two syntax-object)
(printf "helper is ~a\n" helper)
#'2)

> (make-two)

helper is 2

2

; ‘helper' is not bound in the runtime phase

> helper

helper: undefined;

136

cannot reference an identifier before its definition
in module: top-level
> (define-for-syntax (filter-ids ids)
(filter identifier? ids))
> (define-syntax (show-variables syntax-object)
(syntax-case syntax-object ()
[(_ expr ...)
(with-syntax ([(only-ids ...)
(filter-ids (syntax->list #'(expr ...)))]1)
#' (list only-ids ...))1))
> (let ([a 1] [b 2] [c 3D
(show-variables a 5 2 b ¢))
'(123)

(define-values-for-syntax (id ...) expr)

Like define-for-syntax, but expr must produce as many values as supplied ids, and all
of the ids are bound (at phase level 1).

Examples:

> (define-values-for-syntax (fool foo2) (values 1 2))
> (define-syntax (bar syntax-object)
(printf "fool is ~a foo2 is ~a\n" fool foo02)
#'2)
> (bar)
fool is 1 foo2 is 2
2

3.14.1 require Macros

(require racket/require-syntax) package: [base

The bindings documented in this section are provided by the racket/require-syntax
library, not racket/base or racket.

(define-require-syntax id proc-expr)
(define-require-syntax (id args ...) body ...+)

The first form is like define-syntax, but for a require sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a require sub-
form.

This form expands to define-syntax with a use of make-require-transformer (see
[§12.4.1 “require Transformers™|for more information).

137

https://pkgs.racket-lang.org/package/base

The second form is a shorthand the same as for def ine-syntax; it expands to a definition
of the first form where the proc-expr is a lambda form.

(syntax-local-require-introduce stx) — syntax?
stx : syntax?
For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

3.14.2 provide Macros

(require racket/provide-syntax) package: [base

The bindings documented in this section are provided by the racket/provide-syntax
library, not racket/base or racket.

(define-provide-syntax id proc-expr)
(define-provide-syntax (id args ...) body ...+)

The first form is like define-syntax, but for a provide sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a provide sub-
form.

This form expands to define-syntax with a use of make-provide-transformer (see
[§12.4.2 “provide Transformers”|for more information).

The second form is a shorthand the same as for def ine-syntax; it expands to a definition
of the first form where the expr is a lambda form.

(syntax-local-provide-introduce stx) — syntax?
stx : syntax?

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.
3.15 Sequencing: begin, begin0, and begin-for-syntax

(begin form ...)
(begin expr ...+)

138

§4.8 “Sequencing”
in The Racket
Guide introduces
begin and beginO.

https://pkgs.racket-lang.org/package/base

The first form applies when begin appears at the top level, at module level, or in an internal-
definition position (before any expression in the internal-definition sequence). In that case,
the begin form is equivalent to splicing the forms into the enclosing context.

The second form applies for begin in an expression position. In that case, the exprs are
evaluated in order, and the results are ignored for all but the last expr. The last expr is in
tail position with respect to the begin form.

Examples:

> (begin
(define x 10)
x)
10
> (+ 1 (begin
(printf "hi\n")
2))
hi
3
> (let-values ([(x y) (begin
(values 1 2 3)
(values 1 2))1)
(1ist x y))
(1 2)

(beginO expr ...+)

Evaluates the first expr, then evaluates the other exprss in order, ignoring their results. The
results of the first expr are the results of the begin0 form; the first expr is in tail position
only if no other exprs are present.

Example:

> (beginO
(values 1 2)
(printf "hi\n"))
hi
1
2

(begin-for-syntax form ...)

Allowed only in a top-level context or module context, shifts the phase level of each form
by one:

139

* expressions reference bindings at a phase level one greater than in the context of the
begin-for-syntax form;

e define, define-values, define-syntax, and define-syntaxes forms bind at a
phase level one greater than in the context of the begin-for-syntax form;

* in require and provide forms, the default phase level is greater, which is roughly
like wrapping the content of the require form with for-syntax;

e expression form expr: converted to (define-values-for-syntax () (begin
expr (values))), which effectively evaluates the expression at expansion time and,
in the case of a module context, preserves the expression for future visits of the mod-
ule.

See also module for information about expansion order and partial expansion for begin-
for-syntax within a module context. Evaluation of an expr within begin-for-syntax
is parameterized to set current-namespace as in let-syntax.

3.16 Guarded Evaluation: when and unless
§4.8.3 “Effects If...:

when and unless”
in The Racket
Guide introduces
when and unless.

(when test-expr body ...+)

Evaluates test-expr. If the result is #£, then the result of the when expression is #<void>.
Otherwise, the bodys are evaluated, and the last body is in tail position with respect to the
when form.

Examples:

> (when (positive? -5)
(display "hi"))

> (when (positive? 5)
(display "hi'")
(display " there"))

hi there

(unless test-expr body ...+)

Equivalent to (when (not test-expr) body ...+).

Examples:

> (unless (positive? 5)
(display "hi"))

> (unless (positive? -5)
(display "hi")
(display " there"))

hi there

140

3.17 Assignment: set! and set!-values

(set! id expr)

If id has a transformer binding to an assignment transformer, as produced by make-set!-
transformer or as an instance of a structure type with the prop:set!-transformer
property, then this form is expanded by calling the assignment transformer with the full
expressions. If id has a transformer binding to a rename transformer as produced by
make-rename-transformer or as an instance of a structure type with the prop:rename-
transformer property, then this form is expanded by replacing id with the target iden-
tifier (e.g., the one provided to make-rename-transformer). If a transformer binding
has both prop:set!-transformer and prop:rename-transformer properties, the lat-
ter takes precedence.

Otherwise, evaluates expr and installs the result into the location for id, which must be
bound as a local variable or defined as a top-level variable or module-level variable. If id
refers to an imported binding, a syntax error is reported. If id refers to a top-level variable
that has not been defined, the exn:fail:contract exception is raised.

See also compile-allow-set!-undefined.
Examples:

> (define x 12)
> (set! x (addl x))
> X
13
> (let ([x 51)
(set! x (addl x))
x)
6
> (set! i-am-not-defined 10)
set!: assignment disallowed;
cannot set variable before its definition
variable: i-am-not-defined
in module: top-level

(set!-values (id ...) expr)

Assuming that all ids refer to variables, this form evaluates expr, which must produce as
many values as supplied ids. The location of each id is filled with the corresponding value
from expr in the same way as for set!.

Example:

141

§4.9 “Assignment:
set!” in The
Racket Guide
introduces set!.

> (let ([a 1]
[b 2])
(set!'-values (a b) (values b a))
(list a b))
(2 1)

More generally, the set!-values form is expanded to

(let-values ([(tmp-id ...) exprl)
(set! id tmp-id) ...)

which triggers further expansion if any id has a transformer binding to an assignment trans-
former.

3.18 Iterations and Comprehensions: for, for/list, ...
§11 “Iterations and

Comprehensions”

The for iteration forms are based on SRFI-42 [SRFI-42]. in The Racket
Guide introduces

iterations and
comprehensions.

3.18.1 Iteration and Comprehension Forms
(for (for-clause ...) body-or-break ... body)

for-clause = [id seg-expr]

| [(id ...) seg-expr]
| #:when guard-expr

| #:unless guard-expr
|

break-clause

break-clause = #:break guard-expr
| #:final guard-expr

body-or-break = body
| break-clause

seq-expr : sequence?

Iteratively evaluates bodys. The for-clauses introduce bindings whose scope includes
body and that determine the number of times that body is evaluated. A break-clause
either among the for-clauses or bodys stops further iteration.

In the simple case, each for-clause has one of its first two forms, where [id seq-expr]
is a shorthand for [(id) seg-expr]. In this simple case, the seq-exprs are evaluated
left-to-right, and each must produce a sequence value (see84.14.1 “Sequences’)).

142

The for form iterates by drawing an element from each sequence; if any sequence is empty,
then the iteration stops, and #<void> is the result of the for expression. Otherwise a loca-
tion is created for each id to hold the values of each element; the sequence produced by a
seq-expr must return as many values for each iteration as corresponding ids.

The ids are then bound in the body, which is evaluated, and whose results are ignored.
Iteration continues with the next element in each sequence and with fresh locations for each
id.

A for form with zero for-clauses is equivalent to a single for-clause that binds an
unreferenced id to a sequence containing a single element. All of the ids must be distinct
according to bound-identifier="7.

If any for-clause has the form #:when guard-expr, then only the preceding clauses
(containing no #:when or #:unless) determine iteration as above, and the body is effec-
tively wrapped as

(when guard-expr
(for (for-clause ...) body ...+))

using the remaining for-clauses. A for-clause of the form #:unless guard-expr
corresponds to the same transformation with unless in place of when.

A #:break guard-expr clause is similar to a #:unless guard-expr clause, but when
#:break avoids evaluation of the bodys, it also effectively ends all sequences within the for
form. A #:final guard-expr clause is similar to #:break guard-expr, but instead of
immediately ending sequences and skipping the bodys, it allows at most one more element
from each later sequence and at most one more evaluation of the following bodys. Among
the bodys, besides stopping the iteration and preventing later body evaluations, a #:break
guard-expr or #:final guard-expr clause starts a new internal-definition context.

In the case of list and stream sequences, the for form itself does not keep each element
reachable. If a list or stream produced by a seq-expr is otherwise unreachable, and if
the for body can no longer reference an id for a list element, then the element is subject
to garbage collection. The make-do-sequence sequence constructor supports additional
sequences that behave like lists and streams in this way.

Examples:

> (for ([i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #£)])
(display (list i j k)))
(1 a #:)(1 a #£)(3 ¢ #t) (3 ¢ #f)
> (for ([(i j) #hash(("a" . 1) ("b" . 20))1)
(display (list i j)))

143

(b 20)(a 1)
> (for ([i '(1 2 3)]
[j "abc"]
#:break (not (odd? i))
[k #(#t #£)]1)
(display (list i j k)))
(1 a #t) (1 a #f)
> (for ([i '(1 2 3)]
[j "abc"]
#:final (not (odd? i))
[k #(#t #£)1)
(display (list i j k)))
(1 a #t)(1 a #f)(2 b #t)
> (for ([1 '(1 2 3)]
[j "abc"]
[k #(#t #£)]1)
#:break (not (or (o0dd? i) k))
(display (list i j k)))
(1 a #t)
> (for ()
(display "here"))
here
> (for ([1 'O

(error "doesn't get here"))

Changed in version 6.7.0.4 of package base: Added support for the optional second result.

(for/list (for-clause ...) body-or-break ... body)

Iterates like for, but that the last expression in the bodys must produce a single value, and
the result of the for/1list expression is a list of the results in order. When evaluation of a
body is skipped due to a #:when or #:unless clause, the result list includes no correspond-
ing element.

Examples:

> (for/list ([i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #£)])
(list i j k))
(1 #\a #t) (1 #\a #£f) (3 #\c #t) (3 #\c #f))
> (for/list ([i '(1 2 3)]
[j "abc"]
#:break (not (odd? i))
[k #(#t #£)])

144

(l1ist i j k)
"((1 #\a #t) (1 #\a #£))
> (for/list () 'any)
' (any)
> (for/list ([i 'O1)
(error "doesn't get here"))

o)

(for/vector maybe-length (for-clause ...) body-or-break ... body)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

Iterates like for/1ist, but results are accumulated into a vector instead of a list.

If the optional #:1length clause is specified, the result of length-expr determines the
length of the result vector. In that case, the iteration can be performed more efficiently, and
it terminates when the vector is full or the requested number of iterations have been per-
formed, whichever comes first. If Iength-expr specifies a length longer than the number
of iterations, then the remaining slots of the vector are initialized to the value of fill-expr,
which defaults to O (i.e., the default argument of make-vector).

Examples:

> (for/vector ([i '(1 2 3)]) (number->string i))

I#(lllll |12|| l|3ll)

> (for/vector #:length 2 ([i '(1 2 3)]) (number->string i))
H#OLT 2"

> (for/vector #:length 4 ([i '(1 2 3)]) (number->string i))
(1L 2t "3 0)

> (for/vector #:length 4 #:£i11 "?" ([i '(1 2 3)]) (number-
>string i))

(UL r2m o mgn nen)

The for/vector form may allocate a vector and mutate it after each iteration of body,
which means that capturing a continuation during body and applying it multiple times may
mutate a shared vector.

(for/hash (for-clause ...) body-or-break ... body)
(for/hasheq (for-clause ...) body-or-break ... body)
(for/hasheqv (for-clause ...) body-or-break ... body)

Like for/list, but the result is an immutable hash table; for/hash creates a table using
equal? to distinguish keys, for/hasheq produces a table using eq?, and for/hasheqv

145

produces a table using eqv?. The last expression in the bodys must return two values: a key
and a value to extend the hash table accumulated by the iteration.

Example:

> (for/hash ([i '(1 2 3)1)
(values i (number->string i)))
"#hash((1 . "1") (2 . "2") (3 . "3"))

(for/and (for-clause ...) body-or-break ... body)

Iterates like for, but when last expression of body produces #f, then iteration terminates,
and the result of the for/and expression is #f. If the body is never evaluated, then the
result of the for/and expression is #t. Otherwise, the result is the (single) result from the
last evaluation of body.

Examples:

> (for/and ([i '(1 2 3 "x")1)

(i.<.3)

#£f

> (for/and ([1i '(1 2 3 4)])
i)

4

> (for/and ([i '(1 2 3 4)])

#:break (= i 3)

i)
2
> (for/and ([i 'O1)
(error "doesn't get here"))
#t
(for/or (for-clause ...) body-or-break ... body)

Iterates like for, but when last expression of body produces a value other than #f, then
iteration terminates, and the result of the for/or expression is the same (single) value. If
the body is never evaluated, then the result of the for/or expression is #f. Otherwise, the
result is #f.

Examples:

> (for/or ([i '(1 2 3 "x")])

(i .<.3)

#t

> (for/or ([1 '(1 2 3 4)])
i)

146

1
> (for/or ([1 'O1)

(error "doesn't get here"))
#f

(for/sum (for-clause ...) body-or-break ... body)

Iterates like for, but each result of the last body is accumulated into a result with +.

Example:

> (for/sum ([i '(1 2 3 4)]) i)
10

(for/product (for-clause ...) body-or-break ... body)

Iterates like for, but each result of the last body is accumulated into a result with *.

Example:

> (for/product ([i '(1 2 3 4)]1) i)

24
(for/lists (id ... maybe-result)
(for-clause ...)
body-or-break ... body)

maybe-result =
| #:result result-expr

Similar to for/1list, but the last body expression should produce as many values as given
ids. The ids are bound to the lists accumulated so far in the for-clauses and bodys.

If a result-expr is provided, it is used as with for/fold when iteration terminates; oth-
erwise, the result is as many lists as supplied ids

Examples:

> (for/lists (11 12 13)
(i '(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #£)]1)
(values i j k))

147

'(1133)
"(#\a #\a #\c #\c)
"(#t #f #t #f)
> (for/lists (acc)
([x '(tvp tofu seitan tvp tofu)]

#:unless (member x acc))
x)
'(tvp tofu seitan)
> (for/lists (firsts seconds #:result (list firsts seconds))

([pr '((1 . 2) (3.4) (5.6
(values (car pr) (cdr pr)))
'((1 35) (246))

Changed in version 7.1.0.2 of package base: Added the #:result form.

(for/first (for-clause ...) body-or-break ... body)

Iterates like for, but after body is evaluated the first time, then the iteration terminates, and
the for/first result is the (single) result of body. If the body is never evaluated, then the
result of the for/first expression is #£.

Examples:

> (for/first ([1 '(1 2 3 "x")]
#:when (even? i))
(number->string i))
l|2|l
> (for/first ([i 'O1)
(error "doesn't get here"))
#t

(for/last (for-clause ...) body-or-break ... body)

Iterates like for, but the for/last result is the (single) result of the last evaluation of body.
If the body is never evaluated, then the result of the for/last expression is #f.

Examples:

> (for/last ([i '(1 2 3 4 5)]
#:when (even? 1i))
(number->string i))
l|4|l
> (for/last ([i 'O1)
(error "doesn't get here"))
#f

148

(for/fold (l[accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

maybe-result =
| #:result result-expr

Iterates like for. Before iteration starts, the init-exprs are evaluated to produce initial
accumulator values. At the start of each iteration, a location is generated for each accum-
id, and the corresponding current accumulator value is placed into the location. The last
expression in body must produce as many values as accum-ids, and those values become
the current accumulator values. When iteration terminates, if a result-expr is provided
then the result of the for/fold is the result of evaluating result-expr (with accum-ids
in scope and bound to their final values), otherwise the results of the for/fold expression
are the accumulator values.

An accum-id and a binding from a for-clause can be the same identifier. In that case,
the accum-id binding shadows the one in a for-clause within the body-or-break and
body forms (even though, syntactically, a for-clause is closer to to the body).

Examples:

> (for/fold ([sum 0]
[rev-roots null])
(1 '@ 234D
(values (+ sum i) (coms (sqrt i) rev-roots)))
10
'(2 1.7320508075688772 1.4142135623730951 1)
> (for/fold ([acc '()]
[seen (hash)]
#:result (reverse acc))
([x (in-list '(0 1 1 2 3 4 4 4))1)
(cond
[(hash-ref seen x #f)
(values acc seen)]
[else (values (comns x acc)
(hash-set seen x #t))1))
'(01 2 3 4)

Changed in version 6.11.0.1 of package base: Added the #:result form.

(for/foldr ([accum-id init-expr] ... accum-option ...)
(for-clause ...)
body-or-break ... body)

149

accum-option = #:result result-expr
| #:delay
| #:delay-as delayed-id

#:delay-with delayer-id

Like for/fold, but analogous to foldr rather than foldl: the given sequences are still
iterated in the same order, but the loop body is evaluated in reverse order. Evaluation of a
for/foldr expression uses space proportional to the number of iterations it performs, and
all elements produced by the given sequences are retained until backwards evaluation of the
loop body begins (assuming the element is, in fact, referenced in the body).

Examples:

> (define (in-printing seq)
(sequence-map (lambda (v) (println v) v) seq))
> (for/foldr ([acc 'O)1)
([v (in-printing (in-range 1 4))]1)
(println v)
(cons v acc))

- PN W WN -

(12 3)

Furthermore, unlike for/fold, the accum-ids are not bound within guard-exprs or
body-or-break forms that appear before a break-clause.

While the aforementioned limitations make for/foldr less generally useful than
for/fold, for/foldr provides the additional capability to iterate lazily via the #:delay,
#:delay-as, and #:delay-with options, which can mitigate many of for/foldr’s dis-
advantages. If at least one such option is specified, the loop body is given explicit control
over when iteration continues: by default, each accum-id is bound to a promise that, when
forced, produces the accum-id’s current value.

In this mode, iteration does not continue until one such promise is forced, which triggers
any additional iteration necessary to produce a value. If the loop body is lazy in its accum-
ids—that is, it returns a value without forcing any of them—then the loop (or any of its
iterations) will produce a value before iteration has completely finished. If a reference to
at least one such promise is retained, then forcing it will resume iteration from the point at
which it was suspended, even if control has left the dynamic extent of the loop body.

Examples:

> (for/foldr ([acc '()] #:delay)

150

(v (in-range 1 4)1)
(printf "--> ~v\n" v)
(begin0
(cons v (force acc))
(printf "<-- ~v\n" v)))

|
|
\%

N W wN =

<--1
(12 3)
> (define resume
(for/foldr ([acc '()] #:delay)
([v (in-range 1 5)1)

(printf "--> ~v\n" v)
(beginO
(cond
[(= v 1) (force acc)]
[(= v 2) acc]
[else (cons v (force acc))l])
(printf "<-- ~v\n" v))))
> 1
> 2
<-- 2
-1
> (force resume)
-_——> 3
--> 4
<-- 4
<-- 3
'(3 4)

This extra control over iteration order allows for/foldr to both consume and construct
infinite sequences, so long as it is at least sometimes lazy in its accumulators.

Examples:

> (define squares (for/foldr ([s empty-stream] #:delay)
([n (in-naturals)])
(stream-cons (* n n) (force s))))
> (stream->list (stream-take squares 10))
'(0149 16 25 36 49 64 81)

The suspension introduced by the #: delay option does not ordinarily affect the loop’s even-
tual return value, but if #:delay and #:result are combined, the accum-ids will be de-

151

See also
for/stream for a
more convenient
(albeit less flexible)
way to lazily
transform infinite
sequences.
(Internally,
for/streamis
defined in terms of
for/foldr.)

layed in the scope of the result-expr in the same way they are delayed within the loop
body. This can be used to introduce an additional layer of suspension around the evaluation
of the entire loop, if desired.

Examples:

> (define evaluated-yet? #f)

> (for/foldr ([acc (set! evaluated-yet? #t)] #:delay) ()
(force acc))

> evaluated-yet?

#t

> (define evaluated-yet? #f)
> (define start
(for/foldr ([acc (set! evaluated-yet? #t)] #:delay #:result acc) ()
(force acc)))
> evaluated-yet?
#f
> (force start)
> evaluated-yet?
#t

If the #:delay-as option is provided, then delayed-id is bound to an additional promise
that returns the values of all accum-ids at once. When multiple accum-ids are provided,
forcing this promise can be slightly more efficient than forcing the promises bound to the
accum-1ids individually.

If the #:delay-with option is provided, the given delayer-id is used to suspend nested it-
erations (instead of the default, delay). A form of the shape (delayer-id recur-expr)
is constructed and placed in expression position, where recur-expr is an expression that,
when evaluated, will perform the next iteration and return its result (or results). Sensible
choices for delayer-id include lazy, delay/sync, delay/thread, or any of the other
promise constructors from racket/promise, as well as thunk from racket/function.
However, beware that choices such as thunk or delay/name may evaluate their subexpres-
sion multiple times, which can lead to nonsensical results for sequences that have state, as
the state will be shared between all evaluations of the recur-expr.

If multiple accum-ids are given, the #:delay-with option is provided, and delayer-
id is not bound to one of delay, lazy, delay/strict, delay/sync, delay/thread, or
delay/idle, the accum-ids will not be bound at all, even within the loop body. Instead,
the #:delay-as option must be specified to access the accumulator values via delayed-id.

Added in version 7.3.0.3 of package base.

(for* (for-clause ...) body-or-break ... body)

152

Like for, but with an implicit #:when #t between each pair of for-clauses, so that all
sequence iterations are nested.

Example:

> (for* ([1 '(1 2)]
[J' ||ab||])
(display (list i j)))
(1 a)(1 b)(2 a)(2 b)

(for*/list (for-clause ...) body-or-break ... body)
(for*/lists (id ... maybe-result) (for-clause ...)
body-or-break ... body)
(for*/vector maybe-length (for-clause ...) body-or-break ... body)
(for*/hash (for-clause ...) body-or-break ... body)
(forx/hasheq (for-clause ...) body-or-break ... body)
(for*/hasheqv (for-clause ...) body-or-break ... body)
(for*/and (for-clause ...) body-or-break ... body)
(for*/or (for-clause ...) body-or-break ... body)
(forx/sum (for-clause ...) body-or-break ... body)
(for*x/product (for-clause ...) body-or-break ... body)
(for*/first (for-clause ...) body-or-break ... body)
(for*/last (for-clause ...) body-or-break ... body)
(for*/fold ([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)
(for*/foldr ([accum-id init-expr] ... accum-option ...)
(for-clause ...)
body-or-break ... body)

Like for/1ist, etc., but with the implicit nesting of forx*.

Example:

> (forx/list ([i '(1 2)]
[j "ab"])
(list i j))
(1 #\a) (1 #\b) (2 #\a) (2 #\b))

Changed in version 7.3.0.3 of package base: Added the for*/foldr form.

3.18.2 Deriving New Iteration Forms
(for/fold/derived orig-datum

([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

153

Like for/fold, but the extra orig-datum is used as the source for all syntax errors.
Examples:

> (define-syntax (for/digits stx)
(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#' (let-values
([(n X)
(for/fold/derived
original ([n 0] [k 11)
clauses
body ...
(values (+ n (% tail-expr k)) (x k 10)))]1)
n))1))
; If we misuse for/digits, we can get good error reporting
; because the use of orig-datum allows for source correlation:
> (for/digits
[a (in-list '(1 2 3))]
[b (in-list '(4 5 6))]
(+ a b))
eval:3:0: for/digits: bad sequence binding clause
at: a
in: (for/digits (a (in-list (quote (1 2 3)))) (b (in-list
(quote (456)))) (+ ab))
> (for/digits
([a (in-list '(1 2 3))]
[b (in-list '(2 4 6))1)
(+ a b))
963
; Another example: compute the max during iteration:
> (define-syntax (for/max stx)
(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#' (for/fold/derived original
([current-max -inf.0])
clauses
body ...
(define maybe-new-max tail-expr)
(if (> maybe-new-max current-max)
maybe-new-max
current-max)))]))
> (for/max ([n '(3.14159 2.71828 1.61803)]
[s '(-1 1 DD

154

(x n s))
2.71828

Changed in version 6.11.0.1 of package base: Added the #:result form.

(forx/fold/derived orig-datum
([accum-id init-expr] ... maybe-result) (for-clause ...)
body-or-break ... body)

Like for*/fold, but the extra orig-datum is used as the source for all syntax errors.

Examples:

> (define-syntax (forx/digits stx)
(syntax-case stx ()
[(_ clauses body ... tail-expr)
(with-syntax ([original stx])
#' (let-values

([(n ¥)
(forx/fold/derived original ([n 0] [k 11)
clauses
body
(values (+ n (* tail-expr k)) (* k 10)))1)
n))1))

> (for*/digits
[ds (in-list '((8 3) (1 1)))]
[d (in-list ds)]
d)
eval:8:0: for*/digits: bad sequence binding clause
at: ds
in: (for*/digits (ds (in-list (quote (8 3) (1 1))))) (d
(in-list ds)) d)
> (forx/digits
([ds (in-1list '((8 3) (1 1)))]
[d (in-list ds)1)
d)
1138

Changed in version 6.11.0.1 of package base: Added the #:result form.

(for/foldr/derived orig-datum

([accum-id init-expr] ... accum-option ...) (for-clause ...)
body-or-break ... body)

(forx/foldr/derived orig-datum
([accum-id init-expr] ... accum-option ...) (for-clause ...)
body-or-break ... body)

155

Like for/foldr and for*/foldr, but the extra orig-datum is used as the source for all
syntax errors as in for/fold/derived and for*/fold/derived.

Added in version 7.3.0.3 of package base.

(define-sequence-syntax id
expr-transform-expr
clause-transform-expr)

(or/c (-> identifier?)

expr-transform-expr :
P P (syntax? . -> . syntax?))

clause-transform-expr : (syntax? . -> . syntax?)

Defines id as syntax. An (id . rest) form is treated specially when used to generate a
sequence in a for-clause of for (or one of its variants). In that case, the procedure result
of clause-transform-expr is called to transform the clause.

When id is used in any other expression position, the result of expr-transform-expr is
used. If it is a procedure of zero arguments, then the result must be an identifier other-id,
and any use of id is converted to a use of other-id. Otherwise,expr-transform-expr
must produce a procedure (of one argument) that is used as a macro transformer.

When the clause-transform-expr transformer is used, it is given a for-clause as an
argument, where the clause’s form is normalized so that the left-hand side is a parenthesized
sequence of identifiers. The right-hand side is of the form (id . rest). The result can
be either #£, to indicate that the forms should not be treated specially (perhaps because the
number of bound identifiers is inconsistent with the (id . rest) form), or a new for-
clause to replace the given one. The new clause might use :do-in. To protect identifiers
in the result of clause-transform-expr, use for-clause-syntax-protect instead of
syntax-protect.

Examples:

> (define (check-nat n)
(unless (exact-nonnegative-integer? n)
(raise-argument-error 'in-digits "exact-nonnegative-
integer?" n)))
> (define-sequence-syntax in-digits
(lambda () #'in-digits/proc)
(lambda (stx)
(syntax-case stx (O
[[(d) (_ nat)]
#'[(d)
(:do-in
([(n) natl)
(check-nat n)

156

([i nl)

(not (zero? 1))

([(j d) (quotient/remainder i 10)])

#true

#true

(3111

(L #£1)))
> (define (in-digits/proc n)
(for/list ([d (in-digits n)]) d))

> (for/list ([d (in-digits 1138)]) d)
'(8311)
> (map in-digits (list 137 216))
'((731) (612)

(:do-in ([(outer-id ...) outer-expr] ...)
outer-check
([loop-id loop-expr] ...)
pos-guard
([(inner-id ...) inner-expr] ...)
pre-guard
post-guard
(loop-arg ...))

A form that can only be used as a seq-expr ina for-clause of for (or one of its variants).

Within a for, the pieces of the :do-in form are spliced into the iteration essentially as

follows:

(let-values ([(outer-id ...) outer-expr] ...)
outer-check
(let loop ([loop-id loop-expr] ...)
(if pos-guard
(let-values ([(inner-id ...) inner-expr] ...)
(if pre-guard
(let body-bindings
(if post-guard
(loop loop-arg ...)
done-expr))
done-expr))
done-expr)))

where body-bindings and done-expr are from the context of the :do-in use. The iden-
tifiers bound by the for clause are typically part of the ([(inner-id ...) inner-expr]
...) section.

157

The actual loop binding and call has additional loop arguments to support iterations in
parallel with the :do-in form, and the other pieces are similarly accompanied by pieces
from parallel iterations.

For an example of :do-in, see define-sequence-syntax.
(for-clause-syntax-protect stx) — syntax?
stx : syntax?
Provided for-syntax: Like syntax-protect, but allows the for expander to disarm the

result syntax object, and arms the pieces of a clause instead of the entire syntax object.

Use this function to protect the result of a clause-transform-expr that is bound by
define-sequence-syntax.

3.18.3 Do Loops

(do ([id init-expr step-expr-maybel] ...)
(stop?-expr finish-expr ...)
expr ...)

step-expr-maybe =
| step-expr

Iteratively evaluates the exprs for as long as stop?-expr returns #£.

To initialize the loop, the init-exprs are evaluated in order and bound to the corresponding
ids. The ids are bound in all expressions within the form other than the init-exprs.

After the ids have been bound, the stop?-expr is evaluated. If it produces #f, each expr
is evaluated for its side-effect. The ids are then effectively updated with the values of the
step-exprs, where the default step-expr for id is just id; more precisely, iteration con-
tinues with fresh locations for the ids that are initialized with the values of the corresponding
step-exprs.

When stop?-expr produces a true value, then the finish-exprs are evaluated in order,
and the last one is evaluated in tail position to produce the overall value for the do form. If
no finish-expr is provided, the value of the do form is #<void>.

3.19 Continuation Marks: with-continuation-mark

(with-continuation-mark key-expr val-expr result-expr)

158

The key-expr, val-expr, and result-expr expressions are evaluated in order. After
key-expr is evaluated to obtain a key and val-expr is evaluated to obtain a value, the key
is mapped to the value as a continuation mark in the current continuation’s initial continu-
ation frame. If the frame already has a mark for the key, the mark is replaced. Finally, the
result-expr is evaluated; the continuation for evaluating result-expr is the continua-
tion of the with-continuation-mark expression (so the result of the result-expr is the
result of the with-continuation-mark expression, and result-expr is in tail position
for the with-continuation-mark expression).

3.20 Quasiquoting: quasiquote, unquote, and unquote-splicing

(quasiquote datum)

The same as 'datum if datum does not include (unquote expr) or (unquote-splicing
expr). An (unquote expr) form escapes from the quote, however, and the result of
the expr takes the place of the (unquote expr) form in the quasiquote result. An
(unquote-splicing expr) similarly escapes, but the expr must produce a list, and its
elements are spliced as multiple values place of the (unquote-splicing expr), which
must appear as the car of a quoted pair, as an element of a quoted vector, or as an element
of a quoted prefab structure; in the case of a pair, if the cdr of the relevant quoted pair
is empty, then expr need not produce a list, and its result is used directly in place of the
quoted pair (in the same way that append accepts a non-list final argument). In a quoted
hash table, an (unquote expr) or (unquote-splicing expr) expression escapes only
in the second element of an entry pair (i.e., the value), while entry keys are always implicitly
quoted. If unquote or unquote-splicing appears within quasiquote in any other way
than as (unquote expr) or (unquote-splicing expr), a syntax error is reported.

Examples:

> (quasiquote (0 1 2))
'(012)
> (quasiquote (0 (unquote (+ 1 2)) 4))
'(0 3 4)
> (quasiquote (0 (unquote-splicing (list 1 2)) 4))
'(0124)
> (quasiquote (0 (unquote-splicing 1) 4))
unquote-splicing: contract violation

expected: list?

given: 1
> (quasiquote (0 (unquote-splicing 1)))
'O . 1

A quasiquote, unquote, or unquote-splicing form is typically abbreviated with ~, ,,
or ,@, respectively. See also|§1.3.8 “Reading Quotes’}

159

105]
[Continuation |

IMarks”| provides
more information
on continuation
fahilks.
“Quasiquoting:
quasiquote and
¢ in The Racket
Guide introduces
quasiquote.

Examples:

> (01 2)

(01 2)

> (1 ,(+12) 4

(13 4)

> “#s(stuff 1 ,(+ 1 2) 4)
'#s(stuff 1 3 4)

> ‘#hash(("a" . ,(+ 1 2)))
"#hash(("a" . 3))

> “#hash((,(+ 1 2) . "a"))
‘#hash((,(+ 1 2) . "a"))

> " (1 ,e(list 1 2) 4)
(112 4)

> “#(1 ,0(1ist 1 2) 4)
"#(1 12 4)

A quasiquote form within the original datum increments the level of quasiquotation:
within the quasiquote form, each unquote or unquote-splicing is preserved, but a
further nested unquote or unquote-splicing escapes. Multiple nestings of quasiquote
require multiple nestings of unquote or unquote-splicing to escape.

Examples:

> C,(+ 1 ,(+23)) 4

(1 ,(+15) 4

> (1 °77,,0e,,6(list (+ 1 2)) 4)
"1 °°7,,0,3 4)

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are
needed without analyzing unquote and unquote-splicing expressions. For example, in

“(,1 2 3)

a single tail ' (2 3) is used for every evaluation of the quasiquote expression. When
allocating fresh data, the quasiquote form allocates mutable vectors, mutable boxes and
immutable hashes.

Examples:

> (immutable? “#(,0))

#f

> (immutable? “#hash((a . ,0)))
#t

160

unquote

See quasiquote, where unquote is recognized as an escape. An unquote form as an
expression is a syntax error.

unquote-splicing

See quasiquote, where unquote-splicing is recognized as an escape. An unquote-
splicing form as an expression is a syntax error.

3.21 Syntax Quoting: quote-syntax

(quote-syntax datum)
(quote-syntax datum #:local)

Similar to quote, but produces a syntax object that preserves the lexical information and
source-location information attached to datum at expansion time.

When #:1ocal is specified, then all scopes in the syntax object’s lexical information are
preserved. When #:1ocal is omitted, then the scope sets within datum are pruned to omit
the scope for any binding form that appears between the quote-syntax form and the en-
closing top-level context, module body, or phase level crossing, whichever is closer.

Unlike syntax (#'), quote-syntax does not substitute pattern variables bound by with-
syntax, syntax-parse, or syntax-case.

Examples:

> (syntax? (quote-syntax x))

#t

> (quote-syntax (1 2 3))

#<syntax:eval:78:0 (1 2 3)>

> (with-syntax ([a #'5])

(quote-syntax (a b c)))

#<syntax:eval:79:0 (a b c)>

> (free-identifier=7 (let ([x 1]) (quote-syntax x))
(quote-syntax x))

#t

> (free-identifier=7? (let ([x 1]) (quote-syntax x #:local))
(quote-syntax x))

#f

Changed in version 6.3 of package base: Added scope pruning and support for #:local.

161

3.22 Interaction Wrapper: #),top-interaction

(#)top-interaction . form)

Expands to simply form. The #)top-interaction form is similar to #/app and
#/module-begin, in that it provides a hook to control interactive evaluation through load
(more precisely, the default load handler) or read-eval-print-loop.

3.23 Blocks: block

(require racket/block) package: base

The bindings documented in this section are provided by the racket/block library, not
racket/base or racket.

(block defn-or-expr ...)

Supports a mixture of expressions and mutually recursive definitions, as in a module body.
Unlike an internal-definition context, the last defn-or-expr need not be an expression.

The result of the block form is the result of the last defn-or-expr if it is an expression,
#<void> otherwise. If no defn-or-expr is provided (after flattening begin forms), the
result is #<void>.

The final defn-or-expr is executed in tail position, if it is an expression.
Examples:

> (define (f x)
(block
(define y (addl x))
(displayln y)
(define z (* 2 y))

(+ 32))
> (f 12)
13
29

3.24 Internal-Definition Limiting: #/stratified-body

(#)stratified-body defn-or-expr ...)

162

https://pkgs.racket-lang.org/package/base

Like (let () defn-or-expr ...) for an internal-definition context sequence, except
that an expression is not allowed to precede a definition, and all definitions are treated as re-
ferring to all other definitions (i.e., locations for variables are all allocated first, like letrec
and unlike letrec-syntaxes+values).

The #Y%stratified-body form is useful for implementing syntactic forms or languages
that supply a more limited kind of internal-definition context.

3.25 Performance Hints: begin-encourage-inline

(require racket/performance-hint) package: base

The bindings documented in this section are provided by the racket/performance-hint
library, not racket/base or racket.

(begin-encourage-inline form ...)

Attaches a 'compiler-hint:cross-module-inline syntax property to each form,
which is useful when a form is a function definition. See define-values.

The Dbegin-encourage-inline form is also provided by the (submod
racket/performance-hint begin-encourage-inline) module, which has fewer
dependencies than racket/performance-hint.

Changed in version 6.2 of package base: Added the (submod racket/performance-hint

begin-encourage-inline) submodule.

(define-inline id expr)
(define-inline (head args) body ...+)

head = id
| (head args)

args = arg ...
| arg rest-id

arg = arg-id

| [arg-id default-expr]

| keyword arg-id

| keyword [arg-id default-expr]

Like define, but ensures that the definition will be inlined at its call sites. Recursive calls
are not inlined, to avoid infinite inlining. Higher-order uses are supported, but also not
inlined.

163

https://pkgs.racket-lang.org/package/base

define-inline may interfere with the Racket compiler’s own inlining heuristics, and
should only be used when other inlining attempts (such as begin-encourage-inline)
fail.

3.26 Importing Modules Lazily: lazy-require

(require racket/lazy-require) package: [base

The bindings documented in this section are provided by the racket/lazy-require li-
brary, not racket/base or racket.

(lazy-require [module-path (fun-import ...)] ...)

fun-import = fun-id
| (orig-fun-id fun-id)

Defines each fun-id as a function that, when called, dynamically requires the export named
orig-fun-id from the module specified by module-path and calls it with the same argu-
ments. If orig-fun-id is not given, it defaults to fun-id.

If the enclosing relative phase level is not 0, then module-path is also placed in a sub-
module (with a use of define-runtime-module-path-index at phase level 0 within the
submodule). Introduced submodules have the names lazy-require-auxn-m, where n is
a phase-level number and m is a number.

When the use of a lazily-required function triggers module loading, it also triggers a use of
register-external-module to declare an indirect compilation dependency (in case the
function is used in the process of compiling a module).

Examples:

> (lazy-require
[racket/list (partition)])
> (partition even? '(1 2 3 4 5))
'(2 4)
'(135)
> (module hello racket/base
(provide hello)
(printf "starting hello server\n")
(define (hello) (printf "hello!\n")))
> (lazy-require
['hello ([hello greet])])
> (greet)
starting hello server
hello!

164

https://pkgs.racket-lang.org/package/base

(lazy-require-syntax [module-path (macro-import ...)] ...)

macro-import = macro-id
| (orig-macro-id macro-id)

Like lazy-require but for macros. That is, it defines each macro-id as a macro that,
when used, dynamically loads the macro’s implementation from the given module-path.
If orig-macro-id is not given, it defaults to macro-id.

Use lazy-require-syntax in the implementation of a library with large, complicated
macros to avoid a dependence from clients of the library on the macro “compilers.” Note
that only macros with exceptionally large compile-time components (such as Typed Racket,
which includes a type checker and optimizer) benefit from lazy-require-syntax; typical
macros do not.

Warning: lazy-require-syntax breaks the invariants that Racket’s module loader and
linker rely on; these invariants normally ensure that the references in code produced by
a macro are loaded before the code runs. Safe use of lazy-require-syntax requires a
particular structure in the macro implementation. (In particular, lazy-require-syntax
cannot simply be introduced in the client code.) The macro implementation must follow
these rules:

1. the interface module must require the runtime-support module

2. the compiler module must require the runtime-support module via an absolute mod-
ule path rather than a relative path

To explain the concepts of “interface, compiler, and runtime-support modules”, here is an
example module that exports a macro:

(module original racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))
(define-syntax-rule (ntimes n expr)
(ntimes-proc n (lambda () expr)))
(provide ntimes))

Suppose we want to use lazy-require-syntax to lazily load the implementation of the
ntimes macro transformer. The original module must be split into three parts:

(module runtime-support racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))
(provide ntimes-proc))

165

(module compiler racket/base
(require 'runtime-support)
(define-syntax-rule (ntimes n expr)

(ntimes-proc n (lambda () expr)))

(provide ntimes))

(module interface racket/base
(require racket/lazy-require)
(require 'runtime-support)
(lazy-require-syntax ['compiler (ntimes)])
(provide ntimes))

The runtime support module contains the function and value definitions that the macro refers
to. The compiler module contains the macro definition(s) themselves—the part of the code
that “disappears” after compile time. The interface module lazily loads the macro trans-
former, but it makes sure the runtime support module is defined at run time by requiring it
normally. In a larger example, of course, the runtime support and compiler may both consist
of multiple modules.

Here what happens when we don’t separate the runtime support into a separate module:

> (module bad-no-runtime racket/base
(define (ntimes-proc n thunk)
(for ([i (in-range n)]) (thunk)))
(define-syntax-rule (ntimes n expr)
(ntimes-proc n (lambda () expr)))
(provide ntimes))
> (module bad-client racket/base
(require racket/lazy-require)
(lazy-require-syntax ['bad-no-runtime (ntimes)])
(ntimes 3 (printf "hello?\n")))
> (require 'bad-client)
no module instance found:
#<resolved-module-path: 'bad-no-runtime> 0

A similar error occurs when the interface module doesn’t introduce a dependency on the
runtime support module.

166

4 Datatypes

Each pre-defined datatype comes with a set of procedures for manipulating instances of the
datatype.

4.1 Booleans and Equality

True and false booleans are represented by the values #t and #£, respectively, though oper-
ations that depend on a boolean value typically treat anything other than #f as true. The #t
value is always eq? to itself, and #f is always eq? to itself.

See [§1.3.5 “Reading Booleans™| for information on reading booleans and
[Booleans™| for information on printing booleans.

See also and, or, andmap, and ormap.

(boolean? v) — boolean?
v : any/c
Returns #t if v is #t or #f, #f otherwise.
Examples:

> (boolean? #f)

#t

> (boolean? #t)
#t

> (boolean? 'true)
#f

(not v) — boolean?
v : any/c

Returns #t if v is #£, #f otherwise.
Examples:

> (not #f)

#t

> (not #t)

#f

> (not 'we-have-no-bananas)
#£f

167

§3 “Built-In
Datatypes” in The
Racket Guide
introduces
Datatypes.

(equal? v1 v2) — boolean?
vl : any/c
v2 : any/c

Two values are equal? if and only if they are eqv?, unless otherwise specified for a partic-
ular datatype.

Datatypes with further specification of equal? include strings, byte strings, pairs, muta-
ble pairs, vectors, boxes, hash tables, and inspectable structures. In the last six cases,
equality is recursively defined; if both v1 and v2 contain reference cycles, they are equal
when the infinite unfoldings of the values would be equal. See also gen:equal+hash and
prop:impersonator-of.

Examples:

> (equal? 'yes 'yes)
#t

> (equal?
#E

> (equal? (*x 6 7) 42)

#t

> (equal? (expt 2 100) (expt 2 100))

#t

> (equal? 2 2.0)

#E

> (let ([v (mcons 1 2)]) (equal? v v))

#t

> (equal? (mcons 1 2) (mcoms 1 2))

#t

> (equal? (integer->char 955) (integer->char 955))
#t

> (equal? (make-string 3 #\z) (make-string 3 #\z))
#t

> (equal? #t #t)

#t

'yes 'no)

(equ? vl v2) — boolean?
vl : any/c
v2 : any/c

Two values are eqv? if and only if they are eq?, unless otherwise specified for a particular
datatype.

The number and character datatypes are the only ones for which eqv? differs from eq?.
Two numbers are eqv? when they have the same exactness, precision, and are both equal

168

and non-zero, both 0.0, both 0.0, both -0.0, both -0.0, both +nan.0, or both +nan.0—
considering real and imaginary components separately in the case of complex numbers. Two
characters are eqv? when their char->integer results are equal.

Examples:

> (eqv? 'yes 'yes)
#t

> (equ?
#E

> (eqv? (x 6 7) 42)

#t

> (eqv? (expt 2 100) (expt 2 100))

#t

> (eqv? 2 2.0)

#t

> (let ([v (mcons 1 2)]) (eqv? v v))

#t

> (eqv? (mcons 1 2) (mcons 1 2))

#E

> (eqv? (integer->char 955) (integer->char 955))
#t

> (eqv? (make-string 3 #\z) (make-string 3 #\z))
#f

> (eqv? #t #t)

#t

'yes 'no)

(eq? vl v2) — boolean?
vl : any/c
v2 : any/c

Return #t if v1 and v2 refer to the same object, #f otherwise. As a special case among

numbers, two fixnums that are = are also the same according to eq?. See also[§1.1.6 “Objec(]
|[dentity and Comparisons’}

Examples:

> (eq? 'yes 'yes)

#t

> (eq? 'yes 'mo)

#f

> (eq? (* 6 7) 42)

#t

> (eq? (expt 2 100) (expt 2 100))
#t

> (eq? 2 2.0)

169

#f

> (let ([v (mcons 1 2)]) (eq? v v))

#t

> (eq? (mcons 1 2) (mcons 1 2))

#E

> (eq? (integer->char 955) (integer->char 955))
#f

> (eq? (make-string 3 #\z) (make-string 3 #\z))
#f

> (eq? #t #t)

#t

(equal?/recur vl v2 recur-proc) — boolean?
vl : any/c
v2 : any/c
recur-proc : (any/c any/c -> any/c)

Like equal?, but using recur-proc for recursive comparisons (which means that reference
cycles are not handled automatically). Non-#£ results from recur-proc are converted to
#t before being returned by equal?/recur.

Examples:

> (equal?/recur 1 1 (lambda (a b) #f))
#t
> (equal?/recur '(1) '(1) (lambda (a b) #f))
#E
> (equal?/recur '#(1 1 1) '#(1 1.2 3/4)
(lambda (a b) (<= (abs (- a b)) 0.25)))
#t

(immutable? v) — boolean?
v : any/c
Returns #t if v is an immutable string, byte string, vector, hash table, or box, #£f otherwise.

Note that immutable? is not a general predicate for immutability (despite its name). It
works only for a handful of datatypes for which a single predicate—string?, vector?,
etc.—recognizes both mutable and immutable variants of the datatype. In particular,
immutable? produces #f for a pair, even though pairs are immutable, since pair? implies
immutability.

Examples:

> (immutable? 'hello)

170

#f

> (immutable? "a string")
#t

> (immutable? (box 5))

#£f

> (immutable? #(0 1 2 3))
#t

> (immutable? (make-hash))
#£f

> (immutable? (make-immutable-hash '([a b])))
#t

> (immutable? #t)

#f

gen:equal+hash : any/c

A generic interface (see [§5.4 “Generic Interfaces™) that supplies an equality predicate and
hashing functions for a structure type. The following methods must be implemented:

e equal-proc : (-> any/c any/c (-> any/c any/c boolean?) any/c) —
tests whether the first two arguments are equal, where both values are instances of
the structure type to which the generic interface is associated (or a subtype of the
structure type).

The third argument is an equal? predicate to use for recursive equality checks; use the
given predicate instead of equal? to ensure that data cycles are handled properly and
to work with equal?/recur (but beware that an arbitrary function can be provided
to equal?/recur for recursive checks, which means that arguments provided to the
predicate might be exposed to arbitrary code).

The equal-proc is called for a pair of structures only when they are not eq?, and only
when they both have a gen: equal+hash value inherited from the same structure type.
With this strategy, the order in which equal? receives two structures does not matter.
It also means that, by default, a structure sub-type inherits the equality predicate of its
parent, if any.

e hash-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a hash code for the given structure, like equal-hash-code. The first
argument is an instance of the structure type (or one of its subtypes) to which the
generic interface is associated.

The second argument is an equal-hash-code-like procedure to use for recursive
hash-code computation; use the given procedure instead of equal-hash-code to en-
sure that data cycles are handled properly.

* hash2-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a secondary hash code for the given structure. This procedure is like
hash-proc, but analogous to equal-secondary-hash-code.

171

Take care to ensure that hash-proc and hash2-proc are consistent with equal-proc.
Specifically, hash-proc and hash2-proc should produce the same value for any two struc-
tures for which equal-proc produces a true value.

When a structure type has no gen: equal+hash implementation, then transparent structures
(i.e., structures with an inspector that is controlled by the current inspector) are equal?
when they are instances of the same structure type (not counting sub-types), and when
they have equal? field values. For transparent structures, equal-hash-code and equal-
secondary-hash-code derive hash code using the field values. For opaque structure types,
equal? is the same as eq?, and equal-hash-code and equal-secondary-hash-code re-
sults are based only on eq-hash-code. If a structure has a prop: impersonator-of prop-
erty, then the prop:impersonator-of property takes precedence over gen:equal+hash
if the property value’s procedure returns a non-#f value when applied to the structure.

Examples:

> (define (farm=7 farml farm2 recursive-equal?)
(and (= (farm-apples farml)
(farm-apples farm2))
(= (farm-oranges farml)
(farm-oranges farm?2))
(= (farm-sheep farmi)
(farm-sheep farm2))))
> (define (farm-hash-1 farm recursive-equal-hash)
(+ (* 10000 (farm-apples farm))
(* 100 (farm-oranges farm))
(* 1 (farm-sheep farm))))
> (define (farm-hash-2 farm recursive-equal-hash)
(+ (* 10000 (farm-sheep farm))
(* 100 (farm-apples farm))
(* 1 (farm-oranges farm))))
> (define-struct farm (apples oranges sheep)
#:methods gen:equal+hash
[(define equal-proc farm=7)
(define hash-proc farm-hash-1)
(define hash2-proc farm-hash-2)])

> (define east (make-farm 5 2 20))

> (define west (make-farm 18 6 14))
> (define north (make-farm 5 20 20))
> (define south (make-farm 18 6 14))
> (equal? east west)

#f

> (equal? east north)

#f

> (equal? west south)

#t

172

prop:equal+hash : struct-type-property?

A deprecated structure type property (see(§5.3 “Structure Type Properties”) that supplies an
equality predicate and hashing functions for a structure type. The gen: equal+hash generic
interface should be used, instead. A prop:equal+hash property value is a list of three
procedures that correspond to the methods of gen:equal+hash.

4.1.1 Boolean Aliases

(require racket/bool) package: base

The bindings documented in this section are provided by the racket/bool and racket
libraries, but not racket/base.

true : boolean?

An alias for #t.

false : boolean?

An alias for #f.
(symbol=7 a b) — boolean?
a : symbol?
b : symbol?
Returns (equal? a b) (if a and b are symbols).

(boolean=7 a b) — boolean?
a : boolean?
b : boolean?

Returns (equal? a b) (if a and b are booleans).
(false? v) — boolean?

v : any/c

Returns (not v).

(nand expr ...)
Same as (not (and expr ...)).
Examples:

173

https://pkgs.racket-lang.org/package/base

> (nand #f #t)

#t

> (nand #f (error 'ack "we don't get here"))
#t

(nor expr ...)

Same as (not (or expr ...)).
In the two argument case, returns #t if neither of the arguments is a true value.
Examples:

> (nor #f #t)

#f

> (nor #t (error 'ack "we don't get here"))
#£

(implies exprl expr2)

Checks to be sure that the first expression implies the second.
Same as (if exprl expr2 #t).
Examples:

> (implies #f #t)

#t

> (implies #f #f)

#t

> (implies #t #f)

#E

> (implies #f (error 'ack "we don't get here"))
#t

(xor bl b2) — any
b1l : any/c
b2 : any/c
Returns the exclusive or of b1 and b2.

If exactly one of b1 and b2 is not #£, then return it. Otherwise, returns #f£.

Examples:

174

> (xor 11 #f)
11
> (xor #f 22)
22
> (xor 11 22)
#f
> (xor #f #f)
#f

4.2 Numbers

All numbers are complex numbers. Some of them are real numbers, and all of the real num-
bers that can be represented are also rational numbers, except for +inf . O (positive infinity),
+inf . f (single-precision variant, when enabled via read-single-flonum), -inf .0 (neg-
ative infinity), -inf .f (single-precision variant, when enabled), +nan.0 (not-a-number),
and +nan.f (single-precision variant, when enabled). Among the rational numbers, some
are integers, because round applied to the number produces the same number.

Orthogonal to those categories, each number is also either an exact number or an inexact
number. Unless otherwise specified, computations that involve an inexact number produce
inexact results. Certain operations on inexact numbers, however, produce an exact number,
such as multiplying an inexact number with an exact 0. Operations that mathematically
produce irrational numbers for some rational arguments (e.g., sqrt) may produce inexact
results even for exact arguments.

In the case of complex numbers, either the real and imaginary parts are both exact or inexact
with the same precision, or the number has an exact zero real part and an inexact imaginary
part; a complex number with an exact zero imaginary part is a real number.

Inexact real numbers are implemented as double-precision IEEE floating-point numbers,
also known as flonums, or as single-precision IEEE floating-point numbers, also known as
single-flonums. Single-flonums are supported only when (single-flonum-available?)
reports #t. Although we write +inf . f, -inf.f, and +nan. f to mean single-flonums, those
forms read as double-precision flonums by default, since read-single-flonumis #f by de-
fault. When single-flonums are supported, inexact numbers are still represented as flonums
by default, and single precision is used only when a computation starts with single-flonums.

Inexact numbers can be coerced to exact form, except for the inexact numbers +inf .0,
+inf.f, -inf.0, -inf.f, +nan.0, and +nan.f, which have no exact form. Dividing a
number by exact zero raises an exception; dividing a non-zero number other than +nan. 0 or
+nan.f by an inexact zero returns +inf .0, +inf .f, -inf.0 or -inf . f, depending on the
sign and precision of the dividend. The +nan. 0 value is not = to itself, but +nan.0 is eqv?
to itself, and +nan. f is similarly eqv? but not = to itself. Conversely, (= 0.0 -0.0) is #t,
but (equ? 0.0 -0.0) is #f, and the same for 0.0 and -0.0 (which are single-precision
variants). The datum -nan . O refers to the same constant as +nan. 0, and -nan . f is the same

175

§3.2 “Numbers” in
The Racket Guide
introduces numbers.

S s —
Reading Numb

for information on

the syntax of

number literals.

as +tnan.f.

Calculations with infinites produce results consistent with IEEE double- or single-precision
floating point where IEEE specifies the result; in cases where IEEE provides no specification,
the result corresponds to the limit approaching infinity, or +nan. 0 or +nan. f if no such limit
exists.

The precision and size of exact numbers is limited only by available memory (and the pre-
cision of operations that can produce irrational numbers). In particular, adding, multiplying,
subtracting, and dividing exact numbers always produces an exact result.

A fixnum is an exact integer whose two’s complement representation fit into 31 bits on a
32-bit platform or 63 bits on a 64-bit platform; furthermore, no allocation is required when
computing with fixnums. See also the racket/fixnum module, below.

Two fixnums that are = are also the same according to eq?. Otherwise, the result of eq?
applied to two numbers is undefined, except that numbers produced by the default reader in
read-syntax mode are interned and therefore eq? when they are eqv?.

Two real numbers are eqv? when they are both inexact with the same precision or both
exact, and when they are = (except for +nan.0, +nan.f,0.0,0.0, -0.0, and -0.0, as noted
above). Two complex numbers are eqv? when their real and imaginary parts are eqv?. Two
numbers are equal? when they are eqv?.

See [§1.3.3 “Reading Numbers”| for information on reading numbers and
[Numbers™| for information on printing numbers.

4.2.1 Number Types

(number? v) — boolean?
v : any/c

Returns #t if v is a number, #f otherwise.
Examples:

> (number? 1)

#t

> (number? 2+3i)
#t

> (number? "hello")
#f

> (number? +nan.0)
#t

176

(complex? v) — boolean?
v : any/c

Returns (number? v), because all numbers are complex numbers.

(real? v) — boolean?
v : any/c

Returns #t if v is a real number, #f otherwise.
Examples:

> (real? 1)

#t

> (real? +inf.0)
#t

> (real? 2+3i)

#£f

> (real? 2.0+0.01)
#f

> (real? "hello")
#£f

(rational? v) — boolean?
v : any/c
Returns #t if v is a rational number, #f otherwise.
Examples:

> (rational? 1)

#t
> (rational? +inf.0)
#f
> (rational? "hello")
#f

(integer? v) — boolean?
v : any/c

Returns #t if v is a number that is an integer, #f otherwise.

Examples:

177

> (integer? 1)

#t

> (integer? 2.3)
#£

> (integer? 4.0)
#t

> (integer? +inf.0)
#f

> (integer? 2+3i)
#£

> (integer? "hello")
#f

(exact-integer? v) — boolean?
v : any/c
Returns (and (integer? v) (exact? v)).
Examples:
> (exact-integer? 1)
#t

> (exact-integer? 4.0)
#f

(exact-nonnegative-integer? v) — boolean?
v : any/c
Returns (and (exact-integer? v) (not (negative? v))).
Examples:
> (exact-nonnegative-integer? 0)
#t

> (exact-nonnegative-integer? -1)
#E

(exact-positive-integer? v) — boolean?
v : any/c

Returns (and (exact-integer? v) (positive? v)).

Examples:

178

> (exact-positive-integer? 1)
#t
> (exact-positive-integer? 0)
#f

(inexact-real? v) — boolean?
v : any/c

Returns (and (real? v) (inexact? v)).

(fixnum? v) — boolean?
v : any/c
Return #t if v is a fixnum, #f otherwise.

Note: the result of this function is platform-dependent, so using it in syntax transformers can
lead to platform-dependent bytecode files.

(flonum? v) — boolean?

v : any/c

Return #t if v is a flonum, #f otherwise.

(double-flonum? v) — boolean?
v : any/c

Identical to flonum?.

(single-flonum? v) — boolean?
v : any/c

Return #t if v is a single-flonum (i.e., a single-precision floating-point number), #£ other-
wise.

(single-flonum-available?) — boolean?

Returns #t if single-flonums are supported on the current platform, #£ otherwise.

Currently, single-flonum-available? produces #t when (system-type 'vm) pro-
duces 'racket, and single-flonum-available? produces #f otherwise.

If the result is #f, then single-flonum? also produces #f for all arguments.

Added in version 7.3.0.5 of package base.

179

(zero? z) — boolean?
Z : number?

Returns (= 0 z).

Examples:

> (zero? 0)

#t

> (zero? -0.0)
#t

(positive? x) — boolean?
X : real?

Returns (> x 0).

Examples:

> (positive? 10)

#t
> (positive? -10)
#E
> (positive? 0.0)
#f

(negative? x) — boolean?
X @ real?

Returns (< x 0).

Examples:

> (negative? 10)

#f
> (negative? -10)
#t
> (negative? -0.0)
#f

(even? n) — boolean?
n : integer?

Returns (zero? (modulo n 2)).

Examples:

180

> (even? 10.0)

#t

> (even? 11)

#f

> (even? +inf.0)

even?: contract violation
expected: integer
given: +inf.0

(odd? n) — boolean?
n : integer?

Returns (not (even? n)).
Examples:

> (odd? 10.0)

#£f

> (0dd? 11)

#t

> (odd? +inf.0)

odd?: contract violation
expected: integer
given: +inf.0

(exact? z) — boolean?
z . number?

Returns #t if z is an exact number, #f otherwise.
Examples:

> (exact? 1)

#t

> (exact? 1.0)
#f

(inexact? z) — boolean?
z : number?

Returns #t if z is an inexact number, #f otherwise.

Examples:

181

> (inexact? 1)
#f

> (inexact? 1.0)
#t

(inexact->exact z) — exact?
z : number?

Coerces z to an exact number. If z is already exact, it is returned. If z is +inf .0, -inf .0,
+nan.0, +inf.f, -inf.f, or +nan.f, then the exn:fail:contract exception is raised.
Examples:

(inexact->exact 1)

>
1
> (inexact->exact 1.0)
1

(exact->inexact z) — inexact?
z : number?
Coerces z to an inexact number. If z is already inexact, it is returned.
Examples:

> (exact->inexact 1)
1.0

> (exact->inexact 1.0)
1.0

(real->single-flonum x) — single-flonum?
x : real?

Coerces x to a single-precision floating-point number. If x is already a single-precision
floating-point number, it is returned.
(real->double-flonum x) — flonum?

X : real?

Coerces x to a double-precision floating-point number. If x is already a double-precision
floating-point number, it is returned.

182

4.2.2 Generic Numerics

Most Racket numeric operations work on any kind of number.

Arithmetic

(+ z ...) — number?
z . number?

Returns the sum of the zs, adding pairwise from left to right. If no arguments are provided,
the result is O.

Examples:

> (+12)

3

> (+ 1.0 2+31 5)
8.0+3.01

> (+)

0

(- z) — number?
Z . number?

(- z w ...+) — number?
z : number?
w . number?

When no ws are supplied, returns (- 0 z). Otherwise, returns the subtraction of the ws
from z working pairwise from left to right.

Examples:
> (- 53.0)
2.0
> (- 1)
-1
> (- 2+7i 1 3)
-2+71
(x z ...) — number?

z : number?

Returns the product of the zs, multiplying pairwise from left to right. If no arguments are
provided, the result is 1. Multiplying any number by exact O produces exact O.

Examples:

183

> (x 2 3)

6

> (x 8.0 9)
72.0

> (% 1+2i 3+4i)
-5+101

(/ z) — number?
z : number?

(/ z w ...+) — number?
Z . number?
w . number?

When no ws are supplied, returns (/ 1 z). Otherwise, returns the division of z by the ws
working pairwise from left to right.

If z is exact O and no w is exact O, then the result is exact 0. If any w is exact O, the
exn:fail:contract:divide-by-zero exception is raised.

Examples:

> (/34
3/4
(/ 81 3 3)

>
9
> (/ 10.0)
0.1
> (/ 1421 3+41i)
11/25+2/25i
(quotient n m) — integer?
n : integer?
m : integer?

Returns (truncate (/ n m)).
Examples:

> (quotient 10 3)

3

> (quotient -10.0 3)

-3.0

> (quotient +inf.0 3)

quotient: contract violation
expected: integer?

184

given: +inf.0
argument position: 1st
other arguments...:

3

(remainder n m) — integer?
n : integer?
m : integer?

Returns g with the same sign as n such that

* (abs q) is between O (inclusive) and (abs m) (exclusive), and

e (+ g (x m (quotient n m))) equals n.

If m is exact O, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

> (remainder 10 3)

1

> (remainder -10.0 3)
-1.0

> (remainder 10.0 -3)
1.0

> (remainder -10 -3)
-1

> (remainder +inf.0 3)
remainder: contract violation
expected: integer?
given: +inf.0
argument position: 1st
other arguments...:
3

(quotient/remainder n m) — integer? integer?
n : integer?
m : integer?

Returns (values (quotient n m) (remainder n m)), but the combination may be
computed more efficiently than separate calls to quotient and remainder.

Example:

> (quotient/remainder 10 3)

185

(modulo n m) — integer?
n : integer?
m : integer?

Returns g with the same sign as m where

e (abs q) is between O (inclusive) and (abs m) (exclusive), and

* the difference between g and (- n (* m (quotient n m))) is a multiple of m.

If m is exact O, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

(modulo 10 3)

>
1
> (modulo -10.0 3)
2
>

.0

(modulo 10.0 -3)
-2.0
> (modulo -10 -3)
-1

> (modulo +inf.0 3)
modulo: contract violation
expected: integer?
given: +inf.0
argument position: 1st
other arguments...:

3

(addl z) — number?
z . number?

Returns (+ z 1).

(subl z) — number?
z : number?

Returns (- z 1).

(abs x) — number?
X : real?

186

Returns the absolute value of x.

Examples:
> (abs 1.0)
1.0
> (abs -1)
1
(max x ...+) — real?
X . real?

Returns the largest of the xs, or +nan.0 if any x is +nan. 0. If any x is inexact, the result is
coerced to inexact. See also argmax.

Examples:

(max 1 3 2)

>
3
> (max 1 3 2.0)
3

.0
(min x ...+) — real?
X : real?

Returns the smallest of the xs, or +nan.0 if any x is +nan. 0. If any x is inexact, the result
is coerced to inexact. See also argmin.

Examples:

> (min 1 3 2)

1

> (min 1 3 2.0)

1.0

(gcd n ...) — rational?

n : rational?

Returns the greatest common divisor (a non-negative number) of the ns; for non-integer
ns, the result is the gcd of the numerators divided by the 1cm of the denominators. If no
arguments are provided, the result is 0. If all arguments are zero, the result is zero.

Examples:

187

> (gecd 10)

10

> (ged 12 81.0)

3.0

> (ged 1/2 1/3)

1/6

(lecmn ...) — rational?

n : rational?

Returns the least common multiple (a non-negative number) of the ns; non-integer ns, the
result is the absolute value of the product divided by the gcd. If no arguments are provided,
the result is 1. If any argument is zero, the result is zero; furthermore, if any argument is
exact 0, the result is exact O.

Examples:

> (lcm 10)

10

> (lcm 3 4.0)
12.0

> (lem 1/2 2/3)
2

(round x) — (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

Returns the integer closest to x, resolving ties in favor of an even number, but +inf .0,
-inf .0, and +nan. O round to themselves.
Examples:

> (round 17/4)

4

> (round -17/4)
-4

> (round 2.5)
2.0

> (round -2.5)
-2.0

> (round +inf.0)
+inf.0

(floor x) — (or/c integer? +inf.0 -inf.0 +nan.0)
X @ real?

188

Returns the largest integer that is no more than x, but +inf .0, -inf .0, and +nan. 0 floor to
themselves.

Examples:

> (floor 17/4)

4

> (floor -17/4)
-5

> (floor 2.5)
2.0

> (floor -2.5)
-3.0

> (floor +inf.0)
+inf.0

(ceiling x) — (or/c integer? +inf.0 -inf.0 +nan.0)
X : real?

Returns the smallest integer that is at least as large as x, but +inf .0, -inf .0, and +nan.0
ceiling to themselves.
Examples:

> (ceiling 17/4)

5

> (ceiling -17/4)
-4

> (ceiling 2.5)
3.0

> (ceiling -2.5)
-2.0

> (ceiling +inf.0)
+inf.0

(truncate x) — (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?

Returns the integer farthest from O that is not farther from O than x, but +inf .0, -inf .0,
and +nan. 0 truncate to themselves.
Examples:

> (truncate 17/4)
4

189

> (truncate -17/4)
-4

> (truncate 2.5)
2.0

> (truncate -2.5)
-2.0

> (truncate +inf.0)
+inf .0

(numerator q) — integer?
q : rational?

Coerces g to an exact number, finds the numerator of the number expressed in its simplest
fractional form, and returns this number coerced to the exactness of g.

Examples:

> (numerator 5)

5

> (numerator 17/4)
17

> (numerator 2.3)
2589569785738035.0

(denominator g) — integer?
q : rational?

Coerces q to an exact number, finds the denominator of the number expressed in its simplest

fractional form, and returns this number coerced to the exactness of q.

Examples:

(denominator 5)
(denominator 17/4)

>
1
>
4
> (denominator 2.3)
1125899906842624.0
(rationalize x tolerance) — real?
X : real?
tolerance : real?

Among the real numbers within (abs tolerance) of x, returns the one corresponding
to an exact number whose denominator is the smallest. If multiple integers are within
tolerance of x, the one closest to O is used.

190

Examples:

> (rationalize 1/4 1/10)

1/3

> (rationalize -1/4 1/10)
-1/3

> (rationalize 1/4 1/4)
0

> (rationalize 11/40 1/4)
1/2

Number Comparison

(=z w ...) — boolean?
z . number?
w . number?

Returns #t if all of the arguments are numerically equal, #f otherwise. An inexact number
is numerically equal to an exact number when the exact coercion of the inexact number is
the exact number. Also, 0.0 and -0. 0 are numerically equal, but +nan. 0 is not numerically
equal to itself.

Examples:
> (=11.0)
#t
> (=1 2)
#t
> (= 2+31i 2+3i 2+3i)
#t
> (= 1)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(< x y ...) —> boolean?
X : real?
y : real?

Returns #t if the arguments in the given order are strictly increasing, #f otherwise.
Examples:

> (<1 1)
#£f

191

> (<12 3)
#t

> (< 1)

#t

> (< 1 +inf.0)
#t

> (< 1 +nan.0)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(<= x y ...) — boolean?
X @ real?
y @ real?

Returns #t if the arguments in the given order are non-decreasing, #f otherwise.

Examples:
> (k=1 1)
#t
> (k=12 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(>x y ...+) — boolean?
X : real?
y @ real?

Returns #t if the arguments in the given order are strictly decreasing, #f otherwise.
Examples:

> (> 1 1)

#f

> (>321)
#t

> (> +inf.0 1)
#t

> (> 4nan.0 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

192

(>= x y ...) — boolean?
X @ real?
y @ real?

Returns #t if the arguments in the given order are non-increasing, #f otherwise.

Examples:
> (>=11)
#t
> (>=121)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

Powers and Roots

(sqrt z) — number?
Z @ number?

Returns the principal square root of z. The result is exact if z is exact and z’s square root is
rational. See also integer-sqrt.

Examples:

> (sqrt 4/9)

2/3

> (sqrt 2)
1.4142135623730951
> (sqrt -1)

0+1i

(integer-sqrt n) — complex?
n : integer?

Returns (floor (sqrt n)) for positive n. The result is exact if n is exact. For negative
n, the resultis (* (integer-sqrt (- n)) 0+1i).
Examples:

> (integer-sqrt 4.0)

2.0

> (integer-sqrt 5)
2

193

> (integer-sqrt -4.0)
0+2.01

> (integer-sqrt -4)
0+21

(integer-sqrt/remainder n) — complex? integer?
n : integer?

Returns (integer-sqrt n) and (- n (expt (integer-sqrt n) 2)).
Examples:

> (integer-sqrt/remainder 4.0)
2.0

0.0

> (integer-sqrt/remainder 5)
2

1

(expt z w) — number?
z . number?
w : number?

Returns z raised to the power of w.

If w is exact 0, the result is exact 1. If w is 0.0 or -0.0 and z is a real number other than
exact 1 or 0, the result is 1.0 (even if z is +nan.0).

If z is exact 1, the result is exact 1. If z is 1.0 and w is a real number, the resultis 1.0 (even
if w is +nan. 0).

If z is exact O, the result is as follows:

e wisexact O —resultis 1
e wis0.0or-0.0 —resultis 1.0

e real part of w is negative — the exn:fail:contract:divide-by-zero exception
is raised

* w is nonreal with a nonpositive real part — the exn:fail:contract:divide-by-
zero exception is raised

® 7 is +nan.0 —resultis +nan.0

¢ otherwise — result is 0

194

Further special cases when w is a real number: These special cases
correspond to pow

in C99 [C99],
. (eXPt 0.0 w): except when z is
negative and w is a
— w is negative — result is +inf .0 not an integer.

— w is positive — resultis 0.0
e (expt -0.0 w):

— w is negative:
w is an odd integer — result is -inf .0
1w otherwise rational — result is +inf .0
— w is positive:
w is an odd integer — resultis -0.0
% w otherwise rational — result is 0.0

e (expt z -inf.0) for positive z:

— z isless than 1.0 — result is +inf .0

— z is greater than 1.0 —resultis 0.0
e (expt z +inf.0) for positive z:

— zislessthan 1.0 —resultis 0.0
— z is greater than 1.0 — resultis +inf .0
¢ (expt -inf.0 w) for integer w:

— w is negative:
wis odd — resultis -0.0
wis even — resultis 0.0
— w is positive:
wis odd — result is -inf .0
* w is even — result is +inf .0

e (expt +inf.0 w):

— w is negative — resultis 0.0

— w is positive — result is +inf .0

Examples:

195

(expt 2 3)

(expt 4 0.5)
.0
(expt +inf.0 0)

= VvV N V 0V

(exp z) — number?
z : number?

Returns Euler’s number raised to the power of z. The result is normally inexact, but it is
exact 1 when z is an exact 0. See also expt.

Examples:

> (exp 1)

2.718281828459045

> (exp 2+3i)
-7.315110094901103+1.04274365623590451
> (exp 0)

1

(log z [b]) — number?
z : number?
b : number? = (exp 1)

Returns the natural logarithm of z. The result is normally inexact, but it is exact O when
z is an exact 1. When z is exact O, exn:fail:contract:divide-by-zero exception is
raised.

If b is provided, it serves as an alternative base. It is equivalentto (/ (log z) (log b)),
but can potentially run faster. If b is exact 1, exn:fail:contract:divide-by-zero
exception is raised.

Consider using £11ogb instead when accuracy is important.
Examples:

(log (exp 1))

.0

(log 2+31)
.2824746787307684+0.9827937232473291
(log 1)

vV OV = V ~ V

(log 100 10)

196

2.0
> (log 8 2)
3.0
> (log 5 5)
1.0

Changed in version 6.9.0.1 of package base: Added second argument for arbitrary bases.

Trigonometric Functions

(sin z) — number?
Z : number?

Returns the sine of z, where z is in radians. The result is normally inexact, but it is exact 0
if z is exact O.

Examples:

> (sin 3.14159)
2.65358979335273e-06

> (sin 1.0+5.01)
62.44551846769653+40.09216577799841

(cos z) — number?
z : number?

Returns the cosine of z, where z is in radians.

Examples:

> (cos 3.14159)

-0.9999999999964793

> (cos 1.0+5.01)
40.095806306298826-62.439848680799631

(tan z) — number?
z : number?

Returns the tangent of z, where z is in radians. The result is normally inexact, but it is exact
0 if z is exact 0.

Examples:

> (tan 0.7854)

1.0000036732118496

> (tan 1.0+5.01)
8.256719834227411e-05+1.00003778337960081

197

(asin z) — number?
Z : number?

Returns the arcsine in radians of z. The result is normally inexact, but it is exact 0 if z is
exact 0.

Examples:

> (asin 0.25)

0.25268025514207865

> (asin 1.0+5.01)
0.1937931365549322+2.33097465304931231

(acos z) — number?
z : number?

Returns the arccosine in radians of z.
Examples:

> (acos 0.25)

1.318116071652818

> (acos 1.0+5.01)
1.3770031902399644-2.33097465304931231

(atan z) — number?
Z . number?

(atan y x) — number?
y : real?
x @ real?

In the one-argument case, returns the arctangent of the inexact approximation of z, except
that the result is an exact O for z as O, and the exn:fail:contract:divide-by-zero
exception is raised for z as exact 0+11 or exact 0-11.

In the two-argument case, the result is roughly the same as (atan (/ (exact->inexact
y)) (exact->inexact x)),butthe signs of y and x determine the quadrant of the result.
Moreover, a suitable angle is returned when y divided by x produces +nan. 0 in the case that
neither y nor x is +nan. 0. Finally, if y is exact O and x is a positive number, the result is
exact 0. If both x and y are exact 0, the exn:fail:contract:divide-by-zero exception
is raised.

Examples:

198

(atan 0.5)

.4636476090008061

(atan 2 1)

.1071487177940904

(atan -2 -1)

-2.0344439357957027

> (atan 1.0+5.01)
1.530881333938778+0.194426142147002131
> (atan +inf.0 -inf.0)
2.356194490192345

vV = V O V

Changed in version 7.2.0.2 of package base: Changed to raise exn:fail:contract:divide-by-zero for 0+1i

and 0-11 and to produce exact O for any positive x (not just exact values) when y is 0.

Complex Numbers

(make-rectangular x y) — number?
X @ real?
y . real?

Creates a complex number with x as the real part and y as the imaginary part. That is,
returns (+ x (x y 0+1i)).

Example:

> (make-rectangular 3 4.0)
3.0+4.01

(make-polar magnitude angle) — number?
magnitude : real?
angle : real?

Creates a complex number which, if thought of as a point, is magnitude away from the
origin and is rotated angle radians counter clockwise from the positive x-axis. That is,
returns (+ (* magnitude (cos angle)) (* magnitude (sin angle) 0+11i)).

Examples:

> (make-polar 10 (¥ pi 1/2))
6.123233995736766e-16+10.01
> (make-polar 10 (¥ pi 1/4))
7.0710678118654755+7.0710678118654751

(real-part z) — real?
Z . number?

199

Returns the real part of the complex number z in rectangle coordinates.
Examples:

(real-part 3+4i)

(real-part 5.0)

>
3
>
5.0

(imag-part z) — real?
Z : number?
Returns the imaginary part of the complex number z in rectangle coordinates.
Examples:
(imag-part 3+4i)
(imag-part 5.0)

(imag-part 5.0+0.01)
.0

OV O V & Vv

(magnitude z) — (and/c real? (not/c negative?))
z . number?

Returns the magnitude of the complex number z in polar coordinates. A complex number
with +inf .0 or -inf . 0 as a component has magnitude +inf . 0, even if the other component
is +nan. 0.

Examples:
(magnitude -3)

>
3
> (magnitude 3.0)
3.0

> (magnitude 3+41i)
5

Changed in version 7.2.0.2 of package base: Changed to always return +inf.0 for a complex number with a

+inf .0 or -inf .0 component.

(angle z) — real?
z : number?

200

Returns the angle of the complex number z in polar coordinates.

The result is guaranteed to be between (- pi) and pi, possibly equal to pi (but never equal
to (- pi)).

Examples:

(angle -3)
.141592653589793
(angle 3.0)

(angle 3+4i)
.9272952180016122

(angle +inf.0+inf.0i)
.7853981633974483

(angle -1)
.141592653589793

WV OV OV oV wyVv

Bitwise Operations

(bitwise-ior n ...) — exact-integer?
n . exact-integer?

Returns the bitwise “inclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.
Examples:

> (bitwise-ior 1 2)

3

> (bitwise-ior -32 1)

-31

(bitwise-and n ...) — exact-integer?

n : exact-integer?
Returns the bitwise “and” of the ns in their (semi-infinite) two’s complement representation.
If no arguments are provided, the result is -1.
Examples:

> (bitwise-and 1 2)

0

> (bitwise-and -32 -1)
-32

201

(bitwise-xor n ...) — exact-integer?
n . exact-integer?

Returns the bitwise “exclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.

Examples:

> (bitwise-xor 1 5)

4

> (bitwise-xor -32 -1)
31

(bitwise-not n) — exact-integer?
n : exact-integer?

Returns the bitwise “not” of n in its (semi-infinite) two’s complement representation.
Examples:

> (bitwise-not 5)

-6

> (bitwise-not -1)
0

(bitwise-bit-set? n m) — boolean?
n : exact-integer?
m : exact-nonnegative-integer?

Returns #t when the mth bit of n is set in n’s (semi-infinite) two’s complement representa-
tion.

This operation is equivalent to (not (zero? (bitwise-and n (arithmetic-shift 1
m)))), but it is faster and runs in constant time when n is positive.

Examples:

> (bitwise-bit-set? 5 0)

#t

> (bitwise-bit-set? 5 2)

#t

> (bitwise-bit-set? -5 (expt 2 700))
#t

202

(bitwise-bit-field n start end) — exact-integer?
n . exact-integer?
start : exact-nonnegative-integer?
end : (and/c exact-nonnegative-integer?
(>=/c start))

Extracts the bits between position start and (- end 1) (inclusive) from n and shifts them
down to the least significant portion of the number.

This operation is equivalent to the computation

(bitwise-and (subl (arithmetic-shift 1 (- end start)))
(arithmetic-shift n (- start)))

but it runs in constant time when n is positive, start and end are fixnums, and (- end
start) is no more than the maximum width of a fixnum.

Each pair of examples below uses the same numbers, showing the result both in binary and
as integers.

Examples:

> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 1))
lloll

> (bitwise-bit-field 13 1 1)

0

> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 3))
l|10|l

> (bitwise-bit-field 13 1 3)

2

> (format "~Db" (bitwise-bit-field (string->number "1101" 2) 1 4))
"110"

> (bitwise-bit-field 13 1 4)

6

(arithmetic-shift n m) — exact-integer?
n . exact-integer?
m : exact-integer?

Returns the bitwise “shift” of n in its (semi-infinite) two’s complement representation. If
m is non-negative, the integer n is shifted left by m bits; i.e., m new zeros are introduced as
rightmost digits. If m is negative, n is shifted right by (- m) bits; i.e., the rightmost m digits
are dropped.

Examples:

203

> (arithmetic-shift 1 10)
1024

> (arithmetic-shift 255 -3)
31

(integer-length n) — exact-integer?
n . exact-integer?

Returns the number of bits in the (semi-infinite) two’s complement representation of n after
removing all leading zeros (for non-negative n) or ones (for negative n).

Examples:

(integer-length 8)

>
4
> (integer-length -8)
3

Random Numbers When secu-

. . rity is a concern, use
(random k [rand-gen]) — exact-nonnegative-integer? crypto-random-bytes

k : (integer-in 1 4294967087) instead of random.
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
(random min max [rand-gen]) — exact-nonnegative-integer?
min : exact-integer?
max : (integer-in (+ 1 min) (+ 4294967087 min))
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
(random [rand-gen]) — (and/c real? inexact? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)

When called with an integer argument k, returns a random exact integer in the range O to
k-1.

When called with two integer arguments min and max, returns a random exact integer in the
range min to max-1.

When called with zero arguments, returns a random inexact number between 0 and 1, exclu-
sive.

In each case, the number is provided by the given pseudo-random number generator (which
defaults to the current one, as produced by current-pseudo-random-generator). The
generator maintains an internal state for generating numbers. The random number generator
uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm [L'Ecuyer(02].

204

Changed in version 6.4 of package base: Added support for ranges.

(random-seed k) — void?
k : (integer-in 0 (subl (expt 2 31)))

Seeds the current pseudo-random number generator with k. Seeding a generator sets its
internal state deterministically; that is, seeding a generator with a particular number forces
it to produce a sequence of pseudo-random numbers that is the same across runs and across
platforms.

The random-seed function is convenient for some purposes, but note that the space of states
for a pseudo-random number generator is much larger that the space of allowed values for
k. Use vector->pseudo-random-generator! to set a pseudo-random number generator
to any of its possible states.

(make-pseudo-random-generator) — pseudo-random-generator?

Returns a new pseudo-random number generator. The new generator is seeded with a number
derived from (current-milliseconds).

(pseudo-random-generator? v) — boolean?
v : any/c

Returns #t if v is a pseudo-random number generator, #f otherwise.

(current-pseudo-random-generator) — pseudo-random-generator?
(current-pseudo-random-generator rand-gen) — void?
rand-gen : pseudo-random-generator?

A parameter that determines the pseudo-random number generator used by random.

(pseudo-random-generator->vector rand-gen)
— pseudo-random-generator-vector?
rand-gen . pseudo-random-generator?

Produces a vector that represents the complete internal state of rand-gen. The vector is
suitable as an argument to vector->pseudo-random-generator to recreate the generator
in its current state (across runs and across platforms).

(vector->pseudo-random-generator vec)
— pseudo-random-generator?
vec : pseudo-random-generator-vector?

Produces a pseudo-random number generator whose internal state corresponds to vec.

205

(vector->pseudo-random-generator! rand-gen
vec) — void?
rand-gen : pseudo-random-generator?
vec : pseudo-random-generator-vector?

Like vector->pseudo-random-generator, but changes rand-gen to the given state, in-
stead of creating a new generator.

(pseudo-random-generator-vector? v) — boolean?
v : any/c

Returns #t if v is a vector of six exact integers, where the first three integers are in the
range 0 to 4294967086, inclusive; the last three integers are in the range O to 4294944442,
inclusive; at least one of the first three integers is non-zero; and at least one of the last three
integers is non-zero. Otherwise, the result is #f.

Other Randomness Utilities
(require racket/random) package: base
(crypto-random-bytes n) — bytes?
n : exact-positive-integer?
Provides an interface to randomness from the underlying operating system. Use crypto-

random-bytes instead of random wherever security is a concern.

Returns n random bytes. On Unix systems, the bytes are obtained from "/dev/urandom",
while Windows uses the Rt1GenRand system function.

Example:
> (crypto-random-bytes 14)

#"\O\1\1\2\3\5\b\r\25\"7Y\220\351"

Added in version 6.3 of package base.

(random-ref seq [rand-gen]) — any/c
seq : sequence?
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)

Returns a random element of the sequence. Like sequence-length, does not terminate on
infinite sequences, and evaluates the entire sequence.

Added in version 6.4 of package base.

206

https://pkgs.racket-lang.org/package/base

(random-sample seq

n

[rand-gen

#:replacement? replacement?]) — (listof any/c)
seq : sequence?
n : exact-positive-integer?
rand-gen . pseudo-random-generator?

= (current-pseudo-random-generator)

replacement? : any/c = #t

Returns a list of n elements of seq, picked at random, listed in any order. If replacement?
is non-false, elements are drawn with replacement, which allows for duplicates.

Like sequence-length, does not terminate on infinite sequences, and evaluates the entire
sequence.

Added in version 6.4 of package base.

Number-String Conversions

(number->string z [radix]) — string?
Z : number?
radix : (or/c 2 8 10 16) = 10

Returns a string that is the printed form of z (see[§1.4.2 “Printing Numbers™)) in the base
specified by radix. If z is inexact, radix must be 10, otherwise the exn:fail:contract
exception is raised.

Examples:

> (number->string 3.0)
l|3 . O||

> (number->string 255 8)
’|377||

(string->number s
[radix
convert-mode
decimal-mode
single-mode])
— (or/c number? #f string? extflonum?)
s ! string?
radix : (integer-in 2 16) = 10
convert-mode : (or/c 'number-or-false 'read)
= 'number-or-false

207

decimal-mode : (or/c 'decimal-as-inexact 'decimal-as-exact)
= (if (read-decimal-as-inexact)
'decimal-as-inexact
'decimal-as-exact)

single-mode : (or/c 'single 'double)
= (if (read-single-flonum)
'single
"double)

Reads and returns a number datum from s (see[§1.3.3 “Reading Numbers”). The optional
radix argument specifies the default base for the number, which can be overridden by #b,
#o, #d, or #x in the string.

If convert-mode is 'number-or-false, the result is #f if s does not parse exactly as
a number datum (with no whitespace). If convert-mode is 'read, the result can be an
extflonum, and it can be a string that contains an error message if read of s would report a
reader exception (but the result can still be #£ if read would report a symbol).

The decimal-mode argument controls number parsing the same way that the read-
decimal-as-inexact parameter affects read.

The single-mode argument controls number parsing the same way that the read-single-
flonum parameter affects read.

Examples:

> (string->number "3.0+2.5i")

3.0+2.51

> (string->number "hello")

#£

> (string->number "111" 7)

57

> (string->number "#bl11" 7)

7

> (string->number "#e+inf.0" 10 'read)
"no exact representation for +inf.0"

> (string->number "10.3" 10 'read 'decimal-as-exact)
103/10

Changed in version 6.8.0.2 of package base: Added the convert-mode and decimal-mode arguments.

Changed in version 7.3.0.5: Added the single-mode argument.

(real->decimal-string n [decimal-digits]) — string?
n : real?
decimal-digits . exact-nonnegative-integer? = 2

208

Prints n into a string and returns the string. The printed form of n shows exactly decimal-
digits digits after the decimal point. The printed form uses a minus sign if n is negative,
and it does not use a plus sign if n is positive.

Before printing, n is converted to an exact number, multiplied by (expt 10 decimal-
digits), rounded, and then divided again by (expt 10 decimal-digits). The result
of this process is an exact number whose decimal representation has no more than decimal-
digits digits after the decimal (and it is padded with trailing zeros if necessary).

Examples:

> (real->decimal-string pi)
"3.14"

> (real->decimal-string pi 5)
"3.14159"

(integer-bytes->integer bstr
signed?
[pbig-endian?
start
end]) — exact-integer?
bstr : bytes?
signed? : any/c
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the machine-format number encoded in bstr to an exact integer. The start and
end arguments specify the substring to decode, where (- end start) mustbe 1, 2, 4, or
8. If signed? is true, then the bytes are decoded as a two’s-complement number, otherwise
it is decoded as an unsigned integer. If big-endian? is true, then the first byte’s value
provides the most significant eight bits of the number, otherwise the first byte provides the
least-significant eight bits, and so on.

Changed in version 6.10.0.1 of package base: Added support for decoding a 1-byte string.

(integer->integer-bytes n
size-n
signed?
[pig-endian?
dest-bstr
start]) — bytes?
n : exact-integer?
size-n : (or/c 1 2 4 8)
signed? : any/c
big-endian? : any/c = (system-big-endian?)

209

dest-bstr : (and/c bytes? (not/c immutable?))
= (make-bytes size-n)
start : exact-nonnegative-integer? = 0

Converts the exact integer n to a machine-format number encoded in a byte string of length
size-n, which must be 1, 2, 4, or 8. If signed? is true, then the number is encoded as
two’s complement, otherwise it is encoded as an unsigned bit stream. If big-endian? is
true, then the most significant eight bits of the number are encoded in the first byte of the
resulting byte string, otherwise the least-significant bits are encoded in the first byte, and so
on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding
of n is written into dest-bstr starting at offset start, and dest-bstr is returned as the
result.

If n cannot be encoded in a byte string of the requested size and format, the
exn:fail:contract exception is raised. If dest-bstr is not of length size-n, the
exn:fail:contract exception is raised.

Changed in version 6.10.0.1 of package base: Added support for encoding a 1-byte value.

(floating-point-bytes->real bstr
[pig-endian?
start
end]) — flonum?
bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the IEEE floating-point number encoded in bstr from position start (inclusive)
to end (exclusive) to an inexact real number. The difference between start an end must
be either 4 or 8 bytes. If big-endian? is true, then the first byte’s ASCII value provides the
most significant eight bits of the IEEE representation, otherwise the first byte provides the
least-significant eight bits, and so on.

(real->floating-point-bytes x
size-n
[pig-endian?
dest-bstr
start]) — bytes?
X @ real?
size-n : (or/c 4 8)
big-endian? : any/c = (system-big-endian?)
dest-bstr : (and/c bytes? (not/c immutable?))
= (make-bytes size-n)
start : exact-nonnegative-integer? = 0

210

Converts the real number x to its IEEE representation in a byte string of length size-
n, which must be 4 or 8. If big-endian? is true, then the most significant eight bits of
the number are encoded in the first byte of the resulting byte string, otherwise the least-
significant bits are encoded in the first character, and so on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding
of n is written into dest-bstr starting with byte start, and dest-bstr is returned as the
result.

If dest-bstr is provided and it has less than start plus size-n bytes, the
exn:fail:contract exception is raised.

(system-big-endian?) — boolean?

Returns #t if the native encoding of numbers is big-endian for the machine running Racket,
#f if the native encoding is little-endian.

Extra Constants and Functions

(require racket/math) package: base

The bindings documented in this section are provided by the racket/math and racket
libraries, but not racket/base.

pi : flonum?
An approximation of 7, the ratio of a circle’s circumference to its diameter.

Examples:

> pi
3.141592653589793
> (cos pi)

-1.0

pi.f : (or/c single-flonum? flonum?)

The same value as pi, but as a single-precision floating-point number if the current platform
supports it.

Changed in version 7.3.0.5 of package base: Allow value to be a double-precision flonum.

(degrees->radians x) — real?
x @ real?

Converts an x-degree angle to radians.

Examples:

211

https://pkgs.racket-lang.org/package/base

> (degrees->radians 180)
3.141592653589793

> (sin (degrees->radians 45))
0.7071067811865475

(radians->degrees x) — real?
x : real?

Converts x radians to degrees.

Examples:

> (radians->degrees pi)

180.0

> (radians->degrees (* 1/4 pi))
45.0

(sqr z) — number?
z : number?

Returns (x z z).
(sgn x) — (or/c (=/c -1) (=/c 0) (=/c 1) +nan.0 +nan.f)

X . real?

Returns the sign of x as either -1, 0, 1, or not-a-number.

Examples:
> (sgn 10)
1
> (sgn -10.0)
-1.0
> (sgn 0)
0
> (sgn +nan.0)
+nan.0

(conjugate z) — number?
z : number?

Returns the complex conjugate of z.

Examples:

212

> (conjugate 1)

1

> (conjugate 3+4i)
3-41

(sinh z) — number?
z : number?

Returns the hyperbolic sine of z.

(cosh z) — number?
z : number?

Returns the hyperbolic cosine of z.

(tanh z) — number?
z : number?

Returns the hyperbolic tangent of z.

(exact-round x) — exact-integer?
x @ rational?

Equivalent to (inexact->exact (round x)).

(exact-floor x) — exact-integer?
x : rational?

Equivalent to (inexact->exact (floor x)).

(exact-ceiling x) — exact-integer?
x : rational?

Equivalent to (inexact->exact (ceiling x)).

(exact-truncate x) — exact-integer?
x : rational?

Equivalent to (inexact->exact (truncate x)).
(order-of-magnitude r) — (and/c exact? integer?)
r : (and/c real? positive?)

Computes the greatest exact integer m such that:

213

(<= (expt 10 m)
(inexact->exact r))
Hence also:
(< (inexact->exact r)
(expt 10 (addl m)))
Examples:

> (order-of-magnitude 999)

2
> (order-of-magnitude 1000)
3
>

(order-of-magnitude 1/100)
-2
> (order-of-magnitude 1/101)
-3

(nan? x) — boolean?
X . real?

Returns #t if x is eqv? to +nan. 0 or +nan. f; otherwise #£.

(infinite? x) — boolean?
X : real?

Returns #t if x is +inf .0, -inf .0, +inf.f, -inf . f; otherwise #f.

(positive-integer? x) — boolean?
x : any/c
Like exact-positive-integer?, but also returns #t for positive inexact? integers.

Added in version 6.8.0.2 of package base.

(negative-integer? x) — boolean?
x : any/c
The same as (and (integer? x) (negative? x)).

Added in version 6.8.0.2 of package base.

(nonpositive-integer? x) — boolean?
x @ any/c

214

The same as (and (integer? x) (not (positive? x))).

Added in version 6.8.0.2 of package base.

(nonnegative-integer? x) — boolean?
x : any/c

Like exact-nonnegative-integer?, but also returns #t for non-negative inexact? in-
tegers.

Added in version 6.8.0.2 of package base.

(natural? x) — boolean?
x : any/c

An alias for exact-nonnegative-integer?.

Added in version 6.8.0.2 of package base.

4.2.3 Flonums

(require racket/flonum) package: base

The racket/flonum library provides operations like £1+ that consume and produce only
flonums. Flonum-specific operations can provide better performance when used consis-
tently, and they are as safe as generic operations like +.

Flonum Arithmetic

(fl1+ a ...) — flonum?
a : flonum?
(f1- a b ...) — flonum?
a : flonum?
b : flonum?
(fl* a ...) — flonum?
a : flonum?
(f1/ a b ...) — flonum?
a : flonum?
b : flonum?
(flabs a) — flonum?
a : flonum?

Like +, -, *, /, and abs, but constrained to consume flonums. The result is always a flonum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for £1+ and £1* and one or more

arguments for £1- and £1/.

215

See also §19.8
“Fixnum and
Flonum
Optimizations” in
The Racket Guide.

https://pkgs.racket-lang.org/package/base

(fl= a b ...) — boolean?
a : flonum?
b : flonum?

(fl< a b ...) — boolean?
a : flonum?
b : flonum?

(f1> a b ...) — boolean?
a : flonum?
b : flonum?

(fl<= a b ...) — boolean?
a : flonum?
b : flonum?

(f1>= a b ...) — boolean?
a : flonum?
b : flonum?

(flmin a b ...) — flonum?
a : flonum?
b : flonum?

(flmax a b ...) — flonum?
a : flonum?
b : flonum?

Like =, <, >, <=, >=, min, and max, but constrained to consume flonums.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(flround a) — flonum?
a : flonum?

(flfloor a) — flonum?
a : flonum?

(flceiling a) — flonum?
a : flonum?

(fltruncate a) — flonum?
a : flonum?

Like round, floor, ceiling, and truncate, but constrained to consume flonums.

(flsin a) — flonum?
a : flonum?

(flcos a) — flonum?
a : flonum?

(fltan a) — flonum?
a : flonum?

(flasin a) — flonum?
a : flonum?

216

(flacos a) — flonum?
a : flonum?

(flatan a) — flonum?
a : flonum?

(fllog a) — flonum?
a : flonum?

(flexp a) — flonum?
a : flonum?

(flsqrt a) — flonum?
a : flonum?

Like sin, cos, tan, asin, acos, atan, log, exp, and sqrt, but constrained to consume
and produce flonums. The result is +nan. 0 when a number outside the range -1.0to 1.0 is
given to flasin or flacos, or when a negative number is given to f11log or f1sqrt.

(flexpt a b) — flonum?
a : flonum?
b : flonum?

Like expt, but constrained to consume and produce flonums.

Due to the result constraint, the results compared to expt differ in the following cases:

e (flexpt -1.0 +inf.0) — 1.0
e (flexpt a +inf.0) where a is negative — (expt (abs a) +inf.0)
e (flexpt a -inf.0) where a is negative — (expt (abs a) -inf.0)
e (expt -inf.0 b) where b is a non-integer:

— b is negative — 0.0

— b is positive — +inf .0
e (flexpt a b) where a is negative and b is not an integer — +nan. 0

(->f1 a) — flonum?
a : exact-integer?

Like exact->inexact, but constrained to consume exact integers, so the result is always a
flonum.

(fl->exact-integer a) — exact-integer?
a : flonum?

Like inexact->exact, but constrained to consume an integer flonum, so the result is always
an exact integer.

217

These special cases
correspond to pow
in C99 [C99].

(make-flrectangular a b)
— (and/c complex?
(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))
a : flonum?
b : flonum?
(flreal-part a) — flonum?
a : (and/c complex?
(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))
(flimag-part a) — flonum?
a : (and/c complex?
(lambda (c) (flonum? (real-part c)))
(lambda (c) (flonum? (imag-part c))))

Like make-rectangular, real-part, and imag-part, but both parts of the complex num-
ber must be inexact.

(flrandom rand-gen) — (and flonum? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?

Equivalent to (random rand-gen).
Flonum Vectors

A flvector is like a vector, but it holds only inexact real numbers. This representation can be
more compact, and unsafe operations on flvectors (see racket/unsafe/ops) can execute
more efficiently than unsafe operations on vectors of inexact reals.

An f64vector as provided by ffi/vector stores the same kinds of values as a flvector,
but with extra indirections that make f64vectors more convenient for working with foreign
libraries. The lack of indirections makes unsafe flvector access more efficient.

Two flvectors are equal? if they have the same length, and if the values in corresponding
slots of the flvectors are equal?.

A printed flvector starts with #£1 (, optionally with a number between the #£1 and (. See
51.3.10 “Reading Vectors™| for information on reading flvectors and [§1.4.7 “Printing Vec-|
tors”| for information on printing flvectors.

(flvector? v) — boolean?
v : any/c

Returns #t if v is a flvector, #f otherwise.

(flvector x ...) — flvector?
x . flonum?

218

Creates a flvector containing the given inexact real numbers.

Example:

> (flvector

2.0 .0)
(flvector 2.0 3.

3.04.05
0 4.0 5.0)

0
4.
(make-flvector size [x]) — flvector?

size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x.
Example:

> (make-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)

(flvector-length vec) — exact-nonnegative-integer?
vec : flvector?

Returns the length of vec (i.e., the number of slots in the flvector).

(flvector-ref vec pos) — flonum?
vec : flvector?
pos : exact-nonnegative-integer?

Returns the inexact real number in slot pos of vec. The first slot is position 0, and the last
slot is one less than (flvector-length vec).

(flvector-set! vec pos x) — flonum?
vec : flvector?
pos : exact-nonnegative-integer?
x @ flonum?

Sets the inexact real number in slot pos of vec. The first slot is position 0, and the last slot
is one less than (flvector-length vec).

(flvector-copy vec [start end]) — flvector?
vec : flvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh flvector of size (- end start), with all of the elements of vec from start
(inclusive) to end (exclusive).

219

(in-flvector vec [start stop step]) — sequence?
vec : flvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to vec when no optional arguments are supplied.
The optional arguments start, stop, and step are as in in-vector.

A in-flvector application can provide better performance for flvector iteration when it
appears directly in a for clause.

(for/flvector maybe-length (for-clause ...) body ...)
(for*/flvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr

| #:length length-expr #:fill fill-expr
length-expr : exact-nonnegative-integer?

fill-expr : flonum?

Like for/vector or for*/vector, but for flvectors. The default fill-expr produces
0.0.

(shared-flvector x ...) — flvector?
x : flonum?

Creates a flvector containing the given inexact real numbers. For communication among
places, the new flvector is allocated in the shared memory space.

Example:

> (shared-flvector 2.0 3.0 4.0 5.0)
(flvector 2.0 3.0 4.0 5.0)

(make-shared-flvector size [x]) — flvector?

size : exact-nonnegative-integer?
x @ flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x. For
communication among places, the new flvector is allocated in the shared memory space.

Example:

220

> (make-shared-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)

4.2.4 Fixnums

(require racket/fixnum) package: base

The racket/fixnum library provides operations like £x+ that consume and produce only
fixnums. The operations in this library are meant to be safe versions of unsafe operations
like unsafe-fx+. These safe operations are generally no faster than using generic primitives
like +.

The expected use of the racket/fixnum library is for code where the require of
racket/fixnum is replaced with

(require (filtered-in
(A (name) (regexp-replace #rx'"unsafe-
racket/unsafe/ops))

n name n ll))

to drop in unsafe versions of the library. Alternately, when encountering crashes with code
that uses unsafe fixnum operations, use the racket/fixnum library to help debug the prob-
lems.

Fixnum Arithmetic

(fx+ a ...) — fixnum?
a : fixnum?
(fx- a b ...) — fixnum?
a : fixnum?
b : fixnum?
(fx* a ...) — fixnum?
a : fixnum?
(fxquotient a b) — fixnum?
a : fixnum?
b : fixnum?
(fxremainder a b) — fixnum?
a : fixnum?
b : fixnum?
(fxmodulo a b) — fixnum?
a : fixnum?
b : fixnum?
(fxabs a) — fixnum?
a : fixnum?

Safe versions of unsafe-fx+, unsafe-fx-, unsafe-fx*, unsafe-fxquotient, unsafe-

221

https://pkgs.racket-lang.org/package/base

fxremainder, unsafe-fxmodulo, and unsafe-fxabs. The exn:fail:contract:non-
fixnum-result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for fx+ and £x* and one or more

arguments for £x-.

(fxand a ...) — fixnum?
a : fixnum?

(fxior a ...) — fixnum?
a : fixnum?

(fxxor a ...) — fixnum?
a : fixnum?

(fxnot a) — fixnum?
a : fixnum?

(fx1shift a b) — fixnum?
a : fixnum?
b : fixnum?

(fxrshift a b) — fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fxand, unsafe-fxior, unsafe-fxxor, unsafe-fxnot,
unsafe-fxlshift, and unsafe-fxrshift. The exn:fail:contract:non-fixnum-
result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow any number of arguments for fxand, fxior, and fxxor.

(fx= a b ...) — boolean?
a : fixnum?
b : fixnum?

(fx< a b ...) — boolean?
a : fixnum?
b : fixnum?

(fx> a b ...) — boolean?
a : fixnum?
b : fixnum?

(fx<= a b ...) — boolean?
a : fixnum?
b : fixnum?

(fx>= a b ...) — boolean?
a : fixnum?
b : fixnum?

(fxmin a b ...) — fixnum?
a : fixnum?
b : fixnum?

222

(fxmax a b ...) — fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fx=, unsafe-fx<, unsafe-fx>, unsafe-fx<=, unsafe-fx>=,
unsafe-fxmin, and unsafe-fxmax.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(fx->f1l a) — flonum?
a : fixnum?

(f1->fx a) — fixnum?
a : flonum?

Safe versions of unsafe-fx->f1 and unsafe-f1->fx.

(fixnum-for-every-system? v) — boolean?
v : any/c

Returns #t if v is a fixnum and is represented by fixnum by every Racket implementation,
#f otherwise.

Added in version 7.3.0.11 of package base.

Fixnum Vectors

A fxvector is like a vector, but it holds only fixnums. The only advantage of a fxvector over
a vector is that a shared version can be created with functions like shared-fxvector.

Two fxvectors are equal? if they have the same length, and if the values in corresponding
slots of the fxvectors are equal?.

A printed fxvector starts with #£x (, optionally with a number between the #fx and (. See
[§1.3.10 “Reading Vectors”| for information on reading fxvectors and[§1.4.7 “Printing Vec-|
ftors™ for information on printing fxvectors.

(fxvector? v) — boolean?
v : any/c

Returns #t if v is a fxvector, #f otherwise.
(fxvector x ...) — fxvector?

x : fixnum?

Creates a fxvector containing the given fixnums.

Example:

223

> (fxvector 2 3 4 5)
(fxvector 2 3 4 5)

(make-fxvector size [x]) — fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

Creates a fxvector with size elements, where every slot in the fxvector is filled with x.

Example:

> (make-fxvector 4 3)
(fxvector 3 3 3 3)

(fxvector-length vec) — exact-nonnegative-integer?
vec : fxvector?

Returns the length of vec (i.e., the number of slots in the fxvector).

(fxvector-ref vec pos) — fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?

Returns the fixnum in slot pos of vec. The first slot is position 0, and the last slot is one
less than (fxvector-length vec).

(fxvector-set! vec pos x) — fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?
x : fixnum?

Sets the fixnum in slot pos of vec. The first slot is position 0, and the last slot is one less
than (fxvector-length vec).

(fxvector-copy vec [start end]) — fxvector?
vec : fxvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh fxvector of size (- end start), with all of the elements of vec from
start (inclusive) to end (exclusive).

(in-fxvector vec [start stop step]) — sequence?
vec : fxvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) =1

224

Returns a sequence equivalent to vec when no optional arguments are supplied.
The optional arguments start, stop, and step are as in in-vector.

An in-fxvector application can provide better performance for fxvector iteration when it
appears directly in a for clause.

(for/fxvector maybe-length (for-clause ...) body ...)
(for*/fxvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr . exact-nonnegative-integer?

fill-expr : fixnum?

Like for/vector or for*/vector, but for fxvectors. The default fi11-expr produces O.
(shared-fxvector x ...) — fxvector?

x : fixnum?

Creates a fxvector containing the given fixnums. For communication among places, the new
fxvector is allocated in the shared memory space.

Example:

> (shared-fxvector 2 3 4 5)
(fxvector 2 3 4 5)

(make-shared-fxvector size [x]) — fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0

Creates a fxvector with size elements, where every slot in the fxvector is filled with x. For
communication among places, the new fxvector is allocated in the shared memory space.

Example:

> (make-shared-fxvector 4 3)
(fxvector 3 3 3 3)

4.2.5 Extflonums

(require racket/extflonum) package: base

225

https://pkgs.racket-lang.org/package/base

An extflonum is an extended-precision (80-bit) floating-point number. Extflonum arithmetic
is supported on platforms with extended-precision hardware and where the extflonum imple-
mentation does not conflict with normal double-precision arithmetic (i.e., on x86 and x86_64
platforms when Racket is compiled to use SSE instructions for floating-point operations, and
on Windows when "longdouble.d11l" is available).

A extflonum is not a number in the sense of number?. Only extflonum-specific operations
such as extf1+ perform extflonum arithmetic.

A literal extflonum is written like an inexact number, but using an explicit t or T expo-
nent marker (see|§1.3.4 “Reading Extflonums’)). For example, 3.5t0 is an extflonum. The
extflonum values for infinity are +inf . t and -inf . t. The extflonum value for not-a-number
is +nan.t.

If (extflonum-available?) produces #f, then all operations exported by
racket/extflonum raise exn:fail:unsupported, except for extflonum?,
extflonum-available?, and extflvector? (which always work). The reader (see
[§1.3 “The Reader™) always accepts extflonum input; when extflonum operations are not
supported, printing an extflonum from the reader uses its source notation (as opposed to
normalizing the format).

Two extflonums are equal? if extfl= produces #t for the extflonums. If extflonums are
not supported in a platform, extflonums are equal? only if they are eq?.

(extflonum? v) — boolean?
v : any/c

Returns #t if v is an extflonum, #f otherwise.

(extflonum-available?) — boolean?

Returns #t if extflonum operations are supported on the current platform, #£ otherwise.

Extflonum Arithmetic

(extfl+ a b) — extflonum?
a : extflonum?
b : extflonum?

(extfl- a b) — extflonum?
a : extflonum?
b : extflonum?

(extfl* a b) — extflonum?
a : extflonum?
b : extflonum?

(extfl/ a b) — extflonum?
a : extflonum?
b : extflonum?

226

(extflabs a) — extflonum?
a : extflonum?

Like f1+, f1-, f1%, f1/, and flabs, but for extflonums.

(extfl= a b) — boolean?
a : extflonum?
b : extflonum?

(extfl< a b) — boolean?
a : extflonum?
b : extflonum?

(extfl> a b) — boolean?
a : extflonum?
b : extflonum?

(extfl<= a b) — boolean?
a : extflonum?
b : extflonum?

(extfl>= a b) — boolean?
a : extflonum?
b : extflonum?

(extflmin a b) — extflonum?
a : extflonum?
b : extflonum?

(extflmax a b) — extflonum?
a : extflonum?
b : extflonum?

Like £f1=, f1<, £1>, £1<=, £1>=, f1min, and f1max, but for extflonums.

(extflround a) — extflonum?
a : extflonum?

(extflfloor a) — extflonum?
a : extflonum?

(extflceiling a) — extflonum?
a : extflonum?

(extfltruncate a) — extflonum?
a : extflonum?

Like flround, f1floor, flceiling, and f1ltruncate, but for extflonums.

(extflsin a) — extflonum?
a : extflonum?

(extflcos a) — extflonum?
a : extflonum?

(extfltan a) — extflonum?
a : extflonum?

227

(extflasin a) — extflonum?
a : extflonum?

(extflacos a) — extflonum?
a : extflonum?

(extflatan a) — extflonum?
a : extflonum?

(extfllog a) — extflonum?
a : extflonum?

(extflexp a) — extflonum?
a : extflonum?

(extflsqrt a) — extflonum?
a : extflonum?

(extflexpt a b) — extflonum?
a : extflonum?
b : extflonum?

Like f1sin, flcos, fltan, flasin, flacos, flatan, fllog, flexp, and flsqrt, and
flexpt, but for extflonums.

(->extfl a) — extflonum?
a : exact-integer?
(extfl->exact-integer a) — exact-integer?
a : extflonum?
(real->extfl a) — extflonum?
a : real?
(extfl->exact a) — (and/c real? exact?)
a : extflonum?
(extfl->inexact a) — flonum?
a : extflonum?

The first four are like ->f1, f1->exact, f1->real, inexact->exact, but for extflonums.
The extfl->inexact function converts a extflonum to its closest flonum approximation.

Extflonum Constants

pi.t : extflonum?

Like pi, but with 80 bits precision.

Extflonum Vectors

An extflvector is like an flvector, but it holds only extflonums. See also

[Extflonum Operations’|

Two extflvectors are equal? if they have the same length, and if the values in corresponding
slots of the extflvectors are equal?.

228

(extflvector? v) — boolean?
v : any/c
(extflvector x ...) — extflvector?
x : extflonum?
(make-extflvector size [x]) — extflvector?
size : exact-nonnegative-integer?
x : extflonum? = 0.0t0
(extflvector-length vec) — exact-nonnegative-integer?
vec : extflvector?
(extflvector-ref vec pos) — extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?
(extflvector-set! vec pos x) — extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?
x @ extflonum?
(extflvector-copy vec [start end]) — extflvector?
vec : extflvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Like flvector?, flvector, make-flvector, flvector-length, flvector-ref,
flvector-set, and flvector-copy, but for extflvectors.

(in-extflvector vec [start stop step]) — sequence?

vec : extflvector?

start : exact-nonnegative-integer? = 0

stop : (or/c exact-integer? #f) = #f

step : (and/c exact-integer? (not/c zero?)) =1
(for/extflvector maybe-length (for-clause ...) body ...)
(for*/extflvector maybe-length (for-clause ...) body ...)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr . exact-nonnegative-integer?

fill-expr : extflonum?

Like in-flvector, for/flvector, and for*/flvector, but for extflvectors.

(shared-extflvector x ...) — extflvector?
x : extflonum?

(make-shared-extflvector size [x]) — extflvector?
size : exact-nonnegative-integer?
x : extflonum? = 0.0t0

229

Like shared-flvector and make-shared-flvector, but for extflvectors.

Extflonum Byte Strings

(floating-point-bytes->extfl bstr
[big-endian?
start
end]) — extflonum?
bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Like floating-point-bytes->real, but for extflonums: Converts the extended-precision
floating-point number encoded in bstr from position start (inclusive) to end (exclusive)
to an extflonum. The difference between start an end must be 10 bytes.

(extfl->floating-point-bytes x

[pig-endian?
dest-bstr
start]) — bytes?

x : extflonum?

big-endian? : any/c = (system-big-endian?)

dest-bstr : (and/c bytes? (not/c immutable?))

= (make-bytes 10)
start : exact-nonnegative-integer? = 0

Like real->floating-point-bytes, but for extflonums: Converts x to its representation
in a byte string of length 10.

4.3 Strings

A string is a fixed-length array of characters.

A string can be mutable or immutable. When an immutable string is provided to a pro-
cedure like string-set!, the exn:fail:contract exception is raised. String constants
generated by the default reader (see|§1.3.7 “Reading Strings’]) are immutable, and they are
interned in read-syntax mode.

Two strings are equal? when they have the same length and contain the same sequence of
characters.

A string can be used as a single-valued sequence (see(84.14.1 “Sequences’)). The characters
of the string serve as elements of the sequence. See also in-string.

230

§3.4 “Strings
(Unicode)” in The
Racket Guide
introduces strings.

See [§1.3.7 “Reading Strings™] for information on reading strings and
[Strings™| for information on printing strings.

See also: immutable?, symbol->string, bytes->string/utf-8.

4.3.1 String Constructors, Selectors, and Mutators

(string? v) — boolean?
v : any/c

Returns #t if v is a string, #f otherwise.

Examples:

> (string? "Apple")
#t
> (string? 'apple)
#f

(make-string k [char]) — string?
k : exact-nonnegative-integer?
char : char? = #\nul

Returns a new mutable string of length k where each position in the string is initialized with
the character char.

Example:

> (make-string 5 #\z)
"zzzzz"

(string char ...) — string?
char : char?

Returns a new mutable string whose length is the number of provided chars, and whose
positions are initialized with the given chars.

Example:

> (string #\A #\p #\p #\1 #\e)
llApplell

(string->immutable-string str) — (and/c string? immutable?)
str . string?

231

Returns an immutable string with the same content as str, returning str itself if str is
immutable.

(string-length str) — exact-nonnegative-integer?
str : string?

Returns the length of str.

Example:

> (string-length "Apple")
5

(string-ref str k) — char?
str : string?
k : exact-nonnegative-integer?

Returns the character at position k in str. The first position in the string corresponds to 0, so
the position k must be less than the length of the string, otherwise the exn:fail:contract
exception is raised.

Example:

> (string-ref "Apple" 0)
#\A

(string-set! str k char) — void?
str : (and/c string? (not/c immutable?))
k . exact-nonnegative-integer?
char : char?

Changes the character position k in str to char. The first position in the string corre-
sponds to O, so the position k must be less than the length of the string, otherwise the
exn:fail:contract exception is raised.

Examples:

> (define s (string #\A #\p #\p #\1 #\e))
> (string-set! s 4 #\y)
> s

n Apply n

(substring str start [end]) — string?
str : string?
start . exact-nonnegative-integer?
end : exact-nonnegative-integer? = (string-length str)

232

Returns a new mutable string that is (- end start) characters long, and that contains the
same characters as str from start inclusive to end exclusive. The first position in a string
corresponds to 0, so the start and end arguments must be less than or equal to the length of
str, and end must be greater than or equal to start, otherwise the exn:fail:contract
exception is raised.

Examples:

> (substring "Apple" 1 3)
l|pp|l

> (substring "Apple" 1)
llpplell

(string-copy str) — string?
str : string?

Returns (substring str 0).
Examples:

> (define s1 "Yui')

> (define pilot (string-copy s1))

> (list s1 pilot)

'("Yui" "Yui")

> (for ([i (in-naturals)] [ch '(#\R #\e #\i)])
(string-set! pilot i ch))

> (list sl pilot)

"("Yui" "Rei")

(string-copy! dest
dest-start
src
[src-start
src-end]) — void?
dest : (and/c string? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src . string?
src-start . exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (string-length src)

Changes the characters of dest starting at position dest-start to match the characters
in src from src-start (inclusive) to src-end (exclusive), where the first position in a
string corresponds to 0. The strings dest and src can be the same string, and in that case
the destination region can overlap with the source region; the destination characters after the
copy match the source characters from before the copy. If any of dest-start, src-start,

233

or src-end are out of range (taking into account the sizes of the strings and the source and
destination regions), the exn:fail:contract exception is raised.

Examples:
> (define s (string #\A #\p #\p #\1 #\e))
> (string-copy! s 4 "y")
> (string-copy! s 0 s 3 4)
> s
lllpplyll

(string-fill! dest char) — void?
dest : (and/c string? (not/c immutable?))
char : char?

Changes dest so that every position in the string is filled with char.
Examples:
> (define s (string #\A #\p #\p #\1 #\e))

> (string-fill! s #\q)
> s

"qqqqq"

(string-append str ...) — string?
str : string?

Returns a new mutable string that is as long as the sum of the given strs’ lengths, and that
contains the concatenated characters of the given strs. If no strs are provided, the result
is a zero-length string.

Example:

> (string-append "Apple" "Banana")
"AppleBanana"

(string->list str) — (listof char?)
str . string?

Returns a new list of characters corresponding to the content of str. That is, the length
of the list is (string-length str), and the sequence of characters in str is the same
sequence in the result list.

Example:

234

> (string->list "Apple")
"GE\A #\p #\p #\1 #\e)

(list->string Ist) — string?
1st : (listof char?)

Returns a new mutable string whose content is the list of characters in 1st. That is, the
length of the string is (length 1st), and the sequence of characters in 1st is the same
sequence in the result string.

Example:
> (list->string (list #\A #\p #\p #\1 #\e))

n Apple n

(build-string n proc) — string?
n . exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . char?)

Creates a string of n characters by applying proc to the integers from 0 to (subl n) in
order. If str is the resulting string, then (string-ref str i) is the character produced
by (proc 1i).

Example:

> (build-string 5 (lambda (i) (integer->char (+ i 97))))
"abcde"

4.3.2 String Comparisons

(string=7? strl str2 ...) — boolean?
strl : string?
str2 . string?

Returns #t if all of the arguments are equal?.
Examples:

> (string=7 "Apple" "apple")

#E

> (Stringz? g "ag" "a")
#E

235

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string<? strl str2 ...) — boolean?
strl : string?
str2 : string?

Returns #t if the arguments are lexicographically sorted increasing, where individual char-
acters are ordered by char<?, #f otherwise.
Examples:

> (string<? "Apple" "apple")

#t

> (string<? "apple" "Apple")
#f

> (string<? ngt npn onen)

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.
(string<=?7 strl str2 ...) — boolean?
strl : string?
str2 . string?
Like string<?, but checks whether the arguments are nondecreasing.

Examples:

> (string<=7 "Apple" "apple")

#t

> (string<=?7 "apple" "Apple")
#£f

> (string<=? ngm o npn o npn)

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string>? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string<?, but checks whether the arguments are decreasing.

Examples:

236

> (string>? "Apple" "apple")

#f

> (string>? "apple" "Apple")
#t

> (String>? men npn ngn)

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.
(string>=? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string<?, but checks whether the arguments are nonincreasing.

Examples:

> (string>=7 "Apple" "apple")

#f

> (String>=? "a_ppleli "Apple")
#t

> (string>=? nen npn npmy

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci=?7 strl str2 ...) — boolean?
strl : string?
str2 : string?

Returns #t if all of the arguments are equal? after locale-insensitive case-folding via
string-foldcase.

Examples:

> (string-ci=7 "Apple" "apple")
#t

> (string-ci=7 "a" "a" "a")

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci<? strl str2 ...) — boolean?
strl : string?
str2 . string?

237

Like string<?, but checks whether the arguments would be in increasing order if each was
first case-folded using string-foldcase (which is locale-insensitive).

Examples:

> (string-ci<? "Apple" "apple")

#E

> (string-ci<? "apple" "banana")
#t

> (string-ci<? "a" "b" "c")

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci<=? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:

> (string-ci<=7 "Apple" "apple")

#t

> (string-ci<=?7 "apple" "Apple")
#t

> (string-ci<=7 "a" "b" "b")

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci>? strl str2 ...) — boolean?
strl . string?
str2 . string?

Like string-ci<?, but checks whether the arguments would be decreasing after case-
folding.

Examples:

> (string-ci>?7 "Apple" "apple")

#f

> (string-ci>? "banana" "Apple")
#t

> (string-ci>? "c¢" "b" "a")

#t

238

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-ci>=7 strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nonincreasing after case-
folding.
Examples:

> (string-ci>=? "Apple" "apple")

#t

> (string-ci>=7 "apple" "Apple")
#t

> (string-ci>=? "c" "b" "b")

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.3.3 String Conversions

(string-upcase str) — string?
str : string?

Returns a string whose characters are the upcase conversion of the characters in str. The
conversion uses Unicode’s locale-independent conversion rules that map code-point se-
quences to code-point sequences (instead of simply mapping a 1-to-1 function on code points
over the string), so the string produced by the conversion can be longer than the input string.

Examples:
> (string-upcase "abc!")
IIABC ! n

> (string-upcase "Strafe")
"STRASSE"

(string-downcase string) — string?
string : string?

Like string-upcase, but the downcase conversion.

Examples:

239

> (string-downcase "aBC!")

llabc!ll

> (string-downcase "StraBe")
"strafie"

> (string-downcase "KAOX")
llﬁaogll

> (string-downcase "X")

’lo-ll

(string-titlecase string) — string?
string : string?

Like string-upcase, but the titlecase conversion only for the first character in each se-
quence of cased characters in str (ignoring case-ignorable characters).

Examples:

> (string-titlecase "aBC tw(0")
"Abc Two"

> (string-titlecase "y2k")

"Y2K"

> (string-titlecase '"main straRe")
"Main Strafe"

> (string-titlecase "stra Re")
"Stra Sse"

(string-foldcase string) — string?
string : string?
Like string-upcase, but the case-folding conversion.

Examples:

> (string-foldcase "aBC!")

llabc!ll

> (string-foldcase "StraRe")
"strasse"

> (string-foldcase "KAOX")
"KZOLOO'"

(string-normalize-nfd string) — string?
string : string?

Returns a string that is the Unicode normalized form D of string. If the given string is
already in the corresponding Unicode normal form, the string may be returned directly as
the result (instead of a newly allocated string).

240

(string-normalize-nfkd string) — string?
string : string?

Like string-normalize-nfd, but for normalized form KD.

(string-normalize-nfc string) — string?
string : string?

Like string-normalize-nfd, but for normalized form C.

(string-normalize-nfkc string) — string?
string : string?

Like string-normalize-nfd, but for normalized form KC.

4.3.4 Locale-Specific String Operations

(string-locale=7 strl str2 ...) — boolean?
strl . string?
str2 : string?

Like string="7, but the strings are compared in a locale-specific way, based on the value of
current-locale. See[§13.1.1 “Encodings and Locales’| for more information on locales.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale<? strl str2 ...+) — boolean?
strl : string?
str2 . string?

Like string<?, but the sort order compares strings in a locale-specific way, based on the
value of current-locale. In particular, the sort order may not be simply a lexicographic
extension of character ordering.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale>? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string>7, but locale-specific like string-locale<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

241

(string-locale-ci=? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string-locale=7, but strings are compared using rules that are both locale-specific
and case-insensitive (depending on what “case-insensitive” means for the current locale).

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale-ci<? strl str2 ...) — boolean?
strl : string?
str2 . string?

Like string<?, but both locale-sensitive and case-insensitive like string-locale-ci="7.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(string-locale-ci>? strl str2 ...) — boolean?
strl : string?
str2 : string?

Like string>?, but both locale-sensitive and case-insensitive like string-locale-ci="?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.
(string-locale-upcase string) — string?

string : string?

Like string-upcase, but using locale-specific case-conversion rules based on the value of
current-locale.

(string-locale-downcase string) — string?
string : string?

Like string-downcase, but using locale-specific case-conversion rules based on the value
of current-locale.

4.3.5 Additional String Functions

(require racket/string) package: [base

The bindings documented in this section are provided by the racket/string and racket
libraries, but not racket/base.

242

https://pkgs.racket-lang.org/package/base

(string-append* str ... strs) — string?
str . string?
strs : (listof string?)

Like string-append, but the last argument is used as a list of arguments for string-
append, so (string-append* str ... strs) isthe same as (apply string-append
str ... strs). In other words, the relationship between string-append and string-
appendx is similar to the one between 1ist and listx*.

Examples:

> (string—append* ngn npn '("C” "d"))

llabcdll

> (string-append* (cdr (append* (map (lambda (x) (list ", " x))
l(llAlphall "Beta" "Gamma")))))

"Alpha, Beta, Gamma"

(string-join strs
[sep
#:before-first before-first
#:before-last before-last
#:after-last after-last]) — string?
strs : (listof string?)
sep : string? = " "
before-first : string? = ""
before-last : string? = sep
after-last : string? = ""

Appends the strings in strs, inserting sep between each pair of strings in strs. before-
last, before-first, and after-last are analogous to the inputs of add-between: they
specify an alternate separator between the last two strings, a prefix string, and a suffix string
respectively.

Examples:

> (string-join '("one" "two" "three" "four"))
"one two three four"
> (string-join '("one" "two" "three" "four") ", ")
"one, two, three, four"
> (string-join '("one" "two" "three" "four") " potato ")
"one potato two potato three potato four"
> (string-join '("x" "y" "z") ", "
#:before-first "Todo: "
#:before-last " and "
#:after-last ".")

243

"Todo: x, y and z."

(string-normalize-spaces str

[sep

space

#:trim? trim?

#:repeat? repeat?]) — string?
str : string?
sep : (or/c string? regexp?) = #px"\\s+"
space : string? =
trim? : any/c = #t
repeat? : any/c = #f

"non

Normalizes spaces in the input str by trimming it (using string-trim and sep) and re-
placing all whitespace sequences in the result with space, which defaults to a single space.

Example:

> (string-normalize-spaces " foo bar baz \r\n\t")
"foo bar baz"

The result of (string-normalize-spaces str sep space) is the same as (string-
join (string-split str sep) space).

(string-replace str from to [#:2ll7 all?]) — string?
str . string?
from : (or/c string? regexp?)
to : string?
all? : any/c = #t

Returns str with all occurrences of from replaced with by to. If from is a string, it is
matched literally (as opposed to being used as a regular expression).

By default, all occurrences are replaced, but only the first match is replaced if al1? is #f.

Example:

> (string-replace "foo bar baz" "bar" "blah")
"foo blah baz"

(string-split str
[sep
#:trim? trim?
#:repeat? repeat?]) — (listof string?)
str . string?

244

sep : (or/c string? regexp?) = #px"\\s+"
trim? : any/c = #t
repeat? : any/c = #f

Splits the input str on sep, returning a list of substrings of str that are separated by sep,
defaulting to splitting the input on whitespaces. The input is first trimmed using sep (see
string-trim), unless trim? is #f. Empty matches are handled in the same way as for
regexp-split. As a special case, if str is the empty string after trimming, the result is
"() instead of ' ("").

Like string-trim, provide sep to use a different separator, and repeat? controls match-
ing repeated sequences.

Examples:

> (string-split " foo bar baz \r\n\t")
I(Ilfooll ||barll llbazll)

> (string-split " ")

o)

> (string-split " " #:trim? #f)

I(IIII llll)

(string-trim str
[sep
#:left? left?
#:right? right?
#:repeat? repeat?]) — string?
str : string?
sep : (or/c string? regexp?) = #px"\\s+"
left? : any/c = #t
right? : any/c = #t
repeat? : any/c = #f

Trims the input str by removing prefix and suffix sep, which defaults to whitespace. A
string sep is matched literally (as opposed to being used as a regular expression).

Use #:1eft? #f or #:right? #f to suppress trimming the corresponding side. When
repeat? is #f (the default), only one match is removed from each side; when repeat? is
true, all initial or trailing matches are trimmed (which is an alternative to using a regular
expression sep that contains +).

Examples:
> (string-trim " foo bar baz \r\n\t")

"foo bar baz"

245

> (string-trim " foo bar baz \r\n\t" " " #:repeat? #t)
"foo bar baz \r\n\t"

> (string-trim "aaaxaayaa" "aa")

"axaay"

(non-empty-string? x) — boolean?
x : any/c

Returns #t if x is a string and is not empty; returns #f otherwise.

Added in version 6.3 of package base.

(string-contains? s contained) — boolean?
s . string?
contained : string?
(string-prefix? s prefix) — boolean?
s : string?
prefix : string?
(string-suffix? s suffix) — boolean?
s . string?
suffix : string?

Checks whether s includes at any location, start with, or ends with the second argument,
respectively.

Examples:

> (string-prefix? "Racket" "R")

#t

> (string-prefix? "Jacket" "R")

#f

> (string-suffix? "Racket" "et")

#t

> (string-contains? "Racket" "ack")
#t

Added in version 6.3 of package base.

4.3.6 Converting Values to Strings

(require racket/format) package: base

The bindings documented in this section are provided by the racket/format and racket
libraries, but not racket/base.

246

https://pkgs.racket-lang.org/package/base

The racket/format library provides functions for converting Racket values to strings. In
addition to features like padding and numeric formatting, the functions have the virtue of
being shorter than format (with format string), number->string, or string-append.

(~a v
[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:1limit-marker limit-marker
#:1limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? = ""

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = ""

limit-prefix? . boolean? = #f

align : (or/c 'left 'center 'right)

n n

'left

pad-string : non-empty-string? =
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Converts each v to a string in display mode—that is, like (format "~a" v)—then con-
catentates the results with separator between consecutive items, and then pads or truncates
the string to be at least min-width characters and at most max-width characters.

Examples:

> (~a "north")
"north"

> (~a 'south)
"south"

> (~a #"east")
"east"

> (~a #\w "e" 'st)
"west"

> (~a (1list "red" 'green #"blue"))
"(red green blue)"
> (~a 17)

247

n 17"

> (~a #ele20)
""100000000000000000000"
> (~a pi)
"3.141592653589793"

> (~a (expt 6.1 87))
"2.1071509386211452e+68"

The ~a function is primarily useful for strings, numbers, and other atomic data. The ~v and
~s functions are better suited to compound data.

Let s be the concatenated string forms of the vs plus separators. If s is longer than max-
width characters, it is truncated to exactly max-width characters. If s is shorter than min-
width characters, it is padded to exactly min-width characters. Otherwise s is returned
unchanged. If min-width is greater than max-width, an exception is raised.

If s is longer than max-width characters, it is truncated and the end of the string is replaced
with 1imit-marker. If 1imit-marker is longer than max-width, an exception is raised.
If 1imit-prefix?is #t, the beginning of the string is truncated instead of the end.

Examples:

> (~a "abcde" #:max-width 5)

"abcde"

> (~a "abcde" #:max-width 4)

"abcd"

> (~a "abcde" #:max-width 4 #:limit-marker "x")
llabc*ll

> (~a "abcde" #:max-width 4 #:1limit-marker "...")
lla n

> (~a "The quick brown fox" #:max-width 15 #:limit-marker "")
"The quick brown"

> (~a "The quick brown fox" #:max-width 15 #:limit-marker "...")
"The quick br..."

> (~a "The quick brown fox" #:max-width 15 #:1imit-

marker "..." #:limit-prefix? #f)

"The quick br..."

If s is shorter than min-width, it is padded to at least min-width characters. If align
is 'left, then only right padding is added; if align is 'right, then only left padding
is added; and if align is 'center, then roughly equal amounts of left padding and right
padding are added.

Padding is specified as a non-empty string. Left padding consists of left-pad-string
repeated in its entirety as many times as possible followed by a prefix of left-pad-string

248

to fill the remaining space. In contrast, right padding consists of a suffix of right-pad-
string followed by a number of copies of right-pad-string in its entirety. Thus left
padding starts with the start of left-pad-string and right padding ends with the end of
right-pad-string.

Examples:

> (~a "apple" #:min-width 20 #:align 'left)

llapple n

> (~a "pear" #:min-width 20 #:align 'left #:right-pad-string "
‘ll)

"pear "

> (~a "plum" #:min-width 20 #:align 'right #:left-pad-string ".
Il)

.o . plum"
> (~a "orange" #:min-width 20 #:align 'center
#:left-pad-string "- " #:right-pad-string " -")

- - - -orange- - - -

Use width to set both max-width and min-width simultaneously, ensuring that the result-
ing string is exactly width characters long:

> (~a "terse" #:width 6)
"terse "

> (~a "loquacious" #:width 6)
"loquac"

(~v v

:separator separator

:width width

:max-width max-width

:min-width min-width

:limit-marker limit-marker

:limit-prefix? limit-prefix?

ralign align

:pad-string pad-string

:left-pad-string left-pad-string

:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? =

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = "..."

,_\
HoH HF HHF R HHEH HE

249

limit-prefix? : boolean? = #f

align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like ~a, but each value is converted like (format "~v" v), the default separator is " ",
and the default limit markeris "...".

Examples:

> (~v "north")

n \ Ilnorth\ nn

> (~v 'south)

"'south"

> (~v #"east")

"#\"east\""

> (~v #\w)

ll#\\wll

> (~v (list "red" 'green #"blue"))
"' (\"red\" green #\"blue\")"

Use ~v to produce text that talks about Racket values.
Example:

> (let ([nums (for/list ([i 10]) i)1)
(~a "The even numbers in " (~v nums)
" are (~v (filter even? nums)) "."))
"The even numbers in '(0 1 2 34567 8 9) are '(0 2 4 6 8)."

(~s v
[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:1limit-marker limit-marker
#:1limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) — string?

v : any/c

separator . string? = " "

250

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = "..."

limit-prefix? : boolean? = #f

align : (or/c 'left 'center 'right) = 'left

pad-string : non-empty-string? = " "

left-pad-string : non-empty-string? = pad-string

right-pad-string : non-empty-string? = pad-string

Like ~a, but each value is converted like (format "~s" v), the default separator is " ",
and the default limit markeris "...".

Examples:

> (~s "north")

"\"north\""

> (~s 'south)

"south"

> (~s #"east")

ll#\lleast\ nn

> (~s #\w)

n #\\wll

> (~s (1list "red" 'green #"blue"))
"(\"red\" green #\"blue\")"

(~e v
[#:separator separator
#:width width
#:max-width max-width
#:min-width min-width
#:1limit-marker limit-marker
#:1limit-prefix? limit-prefix?
#:align align
#:pad-string pad-string
#:left-pad-string left-pad-string
#:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? = " "

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

251

limit-marker : string? = "..."

limit-prefix? . boolean? = #f

align : (or/c 'left 'center 'right) = 'left
pad-string : non-empty-string? = " "
left-pad-string : non-empty-string? = pad-string
right-pad-string : non-empty-string? = pad-string

Like ~a, but each value is converted like (format "~e" v), the default separatoris " ",
and the default limit markeris "...".

Examples:

> (~e "north")

n \ Ilnorth\ nn

> (~e 'south)

"'south"

> (~e #"east")

II#\IleaSt\ nn

> (~e #\w)

ll#\\wll

> (~e (1list "red" 'green #"blue"))
ni (\llred\ n green #\llblue\ll) n

(~r x
:sign sign
:base base
:precision precision
:notation notation
:format-exponent format-exponent
:min-width min-width
:pad-string pad-string]) — string?
x @ rational?
sign : (or/c #f '+ '++ 'parens
(let ([ind (or/c string? (list/c string? string?))])
(list/c ind ind ind)))

,_‘
H oH HF HH O H

= #f
base : (or/c (integer-in 2 36) (list/c 'up (integer-in 2 36)))
= 10
precision : (or/c exact-nonnegative-integer? =6
(list/c '= exact-nonnegative-integer?))
notation : (or/c 'positional 'exponential
(-> rational? (or/c 'positional 'exponential)))
= 'positional
format-exponent : (or/c #f string? (-> exact-integer? string?))
= #f

252

min-width : exact-positive-integer? = 1
pad-string : non-empty-string? = " "

Converts the rational number x to a string in either positional or exponential notation, de-
pending on notation. The exactness or inexactness of x does not affect its formatting.

The optional arguments control number formatting:

e notation — determines whether the number is printed in positional or exponential
notation. If notation is a function, it is applied to x to get the notation to be used.

Examples:

> (~r 12345)
"'12345"
> (~r 12345 #:notation 'exponential)
"1.2345e+04"
> (let ([pick-notation
(lambda (x)
(if (or (< (abs x) 0.001) (> (abs x) 1000))
'exponential
'positional))])
(for/list ([i (in-range 1 5)])
(~r (expt 17 i) #:notation pick-notation)))

t("17" "289" "4.913e+03" "8.3521e+04")

e precision — controls the number of digits after the decimal point (or more accu-
rately, the radix point). When x is formatted in exponential form, precision applies
to the significand.

If precision is a natural number, then up to precision digits are displayed, but
trailing zeroes are dropped, and if all digits after the decimal point are dropped the
decimal point is also dropped. If precision is (list '= digits), then exactly
digits digits after the decimal point are used, and the decimal point is never dropped.

Examples:

> (~r pi)

"3.141593"

> (~r pi #:precision 4)
"3.1416"

> (~r pi #:precision 0)

||3||

> (~r 1.5 #:precision 4)
l|1.5’|

> (~r 1.5 #:precision '(= 4))
"1.5000"

253

http://en.wikipedia.org/wiki/Radix_point

> (~r 50 #:precision 2)

"50"

> (~r 50 #:precision '(= 2))
"50.00"

> (~r 50 #:precision '(= 0))
"50."

e min-width — if x would normally be printed with fewer than min-width digits
(including the decimal point but not including the sign indicator), the digits are left-
padded using pad-string.

Examples:
> (~r 17)
||17||
> (~r 17 #:min-width 4)
n 17"
> (~r -42 #:min-width 4)
n_o49om
> (~r 1.5 #:min-width 4)
"5
> (~r 1.5 #:precision 4 #:min-width 10)
n 1‘5"
> (~r 1.5 #:precision '(= 4) #:min-width 10)
" 1.5000"
> (~r #elel0 #:min-width 6)
""10000000000"

* pad-string — specifies the string used to pad the number to at least min-width
characters (not including the sign indicator). The padding is placed between the sign
and the normal digits of x.

Examples:
> (~r 17 #:min-width 4 #:pad-string "0")
||0017||

> (~r -42 #:min-width 4 #:pad-string "0")
"-0042"

* sign — controls how the sign of the number is indicated:

— If sign is #f (the default), no sign output is generated if x is either positive or
zero, and a minus sign is prefixed if x is negative.

Example:

> (for/list ([x '(17 0 -42)]1) (~r x))
v(lvl7u non n_42u)

254

If sign is '+, no sign output is generated if x is zero, a plus sign is prefixed if x
is positive, and a minus sign is prefixed if x is negative.

Example:

> (for/list ([x '(17 0 -42)]1) (~r x #:sign '+))
I(Il+17ll ol ||_42n)

— If sign is '++, a plus sign is prefixed if x is zero or positive, and a minus sign
is prefixed if x is negative.

Example:

> (for/list ([x '(17 0 -42)]) (~r x #:sign '++))
(LT QM M_42M)

— If sign is 'parens, no sign output is generated if x is zero or positive, and the
number is enclosed in parentheses if x is negative.

Example:

> (for/list ([x '(17 0 -42)]) (~r x #:sign 'parens))
l(|l17l| |lO|| l|(42) Il)

— Ifsignis (list pos-ind zero-ind neg-ind),then pos-ind, zero-ind,
and neg-ind are used to indicate positive, zero, and negative numbers, respec-
tively. Each indicator is either a string to be used as a prefix or a list containing
two strings: a prefix and a suffix.

Example:
> (let ([sign—table QG up") "an even " ("""
down")) 1)
(for/list ([x '(17 0 -42)]) (~r x #:sign sign-
table)))

"("17 up" "an even 0" "42 down")

The default behavior is equivalent to ' ("" "" "-"); the 'parens mode is
equivalentto ' ("""t ((" ")),

* base — controls the base that x is formatted in. If base is a number greater than 10,
then lower-case letters are used. If base is (1ist 'up base*) and base* is greater
than 10, then upper-case letters are used.

Examples:

> (~r 100 #:base 7)

102"

> (~r 4.5 #:base 2)

"100.1"

> (~r 3735928559 #:base 16)

255

"deadbeef"

> (~r 3735928559 #:base '(up 16))

"DEADBEEF"

> (~r 3735928559 #:base '(up 16) #:notation 'exponential)
"D.EADBEF*16~+07"

e format-exponent — determines how the exponent is displayed.

If format-exponent is a string, the exponent is displayed with an explicit sign (as
with a sign of '++) and at least two digits, separated from the significand by the
“exponent marker” format-exponent:

> (~r 1234 #:notation 'exponential #:format-exponent "E")
"1.234E+03"

If format-exponent is #f, the “exponent marker” is "e" if base is 10 and a string
involving base otherwise:

> (~r 1234 #:notation 'exponential)
"1.234e+03"

> (~r 1234 #:notation 'exponential #:base 8)
"2.322x8~+03"

If format-exponent is a procedure, it is applied to the exponent and the resulting
string is appended to the significand:

> (~r 1234 #:notation 'exponential
#:format-exponent (lambda (e) (format "E~a" e)))
"1.234E3"

256

(~.a v

:separator separator

:width width

:max-width max-width

:min-width min-width

:limit-marker limit-marker

:limit-prefix? limit-prefix?

:align align

:pad-string pad-string

:left-pad-string left-pad-string

:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? = ""

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = ""

limit-prefix? . boolean? = #f

align : (or/c 'left 'center 'right) = 'left

pad-string : non-empty-string? = " "

left-pad-string : non-empty-string? = pad-string

right-pad-string : non-empty-string? = pad-string

,_,
H o H O H O HHHH

257

(~.v v

:separator separator

:width width

:max-width max-width

:min-width min-width

:limit-marker limit-marker

:limit-prefix? limit-prefix?

:align align

:pad-string pad-string

:left-pad-string left-pad-string

:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? = " "

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = "..."

limit-prefix? . boolean? = #f

align : (or/c 'left 'center 'right) = 'left

pad-string : non-empty-string? = " "

left-pad-string : non-empty-string? = pad-string

right-pad-string : non-empty-string? = pad-string

,_,
H o H O H O HHHH

258

(~.8 v

:separator separator

:width width

:max-width max-width

:min-width min-width

:limit-marker limit-marker

:limit-prefix? limit-prefix?

:align align

:pad-string pad-string

:left-pad-string left-pad-string

:right-pad-string right-pad-string]) — string?

v : any/c

separator : string? = " "

width : (or/c exact-nonnegative-integer? #f) = #f

max-width : (or/c exact-nonnegative-integer? +inf.0)
= (or width +inf.0)

min-width : exact-nonnegative-integer? = (or width 0)

limit-marker : string? = "..."

limit-prefix? . boolean? = #f

align : (or/c 'left 'center 'right) = 'left

pad-string : non-empty-string? = " "

left-pad-string : non-empty-string? = pad-string

right-pad-string : non-empty-string? = pad-string

,_,
H o H O H O HHHH

Like ~a, ~v, and ~s, but each v is formatted like (format "~.a" v), (format "~.v"
v),and (format "~.s" v), respectively.

4.4 Byte Strings

A byte string is a fixed-length array of bytes. A byte is an exact integer between 0 and 255
inclusive.

A byte string can be mutable or immutable. When an immutable byte string is provided to
a procedure like bytes-set!, the exn:fail:contract exception is raised. Byte-string
constants generated by the default reader (see[§1.3.7 “Reading Strings™) are immutable, and
they are interned in read-syntax mode.

Two byte strings are equal? when they have the same length and contain the same sequence
of bytes.

A byte string can be used as a single-valued sequence (see[§4.14.1 “Sequences’)). The bytes
of the string serve as elements of the sequence. See also in-bytes.

See [§1.3.7 “Reading Strings”| for information on reading byte strings and [§1.4.6 “Printing]

259 |

§3.5 “Bytes and
Byte Strings” in
The Racket Guide
introduces byte
strings.

for information on printing byte strings.

See also: immutable?.

4.4.1 Byte String Constructors, Selectors, and Mutators

(bytes? v) — boolean?
v : any/c

Returns #t if v is a byte string, #f otherwise.
Examples:

> (bytes? #"Apple")

#t

> (bytes? "Apple")
#t

(make-bytes k [b]) — bytes?
k : exact-nonnegative-integer?
b : byte? =0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b.
Example:

> (make-bytes 5 65)
#"AAAAA"

(bytes b ...) — bytes?
b : byte?

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs.
Example:

> (bytes 65 112 112 108 101)

llApple n

(bytes->immutable-bytes bstr) — (and/c bytes? immutable?)
bstr : bytes?

260

Returns an immutable byte string with the same content as bstr, returning bstr itself if
bstr is immutable.

Examples:

> (bytes->immutable-bytes (bytes 65 65 65))

#"AAA"

> (define b (bytes->immutable-bytes (make-bytes 5 65)))
> (bytes->immutable-bytes b)

#"AAAAA"

> (eq? (bytes->immutable-bytes b) b)

#t

(byte? v) — boolean?
v : any/c

Returns #t if v is a byte (i.e., an exact integer between 0 and 255 inclusive), #£f otherwise.

Examples:

> (byte? 65)
#t

> (byte? 0)
#t

> (byte? 256)
#t

> (byte? -1)
#f

(bytes-length bstr) — exact-nonnegative-integer?

bstr : bytes?

Returns the length of bstr.

Example:
> (bytes-length #"Apple")
5

(bytes-ref bstr k) — byte?
bstr : bytes?
k : exact-nonnegative-integer?

Returns the character at position k in bstr. The first position in the bytes corre-
sponds to O, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Example:

261

> (bytes-ref #"Apple" 0)
65

(bytes-set! bstr k b) — void?
bstr : (and/c bytes? (not/c immutable?))
k : exact-nonnegative-integer?
b : byte?

Changes the character position k in bstr to b. The first position in the byte string cor-
responds to O, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-set! s 4 121)

> s

#llApplyll

(subbytes bstr start [end]) — Dbytes?
bstr : bytes?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (bytes-length str)

Returns a new mutable byte string that is (- end start) bytes long, and that contains the
same bytes as bstr from start inclusive to end exclusive. The start and end arguments
must be less than or equal to the length of bstr, and end must be greater than or equal to
start, otherwise the exn:fail:contract exception is raised.

Examples:

> (subbytes #"Apple" 1 3)
#llppll

> (subbytes #"Apple" 1)
#llpplell

(bytes-copy bstr) — bytes?
bstr : bytes?

Returns (subbytes str 0).

(bytes-copy! dest
dest-start
src
[src-start
src-end]) — void?

262

dest : (and/c bytes? (not/c immutable?))

dest-start : exact-nonnegative-integer?

src : bytes?

src-start : exact-nonnegative-integer? = 0

src-end : exact-nonnegative-integer? = (bytes-length src)

Changes the bytes of dest starting at position dest-start to match the bytes in src from
src-start (inclusive) to src-end (exclusive). The bytes strings dest and src can be the
same byte string, and in that case the destination region can overlap with the source region;
the destination bytes after the copy match the source bytes from before the copy. If any of
dest-start, src-start, or src-end are out of range (taking into account the sizes of the
bytes strings and the source and destination regions), the exn:fail:contract exception is
raised.

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-copy! s 4 #"y")

> (bytes-copy! s 0 s 3 4)

> s

#Ulpplyll

(bytes-fill! dest b) — void?
dest : (and/c bytes? (not/c immutable?))
b : byte?

Changes dest so that every position in the bytes is filled with b.

Examples:

> (define s (bytes 65 112 112 108 101))
> (bytes-fill! s 113)
> s

#"qqqaq"

(bytes-append bstr ...) — bytes?
bstr : bytes?

Returns a new mutable byte string that is as long as the sum of the given bstrs’ lengths,
and that contains the concatenated bytes of the given bstrs. If no bstrs are provided, the
result is a zero-length byte string.

Example:

263

> (bytes-append #"Apple" #"Banana")
#"AppleBanana"

(bytes->list bstr) — (listof byte?)
bstr : bytes?

Returns a new list of bytes corresponding to the content of bstr. That is, the length of the
list is (bytes-length bstr), and the sequence of bytes in bstr is the same sequence in
the result list.

Example:
> (bytes->list #"Apple")

'(65 112 112 108 101)

(list->bytes 1Ist) — bytes?
1st : (listof byte?)

Returns a new mutable byte string whose content is the list of bytes in 1st. That is, the
length of the byte string is (length Ist), and the sequence of bytes in Ist is the same
sequence in the result byte string.

Example:
> (list->bytes (list 65 112 112 108 101))
n Apple n

(make-shared-bytes k [b]) — bytes?
k . exact-nonnegative-integer?
b : byte? = 0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b. For communication among places, the new byte string is allocated
in the shared memory space.

Example:

> (make-shared-bytes 5 65)
#"AAAAA"

(shared-bytes b ...) — bytes?
b : byte?

264

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs. For communication among places, the new byte
string is allocated in the shared memory space.

Example:

> (shared-bytes 65 112 112 108 101)
#"Apple"

4.4.2 Byte String Comparisons

(bytes=7 bstrl bstr2 ...) — boolean?
bstrl : bytes?
bstr2 : bytes?

Returns #t if all of the arguments are eqv?.
Examples:

> (bytes=7 #"Apple" #"apple")

#f

> (bytes=7 #"a" #"as" #"a")
#£

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(bytes<? bstrl bstr2 ...) — boolean?
bstrl : bytes?
bstr2 : bytes?

Returns #t if the arguments are lexicographically sorted increasing, where individual bytes
are ordered by <, #f otherwise.
Examples:

> (bytes<? #"Apple" #"apple")

#t

> (bytes<? #"apple" #"Apple")
#f

> (bytes<? #"a" #"b" #"c")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

265

(bytes>? bstrl bstr2 ...) — boolean?
bstrl : bytes?
bstr2 : bytes?
Like bytes<?, but checks whether the arguments are decreasing.

Examples:

> (bytes>? #"Apple" #"apple")

#t

> (bytes>? #"apple" #"Apple")
#t

> (bytes>? #"c" #'"b" #"a"

#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.4.3 Bytes to/from Characters, Decoding and Encoding

(bytes->string/utf-8 bstr [err-char start end]) — string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a UTF-8 encoding
of Unicode code points. If err-char is not #£, then it is used for bytes that fall in the
range 128 to 255 but are not part of a valid encoding sequence. (This rule is consistent with
reading characters from a port; see [§13.1.1 “Encodings and Locales™| for more details.) If
err-char is #f, and if the start to end substring of bstr is not a valid UTF-8 encoding
overall, then the exn:fail:contract exception is raised.

Example:

> (bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163))
l|§a<'j£ll

(bytes->string/locale bstr
|err-char
start
end]) — string?
bstr : bytes?

266

err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? 0

end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr using the current locale’s
encoding (see also|§13.1.1 “Encodings and Locales™). If err-char is not #£, it is used for
each byte in bstr that is not part of a valid encoding; if err-char is #f, and if the start
to end substring of bstr is not a valid encoding overall, then the exn:fail:contract
exception is raised.

(bytes->string/latin-1 bstr
|[err-char
start
end]) — string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a Latin-1 encoding
of Unicode code points; i.e., each byte is translated directly to a character using integer-
>char, so the decoding always succeeds. The err-char argument is ignored, but present
for consistency with the other operations.

Example:

> (bytes->string/latin-1 (bytes 254 211 209 165))
up[’]N¥n

(string->bytes/utf-8 str [err-byte start end]) — bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? 0

end : exact-nonnegative-integer? = (string-length str)

Produces a byte string by encoding the start to end substring of str via UTF-8 (always
succeeding). The err-byte argument is ignored, but included for consistency with the
other operations.

Examples:

> (define b
(bytes->string/utf-8
(bytes 195 167 195 176 195 182 194 163)))
> (string->bytes/utf-8 b)

267

#"\303\247\303\260\303\266\302\243"

> (bytes->string/utf-8 (string->bytes/utf-8 b))
n Afn

folele} S

(string->bytes/locale str [err-byte start end]) — bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of str using the current locale’s
encoding (see also[§13.1.1 “Encodings and Locales™). If err-byte is not #f, it is used for
each character in str that cannot be encoded for the current locale; if err-byte is #£, and
if the start to end substring of str cannot be encoded, then the exn:fail:contract
exception is raised.

(string->bytes/latin-1 str
[err-byte
start
end]) — bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of str using Latin-1; i.e., each
character is translated directly to a byte using char->integer. If err-byte is not #£, it is
used for each character in str whose value is greater than 255. If err-byte is #f, and if
the start to end substring of str has a character with a value greater than 255, then the
exn:fail:contract exception is raised.

Examples:

> (define b

(bytes->string/latin-1 (bytes 254 211 209 165)))
> (string->bytes/latin-1 b)
#"\376\323\321\245"
> (bytes->string/latin-1 (string->bytes/latin-1 b))
llpDN¥l|

(string-utf-8-length str [start end]) — exact-nonnegative-integer?
str . string?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

268

Returns the length in bytes of the UTF-8 encoding of str’s substring from start to end,
but without actually generating the encoded bytes.

Examples:

> (string-utf-8-length
(bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163)))
8
> (string-utf-8-length "hello")
5

(bytes-utf-8-length bstr [err-char start end])
— (or/c exact-nonnegative-integer? #f)
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the length in characters of the UTF-8 decoding of bstr’s substring from start
to end, but without actually generating the decoded characters. If err-char is #f and the
substring is not a UTF-8 encoding overall, the result is #£f. Otherwise, err-char is used to
resolve decoding errors as in bytes->string/utf-8.

Examples:

(bytes-utf-8-length (bytes 195 167 195 176 195 182 194 163))

>
4
> (bytes-utf-8-length (make-bytes 5 65))
5

(bytes-utf-8-ref bstr [skip err-char start end]) — (or/c char? #f)
bstr : bytes?
skip : exact-nonnegative-integer? = 0
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the skipth character in the UTF-8 decoding of bstr’s substring from start to
end, but without actually generating the other decoded characters. If the substring is not
a UTF-8 encoding up to the skipth character (when err-char is #f), or if the substring
decoding produces fewer than skip characters, the result is #£f. If err-char is not #£, it is
used to resolve decoding errors as in bytes->string/utf-8.

Examples:

269

> (bytes-utf-8-ref
#\¢
> (bytes-utf-8-ref
#\d
> (bytes-utf-8-ref
#\0
> (bytes-utf-8-ref
#\A
> (bytes-utf-8-ref
#\B
> (bytes-utf-8-ref
#\C

(bytes-utf-8-index

(bytes
(bytes
(bytes
(bytes
(bytes
(bytes

bstr
skip

195 167 195 176 195 182 194 163) 0)

195 167 195 176 195 182 194 163) 1)

195 167 195 176 195 182 194 163) 2)

65 66 67 68) 0)

65 66 67 68) 1)

65 66 67 68) 2)

[err-char

start
end])

— (or/c exact-nonnegative-integer? #f)

bstr : bytes?

skip : exact-nonnegative-integer?

err-char : (or/c #f char?) = #f

start : exact-nonnegative-integer? = 0

end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the offset in bytes into bstr at which the skipth character’s encoding starts in the
UTF-8 decoding of bstr’s substring from start to end (but without actually generating
the other decoded characters). The result is relative to the start of bstr, not to start. If the
substring is not a UTF-8 encoding up to the skipth character (when err-char is #f), or if
the substring decoding produces fewer than skip characters, the result is #£f. If err-char

is not #£, it is used to resolve decoding errors as in bytes->string/utf-8

Examples:

N VEL,V OV PV DYV OV

(bytes-utf-8-index
(bytes-utf-8-index
(bytes-utf-8-index
(bytes-utf-8-index
(bytes-utf-8-index

(bytes-utf-8-index

(bytes 195 167 195 176 195 182 194 163) 0)
(bytes 195 167 195 176 195 182 194 163) 1)
(bytes 195 167 195 176 195 182 194 163) 2)
(bytes 65 66 67 68) 0)
(bytes 65 66 67 68) 1)

(bytes 65 66 67 68) 2)

270

4.44 Bytes to Bytes Encoding Conversion

(bytes-open-converter from-name to-name)
— (or/c bytes-converter? #f)

from-name : string?

to-name : string?

Produces a byte converter to go from the encoding named by from-name to the encoding
named by to-name. If the requested conversion pair is not available, #f is returned instead
of a converter.

Certain encoding combinations are always available:

¢ (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except
that encoding errors in the input lead to a decoding failure.

¢ (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity con-
version, except that any input byte that is not part of a valid encoding sequence is
effectively replaced by the UTF-8 encoding sequence for #\uFFFD. (This handling
of invalid sequences is consistent with the interpretation of port bytes streams into

characters; see[§13.1 “Ports™])

* (bytes-open-converter "" "UTF-8") — converts from the current locale’s de-
fault encoding (see(§13.1.1 “Encodings and Locales™)) to UTF-8.

* (bytes-open-converter "UTF-8" "") — converts from UTF-8 to the current lo-
cale’s default encoding (see[§13.1.1 “Encodings and Locales™).

¢ (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — con-
verts UTF-8 to UTF-16 on Unix and Mac OS, where each UTF-16 code unit is a
sequence of two bytes ordered by the current platform’s endianness. On Windows,
the input can include encodings that are not valid UTF-8, but which naturally ex-
tend the UTF-8 encoding to support unpaired surrogate code units, and the output is
a sequence of UTF-16 code units (as little-endian byte pairs), potentially including
unpaired surrogates.

* (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-
16") — like (bytes-open-converter "platform-UTF-8" "platform-UTF-
16"), but an input byte that is not part of a valid UTF-8 encoding sequence (or
valid for the unpaired-surrogate extension on Windows) is effectively replaced with
(char->integer #\7).

¢ (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — con-
verts UTF-16 (bytes ordered by the current platform’s endianness) to UTF-8 on Unix
and Mac OS. On Windows, the input can include UTF-16 code units that are unpaired
surrogates, and the corresponding output includes an encoding of each surrogate in
a natural extension of UTF-8. On Unix and Mac OS, surrogates are assumed to be

271

paired: a pair of bytes with the bits #xD800 starts a surrogate pair, and the #x03FF
bits are used from the pair and following pair (independent of the value of the #xDC00
bits). On all platforms, performance may be poor when decoding from an odd offset
within an input byte string.

A newly opened byte converter is registered with the current custodian (see
todians’)), so that the converter is closed when the custodian is shut down. A converter is
not registered with a custodian (and does not need to be closed) if it is one of the guaran-
teed combinations not involving "" on Unix, or if it is any of the guaranteed combinations
(including " ") on Windows and Mac OS.

The set of available encodings and combinations varies by platform, depending on the
iconv library that is installed; the from-name and to-name arguments are passed on to
iconv_open. On Windows, "iconv.d11" or "libiconv.d11" must be in the same di-
rectory as "libmzschVERS .d11" (where VERS is a version number), in the user’s path, in
the system directory, or in the current executable’s directory at run time, and the DLL must
either supply _errno or link to "msvcrt.d11" for _errno; otherwise, only the guaranteed
combinations are available.

Use bytes-convert with the result to convert byte strings.

(bytes-close-converter converter) — void
converter : bytes-converter?

Closes the given converter, so that it can no longer be used with bytes-convert or bytes-
convert-end.

(bytes-convert converter
src-bstr
[src-start-pos
src-end-pos
dest-bstr
dest-start-pos
dest-end-pos])
— (or/c bytes? exact-nonnegative-integer?)
exact-nonnegative-integer?
(or/c 'complete 'continues 'aborts 'error)
converter : bytes-converter?
src-bstr : bytes?
src-start-pos . exact-nonnegative-integer? = 0
src-end-pos : exact-nonnegative-integer?
= (bytes-length src-bstr)
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? #f)
= (and dest-bstr
(bytes-length dest-bstr))

272

In the Racket

software

distributions for
Windows, a suitable
"iconv.dll"is
included with
"libmzschVERS .d11".

Converts the bytes from src-start-pos to src-end-pos in src-bstr.

If dest-bstr is not #£, the converted bytes are written into dest-bstr from dest-start-
pos to dest-end-pos. If dest-bstr is #f, then a newly allocated byte string holds the
conversion results, and if dest-end-pos is not #f, the size of the result byte string is no
more than (- dest-end-pos dest-start-pos).

The result of bytes-convert is three values:

e result-bstr or dest-wrote-amt — a byte string if dest-bstr is #£ or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

* src-read-amt — the number of bytes successfully converted from src-bstr.

e 'complete, 'continues, 'aborts, or 'error — indicates how conversion termi-
nated:

— 'complete: The entire input was processed, and src-read-amt will be equal
to (- src-end-pos src-start-pos).

— 'continues: Conversion stopped due to the limit on the result size or the space
in dest-bstr;in this case, fewer than (- dest-end-pos dest-start-pos)
bytes may be returned if more space is needed to process the next complete
encoding sequence in src-bstr.

— 'aborts: The input stopped part-way through an encoding sequence, and more
input bytes are necessary to continue. For example, if the last byte of input is 195
for a "UTF-8-permissive" decoding, the result is 'aborts, because another
byte is needed to determine how to use the 195 byte.

— 'error: The bytes starting at (+ src-start-pos src-read-amt) bytes in
src-bstr do not form a legal encoding sequence. This result is never produced
for some encodings, where all byte sequences are valid encodings. For example,
since "UTF-8-permissive" handles an invalid UTF-8 sequence by dropping
characters or generating “?,” every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of
bytes-convert is 'complete). This state can affect both further processing of input
and further generation of output, but only for conversions that involve “shift sequences”
to change modes within a stream. To terminate an input sequence and reset the converter,
use bytes-convert-end.

Examples:

> (define convert (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-convert convert (bytes 65 66 67 68))
#"\377\376A\0B\0OC\OD\0"

4

'complete

273

> (bytes 195 167 195 176 195 182 194 163)
#"\303\247\303\260\303\266\302\243"

> (bytes-convert convert (bytes 195 167 195 176 195 182 194 163))
#"\347\0\360\0\366\0\243\0"

8

'complete

> (bytes-close-converter convert)

(bytes-convert-end converter
[dest-bstr
dest-start-pos
dest-end-pos])
— (or/c bytes? exact-nonnegative-integer?)
(or/c 'complete 'continues)
converter : bytes-converter?
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0O
dest-end-pos : (or/c exact-nonnegative-integer? #f)
= (and dest-bstr
(bytes-length dest-bstr))

Like bytes-convert, but instead of converting bytes, this procedure generates an ending
sequence for the conversion (sometimes called a “shift sequence”), if any. Few encodings
use shift sequences, so this function will succeed with no output for most encodings. In any
case, successful output of a (possibly empty) shift sequence resets the converter to its initial
state.

The result of bytes-convert-end is two values:
e result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

e 'complete or 'continues — indicates whether conversion completed. If 'com-
plete, then an entire ending sequence was produced. If 'continues, then the con-
version could not complete due to the limit on the result size or the space in dest-
bstr, and the first result is either an empty byte string or O.

(bytes-converter? v) — boolean?
v : any/c

Returns #t if v is a byte converter produced by bytes-open-converter, #f otherwise.

Examples:

274

> (bytes-converter? (bytes-open-converter "UTF-8" "UTF-16"))

#t

> (bytes-converter? (bytes-open-converter "whacky" "not likely"))
#f

> (define b (bytes-open-converter "UTF-8" "UTF-16"))

> (bytes-close-converter b)

> (bytes-converter? b)

#t

(locale-string-encoding) — any

Returns a string for the current locale’s encoding (i.e., the encoding normally identified by
"), See also system-language+country.

4.4.5 Additional Byte String Functions

(require racket/bytes) package: base

The bindings documented in this section are provided by the racket/bytes and racket
libraries, but not racket/base.

(bytes-append* str ... strs) — bytes?
str : bytes?
strs : (listof bytes?)

Like bytes-append, but the last argument is used as a list of arguments for bytes-append,
so (bytes-append* str ... strs) isthe same as (apply bytes-append str ...
strs). In other words, the relationship between bytes-append and bytes-append* is
similar to the one between 1ist and 1istx.

Examples:

> (bytes-append* #"a" #"b" '(#"c" #"d"))

#"abcd"

> (bytes-append* (cdr (append* (map (lambda (x) (list #", " x))
'(#"Alpha" #"Beta" #"Gamma")))))

#"Alpha, Beta, Gamma"

(bytes-join strs sep) — bytes?

strs : (listof bytes?)
sep : bytes?

Appends the byte strings in strs, inserting sep between each pair of bytes in strs.

Example:

275

https://pkgs.racket-lang.org/package/base

> (bytes-join '(#"one" #"two" #'"three" #"four") #" potato ")
#"one potato two potato three potato four"

4.5 Characters
§3.3 “Characters”

in The Racket
Characters range over Unicode scalar values, which includes characters whose values range G}l”ide introduces
from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The scalar values are a subset characters.
of the Unicode code points.

Two characters are eqv? if they correspond to the same scalar value. For each scalar value
less than 256, character values that are eqv? are also eq?. Characters produced by the default
reader are interned in read-syntax mode.

See[§1.3.14 “Reading Characters”|for information on reading characters and[§T.4.11 “Print
for information on printing characters.

Changed in version 6.1.1.8 of package base: Updated from Unicode 5.0.1 to Unicode 7.0.0.

4.5.1 Characters and Scalar Values

(char? v) — boolean?
v : any/c

Return #t if v is a character, #f otherwise.

(char->integer char) — exact-integer?
char : char?

Returns a character’s code-point number.

Example:

> (char->integer #\A)
65

(integer->char k) — char?
k : (and/c exact-integer?

(or/c (integer-in 0 55295)
(integer-in 57344 1114111)))

Return the character whose code-point number is k. For k less than 256, the result is the
same object for the same k.

Example:

276

> (integer->char 65)
#\A

(char-utf-8-length char) — (integer-in 1 6)
char : char?

Produces the same result as (bytes-length (string->bytes/utf-8 (string
char))).

4.5.2 Character Comparisons

(char=? charl char2 ...) — boolean?
charl : char?
char2 : char?

Returns #t if all of the arguments are eqv?.

Examples:

> (char=7 #\a #\a)

#t

> (char=7 #\a #\A #\a)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char<? charl char2 ...) — boolean?
charl : char?
char2 : char?

Returns #t if the arguments are sorted increasing, where two characters are ordered by their
scalar values, #f otherwise.

Examples:

> (char<? #\A #\a)

#t

> (char<? #\a #\A)

#£f

> (char<? #\a #\b #\c)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

277

(char<=7?7 charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char<?, but checks whether the arguments are nondecreasing.

Examples:

> (char<=7 #\A #\a)

#t

> (char<=7 #\a #\A)

#£f

> (char<=?7 #\a #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char>? charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char<?, but checks whether the arguments are decreasing.

Examples:

> (char>? #\A #\a)

#f

> (char>? #\a #\A)

#t

> (char>? #\c #\b #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char>=7?7 charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char<?, but checks whether the arguments are nonincreasing.

Examples:

> (char>=?7 #\A #\a)
#£f

278

> (char>=7? #\a #\A)

#t

> (char>=7? #\c #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci=? charl char2 ...) — boolean?
charl : char?
char? : char?

Returns #t if all of the arguments are eqv? after locale-insensitive case-folding via char-
foldcase.

Examples:

> (char-ci=? #\A #\a)

#t

> (char-ci=?7 #\a #\a #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci<? charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char<?, but checks whether the arguments would be in increasing order if each was
first case-folded using char-foldcase (which is locale-insensitive).

Examples:

> (char-ci<? #\A #\a)

#£f

> (char-ci<? #\a #\b)

#t

> (char-ci<? #\a #\b #\c)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci<=? charl char2 ...) — boolean?
charl : char?
char2 : char?

279

Like char-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:

> (char-ci<=7 #\A #\a)

#t

> (char-ci<=7?7 #\a #\A)

#t

> (char-ci<=7?7 #\a #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci>? charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be decreasing after case-folding.

Examples:

> (char-ci>? #\A #\a)

#f

> (char-ci>? #\b #\A)

#t

> (char-ci>? #\c #\b #\a)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(char-ci>=? charl char2 ...) — boolean?
charl : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be nonincreasing after case-
folding.

Examples:

> (char-ci>=7 #\A #\a)

#t

> (char-ci>=?7 #\a #\A)

#t

> (char-ci>=? #\c #\b #\b)
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

280

4.5.3 Classifications

(char-alphabetic? char) — boolean?
char : char?

Returns #t if char has the Unicode “Alphabetic” property.
(char-lower-case? char) — boolean?
char : char?

Returns #t if char has the Unicode “Lowercase” property.

(char-upper-case? char) — boolean?
char : char?

Returns #t if char has the Unicode “Uppercase” property.
(char-title-case? char) — boolean?
char : char?
Returns #t if char’s Unicode general category is Lt, #f otherwise.
(char-numeric? char) — boolean?
char : char?

Returns #t if char has the Unicode “Numeric” property.

(char-symbolic? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Sm, Sc, Sk, or So, #f otherwise.

(char-punctuation? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Pc, Pd, Ps, Pe, Pi, Pf, or Po, #£f otherwise.

(char-graphic? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is L1, Lm, Lo, Lt, Lu, Nd, NI, No, Mn, Mc,
or Me, or if one of the following produces #t when applied to char: char-alphabetic?,
char-numeric?, char-symbolic?, or char-punctuation?.

281

(char-whitespace? char) — boolean?
char : char?

Returns #t if char has the Unicode “White_Space” property.

(char-blank? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Zs or if char is #\tab. (These correspond
to horizontal whitespace.)

(char-iso-control? char) — boolean?
char : char?

Return #t if char is between #\nul and #\uOO1F inclusive or #\rubout and #\uOO09F
inclusive.

(char-general-category char) — symbol?
char : char?

Returns a symbol representing the character’s Unicode general category, which is '1u, '11,
'lt, '1m, 'lo, 'mn, 'mc, 'me, 'nd, 'nl, 'no, 'ps, 'pe, 'pi, 'pf, 'pd, 'pc, 'po, '
'sk, 'so, 'zs, 'zp, 'zl, 'cc, 'cf, 'cs, 'co, or 'cn.

sc, 'sm,

(make-known-char-range-1list)

— (listof (list/c exact-nonnegative-integer?
exact-nonnegative-integer?
boolean?))

Produces a list of three-element lists, where each three-element list represents a set of con-
secutive code points for which the Unicode standard specifies character properties. Each
three-element list contains two integers and a boolean; the first integer is a starting code-
point value (inclusive), the second integer is an ending code-point value (inclusive), and the
boolean is #t when all characters in the code-point range have identical results for all of the
character predicates above. The three-element lists are ordered in the overall result list such
that later lists represent larger code-point values, and all three-element lists are separated
from every other by at least one code-point value that is not specified by Unicode.

4.5.4 Character Conversions

(char-upcase char) — char?
char : char?

282

Produces a character consistent with the 1-to-1 code point mapping defined by Unicode. If

char has no upcase mapping, char-upcase produces char. String procedures,
such as
Examp]es: string-upcase,

handle the case

> (char-upcase #\a) where Unicode

defines a
#\A locale-independent
> (char-upcase #\)\) mapping from the
#\A code point to a
> (char-upcase #\space) code-point
sequence (in
#\space addition to the 1-1
mapping on scalar
values).

(char-downcase char) — char?
char : char?

Like char-upcase, but for the Unicode downcase mapping.

Examples:

> (char-downcase #\A)
#\a

> (char-downcase #\A)
#\A

> (char-downcase #\space)
#\space

(char-titlecase char) — char?
char : char?

Like char-upcase, but for the Unicode titlecase mapping.

Examples:

> (char-upcase #\a)

#\A

> (char-upcase #\\)
#\A

> (char-upcase #\space)
#\space

(char-foldcase char) — char?
char : char?

Like char-upcase, but for the Unicode case-folding mapping.

Examples:

283

> (char-foldcase #\A)
#\a

> (char-foldcase #\))
#\o

> (char-foldcase #\¢)

#\o

> (char-foldcase #\space)
#\space

4.6 Symbols

A symbol is like an immutable string, but symbols are normally interned, so that two symbols
with the same character content are normally eq?. All symbols produced by the default
reader (see[§1.3.2 “Reading Symbols™) are interned.

The two procedures string->uninterned-symbol and gensym generate uninterned sym-
bols, i.e., symbols that are not eq?, eqv?, or equal? to any other symbol, although they
may print the same as other symbols.

The procedure string->unreadable-symbol returns an unreadable symbol that is par-
tially interned. The default reader (see[§1.3.2 “Reading Symbols™)) never produces a unread-
able symbol, but two calls to string->unreadable-symbol with equal? strings produce
eq? results. An unreadable symbol can print the same as an interned or uninterned symbol.
Unreadable symbols are useful in expansion and compilation to avoid collisions with sym-
bols that appear in the source; they are usually not generated directly, but they can appear in
the result of functions like identifier-binding.

Interned and unreadable symbols are only weakly held by the internal symbol table. This
weakness can never affect the result of an eq?, eqv?, or equal? test, but a symbol may
disappear when placed into a weak box (see [§16.1 “Weak Boxes™) used as the key in

a weak hash table (see [§4.13 “Hash Tables™), or used as an ephemeron key (see [§16.2]
FEpfermeroms).

See [§1.3.2 “Reading Symbols™| for information on reading symbols and
[Symbols™|for information on printing symbols.

(symbol? v) — boolean?
v : any/c

Returns #t if v is a symbol, #f otherwise.
Examples:
> (symbol? 'Apple)

#t

284

§3.6 “Symbols” in
The Racket Guide
introduces symbols.

> (symbol? 10)
#f

(symbol-interned? sym) — boolean?
sym : symbol?

Returns #t if sym is interned, #f otherwise.
Examples:

> (symbol-interned? 'Apple)

#t

> (symbol-interned? (gensym))

#E

> (symbol-interned? (string->unreadable-symbol "Apple"))
#E

(symbol-unreadable? sym) — boolean?
sym : symbol?
Returns #t if sym is an unreadable symbol, #f otherwise.
Examples:

> (symbol-unreadable? 'Apple)

#E

> (symbol-unreadable? (gensym))

#t

> (symbol-unreadable? (string->unreadable-symbol "Apple"))

#t

(symbol->string sym) — string?
sym : symbol?
Returns a freshly allocated mutable string whose characters are the same as in sym.
Example:

> (symbol->string 'Apple)
I|Apple||

(string->symbol str) — symbol?
str : string?

285

Returns an interned symbol whose characters are the same as in str.
Examples:

> (string->symbol "Apple")
'Apple

> (string->symbol "1")
Y11

(string->uninterned-symbol str) — symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new uninterned symbol. Call-
ing string->uninterned-symbol twice with the same str returns two distinct symbols.

Examples:

> (string->uninterned-symbol "Apple")

'Apple

> (eq? 'a (string->uninterned-symbol "a"))

#f

> (eq? (string->uninterned-symbol "a'")
(string->uninterned-symbol "a"))

#f

(string->unreadable-symbol str) — symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new unreadable symbol. Call-
ing string->unreadable-symbol twice with equivalent strs returns the same symbol,
but read never produces the symbol.

Examples:

> (string->unreadable-symbol "Apple")

'Apple

> (eq? 'a (string->unreadable-symbol "a"))

#t

> (eq? (string->unreadable-symbol "a'")
(string->unreadable-symbol "a'"))

n

#t

(gensym [base]) — symbol?
base : (or/c string? symbol?) = "g"

286

Returns a new uninterned symbol with an automatically-generated name. The optional base
argument is a prefix symbol or string.

Example:

> (gensym "apple")
'apple3586

(symbol<? a-sym b-sym ...) — boolean?
a-sym : symbol?
b-sym : symbol?

Returns #t if the arguments are sorted, where the comparison for each pair of symbols is the
same as using symbol->string with string->bytes/utf-8 and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.7 Regular Expressions

Regular expressions are specified as strings or byte strings, using the same pattern language
as either the Unix utility egrep or Perl. A string-specified pattern produces a character
regexp matcher, and a byte-string pattern produces a byte regexp matcher. If a character
regexp is used with a byte string or input port, it matches UTF-8 encodings (see §13.1.1]
[*Encodings and Locales™) of matching character streams; if a byte regexp is used with a
character string, it matches bytes in the UTF-8 encoding of the string.

A regular expression that is represented as a string or byte string can be compiled to a regexp
value, which can be used more efficiently by functions such as regexp-match compared to
the string or byte string form. The regexp and byte-regexp procedures convert a string
or byte string (respectively) into a regexp value using a syntax of regular expressions that is
most compatible to egrep. The pregexp and byte-pregexp procedures produce a regexp
value using a slightly different syntax of regular expressions that is more compatible with
Perl.

Two regexp values are equal? if they have the same source, use the same pattern language,
and are both character regexps or both byte regexps.

A literal or printed regexp value starts with #rx or #px. See[81.3.16 “Reading Regular

[Expressions”| for information on reading regular expressions and[§1.4.13 “Printing Regulai]

for information on printing regular expressions. Regexp values produced by
the default reader are interned in read-syntax mode.

The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds
to a source string with 32,000 literal characters or 5,000 operators.

287

§9 “Regular
Expressions” in The
Racket Guide
introduces regular
expressions.

4.7.1 Regexp Syntax

The following syntax specifications describe the content of a string that represents a regular
expression. The syntax of the corresponding string may involve extra escape characters.
For example, the regular expression (.*)\1 can be represented with the string " (. *)\\1"
or the regexp constant #rx" (.*)\\1"; the \ in the regular expression must be escaped to
include it in a string or regexp constant.

The regexp and pregexp syntaxes share a common core:

(regexpy ::= (pces) Match (pces)
| (regexp)|{regexp) Match either (regexp), try left first ex1
<pces> e Match empty
| <pce><pces> Match {(pce) followed by {pces)
<pce> = <repeat> Match (repeat), longest possible ex3
| repeat)? Match (repeat), shortest possible ex6
P P p
| atom Match {atom) exactly once
y
(repeaty ::= (atom)* Match {atom) 0 or more times ex3
| <atom>+ Match {atom) 1 or more times ex4
| (atom)? Match {atom)y 0 or 1 times ex5
<at0m> 1= (<regexp>) Match sub-expression {regexp) and report ex11
[{rng)] Match any character in {rng) ex2

[~(rng)] Match any character not in {rng) ex12
. Match any (except newline in multi mode) ex13

Match start (or after newline in multi mode) ex14

|
|
|
|
| $ Match end (or before newline in multi mode) ex15
| literal Match a single literal character exl
g
| (?{mode):{regexp)) Match {regexp) using {mode ex35
gexp
[(?>(regexp)) Match {regexp), only first possible
| <100k> Match empty if (look) matches
| (2(est)peesy|{pces)) Match 1st {pces) if {sr), else 2nd {pces) ex36
[(2{stpces)) Match {pces) if {tst), empty if not {tsty
|\ atend of pattern Match the nul character (ASCII 0)
{rng) ii=] {rng) contains] only ex27
| - rng) contains - onl; ex28
y
| <mrng> {rng) contains everything in {mrmg)
| <mrng>— {rng) contains - and everything in {mrng)
<mrng> =] <lrng> {mrng) contains] and everything in {lIrng) ex29
=rn mrng) contains - and everything in {/rng) ex
I Irng i d hing in (/. 29
irn mrng) contains everything in (lirn
| (limg g ything in (lirng
{lirngy ::= (riliteral) {lirng) contains a literal character
| (riliteraly-(rliteral) (lirng) contains Unicode range inclusive ~ ex22
irn rn irng) contains everything in both
I lirng)(lmg) (lirng) rything in b
(Irng) =0 {lrng) contains ~ ex30
| {rliteraly-{rliteral) {lrng) contains Unicode range inclusive
| ‘<lrng> {Irng) contains ~ and more

288

| (irng) {lrng) contains everything in {lirng)

{ooky ::= (?=(regexp)) Match if {regexp) matches ex31
| (7' regexp)) Match if {regexp) doesn't match ex32
| (?<=<regexp>) Match if {(regexp) matches preceding ex33
| (?<!regexp)) Match if {regexp) doesn't match preceding ex34

<l‘st> 1= (<n>) True if {nyth (has a match
| <look> True if {look) matches ex36

<m0de> = Like the enclosing mode
| (mode)i Like {mode), but case-insensitive ex35
| {mode)-i Like {mode), but sensitive
| <m0de>s Like {mode), but not in multi mode
| (mode)-s Like {mode), but in multi mode
| {mode)m Like {mode), but in multi mode
| {mode)-m Like {mode), but not in multi mode

The following completes the grammar for regexp, which treats { and } as literals, \ as a
literal within ranges, and \ as a literal producer outside of ranges.

(literaly ~ ::= Any character except (,), *,+, 7, [, ., ~, \, or |

| \<alileral> Match {aliteraly ex21
{aliteral) ::= Any character
(riliteraly ::= Any character except], -, or =

(rliteral)

Any character except] or -

The following completes the grammar for pregexp, which uses { and } bounded repetition
and uses \ for meta-characters both inside and outside of ranges.

(repeaty ::= ..
| <at0m>{<n>} Match {atom) exactly {(n) times ex7
| {atom){{n),} Match {atom) {n) or more times ex8
| {atom){,{m)} Match {atom) between 0 and {m) times ex9
| <at0m>{<n> , <m>} Match {atom) between (ny and {m) times ex10
| <atom>{} Match {atom) 0 or more times
{atom) R
I\ Match latest reported match for (n)th (ex16
| {class) Match any character in {class)
| \b Match \w* boundary ex17
| \B Match where \b does not ex18
| \p{{(property)> Match (UTE-8 encoded) in {property) ex19
| \P{{property)} Match (UTF-8 encoded) not in (property) ex20
(literaly ~ ::= Any character except (,), *,+, 72, [,1,{,}, ., =, \, or |
| \laliteral) Match {aliteral) ex21
{aliteral) ::= Any character except a-z, A-Z, 0-9
(lirng) D= o
| {class) (lirng) contains all characters in {class)
| {posix) {lirng) contains all characters in {posix) ex26

289

| \leliteral) (lirng) contains {eliteraly
(riliteraly ::= Any character except 1, \, -, or ~

(rliteraly = Any character except 1, \, or -
(eliteraly = Any character except a-z, A-Z
<class> ::= \d Contains 0-9 ex23
| \D Contains characters not in \d
| \w Contains a-z, A-Z, 0-9, _ ex24
[\W Contains characters not in \w
| \s Contains space, tab, newline, formfeed, return ex25
| \S Contains characters not in \'s
{posix) ::= [:alpha:] Contains a-z, A-Z
| [:upper:] Contains A-Z
| [:lower:] Contains a-z ex26
| [E digit:] Contains 0-9
| I xdigit:] Contains 0-9, a-f, A-F
| [:alnum:] Contains a-z, A-Z, 0-9
| [:word:] Contains a-z, A-Z, 0-9, _
| [:blank:] Contains space and tab
| [E space:] Contains space, tab, newline, formfeed, return
| [:graph:] Contains all ASCII characters that use ink
| B print 2]l Contains space, tab, and ASCII ink users
| [:cntrl:] Contains all characters with scalar value < 32
| [:ascii:] Contains all ASCII characters
<pr0perz‘y> L= <categ0ry> Includes all characters in {category)
| ~{category) Includes all characters not in {category)

In case-insensitive mode, a backreference of the form \(n) matches case-insensitively only
with respect to ASCII characters.

The Unicode categories follow.

{categoryy ::= L1 Letter, lowercase ex19
| Lu Letter, uppercase

| Lt Letter, titlecase

| Lm Letter, modifier

| L& Unionof L1, Lu, Lt, and Lm
| Lo Letter, other

| L Union of L& and Lo

| Nd Number, decimal digit

| N1 Number, letter

| No Number, other

| N Union of Nd, N1, and No

| Ps Punctuation, open

| Pe Punctuation, close

| Pi Punctuation, initial quote

| Pf Punctuation, final quote

290

Pc Punctuation, connector

Pd Punctuation, dash

Po Punctuation, other

P Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po

Mn Mark, non-spacing

Mc Mark, spacing combining

Me Mark, enclosing

M Union of Mn, Mc, and Me

Sc Symbol, currency

Sk Symbol, modifier

Sm Symbol, math

S0 Symbol, other

S Union of Sc, Sk, Sm, and So

Z1 Separator, line

Zp Separator, paragraph

Zs Separator, space

Z Union of Z1, Zp, and Zs

Cc Other, control

Cf Other, format

Cs Other, surrogate

Cn Other, not assigned

Co Other, private use

C Union of Cc, Cf, Cs, Cn, and Co
Union of all Unicode categories

Examples:

> (regexp-match #rx"a|b" "cat") ; exl

"("a")

> (regexp-match #rx"[at]" "cat") ; ex2

! (Ilall)

> (regexp-match #rx'"ca*x[at]" "caaat") ; ex3
'("caaat")

> (regexp-match #rx'"ca+[at]" "caaat") ; ex4
'("caaat")

> (regexp-match #rx"ca?t?" "ct") ; ex5

! (Ilctll)

> (regexp-match #rx'"ca*?[at]" "caaat") ; ex6
"("ca")

> (regexp-match #px"ca{2}" "caaat") ; ex7, uses #px
'("caa")

> (regexp-match #px"ca{2,}t" "catcaat") ; ex8, uses #px

! ("C&a.t")

> (regexp-match #px"ca{,2}t" "caaatcat") ; ex9, uses #px

1 (Ilcatll)

> (regexp-match #px"caf{l,2}t" "caaatcat") ; exl0, uses #px

291

I(Ilcatll)
> (regexp-match

#rx" (cx) (a*x)" "caat") ; exll

! ("Caa" "C" Ilaall)

> (regexp-match
t("t")

> (regexp-match
"("cat" "a")

> (regexp-match
(e

> (regexp-match
"""

> (regexp-match
! ("Caat" ||all)

> (regexp-match
("t ")

> (regexp-match
"("ca")

> (regexp-match
! (Ilall)

> (regexp-match
teem)

> (regexp-match
' (Il I n)

> (regexp-match
! (Ilcall

> (regexp-match
"("1ca")

> (regexp-match
! (Il hll)

> (regexp-match
"("t\n")

> (regexp-match
"("at")

> (regexp-match
! (Il] ll)

> (regexp-match
t("-")

> (regexp-match
'("[al")

> (regexp-match
! (Ila”ll)

> (regexp-match
"("na")

> (regexp-match
] (Ilnall)

> (regexp-match

#rx"[~cal]" "caat") ; exl12
#rx".(.)." "cat") ; exl13
#rx"~al|~c" "cat") ; exld
#rx"a$|t$" "cat") ; exlb

#px"c(.)\\1t" "caat") ; exl6, uses #px
#px" .\\b." "cat in hat") ; exl17, uses #px
#px" .\\B." "cat in hat") ; ex18, uses #px
#px"\\p{L1}" "Cat") ; ex19, uses #px
#px"\\P{L1}" "cat!") ; ex20, uses #px
#rx"\\|" "clt") ; ex21
#rx"[a-f]1*" "cat") ; ex22

#px" [a-f\\d]*" "lcat") ; ex23, uses #px
#px" [\\w]" "cat hat") ; ex24, uses #px
#px"t[\\s]" "cat\nhat") ; ex25, uses #px
#px" [[:lower:]]+" "Cat") ; ex26, uses #px
#rx"[11" "clt") ; ex27
#rx"[-1" "c-t") ; ex28
#rx"[Jal]l+" "clalt") ; ex29
#rx"[a~]+" "ca"t") ; ex30
#rx".a(?=p)" "cat nap") ; ex31

#rx".a(?!t)" "cat nap") ; ex32

#rx"(?<=n)a." "cat nap") ; ex33

292

1 (Ilapll)

> (regexp-match #rx"(7<!c)a." "cat nap") ; ex34

! (Ilapll)

> (regexp-match #rx"(7i:a) [tp]" "cAT nAp") ; ex35
I(IIAPII)

> (regexp-match #rx"(7(7<=c)alb)+" "cabal") ; ex36
l(llabll)

4.7.2 Additional Syntactic Constraints
In addition to matching a grammar, regular expressions must meet two syntactic restrictions:

* In a (repear) other than {atom)?, the {atom) must not match an empty sequence.

* Ina (?<=(regexp)) or (7<!{regexp)), the {regexp) must match a bounded sequence
only.

These constraints are checked syntactically by the following type system. A type [n, m]
corresponds to an expression that matches between n and m characters. In the rule for
((Regexp)), N means the number such that the opening parenthesis is the Nth opening
parenthesis for collecting match reports. Non-emptiness is inferred for a backreference pat-
tern, \(N), so that a backreference can be used for repetition patterns; in the case of mutual
dependencies among backreferences, the inference chooses the fixpoint that maximizes non-
emptiness. Finiteness is not inferred for backreferences (i.e., a backreference is assumed to
match an arbitrarily large sequence).

(regexpy; : [ny,my] (regexpys : [np, mp]
(regexp)y |{regexpy, : [min(ny, ny), max(mp, mp)]

{pcey : [ny,my] (pcesy : [ny, myl
{pceXpcesy : [ni+ny, my+my]

(repeaty : [n,m] {atomy : [n,m] n>0

(repeaty? : [0, m] {atomy* : [0, 0]

{atom) : [n,m] n>0 {atom) : [n,m]
{latomy+ : [1, o0] {atom)? : [0, m]

{atomy : [n,m] n>0

(atomyIm)} = [n*n), m*(n)]

(atomy : [n,m] n>0

(atom){(ny,} : [n*(n), 0]

293

{atomy : [n,m] n>0
(atom){,(m)} : [0, m*(m)]

{atomy : [n,m] n>0

{atomy{ny,(m)} : [n*(n), m*(m)]

{regexp) : [n,m]
((regexpy) : [n,m] an=n

(regexpy : [n,m]
(?{mode):(regexp)) : [n,m]

(regexpy : [n, m] (regexpy : [n,m]
(?=(regexp)) : [0, 0] (?1{regexpy) : [0, 0]
(regexpy : [n,m] m < {regexpy : [n,m] m <o
(7<=(regexpy) : [0,0] (7<'regexpy) : [0,0]

(regexpy : [n,m]
(?>(regexp)) : [n, m]

{sty @ [ng,my)l {pcesyy : [n;,m] {pcesy, : [ny, my]
(?2tsty{pcesyy | {pcesy;) : [min(ny, ny), max(my, my)]

{tsty : [ng, mg] {pcesy : [ny,mq]
(2(tst)peesy) = [0, mq]

WUn)) : [an. 0] [mgdl : [1,11 [“mg)] : [1,1]
S (L1 20,01 $: [0,0]
iteraly = [1,1] \n) : [an, 0] {class) : [1,1]
\b : [0,0] \B : [0,0]

\p{(property)} : [1,6] \P{{property)} : [1,6]

4.7.3 Regexp Constructors

(regexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by regexp or pregexp, #f otherwise.

294

(pregexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by pregexp (not regexp), #f otherwise.

(byte-regexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by byte-regexp or byte-pregexp, #f otherwise.

(byte-pregexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by byte-pregexp (not byte-regexp), #f other-
wise.

(regexp str) — regexp?
str : string?
(regexp str handler) — any
str . string?
handler : (or/c #f (string? -> any))

Takes a string representation of a regular expression (using the syntax in
and compiles it into a regexp value. Other regular expression procedures accept
either a string or a regexp value as the matching pattern. If a regular expression string is
used multiple times, it is faster to compile the string once to a regexp value and use it for
repeated matches instead of using the string each time.

If handler is provided and not #f£, it is called and its result is returned when str is not
a valid representation of a regular expression; the argument to handler is a string that de-
scribes the problem with str. If handler is #f or not provided, then exn:fail:contract
exception is raised.

The object-name procedure returns the source string for a regexp value.
Examples:

> (regexp "apxle")

#rx"ap*le"

> (object-name #rx"ap*le'")

n ap*le n

> (regexp "+" (A (s) (list s)))
"("+' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

295

(pregexp str) — pregexp?
str . string?
(pregexp str handler) — any
str : string?
handler : (or/c #f (string? -> any))

Like regexp, except that it uses a slightly different syntax (see [§4.7.1 “Regexp Syntax”).
The result can be used with regexp-match, etc., just like the result from regexp.

Examples:

> (pregexp "apxle")

#px"ap*le"

> (regexp? #px"ap*le")

#t

> (pregexp "+" (A (s) (vector s)))
'#(" +' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

(byte-regexp bstr) — byte-regexp?
bstr : bytes?

(byte-regexp bstr handler) — any
bstr : bytes?
handler : (or/c #f (bytes? -> any))

Takes a byte-string representation of a regular expression (using the syntax in[§4.7.1 “Regexp]|
and compiles it into a byte-regexp value.

If handler is provided, it is called and its result is returned if str is not a valid representa-
tion of a regular expression.

The object-name procedure returns the source byte string for a regexp value.

Examples:

> (byte-regexp #"apxle")
#rx#"ap*le"
> (object-name #rx#"ap+*le")
#llap*lell
> (byte-regexp "apxle")
byte-regexp: contract violation
expected: bytes?
given: "ap*le"
> (byte-regexp #"+" (A (s) (list s)))
"("*+' follows nothing in pattern")

296

Changed in version 6.5.0.1 of package base: Added the handler argument.
(byte-pregexp bstr) — byte-pregexp?
bstr : bytes?
(byte-pregexp bstr handler) — any
bstr : bytes?
handler : (or/c #f (bytes? -> any))

Like byte-regexp, except that it uses a slightly different syntax (see[§4.7.1 “Regexp Syn-|
tax’). The result can be used with regexp-match, etc., just like the result from byte-
regexp.

Examples:

> (byte-pregexp #"ap*le")

#px#"ap*le"

> (byte-pregexp #"+" (A (s) (vector s)))
'#(" +' follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

(regexp-quote str [case-sensitive?]) — string?
str : string?
case-sensitive? : any/c = #t

(regexp-quote bstr [case-sensitive?]) — bytes?
bstr : bytes?
case-sensitive? : any/c = #t

Produces a string or byte string suitable for use with regexp to match the literal sequence of
characters in str or sequence of bytes in bstr. If case-sensitive? is true (the default),
the resulting regexp matches letters in str or bytes case-sensitively, otherwise it matches
case-insensitively.

Examples:
> (regexp-match "." "apple.scm")
1 (Ilall
> (regexp-match (regexp-quote ".") "apple.scm")
1 (ll . ll)

(regexp-max-lookbehind pattern) — exact-nonnegative-integer?
pattern : (or/c regexp? byte-regexp?)

Returns the maximum number of bytes that pattern may consult before the starting posi-
tion of a match to determine the match. For example, the pattern (?<=abc)d consults three
bytes preceding a matching d, while e (?<=a. .)d consults two bytes before a matching ed.
A ~ pattern may consult a preceding byte to determine whether the current position is the
start of the input or of a line.

297

4.74 Regexp Matching

(regexp-match pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))
(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f£)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Attempts to match pattern (a string, byte string, regexp value, or byte-regexp value) once
to a portion of input. The matcher finds a portion of input that matches and is closest to
the start of the input (after start-pos).

If input is a path, it is converted to a byte string with path->bytes if pattern is a
byte string or a byte-based regexp. Otherwise, input is converted to a string with path-
>string.

The optional start-pos and end-pos arguments select a portion of input for matching;
the default is the entire string or the stream up to an end-of-file. When input is a string,
start-pos is a character position; when input is a byte string, then start-pos is a byte
position; and when input is an input port, start-pos is the number of bytes to skip before
starting to match. The end-pos argument can be #f, which corresponds to the end of the
string or an end-of-file in the stream; otherwise, it is a character or byte position, like start-
pos. If input is an input port, and if an end-of-file is reached before start-pos bytes are
skipped, then the match fails.

In pattern, a start-of-string ~ refers to the first position of input after start-pos, as-
suming that input-prefix is #"". The end-of-input $ refers to the end-posth position or
(in the case of an input port) an end-of-file, whichever comes first.

The input-prefix specifies bytes that effectively precede input for the purposes of =
and other look-behind matching. For example, a #"" prefix means that ~ matches at the
beginning of the stream, while a #"\n" input-prefix means that a start-of-line ~ can
match the beginning of the input, while a start-of-file ~ cannot.

If the match fails, #f is returned. If the match succeeds, a list containing strings or byte

298

string, and possibly #f£, is returned. The list contains strings only if input is a string and
pattern is not a byte regexp. Otherwise, the list contains byte strings (substrings of the
UTF-8 encoding of input, if input is a string).

The first [byte] string in a result list is the portion of input that matched pattern. If two
portions of input can match pattern, then the match that starts earliest is found.

Additional [byte] strings are returned in the list if pattern contains parenthesized sub-
expressions (but not when the opening parenthesis is followed by 7). Matches for the sub-
expressions are provided in the order of the opening parentheses in pattern. When sub-
expressions occur in branches of an | “or” pattern, in a * “zero or more” pattern, or other
places where the overall pattern can succeed without a match for the sub-expression, then a
#f is returned for the sub-expression if it did not contribute to the final match. When a single
sub-expression occurs within a * “zero or more” pattern or other multiple-match positions,
then the rightmost match associated with the sub-expression is returned in the list.

If the optional output-port is provided as an output port, the part of input from its
beginning (not start-pos) that precedes the match is written to the port. All of input
up to end-pos is written to the port if no match is found. This functionality is most useful
when input is an input port.

When matching an input port, a match failure reads up to end-pos bytes (or end-of-file),
even if pattern begins with a start-of-string ~; see also regexp-try-match. On suc-
cess, all bytes up to and including the match are eventually read from the port, but match-
ing proceeds by first peeking bytes from the port (using peek-bytes-avail!), and then
(re-)reading matching bytes to discard them after the match result is determined. Non-
matching bytes may be read and discarded before the match is determined. The matcher
peeks in blocking mode only as far as necessary to determine a match, but it may peek extra
bytes to fill an internal buffer if immediately available (i.e., without blocking). Greedy repeat
operators in pattern, such as * or +, tend to force reading the entire content of the port (up
to end-pos) to determine a match.

If the input port is read simultaneously by another thread, or if the port is a custom port
with inconsistent reading and peeking procedures (see [§13.1.9 “Custom Ports™), then the
bytes that are peeked and used for matching may be different than the bytes read and dis-
carded after the match completes; the matcher inspects only the peeked bytes. To avoid
such interleaving, use regexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked.

Examples:
> (regexp-match #rx"x." "12x4x6")
1 (IIX4II)
> (regexp-match #rx"y." "12x4x6")
#f
> (regexp-match #rx"x." "12x4x6" 3)
1 ("X6")

299

> (regexp-match #rx"x." "12x4x6" 3 4)

#f

> (regexp-match #rx#"x." "12x4x6")

1 (#HX4II)

> (regexp-match #rx"x." "12x4x6" 0 #f (current-output-port))
12

1 ("X4")

> (regexp-match #rx"(-[0-9]*)+" "a-12--345b")
|(||_12__345u ||_345||)

(regexp-match* pattern
input
[start-pos
end-pos
input-prefix
#:match-select match-select
#:gap-select? gap-select])
— (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))
(listof (or/c string? (listof (or/c #f string?))))
(listof (or/c bytes? (listof (or/c #f bytes?)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
match-select : (or/c (list? . -> . (or/c any/c list?)) = car
#1)
gap-select : any/c = #f

Like regexp-match, but the result is a list of strings or byte strings corresponding to a
sequence of matches of pattern in input.

The pattern is used in order to find matches, where each match attempt starts at the end
of the last match, and ~ is allowed to match the beginning of the input (if input-prefix
is #"") only for the first match. Empty matches are handled like other matches, returning a
zero-length string or byte sequence (they are more useful in making this a complement of
regexp-split), but pattern is restricted from matching an empty sequence immediately
after an empty match.

If input contains no matches (in the range start-pos to end-pos), null is returned.
Otherwise, each item in the resulting list is a distinct substring or byte sequence from input
that matches pattern. The end-pos argument can be #f to match to the end of input
(which corresponds to an end-of-file if input is an input port).

Examples:

300

> (regexp-match* #rx"x." "12x4x6")
' (IIX4II IIXGII)

> (regexp-match* #rx'"x*" "12x4x6")
' (Il "nonn "X" nn llxll nn on II)

match-select specifies the collected results. The default of car means that the result is the
list of matches without returning parenthesized sub-patterns. It can be given as a ‘selector’
function which chooses an item from a list, or it can choose a list of items. For example,
you can use cdr to get a list of lists of parenthesized sub-patterns matches, or values (as
an identity function) to get the full matches as well. (Note that the selector must choose an
element of its input list or a list of elements, but it must not inspect its input as they can be

either a list of strings or a list of position pairs. Furthermore, the selector must be consistent
in its choice(s).)

Examples:

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr)
|(|l4|| Il6||)

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select values)
I((IIX4II ||4||) (IIX6II l|6||))

In addition, specifying gap-select as a non-#f value will make the result an interleaved
list of the matches as well as the separators between them matches, starting and ending with
a separator. In this case, match-select can be given as #f to return only the separators,
making such uses equivalent to regexp-split.

Examples:

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr #:gap-
select? #t)

! (Il12l| Il4|| nn l|6ll n ll)

> (regexp-match* #rx"x(.)" "12x4x6" #:match-select #f #:gap-
select? #t)

tQra2n o)

(regexp-try-match pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f£)))))

301

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?

start-pos . exact-nonnegative-integer? = 0

end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, except that if the match fails, no characters are read and
discarded from in.

This procedure is especially useful with a pattern that begins with a start-of-string ~ or
with a non-#f end-pos, since each limits the amount of peeking into the port. Otherwise,
beware that a large portion of the stream may be peeked (and therefore pulled into memory)
before the match succeeds or fails.
(regexp-match-positions pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#£)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns a list of number pairs (and #f) instead of a list of strings.
Each pair of numbers refers to a range of characters or bytes in input. If the result for the
same arguments with regexp-match would be a list of byte strings, the resulting ranges
correspond to byte ranges; in that case, if input is a character string, the byte ranges corre-
spond to bytes in the UTF-8 encoding of the string.

Range results are returned in a substring- and subbytes-compatible manner, independent
of start-pos. In the case of an input port, the returned positions indicate the number of
bytes that were read, including start-pos, before the first matching byte.

Examples:

> (regexp-match-positions #rx"x." "12x4x6")

302

(2. 4))

> (regexp-match-positions #rx'"x." "12x4x6" 3)

"((4 . 6))

> (regexp-match-positions #rx"(-[0-9]*)+" "a-12--345b")
(1.9 (B .9

(regexp-match-positions* pattern
input
[start-pos
end-pos
input-prefix
#:match-select match-select])
— (or/c (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))
(listof (listof (or/c #f (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
match-select : (list? . -> . (or/c any/c list?)) = car

Like regexp-match-positions, but returns multiple matches like regexp-matchx.
Examples:

> (regexp-match-positions* #rx"x." "12x4x6")
"'((2 . 4) (4. 6))
> (regexp-match-positions* #rx"x(.)" "12x4x6" #:match-select cadr)

"'((3 . 4) (5. 86))

Note that unlike regexp-matchx, there is no #: gap-select? input keyword, as this infor-
mation can be easily inferred from the resulting matches.

(regexp-match? pattern
input
[start-pos
end-pos
output-port
input-prefix]) — boolean?
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f

303

output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns merely #t when the match succeeds, #f otherwise.

Examples:
> (regexp-match? #rx"x." "12x4x6")
#t
> (regexp-match? #rx"y." "12x4x6")
#E

(regexp-match-exact? pattern input) — boolean?
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path?)

Like regexp-match?, but #t is only returned when the entire content of input matches
pattern.

Examples:
> (regexp-match-exact? #rx"x." "12x4x6")
#E
> (regexp-match-exact? #rx"1l.*x." "12x4x6")
#t

(regexp-match-peek pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, but only peeks bytes from input instead of reading
them. Furthermore, instead of an output port, the last optional argument is a progress event
for input (see port-progress-evt). If progress becomes ready, then the match stops

304

peeking from input and returns #f. The progress argument can be #f, in which case the
peek may continue with inconsistent information if another process meanwhile reads from
input.

Examples:

> (define p (open-input-string "a abcd"))
> (regexp-match-peek ".*bc" p)
"(#"a abc")

> (regexp-match-peek ".*bc" p 2)
"(#"abc")

> (regexp-match ".*bc" p 2)
"(#"abc")

> (peek-char p)

#\d

> (regexp-match ".*bc" p)

#f

> (peek-char p)

#<eof>

(regexp-match-peek-positions pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#£)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-positions on input ports, but only peeks bytes from input instead
of reading them, and with a progress argument like regexp-match-peek.

305

(regexp-match-peek-immediate pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#£)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek, but it attempts to match only bytes that are available from in-

put without blocking. The match fails if not-yet-available characters might be used to match
pattern.

(regexp-match-peek-positions-immediate pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#£)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek-positions, but it attempts to match only bytes that are avail-
able from input without blocking. The match fails if not-yet-available characters might be
used to match pattern.

306

(regexp-match-peek-positions* pattern
input
[start-pos
end-pos
input-prefix
#:match-select match-select])

— (or/c (listof (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?))
(1istof (listof (or/c #f (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

match-select : (list? . -> . (or/c any/c list?)) = car

Like regexp-match-peek-positions, but returns multiple matches like regexp-match-
positions*.

(regexp-match/end pattern
input
[start-pos
end-pos
output-port
input-prefix
count])
(if (and (or (string? pattern) (regexp? pattern))
N (or/c (string? input) (path? input)))
(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f£)))))
(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

Like regexp-match, but with a second result: a byte string of up to count bytes that

correspond to the input (possibly including the input-prefix) leading to the end of the
match; the second result is #f if no match is found.

The second result can be useful as an input-prefix for attempting a second match on

307

input starting from the end of the first match. In that case, use regexp-max-lookbehind
to determine an appropriate value for count.

(regexp-match-positions/end pattern
input
[start-pos
end-pos
input-prefix
count])
(listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))
(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1
(regexp-match-peek-positions/end pattern
input
[start-pos
end-pos
progress
input-prefix
count])
(or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
- exact-nonnegative-integer?)

#£)))
#£)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

308

(regexp-match-peek-positions-immediate/end pattern
input
[start-pos
end-pos
progress
input-prefix
count])
(or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
- exact-nonnegative-integer?)

#£)))
#f)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

Like regexp-match-positions, etc., but with a second result like regexp-match/end

4.7.5 Regexp Splitting

(regexp-split pattern
input
[start-pos
end-pos
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
(cons/c string? (listof string?))
(cons/c bytes? (listof bytes?)))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0

(or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

end-pos :

The complement of regexp-matchx*: the result is a list of strings (if pattern is a string
or character regexp and input is a string) or byte strings (otherwise) from input that are

309

separated by matches to pattern. Adjacent matches are separated with "" or #"". Zero-
length matches are treated the same as for regexp-matchx.

If input contains no matches (in the range start-pos to end-pos), the result is a list
containing input’s content (from start-pos to end-pos) as a single element. If a match
occurs at the beginning of input (at start-pos), the resulting list will start with an empty
string or byte string, and if a match occurs at the end (at end-pos), the list will end with an
empty string or byte string. The end-pos argument can be #£, in which case splitting goes
to the end of input (which corresponds to an end-of-file if input is an input port).

Examples:

> (regexp-split #rx" +" "12 34")

t(r12m "34")

> (regexp-split #rx"." "12 34")

! (I’ nwonmn o oarnonmnonnonnon I’)

> (regexp-split #rx"" "12 34")

G e D)

> (regexp-split #rx" *" "12 34")

rEomg e g gy

> (regexp-split #px"\\b" "12, 13 and 14.")
! (Il " l|12|| n s n l|13|| n on.n andll n on . n 14" n . II)
> (regexp-split #rx" +" "")

NG

4.7.6 Regexp Substitution

(regexp-replace pattern
input
insert
[input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
string?
bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?
((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->x . bytes?))
input-prefix : bytes? = #""

Performs a match using pattern on input, and then returns a string or byte string in
which the matching portion of input is replaced with insert. If pattern matches no part
of input, then input is returned unmodified.

310

The insert argument can be either a (byte) string, or a function that returns a (byte) string.
In the latter case, the function is applied on the list of values that regexp-match would
return (i.e., the first argument is the complete match, and then one argument for each paren-
thesized sub-expression) to obtain a replacement (byte) string.

If pattern is a string or character regexp and input is a string, then insert must be a
string or a procedure that accept strings, and the result is a string. If pattern is a byte string
or byte regexp, or if input is a byte string, then insert as a string is converted to a byte
string, insert as a procedure is called with a byte string, and the result is a byte string.

If insert contains &, then & is replaced with the matching portion of input before it is
substituted into the match’s place. If insert contains \(n) for some integer (n), then it is
replaced with the (n)th matching sub-expression from input. A & and \O are aliases. If
the {(n)th sub-expression was not used in the match, or if (n) is greater than the number of
sub-expressions in pattern, then \(n) is replaced with the empty string.

To substitute a literal & or \, use \& and \\, respectively, in insert. A \$ in insert is
equivalent to an empty sequence; this can be used to terminate a number (n) following \. If
a \ in insert is followed by anything other than a digit, &, \, or $, then the \ by itself is
treated as \0.

Note that the \ described in the previous paragraphs is a character or byte of input. To
write such an input as a Racket string literal, an escaping \ is needed before the \. For
example, the Racket constant "\\1" is \ 1.

Examples:

> (regexp-replace #rx"mi" "mi casa" "su")

"su casa"

> (regexp-replace #rx"mi" "mi casa" string-upcase)

"MI casa"

> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "Mi Casa" "\\1y \\2")

"My Casa"

> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
"\\1y \\2")

"my cerveza Mi Mi Mi"

> (regexp-replace #rx"x" "12x4x6" "\\\\")

"12\\4x6"

> (display (regexp-replace #rx"x" "12x4x6" "\\\\"))

12\4x6

(regexp-replacex pattern
input
insert
[start-pos
end-pos
input-prefix]) — (or/c string? bytes?)

311

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

((string?) () #:rest (listof string?) . ->* . string?)

((bytes?) () #:rest (listof bytes?) . ->x . bytes?))
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

Like regexp-replace, except that every instance of pattern in input is replaced with
insert, instead of just the first match. Only non-overlapping instances of pattern in
input are replaced, so instances of pattern within inserted strings are not replaced recur-
sively. Zero-length matches are treated the same as in regexp-matchx*.

The optional start-pos and end-pos arguments select a portion of input for matching;
the default is the entire string or the stream up to an end-of-file.

Examples:

> (regexp-replacex #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
"\\1y \\2")
"my cerveza My Mi Mi"
> (regexp-replacex #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
(lambda (all one two)
(string-append (string-downcase one) "y"
(string-upcase two))))
"myCERVEZA myMI Mi"
> (regexp-replacex #px"\\w" "hello world" string-upcase 0 5)
"HELLO world"
> (display (regexp-replacex #rx'"x" "12x4x6" "\\\\"))
12\4\6

(regexp-replaces input replacements) — (or/c string? bytes?)
input : (or/c string? bytes?)
replacements : (listof
(1ist/c (or/c string? bytes? regexp? byte-regexp?)
(or/c string? bytes?
((string?) () #:rest (listof string?)

((bytes?) () #:rest (listof bytes?) . ->x

Performs a chain of regexp-replace* operations, where each element in replacements
specifies a replacement as a (list pattern replacement). The replacements are done
in order, so later replacements can apply to previous insertions.

Examples:

312

string?)

. bytes?))))

> (regexp-replaces '"zero-or-more?"

P(Drxt-] D COANTSY Mis_\\1']))
"is_zero_or_more"
> (regexp-replaces '"zero-or-more?"

"([#rx"e" "o"] [#rx"o" "oo"]))
"zo0oroo-oor-mooroo?"

(regexp-replace-quote str) — string?
str . string?

(regexp-replace-quote bstr) — bytes?
bstr : bytes?

Produces a string suitable for use as the third argument to regexp-replace to insert the
literal sequence of characters in str or bytes in bstr as a replacement. Concretely, every \
and & in str or bstr is protected by a quoting \.

Examples:

> (regexp-replace #rx"UT" "Go UT!" "A&M")

"Go AUTM!"

> (regexp-replace #rx"UT" "Go UT!" (regexp-replace-quote "A&M"))
"Go A&M!'"

4.8 Keywords
§3.7 “Keywords” in
The Racket Guide
A keyword is like an interned symbol, but its printed form starts with #:, and a keyword introduces

cannot be used as an identifier. Furthermore, a keyword by itself is not a valid expression, keywords.
though a keyword can be quoted to form an expression that produces the symbol.

Two keywords are eq? if and only if they print the same (i.e., keywords are always interned).

Like symbols, keywords are only weakly held by the internal keyword table; see[§4.6 “Sym-]
[bols™ for more information.

See[§1.3.15 “Reading Keywords™| for information on reading keywords and [§1.4.12 “Print]
for information on printing keywords.

(keyword? v) — boolean?
v : any/c

Returns #t if v is a keyword, #f otherwise.

(keyword->string keyword) — string?
keyword : keyword?

313

Returns a string for the displayed form of keyword, not including the leading #:.

(string->keyword str) — keyword?
str : string?

Returns a keyword whose displayed form is the same as that of str, but with a leading
#:.

(keyword<? a-keyword b-keyword ...) — boolean?
a-keyword : keyword?
b-keyword : keyword?

Returns #t if the arguments are sorted, where the comparison for each pair of keywords is
the same as using keyword->string with string->bytes/utf-8 and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.9 Pairs and Lists

A pair combines exactly two values. The first value is accessed with the car procedure, and
the second value is accessed with the cdr procedure. Pairs are not mutable (but see §4.10]
[*Mutable Pairs and Lists™)).

A list is recursively defined: it is either the constant null, or it is a pair whose second value
is a list.

A list can be used as a single-valued sequence (see [§4.14.1 “Sequences’)). The elements of
the list serve as elements of the sequence. See also in-1ist.

Cyclic data structures can be created using only immutable pairs via read or make-reader-
graph. If starting with a pair and using some number of cdrs returns to the starting pair,
then the pair is not a list.

See[§1.3.6 “Reading Pairs and Lists™] for information on reading pairs and lists and [§1.4.3]
“Printing Pairs and Lists”| for information on printing pairs and lists.

4.9.1 Pair Constructors and Selectors

(pair? v) — boolean?
v : any/c

Returns #t if v is a pair, #f otherwise.

Examples:

314

§3.8 “Pairs and
Lists” in The Racket
Guide introduces
pairs and lists.

> (pair? 1)

#t

> (pair? (cons 1 2))
#t

> (pair? (list 1 2))
#t

> (pair? '(1 2))

#t

> (pair? '())

#f

(null? v) — boolean?
v : any/c

Returns #t if v is the empty list, #f otherwise.

Examples:

> (null? 1)

#f

> (null? '(1 2))

#£f

> (null? '())

#t

> (null? (cdr (list 1)))
#t

(cons a d) — pair?
a : any/c
d : any/c
Returns a newly allocated pair whose first element is a and second element is d.

Examples:

> (cons 1 2)

1. 2)
> (cons 1 '())
"(1)

(car p) — any/c
p @ pair?

Returns the first element of the pair p.

Examples:

315

(car '(1 2))

(car (comns 2 3))

NV =V

(cdr p) — any/c
p @ pair?

Returns the second element of the pair p.

Examples:

> (cdr '(1 2))
'(2)

> (cdr '(1))
O

null : null?

The empty list.

Examples:

> null

"0

>0

“O

> (eq? '() null)
#t

(1ist? v) — boolean?
v : any/c

Returns #t if v is a list: either the empty list, or a pair whose second element is a list.
This procedure effectively takes constant time due to internal caching (so that any necessary
traversals of pairs can in principle count as an extra cost of allocating the pairs).

Examples:

> (list? '(1 2))

#t

> (list? (cons 1 (cons 2 '())))
#t

> (1list? (comns 1 2))

#£f

316

(list v ...) — 1list?
v : any/c

Returns a newly allocated list containing the vs as its elements.

Examples:

> (list 1 2 3 4)

'(12 3 4)

> (list (list 1 2) (1list 3 4))
"((12) (34)

(list* v ... tail) — any/c
v : any/c
tail : any/c

Like 1ist, but the last argument is used as the tail of the result, instead of the final element.
The result is a list only if the last argument is a list.

Examples:

> (list* 1 2)

1. 2)

> (list* 1 2 (list 3 4))
(123 4)

(build-list n proc) — list?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any)

Creates a list of n elements by applying proc to the integers from O to (subl n) in order.
If Ist is the resulting list, then (1ist-ref 1st i) is the value produced by (proc 1i).
Examples:

> (build-1list 10 values)
'(01234567829)

> (build-list 5 (lambda (x) (* x x)))
'(014 9 16)

4.9.2 List Operations

(length 1st) — exact-nonnegative-integer?
Ist : list?

317

Returns the number of elements in 1st.

Examples:
> (length (list 1 2 3 4))
4
> (length 'O))
0

(list-ref 1Ist pos) — any/c
1st : pair?
pos . exact-nonnegative-integer?

Returns the element of 1st at position pos, where the list’s first element is position 0. If
the list has pos or fewer elements, then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely start with a chain of at least
(add1l pos) pairs.

Examples:

> (list-ref (list 'a 'b 'c) 0)
'a
> (list-ref (list 'a 'b 'c) 1)
'b
> (list-ref (list 'a 'b 'c) 2)
'c
> (list-ref (cons 1 2) 0)
1
> (list-ref (cons 1 2) 1)
list-ref: index reaches a non-pair
index: 1
in: '(1.2)

(list-tail 1st pos) — any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the list after the first pos elements of 1st. If the list has fewer than pos elements,
then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely start with a chain of at least
pos pairs.

Examples:

318

> (list-tail (1ist 1 2 3 4 5) 2)
'(3 4 5)
> (list-tail (comns 1 2) 1)
2
> (list-tail (comns 1 2) 2)
list-tail: index reaches a non-pair
index: 2
in: '(1.2)
> (list-tail 'mot-a-pair 0)
'not-a-pair

(append Ist ...) — list?
Ist : list?

(append 1st ... v) — any/c
Ist : list?
v : any/c

When given all list arguments, the result is a list that contains all of the elements of the given
lists in order. The last argument is used directly in the tail of the result.
The last argument need not be a list, in which case the result is an “improper list.”

Examples:

> (append (list 1 2) (list 3 4))

'(1 23 4)

> (append (list 1 2) (list 3 4) (list 5 6) (list 7 8))
'(123456738)

(reverse 1st) — 1list?
Ist : 1list?

Returns a list that has the same elements as 1st, but in reverse order.

Example:

> (reverse (list 1 2 3 4))
'(4 32 1)

4.9.3 List Iteration

(map proc 1st ...+) — list?
proc : procedure?
lst : list?

319

Applies proc to the elements of the Ists from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied 1sts, and
all Ists must have the same number of elements. The result is a list containing each result
of proc in order.

Examples:

> (map (lambda (number)
(+ 1 number))
"(1 23 4))
'(2 34 5)
> (map (lambda (numberl number2)
(+ numberl number?2))
(12 3 4)
' (10 100 1000 10000))
"(11 102 1003 10004)

(andmap proc 1lst ...+) — any
proc : procedure?
lst : list?

Similar to map in the sense that proc is applied to each element of 1st, but The andmap
function is actually
closer to foldl

* the result is #£ if any application of proc produces #f, in which case proc is not thanmap, since

applied to later elements of the 1sts; and andmap docsn’t
produce a list. Still,

« the result is that of proc applied to the last elements of the 1sts; more specifically, }({a;d’:e;f i: (List

the application of proc to the last elements in the 1sts is in tail position with respect equivalent to (and
to the andmap call. (£ x) (fy) (£
z)) in the same
way that (map £
If the Ists are empty, then #t is returned. (list x y 2))is
equivalent to (1ist

Ex Gy ¢

Examples: 2).

> (andmap positive? '(1 2 3))

#t

> (andmap positive? '(1 2 a))

positive?: contract violation
expected: real?

given: 'a
> (andmap positive? '(1 -2 a))
#E
> (andmap + '(1 2 3) '(4 5 6))

9

320

(ormap proc 1lst ...+) — any
proc : procedure?
lst : list?

Similar to map in the sense that proc is applied to each element of 1st, but To continue the

andmap note above,
(ormap f (list
x y z))is
equivalent to (or
* the result is that of the first application of proc producing a value other than #f,in (£ x) (£ y) (£
which case proc is not applied to later elements of the 1sts; the application of proc ~ 2))-

to the last elements of the 1sts is in tail position with respect to the ormap call.

* the result is #f if every application of proc produces #f; and

If the Ists are empty, then #£ is returned.
Examples:

> (ormap eq? '(a b c) '(a b c))

#t

> (ormap positive? '(1 2 a))

#t

> (ormap + '(1 2 3) '(4 5 6))

5

(for-each proc 1st ...+) — void?
proc : procedure?
lst : list?

Similar to map, but proc is called only for its effect, and its result (which can be any number
of values) is ignored.

Example:

> (for-each (lambda (arg)
(printf "Got ~a\n" arg)

23)
'(12 3 4))
Got 1
Got 2
Got 3
Got 4

(foldl proc init 1st ...+) — any/c
proc : procedure?
init : any/c
lst : list?

321

Like map, foldl applies a procedure to the elements of one or more lists. Whereas map
combines the return values into a list, fo1d1 combines the return values in an arbitrary way
that is determined by proc.

If foldl is called with n lists, then proc must take n+1 arguments. The extra argument is
the combined return values so far. The proc is initially invoked with the first item of each
list, and the final argument is init. In subsequent invocations of proc, the last argument
is the return value from the previous invocation of proc. The input 1sts are traversed from
left to right, and the result of the whole fo1d1 application is the result of the last application
of proc. If the 1sts are empty, the result is init.

Unlike foldr, foldl processes the 1sts in constant space (plus the space for each call to
proc).

Examples:

> (foldl cons ') '(1 2 3 4))

(4 321)

> (foldl + 0 '(1 2 3 4))

10

> (foldl (lambda (a b result)
(* result (- a b)))

1
'(1 2 3)
'(4 5 6))
=27
(foldr proc init 1lst ...+) — any/c

proc : procedure?
init : any/c
1st : list?

Like fold1l, but the lists are traversed from right to left. Unlike foldl, foldr processes the
1sts in space proportional to the length of 1sts (plus the space for each call to proc).
Examples:

> (foldr cons '() '(1 2 3 4))

'(1 2 3 4)

> (foldr (lambda (v 1) (coms (addl v) 1)) 'O '(1 2 3 4))
'(2 34 5)

4.9.4 List Filtering

(filter pred 1lst) — list?

322

pred : procedure?
Ist : list?

Returns a list with the elements of 1st for which pred produces a true value. The pred
procedure is applied to each element from first to last.
Example:

> (filter positive? '(1 -2 3 4 -5))

'(1 .3 4)

(remove v 1st [proc]) — 1list?
v : any/c
Ist : list?
proc : procedure? = equal?

Returns a list that is like 1st, omitting the first element of 1st that is equal to v using the
comparison procedure proc (which must accept two arguments).
Examples:

> (remove 2 (list 1 2 3 2 4))

(132 4)

> (remove 2 (list 1 2 3 2 4) =)
'(132 4)

> (remove '(2) (list '(1) '(2) '(3)))
(1) 3N

> (remove "2" (list "1™ "2" "3"))
|(|’1|| "3")

> (remove #\c (list #\a #\b #\c))
"(#\a #\b)

(remq v Ist) — list?
v : any/c
1st : list?

Returns (remove v lst eq?).

Examples:

> (remq 2 (1ist 1 2 3 4 5))
'(1345)

> (remq '(2) (list '(1) '(2) '(3)))
() (2 @M

323

> (remq "2" (list "1" "2" "3"))
|(|l1|| "3")
> (remq #\c (list #\a #\b #\c))
"(#\a #\Db)

(remv v 1lst) — list?
v : any/c
Ist : list?

Returns (remove v lst eqv?).

Examples:

> (remv 2 (list 1 2 3 4 5))
'(1345)

> (remv '(2) (list '(1) '(2) '(3)))
(1) (2 3

> (remv "2" (list "1™ "2" "3"))

] (Illll u3n)

> (remv #\c (list #\a #\b #\c))

' (#\a #\Db)

(remove* v-1st 1st [proc]) — list?
v-1st : list?
Ist : list?
proc : procedure? = equal?

Like remove, but removes from 1st every instance of every element of v-Ist.

Example:

> (removex (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

(remg* v-1st lst) — list?
v-1st : list?
Ist : list?
Returns (remove* v-Ist Ist eq?).

Example:

> (remg* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

324

(remv* v-1st Ist) — 1list?
v-1st : list?
Ist : 1list?

Returns (remove* v-Ist Ist eqv?).
Example:

> (remvx (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)

(sort 1Ist
less-than?
[#:key extract-key
#:cache-keys? cache-keys?]) — 1list?
1st : list?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f

Returns a list sorted according to the less-than? procedure, which takes two elements of
1st and returns a true value if the first is less (i.e., should be sorted earlier) than the second.

The sort is stable; if two elements of 1st are “equal” (i.e., Iess-than? does not return a
true value when given the pair in either order), then the elements preserve their relative order
from 1st in the output list. To preserve this guarantee, use sort with a strict comparison
functions (e.g., < or string<7?; not <= or string<="7).

The #:key argument extract-key is used to extract a key value for comparison from each
list element. That is, the full comparison procedure is essentially

(lambda (x y)
(less-than? (extract-key x) (extract-key y)))

By default, extract-key is applied to two list elements for every comparison, but if
cache-keys? is true, then the extract-key function is used exactly once for each list
item. Supply a true value for cache-keys? when extract-key is an expensive operation;
for example, if file-or-directory-modify-seconds is used to extract a timestamp for
every file in a list, then cache-keys? should be #t to minimize file-system calls, but if
extract-key is car, then cache-keys? should be #f. As another example, providing
extract-key as (lambda (x) (random)) and #t for cache-keys? effectively shuffles
the list.

Examples:

325

Because of the
peculiar fact that the
IEEE-754 number
system specifies
that +nan.0 is
neither greater nor
less than nor equal
to any other
number, sorting
lists containing this
value may produce
a surprising result.

> (sort '(1 34 2) <)

'(1 2 3 4)

> (sort '("aardvark" "dingo" "cow" "bear") string<?)

' ("aardvark" "bear" "cow" "dingo")

> (sort '(("aardvark") ("dingo") ("cow") ("bear"))
#:key car string<?)

'(("aardvark") ("bear") ("cow") ("dingo"))

4.9.5 List Searching

(member v 1st [is-equal?]) — (or/c list? #f)
v : any/c
Ist : list?
is-equal? : (any/c any/c -> any/c) = equal?

Locates the first element of 1st that is equal? to v. If such an element exists, the tail of
1st starting with that element is returned. Otherwise, the result is #f.

Examples:

> (member 2 (list 1 2 3 4))

(2 3 4)

> (member 9 (list 1 2 3 4))

#E

> (member #'x (list #'x #'y) free-identifier=7)
' (#<syntax:eval:509:0 x> #<syntax:eval:509:0 y>)
> (member #'a (list #'x #'y) free-identifier=7)
#f

(memv v 1st) — (or/c list? #f)
v : any/c
Ist : 1list?

Like member, but finds an element using eqv?.

Examples:

> (memv 2 (list 1 2 3 4))
'(2 3 4)

> (memv 9 (list 1 2 3 4))
#f

(memq v Ist) — (or/c list? #f)

v : any/c
Ist : list?

326

Like member, but finds an element using eq?.

Examples:

> (memq 2 (list 1 2 3 4))

'(2 3 4
> (memqg 9 (list 1 2 3 4))

#f

(memf proc 1st) — (or/c list? #f)
proc : procedure?
1st : list?

Like member, but finds an element using the predicate proc; an element is found when proc

applied to the element returns a true value.

Example:

> (memf (lambda (arg)
(> arg 9))
'(7 8 9 10 11))

'(10 11)

(findf proc 1lst) — any/c
proc : procedure?
1st : list?

Like memf, but returns the element or #f instead of a tail of 1st or #f.

Example:

> (findf (lambda (arg)
(> arg 9))
(7 8 9 10 11))

10

(assoc v 1st [is-equal?]) — (or/c pair? #f)
v : any/c
lst : (listof pair?)
is-equal? : (any/c any/c -> any/c) = equal?

Locates the first element of 1st whose car is equal to v according to is-equal?. If such
an element exists, the pair (i.e., an element of 1st) is returned. Otherwise, the result is #£.

Examples:

327

> (assoc 3 (list (1list 1 2) (1list 3 4) (list 5 6)))
'(3 4)
> (assoc 9 (list (list 1 2) (list 3 4) (list 5 6)))
#£f
> (assoc 3.5
(list (list 1 2) (list 3 4) (list 5 6))
(lambda (a b) (< (abs (- a b)) 1)))
'(3 4)

(assv v 1Ist) — (or/c pair? #f)
v : any/c
lst : (listof pair?)

Like assoc, but finds an element using eqv?.

Example:

> (assv 3 (1ist (1ist 1 2) (list 3 4) (1list 5 6)))
'(3 4)

(assq v 1Ist) — (or/c pair? #f)
v : any/c
1st : (listof pair?)

Like assoc, but finds an element using eq?.

Example:

> (assq 'c (list (list 'a 'b) (list 'c 'd) (list 'e 'f)))
"(c d)

(assf proc 1st) — (or/c pair? #f)
proc : procedure?
1st : (listof pair?)

Like assoc, but finds an element using the predicate proc; an element is found when proc
applied to the car of an 1st element returns a true value.
Example:

> (assf (lambda (arg)
(> arg 2))
(1ist (list 1 2) (list 3 4) (list 5 6)))
'(3 4)

328

4.9.6 Pair Accessor Shorthands

(caar v) — any/c
v : (cons/c pair? any/c)
Returns (car (car v)).
Example:

> (caar '((1 2) 3 4))
1

(cadr v) — any/c
v : (cons/c any/c pair?)
Returns (car (cdr v)).
Example:

> (cadr '((1 2) 3 4))
3

(cdar v) — any/c
v : (cons/c pair? any/c)

Returns (cdr (car v)).

Example:

> (cdar '((7 6543 21) 8 9))

'(654321)

(cddr v) — any/c
v : (cons/c any/c pair?)
Returns (cdr (cdr v)).
Example:

> (cddr '(2 1))
O

329

(caaar v) — any/c
v : (cons/c (cons/c pair? any/c) any/c)
Returns (car (car (car v))).
Example:

> (caaar '(((654321)7) 89))
6

(caadr v) — any/c
v : (cons/c any/c (cons/c pair? any/c))
Returns (car (car (cdr v))).
Example:

> (caadr '(9 (7 6 54 3 2 1) 8))
7

(cadar v) — any/c
v : (cons/c (cons/c any/c pair?) any/c)
Returns (car (cdr (car v))).
Example:

> (cadar '((7 65432 1) 8 9))
6

(caddr v) — any/c
v : (cons/c any/c (cons/c any/c pair?))
Returns (car (cdr (cdr v))).
Example:

> (caddr '(3 2 1))
1

330

(cdaar v) — any/c
v : (cons/c (cons/c pair? any/c) any/c)
Returns (cdr (car (car v))).
Example:

> (cdaar '(((654321)7) 89))
'(54321)

(cdadr v) — any/c
v : (cons/c any/c (cons/c pair? any/c))
Returns (cdr (car (cdr v))).
Example:

> (cdadr '(9 (7 6 54 32 1) 8))
'(6 54321)

(cddar v) — any/c
v : (cons/c (cons/c any/c pair?) any/c)
Returns (cdr (cdr (car v))).
Example:

> (cddar '((7 6 5432 1) 8 9))
'(54321)

(cdddr v) — any/c
v : (cons/c any/c (cons/c any/c pair?))
Returns (cdr (cdr (cdr v))).
Example:

> (cdddr '(3 2 1))
O

331

(caaaar v) — any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)
Returns (car (car (car (car v)))).
Example:

> (caaaar '((((5 432 1) 6) 7) 89)
5

(caaadr v) — any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))
Returns (car (car (car (cdr v)))).
Example:

> (caaadr '(9 ((6 5432 1) 7) 8))
6

(caadar v) — any/c
v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)
Returns (car (car (cdr (car v)))).
Example:

> (caadar '((7 (5432 1) 6) 8 9))
5

(caaddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))
Returns (car (car (cdr (cdr v)))).
Example:

> (caaddr '(9 8 (6 543 21) 7))
6

332

(cadaar v) — any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)
Returns (car (cdr (car (car v)))).
Example:

> (cadaar '(((6 54 32 1) 7) 8 9))
5

(cadadr v) — any/c
v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))
Returns (car (cdr (car (cdr v)))).
Example:

> (cadadr '(9 (7 6 54 32 1) 8))
6

(caddar v) — any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)
Returns (car (cdr (cdr (car v)))).
Example:

> (caddar '((7 6 5432 1) 8 9))
5

(cadddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))
Returns (car (cdr (cdr (cdr v)))).
Example:

> (cadddr '(4 3 2 1))
1

333

(cdaaar v) — any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)
Returns (cdr (car (car (car v)))).
Example:

> (cdaaar '((((5 432 1) 6) 7) 89))
(4 321)

(cdaadr v) — any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))
Returns (cdr (car (car (cdr v)))).
Example:

> (cdaadr '(9 ((6 5432 1) 7) 8))
'(54321)

(cdadar v) — any/c
v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)
Returns (cdr (car (cdr (car v)))).
Example:

> (cdadar '((7 (56432 1) 6) 8 9))
'4321)

(cdaddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))
Returns (cdr (car (cdr (cdr v)))).
Example:

> (cdaddr '(9 8 (6 54 321) 7))
'(64321)

334

(cddaar v) — any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)
Returns (cdr (cdr (car (car v)))).
Example:

> (cddaar '(((6 54 32 1) 7) 8 9))
'(4 32 1)

(cddadr v) — any/c
v : (cons/c any/c (cons/c (comns/c any/c pair?) any/c))
Returns (cdr (cdr (car (cdr v)))).
Example:

> (cddadr '(9 (7 6 5432 1) 8))
'(54321)

(cdddar v) — any/c
v : (cons/c (cons/c any/c (comns/c any/c pair?)) any/c)
Returns (cdr (cdr (cdr (car v)))).
Example:

> (cdddar '((7 6 5432 1) 8 9))
'(4321)

(cddddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))
Returns (cdr (cdr (cdr (cdr v)))).
Example:

> (cddddr '(4 3 2 1))
0]

335

4.9.7 Additional List Functions and Synonyms

(require racket/list) package: base

The bindings documented in this section are provided by the racket/list and racket
libraries, but not racket/base.

empty : null?

The empty list.

Examples:

> empty

"0

> (eq? empty null)
#t

(cons? v) — boolean?
v : any/c
The same as (pair? v).

Example:

> (cons? '(1 2))
#t

(empty? v) — boolean?
v : any/c
The same as (null? v).

Examples:

> (empty? '(1 2))
#f

> (empty? ')
#t

(first 1st) — any/c
1st : list?

The same as (car 1st), but only for lists (that are not empty).

Example:

336

https://pkgs.racket-lang.org/package/base

> (first '(1 23456 7 8 9 10))
1

(rest 1st) — 1list?
Ist : list?
The same as (cdr 1st), but only for lists (that are not empty).
Example:

567 89 10))
)

(second 1st) — any
Ist : list?
Returns the second element of the list.
Example:

> (second '(1 23456789 10))
2

(third Ist) — any
Ist : list?
Returns the third element of the list.
Example:

> (third '(1 23456789 10))
3

(fourth 1st) — any
Ist : list?
Returns the fourth element of the list.
Example:

> (fourth '(1 234567 89 10))
4

337

(fifth 1st) — any
Ist : 1list?
Returns the fifth element of the list.
Example:

> (fifth '(1 234567 89 10))
5

(sixth Ist) — any
Ist : 1list?
Returns the sixth element of the list.
Example:

> (sixth '(1 23456789 10))
6

(seventh 1st) — any
Ist : 1list?
Returns the seventh element of the list.
Example:

> (seventh '(1 23456789 10))
7

(eighth 1st) — any
Ist : list?
Returns the eighth element of the list.
Example:

> (eighth '(1 234567 89 10))
8

(ninth Ist) — any
lst : list?

338

Returns the ninth element of the list.
Example:

> (ninth '(1 23456789 10))
9

(tenth Ist) — any
1st : 1list?
Returns the tenth element of the list.
Example:

> (tenth '(1 234567 89 10))
10

(last 1st) — any
Ist : list?
Returns the last element of the list.
Example:

> (last '(1 23456789 10))
10

(last-pair p) — pair?
p @ pair?
Returns the last pair of a (possibly improper) list.
Example:

> (last-pair '(1 2 3 4))
'(4)

(make-list k v) — list?
k : exact-nonnegative-integer?
v : any/c

Returns a newly constructed list of length k, holding v in all positions.

Example:

339

> (make-list 7 'foo)
'(foo foo foo foo foo foo foo)

(list-update 1st pos updater) — list?
1st : list?
pos : (and/c (>=/c 0) (</c (length 1st)))
updater : (-> any/c any/c)

Returns a list that is the same as 1st except at the specified index. The element at the
specified index is (updater (list-ref Ist pos)).

Example:

> (list-update '(zero one two) 1 symbol->string)
'(zero "one" two)

Added in version 6.3 of package base.

(list-set 1st pos value) — list?
1st : list?
pos : (and/c (>=/c 0) (</c (length 1st)))
value : any/c

Returns a list that is the same as 1st except at the specified index. The element at the
specified index is value.
Example:

> (list-set '(zero one two) 2 "two")

'(zero one "two")

Added in version 6.3 of package base.

(index-of Ist v [is-equal?]) — (or/c exact-nonnegative-integer? #f)
Ist : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?
Like member, but returns the index of the first element found instead of the tail of the list.
Example:
> (index-of '(1 2 3 4) 3)
2

340

Added in version 6.7.0.3 of package base.

(index-where Ist proc) — (or/c exact-nonnegative-integer? #f)
1st : list?
proc : (any/c . -> . any/c)

Like index-of but with the predicate-searching behavior of memf.
Example:
> (index-where '(1 2 3 4) even?)

1

Added in version 6.7.0.3 of package base.

(indexes-of 1lst v [is-equal?])
— (listof exact-nonnegative-integer?)

Ist : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?

Like index-of, but returns the a list of all the indexes where the element occurs in the list
instead of just the first one.

Example:
> (indexes-of '(1 2 1 2 1) 2)
(1 3)

Added in version 6.7.0.3 of package base.
(indexes-where lst proc) — (listof exact-nonnegative-integer?)
1st : list?
proc : (any/c . -> . any/c)
Like indexes-of but with the predicate-searching behavior of index-where.
Example:
> (indexes-where '(1 2 3 4) even?)

"(1 3)

Added in version 6.7.0.3 of package base.

341

(take 1st pos) — list?
1st : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the first pos elements of 1st. If 1st has fewer than
pos elements, the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely start with a chain of at least
pos pairs.

Examples:

> (take '(1 2 3 4 5) 2)
'(1 2)

> (take 'mon-list 0)
O

(drop 1st pos) — any/c
lst : any/c
pos : exact-nonnegative-integer?

Just like 1ist-tail.

(split-at Ist pos) — 1list? any/c
lst : any/c
pos : exact-nonnegative-integer?

Returns the same result as

(values (take Ist pos) (drop lst pos))

except that it can be faster.

(takef 1st pred) — list?
Ist : any/c
pred : procedure?

Returns a fresh list whose elements are taken successively from 1st as long as they satisfy
pred. The returned list includes up to, but not including, the first element in 1st for which
pred returns #f.

The 1st argument need not actually be a list; the chain of pairs in 1st will be traversed
until a non-pair is encountered.

Examples:

342

> (takef '(2 4 5 8) even?)

(2 4)

> (takef '(2 4 6 8) odd?)
'O

> (takef '(2 4 . 6) even?)
'(2 4)

(dropf 1st pred) — any/c
1st : any/c
pred : procedure?

Drops elements from the front of 1st as long as they satisfy pred.
Examples:

> (dropf '(2 4 5 8) even?)
'(5 8)

> (dropf '(2 4 6 8) odd?)
'(2 4 6 8)

(splitf-at lst pred) — 1list? any/c
lst : any/c
pred : procedure?

Returns the same result as

(values (takef 1lst pred) (dropf lst pred))

except that it can be faster.

(take-right lst pos) — any/c
1st : any/c
pos : exact-nonnegative-integer?

Returns the 1ist’s pos-length tail. If 1st has fewer than pos elements, then the
exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely end with a chain of at least
pos pairs.

Examples:

> (take-right '(1 2 3 4 5) 2)
'(4 5)

> (take-right 'non-list 0)
'non-list

343

(drop-right lst pos) — list?
1st : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the prefix of 1st, dropping its pos-length tail. If
1st has fewer than pos elements, then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely end with a chain of at least
pos pairs.

Examples:

> (drop-right '(1 2 3 4 5) 2)
(12 3)

> (drop-right 'non-list 0)
'O

(split-at-right Ist pos) — 1list? any/c
1st : any/c
pos : exact-nonnegative-integer?

Returns the same result as

(values (drop-right Ist pos) (take-right Ist pos))

except that it can be faster.

Examples:

> (split-at-right '(1 2 3 4 5 6) 3)
'(1 2 3)

'(4 5 6)

> (split-at-right '(1 2 3 4 5 6) 4)
(1 2)

'(3 45 6)

(takef-right Ist pred) — any/c
lst : any/c
pred : procedure?
(dropf-right Ist pred) — list?
1st : any/c
pred : procedure?
(splitf-at-right Ist pred) — list? any/c
1st : any/c
pred : procedure?

344

Like takef, dropf, and splitf-at, but combined with the from-right functionality of
take-right, drop-right, and split-at-right.

(list-prefix? 1 r [same?]) — boolean?

1 : 1list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

True if 1 is a prefix of r.

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))
#t

Added in version 6.3 of package base.

(take-common-prefix 1 r [same?]) — list?

1 : 1list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the longest common prefix of 1 and r.
Example:
> (take-common-prefix '(a b cd) '(abxy z))

"(a b)

Added in version 6.3 of package base.

(drop-common-prefix 1 r [same?]) — list? list?

1 : 1list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the tails of 1 and r with the common prefix removed.
Example:

> (drop-common-prefix '(a b c d) '(abxy z))
"(c d)
'(xy 2)

Added in version 6.3 of package base.

345

(split-common-prefix 1 r [same?]) — list? 1list? list?

1 : 1ist?
r . list?
same? : (any/c any/c . -> . any/c) = equal?

Returns the longest common prefix together with the tails of 1 and r with the common prefix
removed.

Example:

> (split-common-prefix '(a b cd) '(abxy z))
"(a b)

"(c D)

"‘(xy 2z)

Added in version 6.3 of package base.

(add-between Ist
v
[#:before-first before-first
#:before-last before-last
#:after-last after-last

#:splice? splice?]) — list?
1st : list?
v : any/c
before-first : list? = '()
before-last : any/c = v
after-last : list? = '()

splice? : any/c = #f

Returns a list with the same elements as Ist, but with v between each pair of elements

in 1st; the last pair of elements will have before-last between them, instead of v (but
before-last defaults to v).

If splice?is true, then v and before-last should be lists, and the list elements are spliced
into the result. In addition, when splice? is true, before-first and after-last are
inserted before the first element and after the last element respectively.

Examples:

> (add-between '(x y z) 'and)

'(x and y and z)

> (add-between '(x) 'and)

"(x)

> (add-between '("a" "b" "c" "d") "," #:before-last "and")
' (Ilall n s n llbll n , n "C" Ilandll lldll)

346

> (add-between '(x y z) '(-) #:before-last '(- -)
#:before-first '(begin) #:after-last '(end LF)
#:splice? #t)

"(begin x - y - - z end LF)

(append* 1st ... Ists) — list?
1st : list?
1sts : (listof 1list?)

(append* 1st ... Ists) — any/c
Ist : list?

Ists : list?

Like append, but the last argument is used as a list of arguments for append, so (append*
1st ... lsts) is the same as (apply append Ist ... lsts). In other words, the
relationship between append and append* is similar to the one between 1ist and 1istx*.

Examples:

> (append* '(a) '(b) '((c) (d)))

'abcd

> (cdr (append* (map (lambda (x) (list ", " x))
'("Alpha" "Beta" "Gamma"))))

1 ("Alphall n s n ||Beta" n , n "Ga.[nma")

(flatten v) — list?
v : any/c

Flattens an arbitrary S-expression structure of pairs into a list. More precisely, v is treated as
a binary tree where pairs are interior nodes, and the resulting list contains all of the non-null
leaves of the tree in the same order as an inorder traversal.

Examples:

> (flatten '((a) b (c (d) . e O))
'"abcde)

> (flatten 'a)

"(a)

(check-duplicates Ist
[same?
#:key extract-key
#:default failure-result]) — any
1st : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (-> any/c any/c) = (lambda (x) x)
failure-result : (failure-result/c any/c) = (lambda () #f)

347

Returns the first duplicate item in 1st. More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

If no duplicate is found, then failure-result determines the result:

e If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.
e Otherwise, failure-result is returned as the result.

The same? argument should be an equivalence predicate such as equal? or eqv? or a dic-
tionary. The procedures equal?, eqv?, and eq? automatically use a dictionary for speed.

Examples:

> (check-duplicates '(1 2 3 4))

#f

> (check-duplicates '(1 2 3 2 1))

2

> (check-duplicates '((a 1) (b 2) (a 3)) #:key car)
"(a 3)

> (check-duplicates '(1 2 3 4 5 6)
(lambda (x y) (equal? (modulo x 3) (modulo y 3))))
4
> (check-duplicates '(1 2 3 4) #:default "no duplicates")
"no duplicates"

Added in version 6.3 of package base.
Changed in version 6.11.0.2: Added the #:default optional argument.

(remove-duplicates Ist
[same?
#:key extract-key]) — list?
1st : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (any/c . -> . any/c) = (lambda (x) x)

Returns a list that has all items in 1st, but without duplicate items, where same ? determines
whether two elements of the list are equivalent. The resulting list is in the same order as
1st, and for any item that occurs multiple times, the first one is kept.

The #:key argument extract-key is used to extract a key value from each list element,
so two items are considered equal if (same? (extract-key x) (extract-key y)) is
true.

Examples:

348

> (remove-duplicates '(a b b a))

'(a b)
> (remove-duplicates '(1 2 1.0 0))
'(121.00)
> (remove-duplicates '(1 2 1.0 0) =)
(120
(filter-map proc Ist ...+) — list?
proc : procedure?
1st : list?
Like (map proc 1st ...), except that, if proc returns #false, that element is omitted
from the resulting list. In other words, filter-map is equivalent to (filter (lambda
(x) x) (map proc 1st ...)),butmore efficient, because filter-map avoids building

the intermediate list.

Example:

> (filter-map (lambda (x) (and (positive? x) x)) '(1 2 3 -2 8))
'(1238)

(count proc 1lst ...+) — exact-nonnegative-integer?
p g g
proc : procedure?
1st : list?

Returns (length (filter-map proc lst ...)), but without building the intermediate
list.
Example:

> (count positive? '(1 -1 2 3 -2 5))
4

(partition pred 1lst) — 1list? list?
pred : procedure?
Ist : list?

Similar to filter, except that two values are returned: the items for which pred returns a
true value, and the items for which pred returns #£.

The result is the same as

(values (filter pred Ist) (filter (negate pred) 1st))

349

but pred is applied to each item in 1st only once.
Example:

> (partition even? '(1 2 3 4 5 6))
'(2 4 6)
'(135)

(range end) — list?
end : real?
(range start end [step]) — list?
start : real?
end : real?
step : real? =1

Similar to in-range, but returns lists.

The resulting list holds numbers starting at start and whose successive elements are com-
puted by adding step to their predecessor until end (excluded) is reached. If no starting
point is provided, O is used. If no step argument is provided, 1 is used.

Like in-range, a range application can provide better performance when it appears directly
in a for clause.

Examples:

> (range 10)
'(01234567809)

> (range 10 20)

'(10 11 12 13 14 15 16 17 18 19)
> (range 20 40 2)

'(20 22 24 26 28 30 32 34 36 38)
> (range 20 10 -1)

'(20 19 18 17 16 15 14 13 12 11)
> (range 10 15 1.5)

'(10 11.5 13.0 14.5)

Changed in version 6.7.0.4 of package base: Adjusted to cooperate with for in the same way that in-range does.

(append-map proc Ist ...+) — list?
proc : procedure?
lst : list?

Returns (append* (map proc Ist ...)).

Example:

350

> (append-map vector->list '(#(1) #(2 3) #(4)))
'(1234)

(filter-not pred Ist) — 1list?
pred : (any/c . -> . any/c)
1st : list?

Like filter, but the meaning of the pred predicate is reversed: the result is a list of all
items for which pred returns #£.
Example:

> (filter-not even? '(1 2 3 4 5 6))
'(1 3 5)

(shuffle 1st) — list?
Ist : 1list?

Returns a list with all elements from 1st, randomly shuffled.
Examples:

> (shuffle '(1 2 3 45 6))
'(512346)
> (shuffle '(1 2 3 4 5 6))
'(51326 4)
> (shuffle '(1 2 3 45 6))
‘(13265 4)

(combinations lst) — list?

Ist : list?
(combinations lst size) — 1list?
Ist : 1list?

size : exact-nonnegative-integer?
Wikipedia
) L . . . combinations
Return a list of all combinations of elements in the input list (aka the powerset of 1st). If
size is given, limit results to combinations of size elements.

Examples:

> (combinations '(1 2 3))

(O (1) (2 (1 2) (3) (13) (23) (123))
> (combinations '(1 2 3) 2)

"((12) (13) (23)

351

https://en.wikipedia.org/wiki/Combination

(in-combinations Ist) — sequence?

lst : list?
(in-combinations Ist size) — sequence?
1st : list?

size : exact-nonnegative-integer?

Returns a sequence of all combinations of elements in the input list, or all combinations of
length size if size is given. Builds combinations one-by-one instead of all at once.

Examples:

> (time (begin (combinations (range 15)) (void)))
cpu time: 11 real time: 10 gc time: O

> (time (begin (in-combinations (range 15)) (void)))
cpu time: O real time: O gc time: O

(permutations Ist) — list?
1st : list?

Returns a list of all permutations of the input list. Note that this function works without
inspecting the elements, and therefore it ignores repeated elements (which will result in
repeated permutations). Raises an error if the input list contains more than 256 elements.

Examples:

> (permutations '(1 2 3))
'((123) (213 (132) (312) (231) (321)
> (permutations '(x x))

"((x x) (x x))

(in-permutations Ist) — sequence?
Ist : list?

Returns a sequence of all permutations of the input list. It is equivalent to (in-1ist (per-
mutations 1)) but much faster since it builds the permutations one-by-one on each itera-
tion Raises an error if the input list contains more than 256 elements.

(argmin proc lst) — any/c
proc : (-> any/c real?)
1st : (and/c pair? list?)

Returns the first element in the list 1st that minimizes the result of proc. Signals an error
on an empty list. See also min.

Examples:

352

> (argmin car '((3 pears) (1 banana) (2 apples)))
'(1 banana)

> (argmin car '((1 banana) (1 orange)))

'(1 banana)

(argmax proc lst) — any/c
proc : (-> any/c real?)
1st : (and/c pair? list?)

Returns the first element in the list Ist that maximizes the result of proc. Signals an error
on an empty list. See also max.

Examples:

> (argmax car '((3 pears) (1 banana) (2 apples)))
' (3 pears)

> (argmax car '((3 pears) (3 oranges)))

' (3 pears)

(group-by key 1st [same?]) — (listof 1ist?)
key : (-> any/c any/c)
Ist : list?
same? : (any/c any/c . -> . any/c) = equal?

Groups the given list into equivalence classes, with equivalence being determined by same?.
Within each equivalence class, group-by preserves the ordering of the original list. Equiv-
alence classes themselves are in order of first appearance in the input.

Example:
> (group-by (lambda (x) (modulo x 3)) '(1 2 1 254 25437 2643 1 2 0))
'((1 1437643 1) (2225 22) (64 0)

Added in version 6.3 of package base.

(cartesian-product 1Ist ...) — (listof list?)
1st : list?
Computes the n-ary cartesian product of the given lists.
Examples:

> (cartesian-product '(1 2 3) '(a b c))
"'((1a) (1b) 1c)(2a (2b) (2c) (3a) (3b) (3¢c))
> (cartesian-product '(4 5 6) '(d e f) '(#t #f))

353

"((4 4 #t)
(4 4 #f)
(4 e #t)
(4 e #f)
(4 £ #t)
(4 £ #f)
(5 d #t)
(5 4 #f)
(5 e #t)
(5 e #f)
(5 £ #t)
(5 f #£f)
(6 d #t)
(6 4 #f)
(6 e #t)
(6 e #f)
(6 £ #t)
(6 £ #f))

Added in version 6.3 of package base.

(remf pred Ist) — list?
pred : procedure?
lst : list?

Returns a list that is like 1st, omitting the first element of 1st for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))
'(1 34 -5)

Added in version 6.3 of package base.

(remf* pred lst) — list?
pred : procedure?
1st : list?

Like remf, but removes all the elements for which pred produces a true value.

Example:

> (remf* negative? '(1 -2 3 4 -5))
'(1 3 4)

Added in version 6.3 of package base.

354

4.9.8 Immutable Cyclic Data

(make-reader-graph v) — any/c
v : any/c

Returns a value like v, with placeholders created by make-placeholder replaced with the
values that they contain, and with placeholders created by make-hash-placeholder with
an immutable hash table. No part of v is mutated; instead, parts of v are copied as necessary
to construct the resulting graph, where at most one copy is created for any given value.

Since the copied values can be immutable, and since the copy is also immutable, make-
reader-graph can create cycles involving only immutable pairs, vectors, boxes, and hash
tables.

Only the following kinds of values are copied and traversed to detect placeholders:

* pairs

¢ vectors, both mutable and immutable

* boxes, both mutable and immutable

¢ hash tables, both mutable and immutable

* instances of a prefab structure type

* placeholders created by make-placeholder and make-hash-placeholder

Due to these restrictions, make-reader-graph creates exactly the same sort of cyclic values
as read.

Example:

> (let* ([ph (make-placeholder #f)]
[x (cons 1 ph)])
(placeholder-set! ph x)
(make-reader-graph x))
#0="(1 . #0#)

(placeholder? v) — boolean?
v : any/c

Returns #t if v is a placeholder created by make-placeholder, #f otherwise.

(make-placeholder v) — placeholder?
v : any/c

355

Returns a placeholder for use with placeholder-set! and make-reader-graph. The v
argument supplies the initial value for the placeholder.

(placeholder-set! ph datum) — void?
ph : placeholder?
datum : any/c

Changes the value of ph to v.

(placeholder-get ph) — any/c
ph : placeholder?

Returns the value of ph.

(hash-placeholder? v) — boolean?
v : any/c

Returns #t if v is a placeholder created by make-hash-placeholder, #f otherwise.

(make-hash-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hash, but produces a table placeholder for use with make-reader-
graph.

(make-hasheq-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheq, but produces a table placeholder for use with make-
reader-graph.

(make-hasheqv-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheqv, but produces a table placeholder for use with make-
reader-graph.

4.10 Mutable Pairs and Lists

A mutable pair is like a pair created by cons, but it supports set-mcar! and set-mcdr!
mutation operations to change the parts of the mutable pair (like traditional Lisp and Scheme
pairs).

356

A mutable list is analogous to a list created with pairs, but instead created with mutable pairs.

A mutable pair is not a pair; they are completely separate datatypes. Similarly, a mutable list
is not a list, except that the empty list is also the empty mutable list. Instead of programming
with mutable pairs and mutable lists, data structures such as pairs, lists, and hash tables are
practically always better choices.

A mutable list can be used as a single-valued sequence (see [§4.14.1 “Sequences™). The
elements of the mutable list serve as elements of the sequence. See also in-mlist.

4.10.1 Mutable Pair Constructors and Selectors

(mpair? v) — boolean?
v : any/c

Returns #t if v is a mutable pair, #f otherwise.

(mcons a d) — mpair?
a : any/c
d : any/c

Returns a newly allocated mutable pair whose first element is a and second element is d.

(mcar p) — any/c
p : mpair?

Returns the first element of the mutable pair p.

(mcdr p) — any/c
p : mpair?

Returns the second element of the mutable pair p.

(set-mcar! p v) — void?
p : mpair?
v : any/c

Changes the mutable pair p so that its first element is v.
(set-mcdr! p v) — void?

p : mpair?
v : any/c

Changes the mutable pair p so that its second element is v.

357

4.11 Vectors

§3.9 “Vectors” in
The Racket Guide

A vector is a fixed-length array with constant-time access and update of the vector slots, introduces vectors.
which are numbered from O to one less than the number of slots in the vector.

Two vectors are equal? if they have the same length, and if the values in corresponding
slots of the vectors are equal?.

A vector can be mutable or immutable. When an immutable vector is provided to a procedure
like vector-set!, the exn:fail:contract exception is raised. Vectors generated by the
default reader (see|§1.3.7 “Reading Strings™) are immutable.

A vector can be used as a single-valued sequence (see[§4.14.1 “Sequences”). The elements
of the vector serve as elements of the sequence. See also in-vector.

A literal or printed vector starts with # (, optionally with a number between the # and (. See
[§1.3.10 “Reading Vectors”|for information on reading vectors and|§1.4.7 “Printing Vectors|
for information on printing vectors.

(vector? v) — boolean?
v : any/c

Returns #t if v is a vector, #f otherwise.

(make-vector size [v]) — vector?
size . exact-nonnegative-integer?
v : any/c = 0

Returns a mutable vector with size slots, where all slots are initialized to contain v.
(vector v ...) — vector?

v : any/c

Returns a newly allocated mutable vector with as many slots as provided vs, where the slots
are initialized to contain the given vs in order.

(vector-immutable v ...) — (and/c vector?
immutable?)
v : any/c

Returns a newly allocated immutable vector with as many slots as provided vs, where the
slots are contain the given vs in order.

(vector-length vec) — exact-nonnegative-integer?
vec : vector?

358

Returns the length of vec (i.e., the number of slots in the vector).

(vector-ref vec pos) — any/c
vec : vector?
pos . exact-nonnegative-integer?

Returns the element in slot pos of vec. The first slot is position 0, and the last slot is one

less than (vector-length vec).

(vector-set! vec pos v) — void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?
v : any/c

Updates the slot pos of vec to contain v.

(vector*-length vec) — exact-nonnegative-integer?
vec : (and/c vector? (not/c impersonator?))
(vector*-ref vec pos) — any/c
vec : (and/c vector? (not/c impersonator?))
pos : exact-nonnegative-integer?
(vector*-set! vec pos v) — void?
vec : (and/c vector? (not/c immutable?)
pos : exact-nonnegative-integer?

v : any/c

(not/c impersonator?))

Like vector-length, vector-ref, and vector-set!, but constrained to work on vectors
that are not impersonators.
Added in version 6.90.0.15 of package base.

(vector-cas! vec pos old-v new-v) — boolean?
vec : (and/c vector? (not/c immutable?) (not/c impersonator?))

pos : exact-nonnegative-integer?
old-v : any/c
new-v : any/c

Compare and set operation for vectors. See box-cas!.

Added in version 6.11.0.2 of package base.

(vector->list vec) — list?
vec . vector?

Returns a list with the same length and elements as vec.

359

(list->vector 1lst) — vector?
Ist : 1list?

Returns a mutable vector with the same length and elements as 1st.

(vector->immutable-vector vec) — (and/c vector? immutable?)
vec . vector?

Returns an immutable vector with the same length and elements as vec. If vec is itself
immutable, then it is returned as the result.

(vector-fill! vec v) — void?
vec : (and/c vector? (not/c immutable?))
v : any/c

Changes all slots of vec to contain v.

(vector-copy! dest
dest-start
src
[src-start
src-end]) — void?
dest : (and/c vector? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : vector?
src-start : exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (vector-length src)

Changes the elements of dest starting at position dest-start to match the elements in
src from src-start (inclusive) to src-end (exclusive). The vectors dest and src can
be the same vector, and in that case the destination region can overlap with the source region;
the destination elements after the copy match the source elements from before the copy. If
any of dest-start, src-start, or src-end are out of range (taking into account the sizes
of the vectors and the source and destination regions), the exn:fail:contract exception
is raised.

Examples:
> (define v (vector 'A 'p 'p 'l 'e))
> (vector-copy! v 4 #(y))
> (vector-copy! v 0 v 3 4)
> v
#lpply

360

(vector->values vec [start-pos end-pos]) — any
vec : vector?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (vector-length vec)

Returns end-pos - start-pos values, which are the elements of vec from start-pos
(inclusive) to end-pos (exclusive). If start-pos or end-pos are greater than (vector-
length vec),orif end-pos is less than start-pos, the exn:fail:contract exception
is raised.

(build-vector n proc) — vector?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any/c)

Creates a vector of n elements by applying proc to the integers from 0 to (subl n) in
order. If vec is the resulting vector, then (vector-ref vec i) is the value produced by
(proc 1i).

Example:

> (build-vector 5 addil)
"#(1 2 3 4 5)

4.11.1 Additional Vector Functions

(require racket/vector) package: base

The bindings documented in this section are provided by the racket/vector and racket
libraries, but not racket/base.

(vector-set*! vec pos v) — void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?

v : any/c

Updates each slot pos of vec to contain each v. The update takes place from the left so
later updates overwrite earlier updates.

(vector-map proc vec ...+) — vector?
proc : procedure?
vec : vector?

Applies proc to the elements of the vecs from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied vecs, and

361

https://pkgs.racket-lang.org/package/base

all vecs must have the same number of elements. The result is a fresh vector containing
each result of proc in order.

Example:

> (vector-map + #(1 2) #(3 4))
'#(4 6)

(vector-map! proc vec

proc : procedure?

vec : (and/c vector? (not/c immutable?))

...+) — vector?

Like vector-map, but result of proc is inserted into the first vec at the index that the
arguments to proc were taken from. The result is the first vec.

Examples:

> (define v (vector 1 2 3 4))
> (vector-map! addl v)

"#(2 3 4 5)

> v

'#(2 3 4 5)

(vector-append vec
vec . vector?

...) — vector?

Creates a fresh vector that contains all of the elements of the given vectors in order.

Example:

> (vector-append #(1 2) #(3 4))
'#(1 2 3 4)

(vector-take vec pos) — vector?
vec : vector?

pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the first pos elements of vec. If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-take #(1 2 3 4) 2)
"#(1 2)

362

(vector-take-right vec pos) — vector?
vec : vector?

pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the last pos elements of vec. If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-take-right #(1 2 3 4) 2)
"#(3 4)

(vector-drop vec pos) — vector?
vec : vector?

pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the elements of vec after the first pos elements.
If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Example:

> (vector-drop #(1 2 3 4) 2)
'#(3 4)

(vector-drop-right vec pos) — vector?
vec : vector?

pos . exact-nonnegative-integer?

Returns a fresh vector whose elements are the prefix of vec, dropping its pos-length tail. If
vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Examples:

> (vector-drop-right #(1 2 3 4) 1)
"#(1 2 3)

> (vector-drop-right #(1 2 3 4) 3)
"#(1)

(vector-split-at vec pos) — vector? vector?
vec : vector?

pos : exact-nonnegative-integer?

Returns the same result as

363

(values (vector-take vec pos) (vector-drop vec pos))

except that it can be faster.

Example:

> (vector-split-at #(1 2 3 4 5) 2)
"#(1 2)

'#(3 4 5)

(vector-split-at-right vec pos) — vector? vector?
vec : vector?

pos : exact-nonnegative-integer?
Returns the same result as

(values (vector-take-right vec pos) (vector-drop-right vec pos))

except that it can be faster.

Example:

> (vector-split-at-right #(1 2 3 4 5) 2)
"#(1 2 3)

"#(4 5)

(vector-copy vec [start end]) — vector?
vec : vector?

start . exact-nonnegative-integer?
end :

0
. exact-nonnegative-integer? =

= (vector-length v)

Creates a fresh vector of size (- end start), with all of the elements of vec from start
(inclusive) to end (exclusive).

Examples:

> (vector-copy #(1 2 3 4))
"#(1 2 3 4)

> (vector-copy #(1 2 3 4) 3)
"#(4)

> (vector-copy #(1 2 3 4) 2 3)
"#(3)

364

(vector-filter pred vec) — vector?
pred : procedure?
vec : vector?

Returns a fresh vector with the elements of vec for which pred produces a true value. The
pred procedure is applied to each element from first to last.

Example:

> (vector-filter even? #(1 2 3 4 5 6))
'#(2 4 6)

(vector-filter-not pred vec) — vector?
pred : procedure?
vec : vector?

Like vector-filter, but the meaning of the pred predicate is reversed: the result is a
vector of all items for which pred returns #f£.

Example:

> (vector-filter-not even? #(1 2 3 4 5 6))
"#(1 3 5)

(vector-count proc vec ...+) — exact-nonnegative-integer?
proc : procedure?
vec . vector?

Returns the number of elements of the vec ... (taken in parallel) on which proc does not
evaluate to #£.

Examples:
> (vector-count even? #(1 2 3 4 5))
2
> (vector-count = #(1 2 3 4 5) #(5 4 3 2 1))
1

(vector-argmin proc vec) — any/c
proc : (-> any/c real?)
vec : vector?

This returns the first element in the non-empty vector vec that minimizes the result of proc.

Examples:

365

> (vector-argmin car #((3 pears) (1 banana) (2 apples)))
'(1 banana)

> (vector-argmin car #((1 banana) (1 orange)))

'(1 banana)

(vector-argmax proc vec) — any/c
proc : (-> any/c real?)
vec : vector?

This returns the first element in the non-empty vector vec that maximizes the result of proc.
Examples:

> (vector-argmax car #((3 pears) (1 banana) (2 apples)))
' (3 pears)

> (vector-argmax car #((3 pears) (3 oranges)))

' (3 pears)

(vector-member v vec) — (or/c natural-number/c #f)
v : any/c
vec . vector?

Locates the first element of vec that is equal? to v. If such an element exists, the index of
that element in vec is returned. Otherwise, the result is #f.

Examples:

> (vector-member 2 (vector 1 2 3 4))
1
> (vector-member 9 (vector 1 2 3 4))
#f

(vector-memv v vec) — (or/c natural-number/c #f)
v : any/c
vec . vector?

Like vector-member, but finds an element using eqv?.

Examples:

> (vector-memv 2 (vector 1 2 3 4))
1
> (vector-memv 9 (vector 1 2 3 4))
#£f

366

(vector-memq v vec) — (or/c natural-number/c #f)
v : any/c
vec : vector?

Like vector-member, but finds an element using eq?.
Examples:

> (vector-memq 2 (vector 1 2 3 4))
1
> (vector-memq 9 (vector 1 2 3 4))
#f

(vector-sort vec

less-than?

[start

end

#:key key

#:cache-keys? cache-keys?]) — vector?
vec : vector?
less-than? : (any/c any/c . -> . any/c)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length vec)
key : (any/c . -> . any/c) = (A (x) x)
cache-keys? : boolean? = #f

Like sort, but operates on vectors; a fresh vector of length (- end start) is returned
containing the elements from indices start (inclusive) through end (exclusive) of vec,
but in sorted order (i.e., vec is not modified). This sort is stable (i.e., the order of “equal”
elements is preserved).

Examples:

> (define v1 (vector 4 3 2 1))

> (vector-sort vl <)

'#(1 2 3 4)

> vl

"#(4 3 2 1)

> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort v2 < 1 3 #:key car)

"#((2) (3))

> v2

#((4) (3) (20 (1)

Added in version 6.6.0.5 of package base.

367

(vector-sort! vec

less-than?

[start

end

#:key key

#:cache-keys? cache-keys?]) — void?
vec : (and/c vector? (not/c immutable?))
less-than? : (any/c any/c . -> . any/c)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length vec)
key : (any/c . -> . any/c) = (A (x) x)
cache-keys? : boolean? = #f

Like vector-sort, but updates indices start (inclusive) through end (exclusive) of vec
by sorting them according to the 1ess-than? procedure.

Examples:

> (define v1 (vector 4 3 2 1))

> (vector-sort! vl <)

> vl

"#(1 2 3 4)

> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort! v2 < 1 3 #:key car)

> v2

#((4) (2) (3 (1)

Added in version 6.6.0.5 of package base.

4.12 Boxes
§3.11 “Boxes” in
The Racket Guide
A box is like a single-element vector, normally used as minimal mutable storage. introduces boxes.

A literal or printed box starts with #&. See [§1.3.13 “Reading Boxes’| for information on
reading boxes and[§1.4.10 “Printing Boxes”|for information on printing boxes.

(box? v) — boolean?
v : any/c

Returns #t if v is a box, #f otherwise.

(box v) — box?
v : any/c

368

Returns a new mutable box that contains v.

(box-immutable v) — (and/c box? immutable?)
v : any/c

Returns a new immutable box that contains v.

(unbox box) — any/c
box : box?

Returns the content of box.

For any v, (unbox (box v)) returns v.

(set-box! box v) — void?
box : (and/c box? (not/c immutable?))
v : any/c

Sets the content of box to v.

(unbox* box) — any/c
box : (and box? (not/c impersonator?))

(set-box*! box v) — void?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
v : any/c

Like unbox and set-box!, but constrained to work on boxes that are not impersonators.

Added in version 6.90.0.15 of package base.

(box-cas! box old new) — boolean?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
old : any/c
new : any/c

Atomically updates the contents of box to new, provided that box currently contains a value
that is eq? to old, and returns #t in that case. If box does not contain o1d, then the result

is #£.

If no other threads or futures attempt to access box, the operation is equivalent to

(and (eq? old (unbox loc)) (set-box! loc new) #t)

When Racket is compiled with support for futures, box-cas! uses a hardware compare and
set operation. Uses of box-cas! be performed safely in a future (i.e., allowing the future

thunk to continue in parallel).

369

4.13 Hash Tables

A hash table (or simply hash) maps each of its keys to a single value. For a given hash
table, keys are equivalent via equal?, eqv?, or eq?, and keys are retained either strongly
or weakly (see [§16.1 “Weak Boxes™). A hash table is also either mutable or immutable.
Immutable hash tables support effectively constant-time access and update, just like mutable
hash tables; the constant on immutable operations is usually larger, but the functional nature
of immutable hash tables can pay off in certain algorithms.

For equal?-based hashing, the built-in hash functions on strings, pairs, lists, vectors, prefab
or transparent structures, etc., take time proportional to the size of the value. The hash code
for a compound data structure, such as a list or vector, depends on hashing each item of the
container, but the depth of such recursive hashing is limited (to avoid potential problems
with cyclic data). For a non-list pair, both car and cdr hashing is treated as a deeper hash,
but the cdr of a list is treated as having the same hashing depth as the list.

A hash table can be used as a two-valued sequence (see [§4.14.1 “Sequences™). The keys
and values of the hash table serve as elements of the sequence (i.e., each element is a key
and its associated value). If a mapping is added to or removed from the hash table during
iteration, then an iteration step may fail with exn:fail:contract, or the iteration may
skip or duplicate keys and values. See also in-hash, in-hash-keys, in-hash-values,
and in-hash-pairs.

Two hash tables cannot be equal? unless they use the same key-comparison procedure
(equal?, eqv?, or eq?), both hold keys strongly or weakly, and have the same mutability.
Empty immutable hash tables are eq? when they are equal?.

Changed in version 7.2.0.9 of package base: Made empty immutable hash tables eq? when they are equal?.

Caveats concerning concurrent modification: A mutable hash table can be manipulated
with hash-ref, hash-set!, and hash-remove! concurrently by multiple threads, and the
operations are protected by a table-specific semaphore as needed. Three caveats apply, how-
ever:

e If a thread is terminated while applying hash-ref, hash-set!, hash-remove!,
hash-ref!, or hash-update! to a hash table that uses equal? or eqv? key com-
parisons, all current and future operations on the hash table may block indefinitely.

¢ The hash-map, hash-for-each, and hash-clear! procedures do not use the table’s
semaphore to guard the traversal as a whole. Changes by one thread to a hash table
can affect the keys and values seen by another thread part-way through its traversal of
the same hash table.

¢ The hash-update! and hash-ref! functions use a table’s semaphore independently
for the hash-ref and hash-set! parts of their functionality, which means that the
update as a whole is not “atomic.”

370

§3.10 “Hash
Tables” in The
Racket Guide
introduces hash
tables.

Immutable hash
tables actually
provide O(log N)
access and update.
Since N is limited
by the address
space so that log N
is limited to less
than 30 or 62
(depending on the
platform), log N
can be treated
reasonably as a
constant.

Caveat concerning mutable keys: If a key in an equal?-based hash table is mutated (e.g.,
a key string is modified with string-set!), then the hash table’s behavior for insertion and
lookup operations becomes unpredictable.

A literal or printed hash table starts with #hash, #hasheqv, or #hasheq. See[§1.3.12 “Read
ing Hash Tables™ for information on reading hash tables and [§1.4.9 “Printing Hash Tables’

for information on printing hash tables.

(hash? v) — boolean?
v : any/c

Returns #t if v is a hash table, #f otherwise.

(hash-equal? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with equal?, #f if it compares with eq? or eqv?.

(hash-eqv? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with eqv?, #£ if it compares with equal? or eq?.

(hash-eq? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with eq?, #£ if it compares with equal? or eqv?.
(hash-weak? hash) — boolean?

hash : hash?

Returns #t if hash retains its keys weakly, #£ if it retains keys strongly.

(hash key val) — (and/c hash? hash-equal? immutable?)
key : any/c
val : any/c

(hasheq key val) — (and/c hash? hash-eq? immutable?)
key : any/c
val : any/c

(hasheqv key val) — (and/c hash? hash-eqv? immutable?)
key : any/c

val : any/c

Creates an immutable hash table with each given key mapped to the following val; each
key must have a val, so the total number of arguments to hash must be even.

371

The hash procedure creates a table where keys are compared with equal?, hasheq proce-
dure creates a table where keys are compared with eq?, and hasheqv procedure creates a
table where keys are compared with eqv?.

The key to val mappings are added to the table in the order that they appear in the argument
list, so later mappings can hide earlier mappings if the keys are equal.

(make-hash [assocs]) — (and/c hash? hash-equal?)
assocs : (listof pair?) = null

(make-hasheqv [assocs]) — (and/c hash? hash-eqv?)
assocs : (listof pair?) = null

(make-hasheq [assocs]) — (and/c hash? hash-eq?)
assocs : (listof pair?) = null

Creates a mutable hash table that holds keys strongly.

The make-hash procedure creates a table where keys are compared with equal?, make-
hasheq procedure creates a table where keys are compared with eq?, and make-hasheqv
procedure creates a table where keys are compared with eqv?.

The table is initialized with the content of assocs. In each element of assocs, the car is
a key, and the cdr is the corresponding value. The mappings are added to the table in the
order that they appear in assocs, so later mappings can hide earlier mappings.

See also make-custom-hash.

(make-weak-hash [assocs]) — (and/c hash? hash-equal? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheqv [assocs]) — (and/c hash? hash-eqv? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheq [assocs]) — (and/c hash? hash-eq? hash-weak?)
assocs : (listof pair?) = null

Like make-hash, make-hasheq, and make-hasheqv, but creates a mutable hash table that
holds keys weakly.

Beware that values in the table are retained normally. If a value in the table refers back to
its key, then the table will retain the value and therefore the key; the mapping will never
be removed from the table even if the key becomes otherwise inaccessible. To avoid that
problem, instead of mapping the key to the value, map the key to an ephemeron that pairs
the key and value. Beware further, however, that an ephemeron’s value might be cleared
between retrieving an ephemeron and extracting its value, depending on whether the key
is otherwise reachable. For eq?-based mappings, consider using the pattern (ephemeron-
value ephemeron #f key) to extract the value of ephemeron while ensuring that key
is retained until the value is extracted.

372

(make-immutable-hash [assocs])

— (and/c hash? hash-equal? immutable?)
assocs : (listof pair?) = null

(make-immutable-hasheqv [assocs])

— (and/c hash? hash-eqv? immutable?)
assocs : (listof pair?) = null

(make-immutable-hasheq [assocs])

— (and/c hash? hash-eq? immutable?)
assocs : (listof pair?) = null

Like hash, hasheq, and hasheqv, but accepts the key—value mapping in association-list
form like make-hash, make-hasheq, and make-hasheqv.

(hash-set! hash key v) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps key to v in hash, overwriting any existing mapping for key.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set*! hash key v) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps each key to each v in hash, overwriting any existing mapping for each key. Map-
pings are added from the left, so later mappings overwrite earlier mappings.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set hash key v) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping key to v, overwriting any existing mapping for key,
and returning the extended hash table.

See also the caveat concerning mutable keys above.

(hash-set* hash key v) — (and/c hash? immutable?)

373

hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping each key to v, overwriting any existing mapping
for each key, and returning the extended hash table. Mappings are added from the left, so
later mappings overwrite earlier mappings.

See also the caveat concerning mutable keys above.

(hash-ref hash key [failure-result]) — any
hash : hash?

key : any/c
failure-result : (failure-result/c any/c)
= (lambda ()
(raise (make-exn:fail:contract)))

Returns the value for key in hash. If no value is found for key, then failure-result
determines the result:

o If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

e Otherwise, failure-result is returned as the result.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-ref! hash key to-set) — any
hash : hash?
key : any/c
to-set : (failure-result/c any/c)

Returns the value for key in hash. If no value is found for key, then to-set determines
the result as in hash-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in hash for the key. (Note that if to-set is a thunk, it is not invoked in
tail position.)

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-has-key? hash key) — boolean?
hash : hash?
key : any/c

374

Returns #t if hash contains a value for the given key, #f otherwise.

(hash-update! hash
key
updater
[failure-result]) — void?
hash : (and/c hash? (not/c immutable?))

key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)
= (lambda O
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set! to update an existing mapping in hash, where the
optional failure-result argument is used as in hash-ref when no mapping exists for
key already. See the caveat above about concurrent updates.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-update hash key updater [failure-result])
— (and/c hash? immutable?)
hash : (and/c hash? immutable?)

key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)
= (lambda ()
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set to functionally update an existing mapping in hash,
where the optional failure-result argument is used as in hash-ref when no mapping
exists for key already.

See also the caveat concerning mutable keys above.

(hash-remove! hash key) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c

Removes any existing mapping for key in hash.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-remove hash key) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c

375

Functionally removes any existing mapping for key in hash, returning the fresh hash table.

See also the caveat concerning mutable keys above.

(hash-clear! hash) — void?
hash : (and/c hash? (not/c immutable?))

Removes all mappings from hash.

If hash is not an impersonator, then all mappings are removed in constant time. If hash is
an impersonator, then each key is removed one-by-one using hash-remove!.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-clear hash) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)

Functionally removes all mappings from hash.

If hash is not a chaperone, then clearing is equivalent to creating a new hash table, and the
operation is performed in constant time. If hash is a chaperone, then each key is removed
one-by-one using hash-remove.

(hash-copy-clear hash) — hash?
hash : hash?

Produces an empty hash table with the same key-comparison procedure and mutability of
hash.

(hash-map hash proc [try-order?]) — (listof any/c)
hash : hash?
proc : (any/c any/c . -> . any/c)
try-order? : any/c = #f

Applies the procedure proc to each element in hash in an unspecified order, accumulating
the results into a list. The procedure proc is called each time with a key and its value, and
the procedure’s individual results appear in order in the result list.

If a hash table is extended with new keys (either through proc or by another thread) while
a hash-map or hash-for-each traversal is in process, arbitrary key—value pairs can be
dropped or duplicated in the traversal. Key mappings can be deleted or remapped (by any
thread) with no adverse affects; the change does not affect a traversal if the key has been seen
already, otherwise the traversal skips a deleted key or uses the remapped key’s new value.

See also the caveats concerning concurrent modification above.

376

If try-order? is true, then the order of keys and values passed to proc is normalized
under certain circumstances—including when every key is one of the following and with the
following order (earlier bullets before later):

¢ booleans sorted #f before #t;

e characters sorted by char<?;

* real numbers sorted by <;

* symbols sorted with uninterned symbols before unreadable symbols before interned
symbols, then sorted by symbol<7?;

* keywords sorted by keyword<?;
* strings sorted by string<?;

* byte strings sorted by bytes<7;
e null;

e #<void>; and

e eof.

Changed in version 6.3 of package base: Added the try-order? argument.
Changed in version 7.1.0.7: Added guarantees for try-order?.

(hash-keys hash) — (listof any/c)
hash : hash?
Returns a list of the keys of hash in an unspecified order.
See hash-map for information about modifying hash during hash-keys.

See also the caveats concerning concurrent modification above.

(hash-values hash) — (listof any/c)
hash : hash?
Returns a list of the values of hash in an unspecified order.
See hash-map for information about modifying hash during hash-values.

See also the caveats concerning concurrent modification above.

(hash->1list hash) — (listof (comns/c any/c any/c))
hash : hash?

377

Returns a list of the key—value pairs of hash in an unspecified order.
See hash-map for information about modifying hash during hash->1ist.

See also the caveats concerning concurrent modification above.

(hash-keys-subset? hashl hash2) — boolean?
hashl : hash?
hash2 : hash?

Returns #t if the keys of hash1 are a subset of or the same as the keys of hash2. The hash
tables must both use the same key-comparison function (equal?, eqv?, or eq?), otherwise
the exn:fail:contract exception is raised.

Using hash-keys-subset? on immutable hash tables can be much faster than iterating
through the keys of hash1 to make sure that each is in hash2.

Added in version 6.5.0.8 of package base.

(hash-for-each hash proc [try-order?]) — void?
hash : hash?
proc : (any/c any/c . -> . any)
try-order? : any/c = #f

Applies proc to each element in hash (for the side-effects of proc) in an unspecified order.
The procedure proc is called each time with a key and its value.

See hash-map for information about try-order? and about modifying hash within proc.
See also the caveats concerning concurrent modification above.

Changed in version 6.3 of package base: Added the try-order? argument.
Changed in version 7.1.0.7: Added guarantees for try-order?.

(hash-count hash) — exact-nonnegative-integer?
hash : hash?

Returns the number of keys mapped by hash. Unless hash retains keys weakly, the result
is computed in constant time and atomically. If hash retains it keys weakly, a traversal is
required to count the keys.

(hash-empty? hash) — boolean?
hash : hash?

Equivalent to (zero? (hash-count hash)).

378

(hash-iterate-first hash)
— (or/c #f exact-nonnegative-integer?)
hash : hash?

Returns #f if hash contains no elements, otherwise it returns an integer that is an index
to the first element in the hash table; “first” refers to an unspecified ordering of the table
elements, and the index values are not necessarily consecutive integers.

For a mutable hash, this index is guaranteed to refer to the first item only as long as no
items are added to or removed from hash. More generally, an index is guaranteed to be a
valid hash index for a given hash table only as long it comes from hash-iterate-first
or hash-iterate-next, and only as long as the hash table is not modified. In the case of a
hash table with weakly held keys, the hash table can be implicitly modified by the garbage
collector (see|§1.1.7 “Garbage Collection™) when it discovers that the key is not reachable.

(hash-iterate-next hash pos)

— (or/c #f exact-nonnegative-integer?)
hash : hash?

pos : exact-nonnegative-integer?

Returns either an integer that is an index to the element in hash after the element indexed
by pos (which is not necessarily one more than pos) or #f if pos refers to the last element
in hash.

If pos is not a valid hash index of hash, then the result may be #f or it may be the next later
index that remains valid. The latter result is guaranteed if a hash table has been modified
only by the removal of keys.

Changed in version 7.0.0.10 of package base: Handle an invalid index by returning #f instead of raising

exn:fail:contract.

(hash-iterate-key hash pos) — any/c
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-key hash pos bad-index-v) — any/c
hash : hash?
pos . exact-nonnegative-integer?
bad-index-v : any/c

Returns the key for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is bad-index-v if provided, otherwise
the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

379

(hash-iterate-value hash pos) — any
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-value hash pos bad-index-v) — any
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns the value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is bad-index-v if provided, otherwise
the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(hash-iterate-pair hash pos) — (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-pair hash pos bad-index-v) — (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns a pair containing the key and value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is (cons bad-index-v bad-index-
v) if bad-index-v is provided, otherwise the exn:fail:contract exception is raised.

Added in version 6.4.0.5 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(hash-iterate-key+value hash pos) — any/c any/c
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-key+value hash
pos
bad-index-v) — any/c any/c
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c

Returns the key and value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is (values bad-index-v bad-
index-v) if bad-index-v is provided, otherwise the exn:fail:contract exception is
raised.

380

Added in version 6.4.0.5 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(hash-copy hash) — (and/c hash? (not/c immutable?))
hash : hash?

Returns a mutable hash table with the same mappings, same key-comparison mode, and
same key-holding strength as hash.

(eq-hash-code v) — fixnum?
v : any/c

Returns a fixnum; for any two calls with eq? values, the returned number is the same. Equal fixnums are
always eq?.
(eqv-hash-code v) — fixnum?

v : any/c
Returns a fixnum; for any two calls with eqv? values, the returned number is the same.
(equal-hash-code v) — fixnum?

v : any/c

Returns a fixnum; for any two calls with equal? values, the returned number is the same. A
hash code is computed even when v contains a cycle through pairs, vectors, boxes, and/or
inspectable structure fields. See also gen:equal+hash.

For any v that could be produced by read, if v2 is produced by read for the same input
characters, the (equal-hash-code v) is the same as (equal-hash-code v2) — even
if v and v2 do not exist at the same time (and therefore could not be compared by calling
equal?).

Changed in version 6.4.0.12 of package base: Strengthened guarantee for readable values.

(equal-secondary-hash-code v) — fixnum?
v : any/c

Like equal-hash-code, but computes a secondary value suitable for use in double hashing.

4.13.1 Additional Hash Table Functions

(require racket/hash) package: base

The bindings documented in this section are provided by the racket/hash library, not
racket/base or racket.

381

https://pkgs.racket-lang.org/package/base

(hash-union hO
h
[#:combine combine
#:combine/key combine/key])
— (and/c hash? immutable?)
hO : (and/c hash? immutable?)
h : hash?
combine : (-> any/c any/c any/c)
= (lambda _ (error 'hash-union))
combine/key : (-> any/c any/c any/c any/c)
= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to hO in turn. For each key k and value v, if a mapping from k to some value vO
already exists, it is replaced with a mapping from k to (combine/key k vO v).

Examples:

> (hash-union (make-immutable-hash '([1 . one]))
(make-immutable-hash '([2 . twol))
(make-immutable-hash '([3 . threel)))
"#hash((1 . one) (2 . two) (3 . three))
> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))
(make-immutable-hash ' ([1 eins un] [2 zwei deux]))
#:combine/key (lambda (k vl v2) (append vl1 v2)))
'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))

(hash-union! hO
h
[#:combine combine
#:combine/key combine/key]) — void?
hO : (and/c hash? (not/c immutable?))
h : hash?
combine : (-> any/c any/c any/c)
= (lambda _ (error 'hash-union))
combine/key : (-> any/c any/c any/c any/c)
= (lambda (k a b) (combine a b))

Computes the union of hO with each hash table h by mutable update, adding each element
of each h to hO in turn. For each key k and value v, if a mapping from k to some value vO
already exists, it is replaced with a mapping from k to (combine/key k vO v).

Examples:

> (define h (make-hash))

382

> h
'"#hash ()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h
'#hash((1 . (one uno)) (2 . (two dos)))
> (hash-union! h

(make-immutable-hash ' ([1 eins un] [2 zwei deux]))

#:combine/key (lambda (k vl v2) (append vi v2)))
> h
'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))

4.14 Sequences and Streams

Sequences and streams abstract over iteration of elements in a collection. Sequences allow
iteration with for macros or with sequence operations such as sequence-map. Streams
are functional sequences that can be used either in a generic way or a stream-specific way.
Generators are closely related stateful objects that can be converted to a sequence and vice-
versa.

4.14.1 Sequences

A sequence encapsulates an ordered collection of values. The elements of a sequence can be
extracted with one of the for syntactic forms, with the procedures returned by sequence-
generate, or by converting the sequence into a stream.

The sequence datatype overlaps with many other datatypes. Among built-in datatypes, the
sequence datatype includes the following:

* exact nonnegative integers (see below)

* strings (see[§4.3 “Strings”)
* byte strings (see[§4.4 “Byte Strings™))

e lists (see(84.9 “Pairs and Lists™)

¢ mutable lists (see[§4.10 “Mutable Pairs and Lists™)

+ vectors (see ST Veciors')

¢ flvectors (see|§4.2.3.2 “Flonum Vectors™)

¢ fxvectors (see(84.2.4.2 “Fixnum Vectors™))

* hash tables (see[§4.13 “Hash Tables’))

383

§11.1 “Sequence
Constructors” in
The Racket Guide
introduces
sequences.

« dictionaries (see[§4.15 “Dictionaries’)
- sets (see [AT6Se)
* input ports (see[§13.1 “Ports™)

* streams (see[§4.14.2 “Streams’))

An exact number k that is a non-negative integer acts as a sequence similar to (in-range
k), except that k by itself is not a stream.

Custom sequences can be defined using structure type properties. The easiest method to
define a custom sequence is to use the gen: stream generic interface. Streams are a suitable
abstraction for data structures that are directly iterable. For example, a list is directly iterable
with first and rest. On the other hand, vectors are not directly iterable: iteration has to
go through an index. For data structures that are not directly iterable, the iterator for the data
structure can be defined to be a stream (e.g., a structure containing the index of a vector).

For example, unrolled linked lists (represented as a list of vectors) themselves do not fit the
stream abstraction, but have index-based iterators that can be represented as streams:

Examples:

> (struct unrolled-list-iterator (idx lst)
#:methods gen:stream
[(define (stream-empty? iter)
(define 1st (unrolled-list-iterator-1st iter))
(or (null? 1st)
(and (>= (unrolled-list-iterator-idx iter)
(vector-length (first 1st)))
(null? (rest 1lst)))))
(define (stream-first iter)
(vector-ref (first (unrolled-list-iterator-lst iter))
(unrolled-list-iterator-idx iter)))
(define (stream-rest iter)
(define idx (unrolled-list-iterator-idx iter))
(define 1st (unrolled-list-iterator-1lst iter))
(if (>= idx (subl (vector-length (first 1lst))))
(unrolled-list-iterator 0 (rest 1lst))
(unrolled-list-iterator (addl idx) 1st)))])
> (define (make-unrolled-list-iterator ul)
(unrolled-list-iterator O (unrolled-list-lov ul)))
> (struct unrolled-list (lov)
#:property prop:sequence
make-unrolled-list-iterator)
> (define ull (unrolled-list '(#(cracker biscuit) #(cookie scone))))
> (for/list ([x ulll) x)
' (cracker biscuit cookie scone)

384

The prop: sequence property provides more flexibility in specifying iteration, such as when
a pre-processing step is needed to prepare the data for iteration. The make-do-sequence
function creates a sequence given a thunk that returns procedures to implement a sequence,
and the prop:sequence property can be associated with a structure type to implement its
implicit conversion to a sequence.

For most sequence types, extracting elements from a sequence has no side-effect on the
original sequence value; for example, extracting the sequence of elements from a list does
not change the list. For other sequence types, each extraction implies a side effect; for
example, extracting the sequence of bytes from a port causes the bytes to be read from the
port. A sequence’s state may either span all uses of the sequence, as for a port, or it may
be confined to each distinct time that a sequence is initiated by a for form, sequence-
>stream, sequence-generate, or sequence-generatex. Concretely, the thunk passed
to make-do-sequence is called to initiate the sequence each time the sequence is used.

Individual elements of a sequence typically correspond to single values, but an element may
also correspond to multiple values. For example, a hash table generates two values—a key
and its value—for each element in the sequence.

Sequence Predicate and Constructors

(sequence? v) — boolean?
v : any/c

Returns #t if v can be used as a sequence, #f otherwise.
Examples:

> (sequence? 42)

#t

> (sequence? '(a b c))
#t

> (sequence? "word")
#t

> (sequence? #\x)

#E

(in-range end) — stream?
end : real?
(in-range start end [step]) — stream?
start : real?
end : real?
step : real? =1

Returns a sequence (that is also a stream) whose elements are numbers. The single-argument
case (in-range end) is equivalent to (in-range O end 1). The first number in the

385

sequence is start, and each successive element is generated by adding step to the previous
element. The sequence stops before an element that would be greater or equal to end if step
is non-negative, or less or equal to end if step is negative.

An in-range application can provide better performance for number iteration when it ap-
pears directly in a for clause.

Example: gaussian sum

> (for/sum ([x (in-range 10)]) x)
45

Example: sum of even numbers

> (for/sum ([x (in-range 0 100 2)]) x)
2450

When given zero as step, in-range returns an infinite sequence. It may also return infinite
sequences when step is a very small number, and either step or the sequence elements are
floating-point numbers.

(in-naturals [start]) — stream?
start : exact-nonnegative-integer? = 0

Returns an infinite sequence (that is also a stream) of exact integers starting with start,
where each element is one more than the preceding element.

An in-naturals application can provide better performance for integer iteration when it
appears directly in a for clause.

Example:

> (for/list ([k (in-naturals)]
[x (in-range 10)])
(list k x))
"'((00) (11) (22) (33) (44) (55) (86) (7 7) (88) (99)

(in-list 1st) — stream?
Ist : list?

Returns a sequence (that is also a stream) that is equivalent to using 1st directly as a se-

quence. See
[Cists™ for

An in-1list application can provide better performance for list iteration when it appears information on

) - using lists as
directly in a for clause. sequences.

386

See for for information on the reachability of list elements during an iteration.

Example:

> (for/list ([x (in-list '(3 1 4))1)
T(x L,k x x)))
"((39) (1 1) (4 16))

Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for lists in for.

(in-mlist mlst) — sequence?
mlst : mlist?

Returns a sequence equivalent to m1st.

An in-mlist application can provide better performance for mutable list iteration when it
appears directly in a for clause.

Example:

> (for/list ([x (in-mlist (mcons "RACKET" (mcons "LANG" '())))1)
(string-length x))
'(6 4)

(in-vector vec [start stop step]) — sequence?
vec : vector?
start . exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) =1

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start, stop, and step are analogous to in-range, except that
a #f value for stop is equivalent to (vector-length vec). That is, the first element in
the sequence is (vector-ref vec start), and each successive element is generated by
adding step to index of the previous element. The sequence stops before an index that
would be greater or equal to end if step is non-negative, or less or equal to end if step is
negative.

If start is not a valid index, then the exn:fail:contract exception is raised, except
when start, stop, and (vector-length vec) are equal, in which case the result is an
empty sequence.

Examples:

> (for ([x (in-vector (vector 1) 1)]) x)

387

See[§4.T0 "Mutable]
[Pairs and Lists™] for
information on
using mutable lists
as sequences.

See[§4.1T “Vectors]
for information on
using vectors as
sequences.

> (for ([x (in-vector (vector 1) 2)]) x)
in-vector: starting index is out of range

starting index: 2

valid range: [0, 0]

vector: '#(1)
> (for ([x (in-vector (vector) 0 0)]) x)
> (for ([x (in-vector (vector 1) 1 1)]) x)

If stop isnotin [-1, (vector-length vec)], then the exn:fail:contract exception is
raised.

If start is less than stop and step is negative, then the exn:fail:contract excep-
tion is raised. Similarly, if start is more than stop and step is positive, then the
exn:fail:contract exception is raised.

An in-vector application can provide better performance for vector iteration when it ap-
pears directly in a for clause.

Examples:

> (define (histogram vector-of-words)
(define a-hash (make-hash))
(for ([word (in-vector vector-of-words)])
(hash-set! a-hash word (addl (hash-ref a-hash word 0))))
a-hash)
> (histogram #("hello" "world" "hello" "sunshine"))
"#hash(("hello" . 2) ("sunshine" . 1) ("world" . 1))

(in-string str [start stop step]) — sequence?
str . string?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to str when no optional arguments are supplied.

The optional arguments start, stop, and step are as in in-vector.

An in-string application can provide better performance for string iteration when it ap-
pears directly in a for clause.

Examples:

> (define (line-count str)
(for/sum ([ch (in-string str)])
(if (char=7 #\newline ch) 1 0)))

388

See _ 4.3 “Strings’|
for information on
using strings as
sequences.

> (line-count "this string\nhas\nthree \nnewlines")
3

(in-bytes bstr [start stop step]) — sequence?
bstr : bytes?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to bstr when no optional arguments are supplied. See[§44 Byte |
[irings Jfor

information on
using byte strings as
sequences.

The optional arguments start, stop, and step are as in in-vector.

An in-bytes application can provide better performance for byte string iteration when it
appears directly in a for clause.

Examples:

> (define (has-eof? bs)
(for/or ([ch (in-bytes bs)])

(= ch 0)))
> (has-eof? #"this byte string has an \Oembedded zero byte")
#t
> (has-eof? #"this byte string does not")
#E

(in-port [r in]) — sequence?
r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)

Returns a sequence whose elements are produced by calling r on in until it produces eof.

(in-input-port-bytes in) — sequence?
in : input-port?

Returns a sequence equivalent to (in-port read-byte in).

(in-input-port-chars in) — sequence?
in : input-port?

Returns a sequence whose elements are read as characters from in (equivalent to (in-port
read-char in)).

(in-lines [in mode]) — sequence?
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
= 'any

389

Returns a sequence equivalent to (in-port (lambda (p) (read-line p mode)) in).
Note that the default mode is 'any, whereas the default mode of read-1ine is 'linefeed.

(in-bytes-lines [in mode]) — sequence?

in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
= 'any

Returns a sequence equivalent to (in-port (lambda (p) (read-bytes-line p
mode)) in). Note that the default mode is 'any, whereas the default mode of read-
bytes-lineis 'linefeed.

(in-hash hash) — sequence?
hash : hash?

(in-hash hash bad-index-v) — sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence equivalent to hash, except when bad-index-v is supplied.

If bad-index-v is supplied, then bad-index-v is returned as both the key and the value in
the case that the hash is modified concurrently so that iteration does not have a valid hash
index. Providing bad-index-v is particularly useful when iterating through a hash table
with weakly held keys, since entries can be removed asynchronously (i.e., after in-hash
has committed to another iteration, but before it can access the entry for the next iteration).

Examples:

> (define table (hash 'a 1 'b 2))

> (for ([(key value) (in-hash table)])
(printf "key: ~a value: ~a\n" key value))

key: a value: 1

key: b value: 2

See
[Tables™ for

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument. information on
using hash tables as
(in-hash-keys hash) — sequence? sequences.

hash : hash?

(in-hash-keys hash bad-index-v) — sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are the keys of hash, using bad-index-v in the same
way as in-hash.

Examples:

390

> (define table (hash 'a 1 'b 2))
> (for ([key (in-hash-keys table)])
(printf "key: ~a\n" key))
key: a
key: b

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-hash-values hash) — sequence?
hash : hash?

(in-hash-values hash bad-index-v) — sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are the values of hash, using bad-index-v in the same
way as in-hash.

Examples:

> (define table (hash 'a 1 'b 2))

> (for ([value (in-hash-values table)])
(printf "value: ~a\n" value))

value: 1

value: 2

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-hash-pairs hash) — sequence?
hash : hash?

(in-hash-pairs hash bad-index-v) — sequence?
hash : hash?
bad-index-v : any/c

Returns a sequence whose elements are pairs, each containing a key and its value from hash
(as opposed to using hash directly as a sequence to get the key and value as separate values
for each element).

The bad-index-v argument, if supplied, is used in the same way as by in-hash. When an
invalid index is encountered, the pair in the sequence with have bad-index-v as both its
car and cdr.

Examples:

> (define table (hash 'a 1 'b 2))
> (for ([key+value (in-hash-pairs table)])
(printf "key and value: ~a\n" key+value))

391

key and value: (a . 1)
key and value: (b . 2)

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

(in-mutable-hash hash) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash hash bad-index-v) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c
(in-mutable-hash-keys hash) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-keys hash bad-index-v) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c
(in-mutable-hash-values hash) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-values hash bad-index-v) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c
(in-mutable-hash-pairs hash) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-pairs hash bad-index-v) — sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
bad-index-v : any/c
(in-immutable-hash hash) — sequence?
hash : (and/c hash? immutable?)
(in-immutable-hash hash bad-index-v) — sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c
(in-immutable-hash-keys hash) — sequence?
hash : (and/c hash? immutable?)
(in-immutable-hash-keys hash bad-index-v) — sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c
(in-immutable-hash-values hash) — sequence?
hash : (and/c hash? immutable?)
(in-immutable-hash-values hash bad-index-v) — sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c
(in-immutable-hash-pairs hash) — sequence?
hash : (and/c hash? immutable?)
(in-immutable-hash-pairs hash bad-index-v) — sequence?
hash : (and/c hash? immutable?)
bad-index-v : any/c

392

(in-weak-hash hash) — sequence?
hash : (and/c hash? hash-weak?)
(in-weak-hash hash bad-index-v) — sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c
(in-weak-hash-keys hash) — sequence?
hash : (and/c hash? hash-weak?)
(in-weak-hash-keys hash bad-index-v) — sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c
(in-weak-hash-values hash) — sequence?
hash : (and/c hash? hash-weak?)
(in-weak-hash-keys hash bad-index-v) — sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c
(in-weak-hash-pairs hash) — sequence?
hash : (and/c hash? hash-weak?)
(in-weak-hash-pairs hash bad-index-v) — sequence?
hash : (and/c hash? hash-weak?)
bad-index-v : any/c

Sequence constructors for specific kinds of hash tables. These may perform better than the
analogous in-hash forms.

Added in version 6.4.0.6 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.

(in-directory [dir use-dir?]) — sequence?
dir : (or/c #f path-string?) = #f
use-dir? : ((and/c path? complete-path?) . -> . any/c)
= (lambda (dir-path) #t)

Returns a sequence that produces all of the paths for files, directories, and links within dir,
except for the contents of any directory for which use-dir? returns #£f. If dir is not #f,
then every produced path starts with dir as its prefix. If dir is #f, then paths in and relative
to the current directory are produced.

An in-directory sequence traverses nested subdirectories recursively (filtered by use-
dir?). To generate a sequence that includes only the immediate content of a directory, use
the result of directory-1list as a sequence.

The immediate content of each directory is reported as sorted by path<?, and the content of
a subdirectory is reported before subsequent paths within the directory.

Examples:

; Given a directory tree:

393

; /example
;
;|

\

)

alpha

apple
;

(o [T

beta

-

> (parameterize ([current-directory "/example"])

(for ([p (in-directory)])
(printf "~a\n" p)))

a

a/alpha

a/apple

b

b/beta

c

> (for ([p (in-directory "/example")])
(printf "~a\n" p))

/example/a

/example/a/alpha

/example/a/apple

/example/b

/example/b/beta

/example/c

> (let ([f (lambda (path) (regexp-match? #rx"/example/b.*" path))])
(for ([p (in-directory "/example" £)])

(printf "~a\n" p)))

/example/a

/example/b

/example/b/beta

/example/c

Changed in version 6.0.0.1 of package base: Added use-dir? argument.
Changed in version 6.6.0.4: Added guarantee of sorted results.

(in-producer producer) — sequence?
producer : procedure?
(in-producer producer stop arg ...) — sequence?
producer : procedure?
stop : any/c
arg : any/c

Returns a sequence that contains values from sequential calls to producer, which would
usually use some state to do its work.

394

If a stop value is not given, the sequence goes on infinitely, and therefore it common to
use it with a finite sequence or using #:break etc. If a stop value is given, it is used to
identify a value that marks the end of the sequence (and the stop value is not included in the
sequence); stop can be a predicate that is applied to the results of producer, or it can be a
value that is tested against the result of with eq?. (The stop argument must be a predicate
if the stop value is itself a function or if producer returns multiple values.)

If additional args are specified, they are passed to every call to producer.
Examples:

> (define (counter)
(define n 0)
(lambda ([d 1]) (set! n (+ d n)) n))
> (for/list ([x (in-producer (counter))] [y (in-range 4)]) x)
'(1 23 4)
> (for/list ([x (in-producer (counter))] #:break (= x 5)) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter) 5)]) x)
'(1 23 4)
> (for/list ([x (in-producer (counter) 5 1/2)]) x)
'(1/2 1 3/2 25/2 3 7/2 4 9/2)
> (for/list ([x (in-producer read eof (open-input-string "1 2
3" %)
'(123)

(in-value v) — sequence?
v : any/c

Returns a sequence that produces a single value: v. This form is mostly useful for 1et-like
bindings in forms such as for*/list.
(in-indexed seq) — sequence?
seq : sequence?
Returns a sequence where each element has two values: the value produced by seq, and a
non-negative exact integer starting with 0. The elements of seq must be single-valued.
(in-sequences seq ...) — sequence?

seq : sequence?

Returns a sequence that is made of all input sequences, one after the other. Each seq is
initiated only after the preceding seq is exhausted. If a single seq is provided, then seq is
returned; otherwise, the elements of each seq must all have the same number of values.

395

(in-cycle seq ...) — sequence?
seq : sequence?

Similar to in-sequences, but the sequences are repeated in an infinite cycle, where each
seq is initiated afresh in each iteration. Beware that if no seqs are provided or if all segs
become empty, then the sequence produced by in-cycle never returns when an element is
demanded—or even when the sequence is initiated, if all seqgs are initially empty.

(in-parallel seq ...) — sequence?
seq : sequence?

Returns a sequence where each element has as many values as the number of supplied segs;
the values, in order, are the values of each seq. The elements of each seq must be single-
valued.

(in-values-sequence seq) — sequence?
seq : sequence?

Returns a sequence that is like seq, but it combines multiple values for each element from
seq as a list of elements.

(in-values*-sequence seq) — sequence?
seq : sequence?

Returns a sequence that is like seq, but when an element of seq has multiple values or
a single list value, then the values are combined in a list. In other words, in-values*-
sequence is like in-values-sequence, except that non-list, single-valued elements are
not wrapped in a list.

(stop-before seq pred) — sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the last element for which applying pred to the element produces #t, after which
the sequence ends.

(stop-after seq pred) — sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the element (inclusive) for which applying pred to the element produces #t, after
which the sequence ends.

396

(make-do-sequence thunk) — sequence?

thunk : (or/c (-> (values (any/c . -> . any)
(any/c . -> . any/c)
any/c

(or/c (any/c . -> . any/c) #f)

(or/c () () #:rest 1list? . ->x . any/c) #f)

(or/c ((any/c) () #:rest 1list? . ->* . any/c) #£f)))
(-> (values (any/c . -> . any)

(or/c (any/c . -> . any/c) #f)

(any/c . -> . any/c)

any/c

(or/c (any/c . -> . any/c) #f)

(or/c (OO (O #:rest list? . ->*x . any/c) #f)

(or/c ((any/c) () #:rest list? . ->* . any/c) #£))))

Returns a sequence whose elements are generated by the procedures and initial value re-
turned by the thunk, which is called to initiate the sequence. The initiated sequence is defined
in terms of a position, which is initialized to the third result of the thunk, and the element,
which may consist of multiple values.

The thunk results define the generated elements as follows:

* The first result is a pos->element procedure that takes the current position and re-
turns the value(s) for the current element.

* The optional second result is an early-next-pos procedure that is described further
below. Alternatively, the optional second result can be #f, which is equivalent to the
identity function.

* The third (or second) result is a next-pos procedure that takes the current position
and returns the next position.

* The fourth (or third) result is the initial position.

L]

The fifth (or fourth) result is a continue-with-pos? function that takes the current
position and returns a true result if the sequence includes the value(s) for the current
position, and false if the sequence should end instead of including the value(s). Al-
ternatively, the fifth (or fourth) result can be #f to indicate that the sequence should
always include the current value(s). This function is checked on each position before
pos->element is used.

The sixth (or fifth) result is a continue-with-val? function that is like the fourth
result, but it takes the current element value(s) instead of the current position. Alterna-
tively, the sixth (or fifth) result can be #f to indicate that the sequence should always
include the value(s) at the current position.

397

* The seventh (or sixth) result is a continue-after-pos+val? procedure that takes
both the current position and the current element value(s) and determines whether the
sequence ends after the current element is already included in the sequence. Alterna-
tively, the seventh (or sixth) result can be #£ to indicate that the sequence can always
continue after the current value(s).

The early-next-pos procedure, which is the optional second result, takes the current po-
sition and returns an updated position. This updated position is used for next-pos and
continue-after-pos+val?, but not with continue-with-pos? (which uses the origi-
nal current position). The intent of early-next-pos is to support a sequence where the
position must be incremented to avoid keeping a value reachable while a loop processes the
sequence value, so early-next-pos is applied just after pos->element.

Each of the procedures listed above is called only once per position. Among the last three
procedures, as soon as one of the procedures returns #f, the sequence ends, and none are
called again. Typically, one of the functions determines the end condition, and #f is used in
place of the other two functions.

Changed in version 6.7.0.4 of package base: Added support for the optional second result.

prop:sequence : struct-type-property?

Associates a procedure to a structure type that takes an instance of the structure and returns
a sequence. If v is an instance of a structure type with this property, then (sequence? v)
produces #t.

Using a pre-existing sequence:
Examples:

> (struct my-set (table)
#:property prop:sequence
(lambda (s)
(in-hash-keys (my-set-table s))))
> (define (make-set . xs)
(my-set (for/hash ([x (in-list xs)])
(values x #t))))
> (for/list ([c (make-set 'celeriac 'carrot 'potato)])
c)

'(celeriac potato carrot)

Using make-do-sequence:
Examples:

> (define-struct train (car next)

398

#:property prop:sequence
(lambda (t)
(make-do-sequence
(lambda ()
(values train-car train-next t
(lambda (t) t)
(lambda (v) #t)
(lambda (t v) #t))))))
> (for/list ([c (make-train 'engine
(make-train 'boxcar
(make-train 'caboose
#£)))1)
c)

' (engine boxcar caboose)

Sequence Conversion

(sequence->stream seq) — stream?
seq : sequence?

Coverts a sequence to a stream, which supports the stream-first and stream-rest op-
erations. Creation of the stream eagerly initiates the sequence, but the stream lazily draws
elements from the sequence, caching each element so that stream-first produces the same
result each time is applied to a stream.

If extracting an element from seq involves a side-effect, then the effect is performed each
time that either stream-first or stream-rest is first used to access or skip an element.

(sequence-generate seq) — (-> boolean?) (-> any)
seq : sequence?

Initiates a sequence and returns two thunks to extract elements from the sequence. The first
returns #t if more values are available for the sequence. The second returns the next element
(which may be multiple values) from the sequence; if no more elements are available, the
exn:fail:contract exception is raised.

(sequence-generate* seq)
— (or/c 1list? #f)
(-> (values (or/c list? #f) procedure?))
seq : sequence?

Like sequence-generate, but avoids state (aside from any inherent in the sequence) by
returning a list of values for the sequence’s first element—or #f if the sequence is empty—
and a thunk to continue with the sequence; the result of the thunk is the same as the result of
sequence-generatex, but for the second element of the sequence, and so on. If the thunk

399

is called when the element result is #f (indicating no further values in the sequence), the
exn:fail:contract exception is raised.

Additional Sequence Operations

(require racket/sequence) package: [base
The bindings documented in this section are provided by the racket/sequence and
racket libraries, but not racket/base.

empty-sequence : sequence?

A sequence with no elements.

(sequence->list s) — list?
s . sequence?

Returns a list whose elements are the elements of s, each of which must be a single value.
If s is infinite, this function does not terminate.

(sequence-length s) — exact-nonnegative-integer?
s : sequence?

Returns the number of elements of s by extracting and discarding all of them. If s is infinite,
this function does not terminate.

(sequence-ref s i) — any
s @ sequence?
i . exact-nonnegative-integer?

Returns the ith element of s (which may be multiple values).

(sequence-tail s i) — sequence?
s : sequence?
1 : exact-nonnegative-integer?

Returns a sequence equivalent to s, except that the first i elements are omitted.

In case initiating s involves a side effect, the sequence s is not initiated until the resulting
sequence is initiated, at which point the first i elements are extracted from the sequence.

(sequence-append s ...) — sequence?
s : sequence?

Returns a sequence that contains all elements of each sequence in the order they appear in
the original sequences. The new sequence is constructed lazily.

If all given ss are streams, the result is also a stream.

400

https://pkgs.racket-lang.org/package/base

(sequence-map f s) — sequence?
f : procedure?
s : sequence?

Returns a sequence that contains f applied to each element of s. The new sequence is
constructed lazily.

If s is a stream, then the result is also a stream.

(sequence-andmap f s) — boolean?
f : (-> any/c ... boolean?)
s : sequence?

Returns #t if £ returns a true result on every element of s. If s is infinite and £ never returns
a false result, this function does not terminate.

(sequence-ormap f s) — boolean?
f : (-> any/c ... boolean?)
s : sequence?

Returns #t if £ returns a true result on some element of s. If s is infinite and f never returns
a true result, this function does not terminate.

(sequence-for-each f s) — void?
f : (-> any/c ... any)
s : sequence?

Applies £ to each element of s. If s is infinite, this function does not terminate.

(sequence-fold f i s) — any/c
f : (-> any/c any/c ... any/c)
i : any/c
s : sequence?

Folds £ over each element of s with i as the initial accumulator. If s is infinite, this function
does not terminate. The £ function takes the accumulator as its first argument and the next
sequence element as its second.

(sequence-count f s) — exact-nonnegative-integer?
f : procedure?
s : sequence?

Returns the number of elements in s for which f returns a true result. If s is infinite, this
function does not terminate.

401

(sequence-filter f s) — sequence?
f : (-> any/c ... boolean?)
s : sequence?

Returns a sequence whose elements are the elements of s for which f returns a true result.
Although the new sequence is constructed lazily, if s has an infinite number of elements
where f returns a false result in between two elements where f returns a true result, then
operations on this sequence will not terminate during the infinite sub-sequence.

If s is a stream, then the result is also a stream.

(sequence-add-between s e) — sequence?
s @ sequence?
e : any/c

Returns a sequence whose elements are the elements of s, but with e between each pair of
elements in s. The new sequence is constructed lazily.

If s is a stream, then the result is also a stream.

Examples:

> (let* ([all-reds (in-cycle '("red"))]
[red-and-blues (sequence-add-between all-reds "blue")])
(for/list ([n (in-range 10)]
[elt red-and-blues])
elt))

"("red" "blue" "red" "blue" "red" "blue" "red" "blue" "red"
"blue")
> (for ([text (sequence-add-between '("veni" "vidi" "duci") ",
"1

(display text))
veni, vidi, duci

(sequence/c [#:min-count min-count]
elem/c ...) — contract?
min-count : (or/c #f exact-nonnegative-integer?) = #f
elem/c : contract?

Wraps a sequence, obligating it to produce elements with as many values as there are elem/c
contracts, and obligating each value to satisfy the corresponding elem/c. The result is not
guaranteed to be the same kind of sequence as the original value; for instance, a wrapped list
is not guaranteed to satisfy 1ist?.

If min-count is a number, the stream is required to have at least that many elements in it.

402

Examples:

> (define/contract predicates
(sequence/c (-> any/c boolean?))
(in-1list (list integer?
string->symbol)))
> (for ([P predicates])
(printf "~s\n" (P "cat")))
#f
predicates: broke its own contract
promised: boolean?
produced: ‘cat
in: an element of
(sequence/c (-> any/c boolean?))
contract from: (definition predicates)
blaming: (definition predicates)
(assuming the contract is correct)
at: eval:29.0
> (define/contract numbers&strings
(sequence/c number? string?)
(in-dict (list (cons 1 "one")
(cons 2 "two")
(cons 3 'three))))
> (for ([(N S) numbersé&strings])
(printf "~s: ~a\n" N S))
1: one
2: two
numbers&strings: broke its own contract
promised: string?
produced: 'three
in: an element of
(sequence/c number? string?)
contract from: (definition numbers&strings)
blaming: (definition numbers&strings)
(assuming the contract is correct)
at: eval:31.0
> (define/contract a-sequence
(sequence/c #:min-count 2 char?)
IIXII
> (for ([x a-sequence]
[i (in-naturals)])
(printf "~a is ~a\n" i x))
0 is x
a-sequence: broke its own contract

promised: a sequence that contains at least 2 values
produced: "x"

403

in: (sequence/c #:min-count 2 char?)
contract from: (definition a-sequence)
blaming: (definition a-sequence)

(assuming the contract is correct)
at: eval:33.0

Additional Sequence Constructors

(in-syntax stx) — sequence?
stx : syntax?

Produces a sequence whose elements are the successive subparts of stx. Equivalent to
(stx->1list 1st).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))1)

x)
' (#<syntax:eval:35:0 1> #<syntax:eval:35:0 2> #<syntax:eval:35:0
3>)

Added in version 6.3 of package base.

(in-slice length seq) — sequence?
length : exact-positive-integer?
seq : sequence?

Returns a sequence whose elements are lists with the first Iength elements of seq, then the
next length and so on.

Example:

> (for/list ([e (in-slice 3 (in-range 8))]) e)
'((012) (345) (67))

Added in version 6.3 of package base.

4.14.2 Streams

A stream is a kind of sequence that supports functional iteration via stream-first and
stream-rest. The stream-cons form constructs a lazy stream, but plain lists can be used
as streams, and functions such as in-range and in-naturals also create streams.

404

(require racket/stream) package: base

The bindings documented in this section are provided by the racket/stream and racket
libraries, but not racket/base.

(stream? v) — boolean?
v : any/c

Returns #t if v can be used as a stream, #f otherwise.

(stream-empty? s) — boolean?
s : stream?

Returns #t if s has no elements, #f otherwise.

(stream-first s) — any
s : (and/c stream? (not/c stream-empty?))

Returns the value(s) of the first element in s.

(stream-rest s) — stream?
s : (and/c stream? (not/c stream-empty?))

Returns a stream that is equivalent to s without its first element.

(stream-cons first-expr rest-expr)

Produces a lazy stream for which stream-first forces the evaluation of first-expr to
produce the first element of the stream, and stream-rest forces the evaluation of rest-
expr to produce a stream for the rest of the returned stream.

The first element of the stream as produced by first-expr must be a single
value. The rest-expr must produce a stream when it is evaluated, otherwise the
exn:fail:contract? exception is raised.

(stream expr ...)

A shorthand for nested stream-conses ending with empty-stream.

(stream* expr ... rest-expr)

A shorthand for nested stream-conses, but the rest-expr must be a stream, and it is used
as the rest of the stream instead of empty-stream. Similar to 1ist* but for streams.

Added in version 6.3 of package base.

405

https://pkgs.racket-lang.org/package/base

(in-stream s) — sequence?
s . stream?
Returns a sequence that is equivalent to s.

An in-stream application can provide better performance for streams iteration when it
appears directly in a for clause.

See for for information on the reachability of stream elements during an iteration.
Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for streams in for.

empty-stream : stream?

A stream with no elements.

(stream->1list s) — list?
s : stream?

Returns a list whose elements are the elements of s, each of which must be a single value.
If s is infinite, this function does not terminate.

(stream-length s) — exact-nonnegative-integer?
s . stream?

Returns the number of elements of s. If s is infinite, this function does not terminate.

In the case of lazy streams, this function forces evaluation only of the sub-streams, and not
the stream’s elements.

(stream-ref s i) — any
s : stream?
1 : exact-nonnegative-integer?
Returns the ith element of s (which may be multiple values).

(stream-tail s i) — stream?
s . stream?
i . exact-nonnegative-integer?

Returns a stream equivalent to s, except that the first i elements are omitted.

In case extracting elements from s involves a side effect, they will not be extracted until the
first element is extracted from the resulting stream.

406

(stream-take s i) — stream?
s . stream?
1 : exact-nonnegative-integer?

Returns a stream of the first i elements of s.

(stream-append s ...) — stream?
s : stream?

Returns a stream that contains all elements of each stream in the order they appear in the
original streams. The new stream is constructed lazily, while the last given stream is used in
the tail of the result.

(stream-map f s) — stream?
f : procedure?
s : stream?

Returns a stream that contains f applied to each element of s. The new stream is constructed
lazily.

(stream-andmap f s) — boolean?
f : (-> any/c ... boolean?)
s : stream?

Returns #t if £ returns a true result on every element of s. If s is infinite and f never returns
a false result, this function does not terminate.

(stream-ormap f s) — boolean?
f : (-> any/c ... boolean?)
s . stream?

Returns #t if £ returns a true result on some element of s. If s is infinite and f never returns
a true result, this function does not terminate.

(stream-for-each f s) — void?
f : (-> any/c ... any)
s : stream?

Applies f to each element of s. If s is infinite, this function does not terminate.

(stream-fold f i s) — any/c
£ : (-> any/c any/c ... any/c)
i : any/c
s : stream?

407

Folds £ over each element of s with i as the initial accumulator. If s is infinite, this function
does not terminate. The f function takes the accumulator as its first argument and the next
stream element as its second.

(stream-count f s) — exact-nonnegative-integer?
f : procedure?
s : stream?

Returns the number of elements in s for which f returns a true result. If s is infinite, this
function does not terminate.

(stream-filter f s) — stream?
f : (-> any/c ... boolean?)
s : stream?

Returns a stream whose elements are the elements of s for which f returns a true result.
Although the new stream is constructed lazily, if s has an infinite number of elements where
f returns a false result in between two elements where f returns a true result, then operations
on this stream will not terminate during the infinite sub-stream.

(stream-add-between s e) — stream?
s : stream?
e : any/c

Returns a stream whose elements are the elements of s, but with e between each pair of
elements in s. The new stream is constructed lazily.

(for/stream (for-clause ...) body-or-break ... body)
(forx/stream (for-clause ...) body-or-break ... body)

Iterates like for/1ist and for*/1ist, respectively, but the results are lazily collected into
a stream instead of a list.

Unlike most for forms, these forms are evaluated lazily, so each body will not be evaluated
until the resulting stream is forced. This allows for/stream and for*/stream to iterate
over infinite sequences, unlike their finite counterparts.

Examples:

> (for/stream ([1i '(1 2 3)]) (x i 1))

#<stream>

> (stream->list (for/stream ([i '(1 2 3)]) (x i 1i)))

'(1 4 9)

> (stream-ref (for/stream ([i '(1 2 3)]) (displayln i) (* i i)) 1)
2

4

> (stream-ref (for/stream ([i (in-naturals)]) (* i i)) 25)

625

408

Added in version 6.3.0.9 of package base.

gen:stream : any/c

Associates three methods to a structure type to implement the generic interface (see [§5.4]
[*Generic Interfaces’) for streams.

To supply method implementations, the #:methods keyword should be used in a structure
type definition. The following three methods should be implemented:

* stream-empty? : accepts one argument
¢ stream-first : accepts one argument

¢ stream-rest : accepts one argument

Examples:

> (define-struct list-stream (v)
#:methods gen:stream
[(define (stream-empty? stream)
(empty? (list-stream-v stream)))
(define (stream-first stream)
(first (list-stream-v stream)))
(define (stream-rest stream)
(rest (list-stream-v stream)))])
> (define 11 (list-stream '(1 2)))
> (stream? 11)
#t
> (stream-first 11)
1

prop:stream : struct-type-property?

A deprecated structure type property used to define custom extensions to the stream APIL.
Use gen:stream instead. Accepts a vector of three procedures taking the same arguments
as the methods in gen:stream.

(stream/c c¢) — contract?
c : contract?

Returns a contract that recognizes streams. All elements of the stream must match c.

If the ¢ argument is a flat contract or a chaperone contract, then the result will be a chaperone
contract. Otherwise, the result will be an impersonator contract.

409

When an stream/c contract is applied to a stream, the result is not eq? to the input. The
result will be either a chaperone or impersonator of the input depending on the type of
contract.

Contracts on streams are evaluated lazily by necessity (since streams may be infinite). Con-
tract violations will not be raised until the value in violation is retrieved from the stream. As
an exception to this rule, streams that are lists are checked immediately, as if ¢ had been
used with 1listof.

If a contract is applied to a stream, and that stream is subsequently used as the tail of another
stream (as the second parameter to stream-cons), the new elements will not be checked
with the contract, but the tail’s elements will still be enforced.

Added in version 6.1.1.8 of package base.

4.14.3 Generators

A generator is a procedure that returns a sequence of values, incrementing the sequence each
time that the generator is called. In particular, the generator form implements a generator
by evaluating a body that calls yield to return values from the generator.

(require racket/generator) package: [base

(generator? v) — boolean?
v : any/c

Return #t if v is a generator, #f otherwise.

(generator formals body ...+)

Creates a generator, where formals is like the formals of case-lambda (i.e., the kw-
formals of lambda restricted to non-optional and non-keyword arguments).

For the first call to a generator, the arguments are bound to the formals and evaluation of
body starts. During the dynamic extent of body, the generator can return immediately using
the yield function. A second call to the generator resumes at the yield call, producing the
arguments of the second call as the results of the yield, and so on. The eventual results of
body are supplied to an implicit final yield; after that final yield, calling the generator
again returns the same values, but all such calls must provide 0 arguments to the generator.

Examples:

> (define g (generator ()
(let loop ([x '(a b c)])
(if (null? x)

410

https://pkgs.racket-lang.org/package/base

0

(begin
(yield (car x))
(Loop (cdr x)))))))

(yield v ...) — any
v : any/c

Returns vs from a generator, saving the point of execution inside a generator (i.e., within the
dynamic extent of a generator body) to be resumed by the next call to the generator. The
results of yield are the arguments that are provided to the next call of the generator.

When not in the dynamic extent of a generator, infinite-generator, or in-
generator body, yield raises exn:fail after evaluating its exprs.

Examples:

> (define my-generator (generator () (yield 1) (yield 2 3 4)))
> (my-generator)

1

> (my-generator)

W N

Examples:

> (define pass-values-generator
(generator ()
(let* ([from-user (yield 2)]
[from-user-again (yield (addl from-user))])
(yield from-user-again))))

> (pass-values-generator)
2
> (pass-values-generator 5)

411

6

> (pass-values-generator 12)
12

(infinite-generator body ...+)

Like generator, but repeats evaluation of the bodys when the last body completes without
implicitly yielding.

Examples:

> (define welcome
(infinite-generator

(yield 'hello)
(yield 'goodbye)))

> (welcome)

'hello

> (welcome)

'goodbye

> (welcome)

'hello

> (welcome)

'goodbye

(in-generator maybe-arity body ...+)

maybe-arity =

| #:arity arity-k

Produces a sequence that encapsulates the generator formed by (generator () body
...+). The values produced by the generator form the elements of the sequence, except
for the last value produced by the generator (i.e., the values produced by returning).

Example:

> (for/list ([i (in-generator
(let loop ([x '(a b c)])
(when (not (null? x))
(yield (car x))
(Lloop (cdr x)))))1)
i)
"(a b c)

If in-generator is used immediately with a for (or for/1list, etc.) binding’s right-hand
side, then its result arity (i.e., the number of values in each element of the sequence) can

412

be inferred. Otherwise, if the generator produces multiple values for each element, its arity
should be declared with an #:arity arity-k clause; the arity-k must be a literal, exact,
non-negative integer.

Examples:

> (let ([g (in-generator
(let loop ([n 31)
(unless (zero? n) (yield n (addl n)) (loop (subl n)))))1)
(let-values ([(not-empty? next) (sequence-generate g)])
(let loop () (when (not-empty?) (mext) (loop))) 'done))
stop?: arity mismatch;
the expected number of arguments does not match the given
number
expected: 1
given: 2
arguments...:
3
4
> (let ([g (in-generator #:arity 2
(let loop ([n 31)
(unless (zero? n) (yield n (addl n)) (loop (subl n)))))1)
(let-values ([(not-empty? next) (sequence-generate g)l)
(let loop () (when (not-empty?) (next) (loop))) 'done))
'done

To use an existing generator as a sequence, use in-producer with a stop-value known for
the generator:

> (define abc-generator (generator ()
(for ([x '(a b <))
(yield x))))
> (for/list ([i (in-producer abc-generator (void))])
i)
'(abc)
> (define my-stop-value (gensym))
> (define my-generator (generator ()
(let loop ([x (list 'a (void) 'c)1)
(if (null? x)
my-stop-value
(begin
(yield (car x))
(Loop (cdr x)))))))
> (for/list ([i (in-producer my-generator my-stop-value)])
i)
'(a #<void> c¢)

413

(generator-state g) — symbol?
g . generator?

Returns a symbol that describes the state of the generator.

* 'fresh — The generator has been freshly created and has not been called yet.

¢ 'suspended — Control within the generator has been suspended due to a call to
yield. The generator can be called.

e 'running — The generator is currently executing.

* 'done — The generator has executed its entire body and will continue to produce the
same result as from the last call.

Examples:

> (define my-generator (generator () (yield 1) (yield 2)))
> (generator-state my-generator)

'fresh

> (my-generator)

1

> (generator-state my-generator)

'suspended

> (my-generator)

2

> (generator-state my-generator)

'suspended

> (my-generator)

> (generator-state my-generator)

'done

> (define introspective-generator (generator () ((yield 1))))
> (introspective-generator)

1

> (introspective-generator

(lambda () (generator-state introspective-generator)))
'running

> (generator-state introspective-generator)

'done

> (introspective-generator)

'running

(sequence->generator s) — (-> any)
s : sequence?

414

Converts a sequence to a generator. The generator returns the next element of the sequence
each time the generator is invoked, where each element of the sequence must be a single
value. When the sequence ends, the generator returns #<void> as its final result.

(sequence->repeated-generator s) — (-> any)
s : sequence?

Like sequence->generator, but when s has no further values, the generator starts the
sequence again (so that the generator never stops producing values).

4.15 Dictionaries

A dictionary is an instance of a datatype that maps keys to values. The following datatypes
are all dictionaries:

hash tables;
* vectors (using only exact integers as keys);
* lists of pairs (an association list using equal? to compare keys); and

* structures whose types implement the gen:dict generic interface.

(require racket/dict) package: base

The bindings documented in this section are provided by the racket/dict and racket
libraries, but not racket/base.

4.15.1 Dictionary Predicates and Contracts

(dict? v) — boolean?
v : any/c
Returns #t if v is a dictionary, #f otherwise.

Beware that dict? is not a constant-time test on pairs, since checking that v is an association
list may require traversing the list.

Examples:

> (dict? #hash((a . "apple")))
#t
> (dict? '#("apple" "banana'))

415

https://pkgs.racket-lang.org/package/base

#t
> (dict? '("apple" "banana"))

#f

> (dict? '((a . "apple") (b . "banana")))

#t

(dict-implements? d sym ...) — boolean?
d : dict?

sym : symbol?

Returns #t if d implements all of the methods from gen:dict named by the syms; returns
#f otherwise. Fallback implementations do not affect the result; d may support the given
methods via fallback implementations yet produce #£.

Examples:

> (dict-implements? (hash 'a "apple") 'dict-set!)

#f

> (dict-implements? (make-hash '((a . "apple") (b . "ba-
nana"))) 'dict-set!)

#t

> (dict-implements? (make-hash '((b . "banana") (a . "ap-
ple"))) 'dict-remove!)

#t

> (dict-implements? (vector "apple" "banana") 'dict-set!)

#t

> (dict-implements? (vector 'a 'b) 'dict-remove!)

#t

> (dict-implements? (vector 'a "apple") 'dict-set! 'dict-remove!)
#f

(dict-implements/c sym ...) — flat-contract?
sym : symbol?

Recognizes dictionaries that support all of the methods from gen:dict named by the syms.
Note that the generated contract is not similar to hash/c, but closer to dict-implements?.

Examples:

> (struct deformed-dict ()
#:methods gen:dict [])

> (define/contract good-dict
(dict-implements/c)
(deformed-dict))

416

> (define/contract bad-dict
(dict-implements/c 'dict-ref)
(deformed-dict))
bad-dict: broke its own contract
promised: (dict-implements/c dict-ref)
produced: #<deformed-dict>
in: (dict-implements/c dict-ref)
contract from: (definition bad-dict)
blaming: (definition bad-dict)
(assuming the contract is correct)
at: eval:14.0

(dict-mutable? d) — boolean?
d : dict?

Returns #t if d is mutable via dict-set!, #f otherwise.
Equivalent to (dict-implements? d 'dict-set!).
Examples:

> (dict-mutable? #hash((a . "apple")))

#E

> (dict-mutable? (make-hash))

#t

> (dict-mutable? '#("apple" "banana"))

#E

> (dict-mutable? (vector "apple" "banana'))

#t

> (dict-mutable? '((a . "apple") (b . "banana")))
#f

(dict-can-remove-keys? d) — boolean?
d : dict?

Returns #t if d supports removing mappings via dict-remove! and/or dict-remove, #f
otherwise.

Equivalent to (or (dict-implements? d 'dict-remove!) (dict-implements? d
'dict-remove)).

Examples:

> (dict-can-remove-keys? #hash((a . "apple")))
#t

417

> (dict-can-remove-keys? '#("apple" "banana'))

#t

> (dict-can-remove-keys? '((a . "apple") (b . "banana")))
#t

(dict-can-functional-set? d) — boolean?
d : dict?

Returns #t if d supports functional update via dict-set, #f otherwise.
Equivalent to (dict-implements? d 'dict-set).
Examples:

> (dict-can-functional-set? #hash((a . "apple")))

#t

> (dict-can-functional-set? (make-hash))

#f

> (dict-can-functional-set? '#("apple" "banana'))

#E

> (dict-can-functional-set? '((a . "apple") (b . "banana")))
#t

4.15.2 Generic Dictionary Interface

gen:dict

A generic interface (see [§5.4 “Generic Interfaces”) that supplies dictionary method imple-
mentations for a structure type via the #:methods option of struct definitions. This in-
terface can be used to implement any of the methods documented as [§4.15.2.1 “Primitive|
[Dictionary Methods™|and[§4.15.2.2 “Derived Dictionary Methods™|

Examples:

> (struct alist (v)
#:methods gen:dict
[(define (dict-ref dict key
[default (lambda () (error "key not
found" key))])
(cond [(assoc key (alist-v dict)) => cdr]
[else (if (procedure? default) (default) default)]))
(define (dict-set dict key val)
(alist (cons (cons key val) (alist-v dict))))
(define (dict-remove dict key)

418

(define al (alist-v dict))
(alist (removex (filter (A (p) (equal? (car p) key)) al) al)))
(define (dict-count dict)
(length (remove-duplicates (alist-v dict) #:key car)))])
; etc. other methods
> (define di (alist '((1 . a) (2 . b))))
> (dict? di1)
#t
> (dict-ref di 1)
'a
> (dict-remove dl 1)
#<alist>

prop:dict : struct-type-property?

A deprecated structure type property used to define custom extensions to the dictionary API.
Use gen:dict instead. Accepts a vector of 10 method implementations:

¢ dict-ref

e dict-set!, or #f if unsupported

e dict-set, or #f if unsupported

e dict-remove!, or #f if unsupported
e dict-remove, or #f if unsupported
¢ dict-count

¢ dict-iterate-first

¢ dict-iterate-next

¢ dict-iterate-key

e dict-iterate-value

Primitive Dictionary Methods

These methods of gen:dict have no fallback implementations; they are only supported for
dictionary types that directly implement them.

(dict-ref dict key [failure-result]) — any
dict : dict?
key : any/c
failure-result : (failure-result/c any/c)
= (lambda () (raise (make-exn:fail)))

419

Returns the value for key in dict. If no value is found for key, then failure-result
determines the result:

e If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

e Otherwise, failure-result is returned as the result.

Examples:

> (dict-ref #hash((a . "apple") (b . "beer")) 'a)
"apple"
> (dict-ref #hash((a . "apple") (b . "beer")) 'c)
hash-ref: no value found for key

key: 'c
> (dict-ref #hash((a . "apple") (b . "beer")) 'c #f)
#f
> (dict-ref '((a . "apple") (b . "banana")) 'b)

"banana"

> (dict-ref #("apple" "banana") 1)
"banana"

> (dict-ref #("apple" "banana") 3 #f)
#E

> (dict-ref #("apple" "banana") -3 #f)
dict-ref: contract violation
expected: natural?
given: -3
in: the k argument of
(->1
((d dict?) (k (d) (dict-key-contract d)))
((default any/c))
any)
contract from: <collects>/racket/dict.rkt
blaming: top-level
(assuming the contract is correct)
at: <collects>/racket/dict.rkt:181.2

(dict-set! dict key v) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c
v : any/c

Maps key to v in dict, overwriting any existing mapping for key. The update can fail with
aexn:fail:contract exception if dict is not mutable or if key is not an allowed key for
the dictionary (e.g., not an exact integer in the appropriate range when dict is a vector).

420

Examples:

> (define h (make-hash))

> (dict-set! h 'a "apple")

>h

"#hash((a . "apple"))

> (define v (vector #f #f #f))
> (dict-set! v 0 "apple")

> v

"#("apple" #f #f)

(dict-set dict key v) — (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

Functionally extends dict by mapping key to v, overwriting any existing mapping for
key, and returning an extended dictionary. The update can fail with a exn:fail:contract
exception if dict does not support functional extension or if key is not an allowed key for
the dictionary.

Examples:

> (dict-set #hash() 'a "apple")

"#hash((a . "apple"))

> (dict-set #hash((a . "apple") (b . "beer")) 'b "banana')
"#hash((a . "apple") (b . "banana"))

> (dict-set '() 'a "apple")

"((a . "apple"))

> (dict-set '((a . "apple") (b . "beer")) 'b "banana")
"((a . "apple") (b . "banana"))

(dict-remove! dict key) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c

Removes any existing mapping for key in dict. The update can fail if dict is not mutable
or does not support removing keys (as is the case for vectors, for example).
Examples:

> (define h (make-hash))

> (dict-set! h 'a "apple")

> h
"#hash((a . "apple"))

421

> (dict-remove! h 'a)
> h
'"#hash ()

(dict-remove dict key) — (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c

Functionally removes any existing mapping for key in dict, returning the fresh dictionary.
The update can fail if dict does not support functional update or does not support removing
keys.

Examples:

> (define h #hash())

> (define h (dict-set h 'a "apple"))
> h

"#hash((a . "apple"))

> (dict-remove h 'a)

"#hash ()

>h

'#hash((a . "apple"))

> (dict-remove h 'z)

"#hash((a . "apple"))

> (dict-remove '((a . "apple") (b . "banana")) 'a)
"((b . "banana"))

(dict-iterate-first dict) — any/c
dict : dict?

Returns #f if dict contains no elements, otherwise it returns a non-#£ value that is an index
to the first element in the dict table; “first” refers to an unspecified ordering of the dictionary
elements. For a mutable dict, this index is guaranteed to refer to the first item only as long
as no mappings are added to or removed from dict.

Examples:

> (dict-iterate-first #hash((a . "apple") (b . "banana")))
0

> (dict-iterate-first #hash())

#E

> (dict-iterate-first #("apple" "banana"))

0

> (dict-iterate-first '((a . "apple") (b . "banana")))
#<assoc-iter>

422

(dict-iterate-next dict pos) — any/c
dict : dict?
pos : any/c

Returns either a non-#£ that is an index to the element in dict after the element indexed by
pos or #f if pos refers to the last element in dict. If pos is not a valid index, then the
exn:fail:contract exception is raised. For a mutable dict, the result index is guaran-
teed to refer to its item only as long as no items are added to or removed from dict. The
dict-iterate-next operation should take constant time.

Examples:
> (define h #hash((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> i
0
> (dict-iterate-next h i)
1
> (dict-iterate-next h (dict-iterate-next h i))

#E

(dict-iterate-key dict pos) — any
dict : dict?
pos : any/c

Returns the key for the element in dict at index pos. If pos is not a valid index for dict,
the exn:fail:contract exception is raised. The dict-iterate-key operation should
take constant time.

Examples:

> (define h '((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))

> (dict-iterate-key h i)

'a

> (dict-iterate-key h (dict-iterate-next h i))
'b

(dict-iterate-value dict pos) — any
dict : dict?
pos : any/c

Returns the value for the element in dict at index pos. If pos is not a valid index for
dict, the exn:fail:contract exception is raised. The dict-iterate-key operation
should take constant time.

423

Examples:

> (define h '((a .

"apple") (b . "banana")))

> (define i (dict-iterate-first h))
> (dict-iterate-value h i)

n apple n

> (dict-iterate-value h (dict-iterate-next h i))

"banana"

Derived Dictionary Methods

These methods of gen:dict have fallback implementations in terms of the other methods;
they may be supported even by dictionary types that do not directly implement them.

(dict-has-key? dict key) — boolean?

dict : dict?
key : any/c

Returns #t if dict contains a value for the given key, #f otherwise.

Supported for any dict that implements dict-ref.

Examples:

> (dict-has-key?
#t
> (dict-has-key?
#f
> (dict-has-key?
#t
> (dict-has-key?
#t
> (dict-has-key?
#f
> (dict-has-key?
#f

#hash((a . "apple") (b . "beer")) 'a)
#hash((a . "apple") (b . "beer")) 'c)
"((a . "apple") (b . "banana")) 'b)
#("apple" "banana") 1)

#("apple" "banana") 3)

#("apple" "banana") -3)

(dict-set*! dict key v) — void?
dict : (and/c dict? (not/c immutable?))

key : any/c
v : any/c

Maps each key to each v in dict, overwriting any existing mapping for each key. The
update can fail with a exn:fail:contract exception if dict is not mutable or if any key
is not an allowed key for the dictionary (e.g., not an exact integer in the appropriate range

424

when dict is a vector). The update takes place from the left, so later mappings overwrite
earlier mappings.

Supported for any dict that implements dict-set!.
Examples:

> (define h (make-hash))

> (dict-set*! h 'a "apple" 'b "banana')
>h

"#hash((a . "apple") (b . "banana"))

> (define vl (vector #f #f #f))

> (dict-set*! vl O "apple" 1 "banana')
> vl

'#("apple" "banana" #f)

> (define v2 (vector #f #f #f))

> (dict-set*! v2 0 "apple" O "banana')
> v2

'#("banana" #f #f)

(dict-set* dict key v) — (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

Functionally extends dict by mapping each key to each v, overwriting any existing map-
ping for each key, and returning an extended dictionary. The update can fail with a
exn:fail:contract exception if dict does not support functional extension or if any
key is not an allowed key for the dictionary. The update takes place from the left, so later
mappings overwrite earlier mappings.

Supported for any dict that implements dict-set.
Examples:

> (dict-set* #hash() 'a "apple" 'b "beer")

'"#hash((a . "apple") (b . "beer"))

> (dict-set* #hash((a . "apple") (b . "beer")) 'b "banana" 'a "anchor")
'"#hash((a . "anchor") (b . "banana"))

> (dict-setx '() 'a "apple" 'b "beer")

"((a . "apple") (b . "beer"))

> (dict-set* '((a . "apple") (b . "beer")) 'b "banana" 'a "anchor")
"((a . "anchor") (b . "banana"))

> (dict-set*x '((a . "apple") (b . "beer")) 'b "banana" 'b "ballistic")
"((a . "apple") (b . "ballistic"))

425

(dict-ref! dict key to-set) — any
dict : dict?
key : any/c
to-set : any/c

Returns the value for key in dict. If no value is found for key, then to-set determines
the result as in dict-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in dict for the key. (Note that if to-set is a thunk, it is not invoked in
tail position.)

Supported for any dict that implements dict-ref and dict-set!.

Examples:

> (dict-ref! (make-hasheq '((a . "apple") (b . "beer"))) 'a #f)
"apple"

> (dict-ref! (make-hasheq '((a . "apple") (b .

"beer"))) 'c 'cabbage)

'cabbage

> (define h (make-hasheq '((a . "apple") (b . "beer"))))

> (dict-ref h 'c)

hash-ref: no value found for key

key: 'c
> (dict-ref! h 'c (A () 'cabbage))
'cabbage
> (dict-ref h 'c)
'cabbage

(dict-update! dict
key
updater
[failure-result]) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)
= (lambda () (raise (make-exn:fail)))

Composes dict-ref and dict-set! to update an existing mapping in dict, where the
optional failure-result argument is used as in dict-ref when no mapping exists for
key already.

Supported for any dict that implements dict-ref and dict-set!.

Examples:

426

> (define h (make-hash))

> (dict-update! h 'a addl)
hash-update!: no value found for key: 'a
> (dict-update! h 'a addl 0)
>h

'#hash((a . 1))

> (define v (vector #f #f #f))
> (dict-update! v 0O not)

> v

"#(#t #f #£)

(dict-update dict key updater [failure-result])
— (and/c dict? immutable?)
dict : dict?

key : any/c
updater : (any/c . -> . any/c)
failure-result : (failure-result/c any/c)

= (lambda () (raise (make-exn:fail)))

Composes dict-ref and dict-set to functionally update an existing mapping in dict,
where the optional failure-result argument is used as in dict-ref when no mapping
exists for key already.

Supported for any dict that implements dict-ref and dict-set.
Examples:

> (dict-update #hash() 'a addl)

hash-update: no value found for key: 'a

> (dict-update #hash() 'a addl 0)

"#hash((a . 1))

> (dict-update #hash((a . "apple") (b . "beer")) 'b string-length)
'#hash((a . "apple") (b . 4))

(dict-map dict proc) — (listof any/c)
dict : dict?
proc : (any/c any/c . -> . any/c)

Applies the procedure proc to each element in dict in an unspecified order, accumulating
the results into a list. The procedure proc is called each time with a key and its value.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Example:

427

> (dict-map #hash((a . "apple") (b . "banana")) vector)
"(#(a "apple") #(b "banana"))

(dict-for-each dict proc) — void?
dict : dict?
proc : (any/c any/c . -> . any)

Applies proc to each element in dict (for the side-effects of proc) in an unspecified order.
The procedure proc is called each time with a key and its value.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Example:

> (dict-for-each #hash((a . "apple") (b . "banana"))
(lambda (k v)
(printf "~a = ~s\n" k v)))
a = "apple"
b = "banana"

(dict-empty? dict) — boolean?
dict : dict?
Reports whether dict is empty.
Supported for any dict that implements dict-iterate-first.
Examples:

> (dict-empty? #hash((a . "apple") (b . "banana")))
#£

> (dict-empty? (vector))

#t

(dict-count dict) — exact-nonnegative-integer?
dict : dict?
Returns the number of keys mapped by dict, usually in constant time.

Supported for any dict that implements dict-iterate-first and dict-iterate-
next.

Examples:

428

> (dict-count #hash((a . "apple") (b . "banana")))
2

> (dict-count #("apple" "banana"))

2

(dict-copy dict) — dict?
dict : dict?

Produces a new, mutable dictionary of the same type as dict and with the same key/value
associations.

Supported for any dict that implements dict-clear, dict-set!, dict-iterate-
first, dict-iterate-next, dict-iterate-key, and dict-iterate-value

Examples:

> (define original (vector "apple" "banana"))
> (define copy (dict-copy original))
> original

'#("apple" "banana')

> copy

'#("apple" "banana')

> (dict-set! copy 1 "carrot")

> original

'#("apple" "banana')

> copy

'#("apple" "carrot")

(dict-clear dict) — dict?
dict : dict?

Produces an empty dictionary of the same type as dict. If dict is mutable, the result must
be a new dictionary.

Supported for any dict that supports dict-remove, dict-iterate-first, dict-
iterate-next, and dict-iterate-key

Examples:

> (dict-clear #hash((a . "apple") ("banana" . b)))
"#hash ()

> (dict-clear '((1 . two) (three . "four")))
"0

(dict-clear! dict) — void?
dict : dict?

429

Removes all of the key/value associations in dict.

Supported for any dict that supports dict-remove!, dict-iterate-first, and dict-
iterate-key.

Examples:

> (define table (make-hash))

> (dict-set! table 'a "apple")

> (dict-set! table "banana" 'b)

> table

"#hash((a . "apple") ("banana" . b))
> (dict-clear! table)

> table

"#hash ()

(dict-keys dict) — list?
dict : dict?
Returns a list of the keys from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-key.

Examples:
> (define h #hash((a . "apple") (b . "banana")))

> (dict-keys h)
'(a b)

(dict-values dict) — list?
dict : dict?
Returns a list of the values from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (dict-values h)
1 (llapplell llbananall)

(dict->1list dict) — 1list?
dict : dict?

430

Returns a list of the associations from dict in an unspecified order.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (dict->list h)
"((a . "apple") (b . "banana"))

4.15.3 Dictionary Sequences

(in-dict dict) — sequence?
dict : dict?

Returns a sequence whose each element is two values: a key and corresponding value from
dict.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([(k v) (in-dict h)])

(format "~a = ~s" k v))
I(Ila = \"apple\"" "y = \"banana\"")

(in-dict-keys dict) — sequence?
dict : dict?
Returns a sequence whose elements are the keys of dict.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-key.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([k (in-dict-keys h)])

k)
"(a b)

431

(in-dict-values dict) — sequence?
dict : dict?

Returns a sequence whose elements are the values of dict.

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([v (in-dict-values h)])

v)
1 (Ilapplell llbananall)

(in-dict-pairs dict) — sequence?
dict : dict?

Returns a sequence whose elements are pairs, each containing a key and its value from dict
(as opposed to using in-dict, which gets the key and value as separate values for each
element).

Supported for any dict that implements dict-iterate-first, dict-iterate-next,
dict-iterate-key, and dict-iterate-value.

Examples:

> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([p (in-dict-pairs h)])

p)
"((a . "apple") (b . "banana"))

4.15.4 Contracted Dictionaries
prop:dict/contract : struct-type-property?

A structure type property for defining dictionaries with contracts. The value associated with
prop:dict/contract must be a list of two immutable vectors:

(list dict-vector
(vector type-key-contract
type-value-contract
type-iter-contract

432

instance-key-contract
instance-value-contract
instance-iter-contract))

The first vector must be a vector of 10 procedures which match the gen:dict generic in-
terface (in addition, it must be an immutable vector). The second vector must contain six
elements; each of the first three is a contract for the dictionary type’s keys, values, and po-
sitions, respectively. Each of the second three is either #f or a procedure used to extract the
contract from a dictionary instance.

(dict-key-contract d) — contract?

d : dict?

(dict-value-contract d) — contract?
d : dict?

(dict-iter-contract d) — contract?
d : dict?

Returns the contract that d imposes on its keys, values, or iterators, respectively, if d imple-
ments the prop:dict/contract interface.

4.15.5 Custom Hash Tables

(define-custom-hash-types name
optional-predicate
comparison-expr
optional-hash-functions)

optional-predicate
| #:key? predicate-expr

hashl-expr

optional-hash-functions =
| hashl-expr hash2-expr

Creates a new dictionary type based on the given comparison comparison-expr, hash
functions hashl-expr and hash2-expr, and key predicate predicate-expr; the inter-
faces for these functions are the same as in make-custom-hash-types. The new dictio-
nary type has three variants: immutable, mutable with strongly-held keys, and mutable with
weakly-held keys.

Defines seven names:
* name 7 recognizes instances of the new type,

433

e immutable-name? recognizes immutable instances of the new type,

* mutable-name? recognizes mutable instances of the new type with strongly-held
keys,

* weak-name 7 recognizes mutable instances of the new type with weakly-held keys,
* make-immutable-name constructs immutable instances of the new type,

* make-mutable-name constructs mutable instances of the new type with strongly-
held keys, and

* make-weak-name constructs mutable instances of the new type with weakly-held
keys.

The constructors all accept a dictionary as an optional argument, providing initial key/value
pairs.

Examples:

> (define-custom-hash-types string-hash
#:key? string?
string="7
string-length)
> (define imm
(make-immutable-string-hash
'(("apple" . a) ("banana" . b))))
> (define mut
(make-mutable-string-hash
"(("apple" . a) ("banana" . b))))
> (dict? imm)

#t

> (dict? mut)

#t

> (string-hash? imm)

#t

> (string-hash? mut)

#t

> (immutable-string-hash? imm)
#t

> (immutable-string-hash? mut)
#f

> (dict-ref imm "apple")

'a

> (dict-ref mut "banana")

'b

> (dict-set! mut "banana" 'berry)

434

> (dict-ref mut "banana")

'berry

> (equal? imm mut)

#f

> (equal? (dict-remove (dict-remove imm "apple") "banana')
(make-immutable-string-hash))

#t

(make-custom-hash-types eql?

[hash1

hash2

#:key? key?

#:name name

#:for who]) — (any/c . -> . boolean?)
(any/c . -> . boolean?)
(any/c . -> . boolean?)
(any/c . -> . boolean?)

(> [] [dict?] dict?)
(->+ [] [dict?] dict?)
(->x [] [dict?] dict?)
eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hashl : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)
key? : (any/c . -> . boolean?) = (const #true)
name : symbol? = 'custom-hash
who : symbol? = 'make-custom-hash-types

Creates a new dictionary type based on the given comparison function eql?, hash functions
hash1 and hash2, and predicate key?. The new dictionary type has variants that are im-
mutable, mutable with strongly-held keys, and mutable with weakly-held keys. The given
name is used when printing instances of the new dictionary type, and the symbol who is used
for reporting errors.

The comparison function eql? may accept 2 or 3 arguments. If it accepts 2 arguments, it
given two keys to compare them. If it accepts 3 arguments and does not accept 2 arguments,
it is also given a recursive comparison function that handles data cycles when comparing
sub-parts of the keys.

The hash functions hash1 and hash2 may accept 1 or 2 arguments. If either hash function
accepts 1 argument, it is applied to a key to compute the corresponding hash value. If either

435

hash function accepts 2 arguments and does not accept 1 argument, it is also given a recursive
hash function that handles data cycles when computing hash values of sub-parts of the keys.

The predicate key? must accept 1 argument and is used to recognize valid keys for the new
dictionary type.

Produces seven values:

 apredicate recognizing all instances of the new dictionary type,
 apredicate recognizing immutable instances,

* apredicate recognizing mutable instances,

 apredicate recognizing weak instances,

¢ a constructor for immutable instances,

¢ a constructor for mutable instances, and

¢ a constructor for weak instances.

See define-custom-hash-types for an example.

(make-custom-hash eql?
[hash1
hash2
#:key? key?]) — dict?
eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> . any/c) . -> . any/c))

hash1l : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)

key? : (any/c . -> . boolean?) = (A (x) #true)

436

(make-weak-custom-hash eql?
[hash1
hash2
#:key? key?]) — dict?
eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> .
(or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?)
= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?)
= (const 1)
key? : (any/c . -> . boolean?) = (M (x) #true)
(make-immutable-custom-hash eql?
[hash1
hash2
#:key? key?]) — dict?
eql? : (or/c (any/c any/c . -> . any/c)
(any/c any/c (any/c any/c . -> .
(or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?)
(const 1)
(or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?)
= (const 1)
(any/c . -> .

any/c)
hash1 :

any/c)
hashli

hash2 :

key? : boolean?) = (A (x) #true)

. any/c))

. exact-integer?))

. exact-integer?))

. any/c))

. exact-integer?))

. exact-integer?))

Creates an instance of a new dictionary type, implemented in terms of a hash table where
keys are compared with eql?, hashed with hash1 and hash2, and where the key predicate
is key?. See gen:equal+hash for information on suitable equality and hashing functions.

The make-custom-hash and make-weak-custom-hash functions create a mutable dictio-

nary that does not support functional update, while make-immutable-custom-hash cre-
ates an immutable dictionary that supports functional update. The dictionary created by
make-weak-custom-hash retains its keys weakly, like the result of make-weak-hash.

Dictionaries created by make-custom-hash and company are equal? when they have the
same mutability and key strength, the associated procedures are equal?, and the key—value

mappings are the same when keys and values are compared with equal?.

See also define-custom-hash-types.

Examples:

> (define h (make-custom-hash (lambda (a b)

(string=7? (format "~a" a)
(format "~a" b)))

437

(lambda (a)
(equal-hash-code
(format "~a" a)))))
> (dict-set! h 1 'one)
> (dict-ref h "1")
'one

4.16 Sets

A set represents a collection of distinct elements. The following datatypes are all sets:

* hash sets;
* lists using equal? to compare elements; and

e structures whose types implement the gen: set generic interface.

(require racket/set) package: base

The bindings documented in this section are provided by the racket/set and racket li-
braries, but not racket/base.

4.16.1 Hash Sets

A hash set is a set whose elements are compared via equal?, eqv?, or eq? and parti-
tioned via equal-hash-code, eqv-hash-code, or eq-hash-code. A hash set is either
immutable or mutable; mutable hash sets retain their elements either strongly or weakly.

A hash set can be used as a stream (see [§4.14.2 “Streams’]) and thus as a single-valued
sequence (see[§4.14.1 “Sequences’]). The elements of the set serve as elements of the stream
or sequence. If an element is added to or removed from the hash set during iteration, then
an iteration step may fail with exn:fail:contract, or the iteration may skip or duplicate
elements. See also in-set.

Two hash sets are equal? when they use the same element-comparison procedure (equal?,
eqv?, or eq?), both hold elements strongly or weakly, have the same mutability, and have
equivalent elements. Immutable hash sets support effectively constant-time access and up-
date, just like mutable hash sets; the constant on immutable operations is usually larger, but
the functional nature of immutable hash sets can pay off in certain algorithms.

All hash sets implement set->stream, set-empty?, set-member?, set-count,
subset?, proper-subset?, set-map, set-for-each, set-copy, set-copy-clear,
set->1list, and set-first. Immutable hash sets in addition implement set-add,

438

Like operations on
immutable hash
tables, “constant
time” hash set
operations actually
require O(log N)
time for a set of size
N.

https://pkgs.racket-lang.org/package/base

set-remove, set-clear, set-union, set-intersect, set-subtract, and set-
symmetric-difference. Mutable hash sets in addition implement set-add!, set-
remove!, set-clear!, set-union!, set-intersect!, set-subtract!, and set-
symmetric-difference!.

Operations on sets that contain elements that are mutated are unpredictable in much the same
way that hash table operations are unpredictable when keys are mutated.

(set-equal? x) — boolean?

x : any/c

(set-eqv? x) — boolean?
x @ any/c

(set-eq? x) — boolean?
x : any/c

Returns #t if x is a hash set that compares elements with equal?, eqv?, or eq?, respec-
tively; returns #f otherwise.

(set? x) — boolean?
x : any/c

(set-mutable? x) — boolean?
x : any/c

(set-weak? x) — boolean?
x : any/c

Returns #t if x is a hash set that is respectively immutable, mutable with strongly-held keys,
or mutable with weakly-held keys; returns #£f otherwise.

(set v ...) — (and/c generic-set? set-equal? set?)
v : any/c

(seteqv v ...) — (and/c generic-set? set-eqv? set?)
v : any/c

(seteq v ...) — (and/c generic-set? set-eq? set?)
v : any/c

(mutable-set v ...)
— (and/c generic-set? set-equal? set-mutable?)

v : any/c

(mutable-seteqv v ...)

— (and/c generic-set? set-equv? set-mutable?)
v : any/c

(mutable-seteq v ...)
— (and/c generic-set? set-eq? set-mutable?)

v : any/c

(weak-set v ...) — (and/c generic-set? set-equal? set-weak?)
v : any/c

(weak-seteqv v ...) — (and/c generic-set? set-eqv? set-weak?)
v : any/c

439

(weak-seteq v ...) — (and/c generic-set? set-eq? set-weak?)
v : any/c

Creates a hash set with the given vs as elements. The elements are added in the order that
they appear as arguments, so in the case of sets that use equal? or eqv?, an earlier element
may be replaced by a later element that is equal? or eqv? but not eq?.

(list->set 1lst) — (and/c generic-set? set-equal? set?)

1st : list?

(list->seteqv 1st) — (and/c generic-set? set-eqv? set?)
Ist : list?

(list->seteq Ist) — (and/c generic-set? set-eq? set?)
1st : list?

(list->mutable-set 1st)

— (and/c generic-set? set-equal? set-mutable?)
Ist : list?

(list->mutable-seteqv Ist)

— (and/c generic-set? set-eqv? set-mutable?)
1st : list?

(list->mutable-seteq lst)

— (and/c generic-set? set-eq? set-mutable?)
lst : list?

(list->weak-set Ist)

— (and/c generic-set? set-equal? set-weak?)
1st : list?

(list->weak-seteqv 1st)

— (and/c generic-set? set-eqv? set-weak?)

lst : list?
(list->weak-seteq lst) — (and/c generic-set? set-eq? set-weak?)
1st : list?

Creates a hash set with the elements of the given 1st as the elements of the set. Equivalent
to (apply set 1st), (apply seteqv 1st), (apply seteq lst), and so on, respec-
tively.

(for/set (for-clause ...) body ...+)

(for/seteq (for-clause ...) body ...+)
(for/seteqv (for-clause ...) body ...+)
(forx/set (for-clause ...) body ...+)
(for*/seteq (for-clause ...) body ...+)
(for*/seteqv (for-clause ...) body ...+)
(for/mutable-set (for-clause ...) body ...+)
(for/mutable-seteq (for-clause ...) body ...+)
(for/mutable-seteqv (for-clause ...) body ...+)
(for*/mutable-set (for-clause ...) body ...+)
(forx/mutable-seteq (for-clause ...) body ...+)

440

(forx/mutable-seteqv (for-clause ...) body ...+)
(for/weak-set (for-clause ...) body ...+)
(for/weak-seteq (for-clause ...) body ...+)
(for/weak-seteqv (for-clause ...) body ...+)

(for*x/weak-set (for-clause ...) body ...+)
(for*/weak-seteq (for-clause ...) body ...+)
(for*/weak-seteqv (for-clause ...) body ...+)

Analogous to for/list and for*/list, but to construct a hash set instead of a list.

(in-immutable-set st) — sequence?
st : set?

(in-mutable-set st) — sequence?
st . set-mutable?

(in-weak-set st) — sequence?
st : set-weak?

Explicitly converts a specific kind of hash set to a sequence for use with for forms.

As with in-1ist and some other sequence constructors, in-immutable-set performs bet-
ter when it appears directly in a for clause.

These sequence constructors are compatible with[§4.16.4 “Custom Hash Sets”}

4.16.2 Set Predicates and Contracts

(generic-set? v) — boolean?
v : any/c

Returns #t if v is a set; returns #f otherwise.

Examples:

> (generic-set? (list 1 2 3))

#t

> (generic-set? (set 1 2 3))

#t

> (generic-set? (mutable-seteq 1 2 3))
#t

> (generic-set? (vector 1 2 3))

#E

(set-implements? st sym ...) — boolean?

st : generic-set?
sym : symbol?

441

Returns #t if st implements all of the methods from gen: set named by the syms; returns
#f otherwise. Fallback implementations do not affect the result; st may support the given
methods via fallback implementations yet produce #f.

Examples:

> (set-implements? (list 1 2 3) 'set-add)

#t

> (set-implements? (list 1 2 3) 'set-add!)

#f

> (set-implements? (set 1 2 3) 'set-add)

#t

> (set-implements? (set 1 2 3) 'set-add!)

#t

> (set-implements? (mutable-seteq 1 2 3) 'set-add)
#t

> (set-implements? (mutable-seteq 1 2 3) 'set-add!)
#t

> (set-implements? (weak-seteqv 1 2 3) 'set-remove 'set-remove!)
#t

(set-implements/c sym ...) — flat-contract?
sym : symbol?

Recognizes sets that support all of the methods from gen: set named by the syms.

(set/c elem/c
[#:cmp cmp
#:kind kind
#:1lazy? lazy?
#:equal-key/c equal-key/c]) — contract?
elem/c : chaperone-contract?

cmp : (or/c 'dont-care 'equal 'eqv 'eq) = 'dont-care
kind : (or/c 'dont-care 'immutable 'mutable 'weak 'mutable-or-weak)
= 'immutable

lazy? : any/c = (not (and (equal? kind 'immutable)
(flat-contract? elem/c)))
equal-key/c : contract? = any/c

Constructs a contract that recognizes sets whose elements match elem/c.

If kind is 'immutable, 'mutable, or 'weak, the resulting contract accepts only hash sets
that are respectively immutable, mutable with strongly-held keys, or mutable with weakly-
held keys. If kind is 'mutable-or-weak, the resulting contract accepts any mutable hash
sets, regardless of key-holding strength.

442

If cmp is 'equal, 'equ, or 'eq, the resulting contract accepts only hash sets that compare
elements using equal?, eqv?, or eq?, respectively.

If cmp is 'eqv or 'eq, then elem/c must be a flat contract.

If cmp and kind are both 'dont-care, then the resulting contract will accept any kind of
set, not just hash sets.

If 1azy 7 is not #£, then the elements of the set are not checked immediately by the contract
and only the set itself is checked (according to the cmp and kind arguments). If lazy?is #f,
then the elements are checked immediately by the contract. The 1azy? argument is ignored
when the set contract accepts generic sets (i.e., when cmp and kind are both 'dont-care);
in that case, the value being checked in that case is a 1ist?, then the contract is not lazy
otherwise the contract is lazy.

If kind allows mutable sets (i.e., is 'dont-care, 'mutable, 'weak, or 'mutable-or-
weak) and lazy? is #£, then the elements are checked both immediately and when they are
accessed from the set.

The equal-key/c contract is used when values are passed to the comparison and hashing
functions used internally.

The result contract will be a flat contract when elem/c and equal-key/c are both flat

contracts, lazy? is #f, and kind is 'immutable. The result will be a chaperone contract
when elem/c is a chaperone contract.

4.16.3 Generic Set Interface

gen:set

A generic interface (seel§5.4 “Generic Interfaces’) that supplies set method implementations
for a structure type via the #:methods option of struct definitions. This interface can be
used to implement any of the methods documented as|§4.16.3.1 “Set Methods™|

Examples:

> (struct binary-set [integer]
#:transparent
#:methods gen:set
[(define (set-member? st i)
(bitwise-bit-set? (binary-set-integer st) 1i))
(define (set-add st i)
(binary-set (bitwise-ior (binary-set-integer st)
(arithmetic-shift 1 i))))
(define (set-remove st i)
(binary-set (bitwise-and (binary-set-integer st)

443

(bitwise-not (arithmetic-
shift 1 1)))))1)
> (define bset (binary-set 5))
> bset
(binary-set 5)
> (generic-set? bset)
#t
> (set-member? bset 0)
#t
> (set-member? bset 1)
#£f
> (set-member? bset 2)
#t
> (set-add bset 4)
(binary-set 21)
> (set-remove bset 2)
(binary-set 1)

Set Methods

The methods of gen:set can be classified into three categories, as determined by their
fallback implementations:

1. methods with no fallbacks,
2. methods whose fallbacks depend on other, non-fallback methods,

3. and methods whose fallbacks can depend on either fallback or non-fallback methods.

As an example, implementing the following methods would guarantee that all the methods
in gen:set would at least have a fallback method:

* set-member?

* set-add

* set-add!

* set-remove

* set-remove!

¢ set-first

* set-empty?

* set-copy-clear

444

There may be other such subsets of methods that would guarantee at least a fallback for
every method.

(set-member? st v) — boolean?
st : generic-set?
v : any/c

Returns #t if v is in st, #f otherwise. Has no fallback.
(set-add st v) — generic-set?

st : generic-set?
v : any/c

Produces a set that includes v plus all elements of st. This operation runs in constant time
for hash sets. Has no fallback.

(set-add! st v) — void?
st : generic-set?
v : any/c

Adds the element v to st. This operation runs in constant time for hash sets. Has no
fallback.

(set-remove st v) — generic-set?
st : generic-set?
v : any/c

Produces a set that includes all elements of st except v. This operation runs in constant
time for hash sets. Has no fallback.

(set-remove! st v) — void?
st . generic-set?
v : any/c

Removes the element v from st. This operation runs in constant time for hash sets. Has no
fallback.

(set-empty? st) — boolean?
st : generic-set?
Returns #t if st has no members; returns #f otherwise.

Supported for any st that implements set->stream or set-count.

(set-count st) — exact-nonnegative-integer?
st : generic-set?

445

Returns the number of elements in st.

Supported for any st that supports set->stream.

(set-first st) — any/c
st : (and/c generic-set? (not/c set-empty?))

Produces an unspecified element of st. Multiple uses of set-first on st produce the
same result.

Supported for any st that implements set->stream.

(set-rest st) — generic-set?
st : (and/c generic-set? (not/c set-empty?))

Produces a set that includes all elements of st except (set-first st).

Supported for any st that implements set-remove and either set-first or set-
>stream.

(set->stream st) — stream?
st : generic-set?
Produces a stream containing the elements of st.

Supported for any st that implements:

* set->list

* in-set

¢ set-empty?, set-first, set-rest

¢ set-empty?, set-first, set-remove
e set-count, set-first, set-rest

* set-count, set-first, set-remove

(set-copy st) — generic-set?
st : generic-set?

Produces a new, mutable set of the same type and with the same elements as st.

Supported for any st that supports set->stream and implements set-copy-clear and
set-add!.

446

(set-copy-clear st) — (and/c generic-set? set-empty?)
st . generic-set?

Produces a new, empty set of the same type, mutability, and key strength as st.

A difference between set-copy-clear and set-clear is that the latter conceptually iter-
ates set-remove on the given set, and so it preserves any contract on the given set. The
set-copy-clear function produces a new set without any contracts.

The set-copy-clear function must call concrete set constructors and thus has no generic
fallback.

(set-clear st) — (and/c generic-set? set-empty?)
st . generic-set?

Produces a set like st but with all elements removed.

Supported for any st that implements set-remove and supports set->stream.

(set-clear! st) — void?
st : generic-set?

Removes all elements from st.

Supported for any st that implements set-remove! and either supports set->stream or
implements set-first and either set-count or set-empty?.

(set-union st0 st ...) — generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as stO that includes the elements from st0 and all of the
sts.

If stO0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of the result.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of all of the sets except the
largest immutable set.

At least one set must be provided to set-union to determine the type of the resulting set
(list, hash set, etc.). If there is a case where set-union may be applied to zero arguments,
instead pass an empty set of the intended type as the first argument.

447

Supported for any st that implements set-add and supports set->stream.

Examples:

> (set-union (set))
(set)
> (set-union (seteq))
(seteq)
> (set-union (set 1 2) (set 2 3))
(set 1 3 2)
> (set-union (list 1 2) (list 2 3))
'312)
> (set-union (set 1 2) (seteq 2 3))
set-union: set arguments have incompatible equivalence
predicates
first set: (set 1 2)
incompatible set: (seteq 2 3)
; Sets of different types cannot be unioned

(set-union! st0 st ...) — void?
st0 : generic-set?
st : generic-set?

Adds the elements from all of the sts to st0.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of the sts.

Supported for any st that implements set-add! and supports set->stream.

(set-intersect st0 st ...) — generic-set?
st0 . generic-set?
st : generic-set?

Produces a set of the same type as stO that includes the elements from st0 that are also
contained by all of the sts.

If st0 is alist, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of st0.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of the smallest immutable set.

Supported for any st that implements either set-remove or both set-clear and set-add,
and supports set->stream.

448

(set-intersect! st0 st ...) — void?
st0 : generic-set?
st : generic-set?

Removes every element from stO0 that is not contained by all of the sts.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0.

Supported for any st that implements set-remove! and supports set->stream.

(set-subtract st0 st ...) — generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as stO that includes the elements from stO that are not
contained by any of the sts.

If st0 is alist, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of st0.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0.

Supported for any st that implements either set-remove or both set-clear and set-add,
and supports set->stream.

(set-subtract! st0 st ...) — void?
st0 : generic-set?
st : generic-set?

Removes every element from stO0 that is contained by any of the sts.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st0.

Supported for any st that implements set-remove! and supports set->stream.

(set-symmetric-difference st0 st ...) — generic-set?
st0 : generic-set?
st : generic-set?

Produces a set of the same type as stO that includes all of the elements contained an odd
number of times in st0 and the sts.

449

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the total size of the sts times the size of stO0.

If stO0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of all of the sets except the
largest immutable set.

Supported for any st that implements set-remove or both set-clear and set-add, and
supports set->stream.

Example:
> (set-symmetric-difference (set 1) (set 1 2) (set 1 2 3))

(set 1 3)

(set-symmetric-difference! st0 st ...) — void?
st0 : generic-set?
st : generic-set?

Adds and removes elements of st0 so that it includes all of the elements contained an odd
number of times in the sts and the original contents of stO0.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the total size of the sts.

Supported for any st that implements set-remove! and supports set->stream.
(set=7 st st2) — boolean?
st : generic-set?
st2 : generic-set?

Returns #t if st and st2 contain the same members; returns #f otherwise.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st plus the size of st2.

Supported for any st and st2 that both support subset?; also supported for any if st2
that implements set=7 regardless of st.

Examples:

450

> (set=7 (list 1 2) (list 2 1))
#t
> (set=7 (set 1) (set 1 2 3))
#f
> (set=7 (set 1 2 3) (set 1))
#f
> (set=7 (set 1 2 3) (set 1 2 3))
#t
> (set=7 (seteq 1 2) (mutable-seteq 2 1))
#t
> (set=7 (seteq 1 2) (seteqv 1 2))
set="2: set arguments have incompatible equivalence
predicates
first set: (seteq 1 2)
incompatible set: (seteqv 1 2)
; Sets of different types cannot be compared

(subset? st st2) — boolean?
st . generic-set?
st2 . generic-set?

Returns #t if st2 contains every member of st; returns #f otherwise.

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2.

If st is a hash set, then st2 must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st.

Supported for any st that supports set->stream.

Examples:

> (subset? (set 1) (set 1 2 3))

#t

> (subset? (set 1 2 3) (set 1))

#£f

> (subset? (set 1 2 3) (set 1 2 3))
#t

(proper-subset? st st2) — boolean?
st : generic-set?
st2 : generic-set?

Returns #t if st2 contains every member of st and at least one additional element; returns
#£ otherwise.

451

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional
to the size of st times the size of st2.

If st is a hash set, then st2 must also be a hash set that uses the same comparison function
(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This
operation runs on hash sets in time proportional to the size of st plus the size of st2.

Supported for any st and st2 that both support subset?.

Examples:

> (proper-subset? (set 1) (set 1 2 3))

#t

> (proper-subset? (set 1 2 3) (set 1))

#f

> (proper-subset? (set 1 2 3) (set 1 2 3))
#t

(set->list st) — 1list?
st : generic-set?

Produces a list containing the elements of st.

Supported for any st that supports set->stream.

(set-map st proc) — (listof any/c)
st : generic-set?
proc : (any/c . -> . any/c)

Applies the procedure proc to each element in st in an unspecified order, accumulating the
results into a list.

Supported for any st that supports set->stream.

(set-for-each st proc) — void?
st . generic-set?
proc : (any/c . -> . any)

Applies proc to each element in st (for the side-effects of proc) in an unspecified order.

Supported for any st that supports set->stream.

(in-set st) — sequence?
st : generic-set?

Explicitly converts a set to a sequence for use with for and other forms.

Supported for any st that supports set->stream.

452

(impersonate-hash-set st

inject-proc

add-proc

shrink-proc

extract-proc

[clear-proc

equal-key-proc]

prop

prop-val

)

— (and/c (or/c set-mutable? set-weak?) impersonator?)
st : (or/c set-mutable? set-weak?)
inject-proc : (or/c #f (-> set? any/c any/c))
add-proc : (or/c #f (-> set? any/c any/c))
shrink-proc : (or/c #f (-> set? any/c any/c))
extract-proc : (or/c #f (-> set? any/c any/c))
clear-proc : (or/c #f (-> set? any)) = #f
equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
prop : impersonator-property?
prop-val : any/c

Impersonates st, redirecting various set operations via the given procedures.

The inject-proc procedure is called whenever an element is temporarily put into the set
for the purposes of comparing it with other elements that may already be in the set. For
example, when evaluating (set-member? s e), e will be passed to the inject-proc
before comparing it with other elements of s.

The add-proc procedure is called when adding an element to a set, e.g., via set-add or
set-add!. The result of the add-proc is stored in the set.

The shrink-proc procedure is called when building a new set with one fewer element.
For example, when evaluating (set-remove s e) or (set-remove! s e), an element is
removed from a set, e.g., via set-remove or set-remove!. The result of the shrink-proc
is the element actually removed from the set.

The extract-proc procedure is called when an element is pulled out of a set, e.g., by
set-first. The result of the extract-proc is the element actually produced by from the
set.

The clear-proc is called by set-clear and set-clear! and if it returns (as opposed to
escaping, perhaps via raising an exception), the clearing operation is permitted. Its result is
ignored. If clear-proc is #f, then clearing is done element by element (via calls into the
other supplied procedures).

The equal-key-proc is called when an element’s hash code is needed of when an element

453

is supplied to the underlying equality in the set. The result of equal-key-proc is used
when computing the hash or comparing for equality.

If any of the inject-proc, add-proc, shrink-proc, or extract-proc arguments are
#£, then they all must be #f, the clear-proc and equal-key-proc must also be #f, and
there must be at least one property supplied.

Pairs of prop and prop-val (the number of arguments to impersonate-hash-set must
be odd) add impersonator properties or override impersonator property values of st.

(chaperone-hash-set st

inject-proc

add-proc

shrink-proc

extract-proc

[clear-proc

equal-key-proc]

prop

prop-val

)

— (and/c (or/c set? set-mutable? set-weak?) chaperone?)
st : (or/c set? set-mutable? set-weak?)
inject-proc : (or/c #f (-> set? any/c any/c))
add-proc : (or/c #f (-> set? any/c any/c))
shrink-proc : (or/c #f (-> set? any/c any/c))
extract-proc : (or/c #f (-> set? any/c any/c))
clear-proc : (or/c #f (-> set? any)) = #f
equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
prop : impersonator-property?
prop-val : any/c

Chaperones st. Like impersonate-hash-set but with the constraints that the results
of the inject-proc, add-proc, shrink-proc, extract-proc, and equal-key-proc
must be chaperone-of? their second arguments. Also, the input may be an immutable?
set.

4.16.4 Custom Hash Sets

(define-custom-set-types name
optional-predicate
comparison-expr
optional-hash-functions)

454

optional-predicate

#:elem? predicate-expr

optional-hash-functions =
| hashl-expr
| hashil-expr hash2-expr

Creates a new hash set type based on the given comparison comparison-expr, hash func-
tions hashl-expr and hash2-expr, and element predicate predicate-expr; the inter-
faces for these functions are the same as in make-custom-set-types. The new set type has
three variants: immutable, mutable with strongly-held elements, and mutable with weakly-
held elements.

Defines seven names:

* name? recognizes instances of the new type,
e immutable-name? recognizes immutable instances of the new type,

* mutable-name? recognizes mutable instances of the new type with strongly-held
elements,

* weak-name? recognizes mutable instances of the new type with weakly-held ele-
ments,

* make-immutable-name constructs immutable instances of the new type,

* make-mutable-name constructs mutable instances of the new type with strongly-
held elements, and

* make-weak-name constructs mutable instances of the new type with weakly-held el-
ements.

The constructors all accept a stream as an optional argument, providing initial elements.
Examples:

> (define-custom-set-types string-set
#:elem? string?
string="7
string-length)
> (define imm
(make-immutable-string-set '("apple" "banana")))
> (define mut
(make-mutable-string-set '("apple" "banana'")))

455

> (generic-set? imm)

#t

> (generic-set? mut)

#t

> (set? imm)

#t

> (generic-set? imm)

#t

> (string-set? imm)

#t

> (string-set? mut)

#t

> (immutable-string-set? imm)

#t

> (immutable-string-set? mut)

#E

> (set-member? imm "apple")

#t

> (set-member? mut "banana')

#t

> (equal? imm mut)

#E

> (set=7 imm mut)

#t

> (set-remove! mut "banana')
> (set-member? mut "banana')

#E

> (equal? (set-remove (set-remove imm "apple") "banana')

#t

(make-immutable-string-set))

(make-custom-set-types eql?

— (any/c .
(any/c .
(any/c .

(any/c

(> []

L ->
[st

[hash1
hash2
#:elem? elem?
#:name name
#:for who])

. boolean?)

. boolean?)

. boolean?)

. boolean?)

ream?] generic-set?)

(->* [] [stream?] generic-set?)
(->* [] [stream?] generic-set?)
eql? : (or/c (any/c any/c . -> . any/c)

(any/c any/c (any/c any/c . -> . any/c) . ->

456

. any/c))

hash1l : (or/c (any/c . -> . exact-integer?)

(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)
hash2 : (or/c (any/c . -> . exact-integer?)
(any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
= (const 1)
elem? : (any/c . -> . boolean?) = (const #true)
name : symbol? = 'custom-set
who : symbol? = 'make-custom-set-types

Creates a new set type based on the given comparison function eql?, hash functions hash1
and hash2, and predicate elem?. The new set type has variants that are immutable, mutable
with strongly-held elements, and mutable with weakly-held elements. The given name is
used when printing instances of the new set type, and the symbol who is used for reporting
eITOrS.

The comparison function eql? may accept 2 or 3 arguments. If it accepts 2 arguments,
it given two elements to compare them. If it accepts 3 arguments and does not accept 2
arguments, it is also given a recursive comparison function that handles data cycles when
comparing sub-parts of the elements.

The hash functions hash1 and hash2 may accept 1 or 2 arguments. If either hash function
accepts 1 argument, it is applied to a element to compute the corresponding hash value. If
either hash function accepts 2 arguments and does not accept 1 argument, it is also given a
recursive hash function that handles data cycles when computing hash values of sub-parts of
the elements.

The predicate elem? must accept 1 argument and is used to recognize valid elements for the
new set type.

Produces seven values:

* a predicate recognizing all instances of the new set type,
* a predicate recognizing weak instances,

* a predicate recognizing mutable instances,

* a predicate recognizing immutable instances,

¢ a constructor for weak instances,

¢ a constructor for mutable instances, and

¢ a constructor for immutable instances.

See define-custom-set-types for an example.

457

4.17 Procedures

(procedure? v) — boolean?
v : any/c

Returns #t if v is a procedure, #f otherwise.

(apply proc v ... 1lst #:<kw> kw-arg ...) — any
proc : procedure?
v : any/c
lst : list?

kw-arg : any/c

Applies proc using the content of (1ist* v ... 1st) as the (by-position) arguments.
The #:<kw> kw-arg sequence is also supplied as keyword arguments to proc, where
#: <kw> stands for any keyword.

The given proc must accept as many arguments as the number of vs plus length of 1st,
it must accept the supplied keyword arguments, and it must not require any other keyword
arguments; otherwise, the exn:fail:contract exception is raised. The given proc is
called in tail position with respect to the apply call.

Examples:
> (apply + '(1 2 3))
6
> (apply + 1 2 '(3))
6
> (apply + ')
0
> (apply sort (list (list '(2) '(1)) <) #:key car)
") (@)
(compose proc ...) — procedure?
proc : procedure?
(composel proc ...) — procedure?

proc : procedure?

Returns a procedure that composes the given functions, applying the last proc first and the
first proc last. The compose function allows the given functions to consume and produce
any number of values, as long as each function produces as many values as the preceding
function consumes, while composel1 restricts the internal value passing to a single value. In
both cases, the input arity of the last function and the output arity of the first are unrestricted,
and they become the corresponding arity of the resulting composition (including keyword
arguments for the input side).

458

§4.3.3 “The apply
Function” in The
Racket Guide
introduces apply.

When no proc arguments are given, the result is values. When exactly one is given, it is
returned.

Examples:

> ((composel - sqrt) 10)

-3.1622776601683795

> ((composel sqrt -) 10)

0+3.16227766016837951

> ((compose list split-path) (bytes->path #"/a" 'unix))
' (#<path:/> #<path:a> #f)

Note that in many cases, composel is preferred. For example, using compose with two
library functions may lead to problems when one function is extended to return two values,
and the preceding one has an optional input with different semantics. In addition, compose1
may create faster compositions.

(procedure-rename proc name) — procedure?
proc : procedure?
name : symbol?

Returns a procedure that is like proc, except that its name as returned by object-name
(and as printed for debugging) is name.

The given name is used for printing an error message if the resulting procedure is applied to
the wrong number of arguments. In addition, if proc is an accessor or mutator produced by
struct, make-struct-field-accessor, or make-struct-field-mutator, the result-
ing procedure also uses name when its (first) argument has the wrong type. More typically,
however, name is not used for reporting errors, since the procedure name is typically hard-
wired into an internal check.

(procedure->method proc) — procedure?
proc : procedure?

Returns a procedure that is like proc except that, when applied to the wrong number of
arguments, the resulting error hides the first argument as if the procedure had been compiled
with the 'method-arity-error syntax property.

(procedure-closure-contents-eq? procl
proc2) — boolean?
procl : procedure?
proc2 . procedure?

Compares the contents of the closures of proc1 and proc2 for equality by comparing clo-
sure elements pointwise using eq?

459

4.17.1 Keywords and Arity

(keyword-apply proc

kw-1st

kw-val-1st

v .
1st

#:<kw> kw-arg ...) — any
proc : procedure?
kw-1st : (listof keyword?)
kw-val-1st : 1list?
v : any/c
1st : list?
kw-arg : any/c
§4.3.3 “The apply

Function” in The
Like apply, but kw-1st and kw-val-1st supply by-keyword arguments in addition to the Racker Guide

by-position arguments of the vs and 1st, and in addition to the directly supplied keyword introduces
arguments in the #: <kw> kw-arg sequence, where #: <kw> stands for any keyword. keyword-apply.

The given kw-1st must be sorted using keyword<?. No keyword can appear twice in
kw-1st or in both kw-1ist and as a #:<kw>, otherwise, the exn:fail:contract ex-
ception is raised. The given kw-val-1st must have the same length as kw-1st, other-
wise, the exn:fail:contract exception is raised. The given proc must accept all of
the keywords in kw-1st plus the #:<kw>s, it must not require any other keywords, and it
must accept as many by-position arguments as supplied via the vs and 1st; otherwise, the
exn:fail:contract exception is raised.

Examples:

(define (f x #:y y #:z [z 10])
(list x y 2))

> (keyword-apply f '(#:y) '(2) '(1))

'(1 2 10)
> (keyword-apply f '(#:y #:z) '(2 3) '(1))
'(1 2 3)
> (keyword-apply f #:z 7 '(#:y) '(2) '(1))
127

(procedure-arity proc) — normalized-arity?
proc . procedure?

Returns information about the number of by-position arguments accepted by proc. See also
procedure-arity?, normalized-arity?, and procedure-arity-mask.

460

(procedure-arity? v) — boolean?
v : any/c

A valid arity a is one of the following:

* An exact non-negative integer, which means that the procedure accepts a arguments,
only.

* A arity-at-least instance, which means that the procedure accepts (arity-at-
least-value a) or more arguments.

* A list containing integers and arity-at-least instances, which means that the pro-
cedure accepts any number of arguments that can match one of the elements of a.

The result of procedure-arity is always normalized in the sense of normalized-arity?.
Examples:

> (procedure-arity cons)
2
> (procedure-arity list)
(arity-at-least 0)
> (arity-at-least? (procedure-arity list))
#t
(arity-at-least-value (procedure-arity list))

(procedure-arity (case-lambda [(x) 0] [(x y) 11))

>

0

> (arity-at-least-value (procedure-arity (lambda (x . y) x)))
1

>

(1 2)

(procedure-arity-mask proc) — exact-integer?
proc : procedure?

Returns the same information as procedure-arity, but encoded differently. The arity is
encoded as an exact integer mask where (bitwise-bit-set? mask n) returns true if
proc accepts n arguments.

The mask encoding of an arity is often easier to test and manipulate, and procedure-
arity-mask is sometimes faster than procedure-arity while always being at least as
fast.

Added in version 7.0.0.11 of package base.

461

(procedure-arity-includes? proc k [kws-o0k?7]) — boolean?
proc : procedure?
k : exact-nonnegative-integer?
kws-ok? : any/c = #f

Returns #t if the procedure can accept k by-position arguments, #f otherwise. If kws-ok?
is #£, the result is #t only if proc has no required keyword arguments.

Examples:

> (procedure-arity-includes? cons 2)

#t

> (procedure-arity-includes? display 3)

#f

> (procedure-arity-includes? (lambda (x #:y y) x) 1)
#E

> (procedure-arity-includes? (lambda (x #:y y) x) 1 #t)
#t

(procedure-reduce-arity proc arity [name]) — procedure?
proc : procedure?
arity : procedure-arity?
name : (or/c symbol? #f) = #f

Returns a procedure that is the same as proc (including the same name returned by
object-name), but that accepts only arguments consistent with arity. In particular, when
procedure-arity is applied to the generated procedure, it returns a value that is equal?
to the normalized form of arity.

If the arity specification allows arguments that are not in (procedure-arity proc),
the exn:fail:contract exception is raised. If proc accepts keyword argument, either the
keyword arguments must be all optional (and they are not accepted in by the arity-reduced
procedure) or arity must be the empty list (which makes a procedure that cannot be called);
otherwise, the exn:fail:contract exception is raised.

If name is not #£, then object-name of the result procedure produces name. Otherwise,
object-name of the result procedure produces the same result as for proc.

Examples:

(define my+ (procedure-reduce-arity + 2))
(my+ 1 2)

(my+ 1 2 3)

>
>
3
>
+: arity mismatch;

462

the expected number of arguments does not match the given
number
expected: 2
given: 3
arguments...:
1
2
3
> (define also-my+ (procedure-reduce-arity + 2 'also-my+))
> (also-my+ 1 2 3)
also-my+: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 3
arguments...:
1
2
3

Changed in version 7.0.0.11 of package base: Added the optional name argument.

(procedure-reduce-arity-mask proc mask [name]) — procedure?
proc : procedure?
mask : exact-integer?
name : (or/c symbol? #f) = #f

The same as procedure-reduce-arity, but using the representation of arity described
with procedure-arity-mask.

The mask encoding of an arity is often easier to test and manipulate, and procedure-
reduce-arity-mask is sometimes faster than procedure-reduce-arity while always
being at least as fast.

Added in version 7.0.0.11 of package base.

(procedure-keywords proc) — (listof keyword?)
(or/c (listof keyword?) #f)
proc : procedure?

Returns information about the keyword arguments required and accepted by a procedure.
The first result is a list of distinct keywords (sorted by keyword<?) that are required
when applying proc. The second result is a list of distinct accepted keywords (sorted by
keyword<?), or #f to mean that any keyword is accepted. When the second result is a list,
every element in the first list is also in the second list.

463

Examples:

> (procedure-keywords +)

"0

"0

> (procedure-keywords (lambda (#:tag t #:mode m) t))
'(#:mode #:tag)

' (#:mode #:tag)

> (procedure-keywords (lambda (#:tag t #:mode [m #f]) t))
'(#:tag)

'(#:mode #:tag)

(procedure-result-arity proc) — (or/c #f procedure-arity?)
proc : procedure?

Returns the arity of the result of the procedure proc or #f if the number of results are not
known, perhaps due to shortcomings in the implementation of procedure-result-arity
or because proc’s behavior is not sufficiently simple.

Examples:

> (procedure-result-arity car)
1
> (procedure-result-arity values)
(arity-at-least 0)
> (procedure-result-arity
A)
(apply
values
(let loop O
(cond
[(zero? (random 10)) '()]
[else (cons 1 (loop))])))))
#f

Added in version 6.4.0.3 of package base.

(make-keyword-procedure proc [plain-proc]) — procedure?
proc : (((listof keyword?) 1list?) () #:rest list? . ->x . any)
plain-proc : procedure?
= (lambda args (apply proc null null args))

Returns a procedure that accepts all keyword arguments (without requiring any keyword
arguments).

464

When the procedure returned by make-keyword-procedure is called with keyword ar-
guments, then proc is called; the first argument is a list of distinct keywords sorted by
keyword<?, the second argument is a parallel list containing a value for each keyword, and
the remaining arguments are the by-position arguments.

When the procedure returned by make-keyword-procedure is called without keyword ar-
guments, then plain-proc is called—possibly more efficiently than dispatching through
proc. Normally, plain-proc should have the same behavior as calling proc with empty
lists as the first two arguments, but that correspondence is in no way enforced.

The result of procedure-arity and object-name on the new procedure is the same as for
plain-proc. See also procedure-reduce-keyword-arity and procedure-rename.

Examples:

(define show
(make-keyword-procedure (lambda (kws kw-args . rest)
(list kws kw-args rest))))

> (show 1)

(O O @a»

> (show #:init 0 1 2 3 #:extra 4)
"((#:extra #:init) (4 0) (1 2 3))

(define show2
(make-keyword-procedure (lambda (kws kw-args . rest)
(1ist kws kw-args rest))
(lambda args
(list->vector args))))

> (show2 1)

"#(1)

> (show2 #:init 0 1 2 3 #:extra 4)
"((#:extra #:init) (4 0) (1 2 3))

(procedure-reduce-keyword-arity proc

arity

required-kws

allowed-kws) — procedure?
proc : procedure?
arity : procedure-arity?
required-kws : (listof keyword?)
allowed-kws : (or/c (listof keyword?)

#1)

Like procedure-reduce-arity, but constrains the keyword arguments according to
required-kws and allowed-kws, which must be sorted using keyword<? and contain

465

no duplicates. If allowed-kws is #f, then the resulting procedure still accepts any key-
word, otherwise the keywords in required-kws must be a subset of those in allowed-kws.
The original proc must require no more keywords than the ones listed in required-kws,
and it must allow at least the keywords in allowed-kws (or it must allow all keywords if
allowed-kws is #f).

Examples:

(define orig-show
(make-keyword-procedure (lambda (kws kw-args . rest)
(list kws kw-args rest))))
(define show (procedure-reduce-keyword-arity
orig-show 3 '(#:init) '(#:extra #:init)))

> (show #:init 0 1 2 3 #:extra 4)
"((#:extra #:init) (4 0) (1 2 3))
> (show 1)
unknown: arity mismatch;
the expected number of arguments does not match the given
number
expected: 3 plus an argument with keyword #:init plus an
optional argument with keyword #:extra
given: 1
arguments...:
1
> (show #:init 0 1 2 3 #:extra 4 #:more 7)
application: procedure does not expect an argument with
given keyword
procedure: unknown
given keyword: #:more
arguments...:
1
2
3
#:extra 4
#:init 0
#:more 7

(procedure-reduce-keyword-arity-mask proc

mask

required-kws

allowed-kws) — procedure?
proc : procedure?
mask : exact-integer?
required-kws : (listof keyword?)
allowed-kws : (or/c (listof keyword?)

#1)

466

The same as procedure-reduce-keyword-arity, but using the representation of arity
described with procedure-arity-mask.

Added in version 7.0.0.11 of package base.

(struct arity-at-least (value)
#:extra-constructor-name make-arity-at-least)
value : exact-nonnegative-integer?

A structure type used for the result of procedure-arity. See also procedure-arity?.

prop:procedure : struct-type-property?

A structure type property to identify structure types whose instances can be applied as proce-
dures. In particular, when procedure? is applied to the instance, the result will be #t, and
when an instance is used in the function position of an application expression, a procedure
is extracted from the instance and used to complete the procedure call.

If the prop: procedure property value is an exact non-negative integer, it designates a field
within the structure that should contain a procedure. The integer must be between 0 (inclu-
sive) and the number of non-automatic fields in the structure type (exclusive, not counting
supertype fields). The designated field must also be specified as immutable, so that after an
instance of the structure is created, its procedure cannot be changed. (Otherwise, the arity
and name of the instance could change, and such mutations are generally not allowed for pro-
cedures.) When the instance is used as the procedure in an application expression, the value
of the designated field in the instance is used to complete the procedure call. (This procedure
can be another structure that acts as a procedure; the immutability of procedure fields disal-
lows cycles in the procedure graph, so that the procedure call will eventually continue with a
non-structure procedure.) That procedure receives all of the arguments from the application
expression. The procedure’s name (see object-name), arity (see procedure-arity), and
keyword protocol (see procedure-keywords) are also used for the name, arity, and key-
word protocol of the structure. If the value in the designated field is not a procedure, then the
instance behaves like (case-lambda) (i.e., a procedure which does not accept any number
of arguments). See also procedure-extract-target.

Providing an integer proc-spec argument to make-struct-type is the same as both sup-
plying the value with the prop: procedure property and designating the field as immutable
(so that a property binding or immutable designation is redundant and disallowed).

Examples:

> (struct annotated-proc (base note)
#:property prop:procedure
(struct-field-index base))
> (define plusl (annotated-proc
(lambda (x) (+ x 1))
"adds 1 to its argument"))

467

> (procedure? plusl)

#t

> (annotated-proc? plusl)

#t

> (plusl 10)

11

> (annotated-proc-note plusl)
"adds 1 to its argument"

When the prop:procedure value is a procedure, it should accept at least one non-keyword
argument. When an instance of the structure is used in an application expression, the
property-value procedure is called with the instance as the first argument. The remaining
arguments to the property-value procedure are the arguments from the application expres-
sion (including keyword arguments). Thus, if the application expression provides five non-
keyword arguments, the property-value procedure is called with six non-keyword arguments.
The name of the instance (see object-name) and its keyword protocol (see procedure-
keywords) are unaffected by the property-value procedure, but the instance’s arity is deter-
mined by subtracting one from every possible non-keyword argument count of the property-
value procedure. If the property-value procedure cannot accept at least one argument, then
the instance behaves like (case-lambda).

Providing a procedure proc-spec argument to make-struct-type is the same as sup-
plying the value with the prop:procedure property (so that a specific property binding is
disallowed).

Examples:

> (struct fish (weight color)

#:mutable

#:property

prop:procedure

(lambda (f n)

(let ([w (fish-weight £)])
(set-fish-weight! £ (+ n w)))))

> (define wanda (fish 12 'red))
> (fish? wanda)

#t
> (procedure? wanda)
#t
> (fish-weight wanda)
12

> (for-each wanda '(1 2 3))
> (fish-weight wanda)
18

If the value supplied for the prop:procedure property is not an exact non-negative integer

468

or a procedure, the exn:fail:contract exception is raised.

(procedure-struct-type? type) — boolean?
type : struct-type?

Returns #t if instances of the structure type represented by type are procedures (according
to procedure?), #f otherwise.

(procedure-extract-target proc) — (or/c #f procedure?)
proc : procedure?

If proc is an instance of a structure type with property prop: procedure, and if the property
value indicates a field of the structure, and if the field value is a procedure, then procedure-
extract-target returns the field value. Otherwise, the result is #f.

When a prop:procedure property value is a procedure, the procedure is not returned by
procedure-extract-target. Such a procedure is different from one accessed through a
structure field, because it consumes an extra argument, which is always the structure that
was applied as a procedure. Keeping the procedure private ensures that is it always called
with a suitable first argument.

prop:arity-string : struct-type-property?

A structure type property that is used for reporting arity-mismatch errors when a structure
type with the prop:procedure property is applied to the wrong number of arguments.
The value of the prop:arity-string property must be a procedure that takes a single
argument, which is the misapplied structure, and returns a string. The result string is used
after the word “expects,” and it is followed in the error message by the number of actual
arguments.

Arity-mismatch reporting automatically uses procedure-extract-target when the
prop:arity-string property is not associated with a procedure structure type.

Examples:

> (struct evens (proc)
#:property prop:procedure (struct-field-index proc)
#:property prop:arity-string
(lambda (p)
"an even number of arguments"))
> (define pairs
(evens
(case-lambda
[O null]
[(a b . more)
(cons (cons a b)
(apply pairs more))])))

469

> (pairs 1 2 3 4)
(1.2 3. 4))
> (pairs 5)
#<procedure>: arity mismatch;
the expected number of arguments does not match the given
number
expected: an even number of arguments
given: 1
arguments...:

5

prop:checked-procedure : struct-type-property?

A structure type property that is used with checked-procedure-check-and-extract,
which is a hook to allow the compiler to improve the performance of keyword arguments.
The property can only be attached to a structure type without a supertype and with at least
two fields.

(checked-procedure-check-and-extract type
v
proc
vl
v2) — any/c
type : struct-type?
v : any/c
proc : (any/c any/c any/c . -> . any/c)
vl : any/c
v2 : any/c

Extracts a value from v if it is an instance of type, which must have the property
prop:checked-procedure. If v is such an instance, then the first field of v is extracted
and applied to v1 and v2; if the result is a true value, the result is the value of the second
field of v.

If v is not an instance of type, or if the first field of v applied to v1 and v2 produces #f,
then proc is applied to v, v1, and v2, and its result is returned by checked-procedure-
check-and-extract.

(procedure-specialize proc) — procedure?
proc : procedure?

Returns proc or its equivalent, but provides a hint to the run-time system that it should
spend extra time and memory to specialize the implementation of proc.

The hint is currently used when proc is the value of a lambda or case-lambda form that
references variables bound outside of the 1ambda or case-lambda, and when proc has not
been previously applied.

470

Added in version 6.3.0.10 of package base.

4.17.2 Reflecting on Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language.
Not all procedures of racket/base are primitives, but many are. The distinction is mainly
useful to other low-level code.

(primitive? v) — boolean?
v : any/c

Returns #t if v is a primitive procedure, #f otherwise.

(primitive-closure? v) — boolean
v : any/c

Returns #t if v is internally implemented as a primitive closure rather than a simple primitive
procedure, #£f otherwise.

(primitive-result-arity prim) — procedure-arity?
prim : primitive?

Returns the arity of the result of the primitive procedure prim (as opposed to the procedure’s
input arity as returned by procedure-arity). For most primitives, this procedure returns
1, since most primitives return a single value when applied.

4.17.3 Additional Higher-Order Functions

(require racket/function) package: base

The bindings documented in this section are provided by the racket/function and
racket libraries, but not racket/base.

(identity v) — any/c
v : any/c

Returns v.

(const v) — procedure?
v ! any

Returns a procedure that accepts any arguments (including keyword arguments) and returns
V.

Examples:

471

https://pkgs.racket-lang.org/package/base

> ((const 'foo) 1 2 3)
'foo

> ((const 'foo0))

'foo

(thunk body ...+)
(thunk* body ...+)

The thunk form creates a nullary function that evaluates the given body. The thunk* form
is similar, except that the resulting function accepts any arguments (including keyword ar-
guments).

Examples:

(define thl (thunk (define x 1) (printf "~a\n" x)))

> (thl)
1
> (thl 'x)
thi: arity mismatch;
the expected number of arguments does not match the given

number

expected: O

given: 1

arguments...:

x

> (thl #:y 'z)
application: procedure does not accept keyword arguments

procedure: thl

arguments...:

#:y 'z
(define th2 (thunk* (define x 1) (printf "~a\n" x)))

> (th2)

1

> (th2 'x)

1

> (th2 #:y 'z)
1

(negate proc) — procedure?
proc : procedure?

Returns a procedure that is just like proc, except that it returns the not of proc’s result.

472

Examples:

> (filter (negate symbol?) '(1 a 2 b 3 c))

'(123)
> (map (negate =) '(1 2 3) '(1 1 1))
'(#f #t #t)
((conjoin f ...) x ...) — boolean?
f : (-> A ... boolean?)
x A
Combines calls to each function with and. Equivalent to (and (f x ...)
Examples:

(define f (conjoin exact? integer?))

> (£ 1)
#t

> (f 1.0)
#£

> (£ 1/2)
#£f

> (f 0.5)
#f

((disjoin f ...) x ...) — boolean?
f: (-> A ... boolean?)
x A

Combines calls to each function with or. Equivalent to (or (f x ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)
#t

> (f 1.0)
#t

> (f 1/2)
#t

> (f 0.5)
#£

473

(curry proc) — procedure?
proc : procedure?

(curry proc v ...+) — any/c
proc : procedure?
v : any/c

Returns a procedure that is a curried version of proc. When the resulting procedure is first
applied, unless it is given the maximum number of arguments that it can accept, the result is
a procedure to accept additional arguments.

Examples:

> ((curry list) 1 2)
#<procedure:curried:list>
> ((curry coms) 1)
#<procedure:curried:cons>
> ((curry coms) 1 2)

(1. 2)

After the first application of the result of curry, each further application accumulates argu-
ments until an acceptable number of arguments have been accumulated, at which point the
original proc is called.

Examples:

> (((curry list) 1 2) 3)

'(1 2 3)

> (((curry 1list) 1) 3)

(1 3)

> ((((curry foldl) +) 0) '(1 2 3))
6

> (define foo (curry (lambda (x y z) (list x y z))))
> (foo 1 2 3)

'(12 3)

> (((((foo) 1) 2)) 3)

'(12 3)

A function call (curry proc v ...) isequivalentto ((curry proc) v ...).Inother
words, curry itself is curried.
Examples:

> (map ((curry +) 10) '(1 2 3))
"(11 12 13)
> (map (curry + 10) '(1 2 3))

474

"(11 12 13)

> (map (compose (curry * 2) (curry + 10)) '(1 2 3))
'(22 24 26)

The curry function also supports functions with keyword arguments: keyword arguments
will be accumulated in the same way as positional arguments until all required keyword
arguments have been supplied.

Examples:

(define (f #:a a #:b b #:c c)
(list a b c¢))

> ((((curry f) #:a 1) #:b 2) #:c 3)

(12 3)

> ((((curry £) #:b 1) #:c 2) #:a 3)
(312

> ((curry f #:a 1 #:c 2) #:b 3)
(1.3 2)

Changed in version 7.0.0.7 of package base: Added support for keyword arguments.

(curryr proc) — procedure?
proc : procedure?

(curryr proc v ...+) — any/c
proc : procedure?
v : any/c

Like curry, except that the arguments are collected in the opposite direction: the first step

collects the rightmost group of arguments, and following steps add arguments to the left of
these.

Example:

> (map (curryr list 'foo) '(1 2 3))
"'((1 foo) (2 foo) (3 foo0))

(normalized-arity? arity) — boolean?
arity : any/c

A normalized arity has one of the following forms:

* the empty list;

475

* an exact non-negative integer;
* an arity-at-least instance;
* alist of two or more strictly increasing, exact non-negative integers; or

* a list of one or more strictly increasing, exact non-negative integers followed by a
single arity-at-least instance whose value is greater than the preceding integer
by at least 2.

Every normalized arity is a valid procedure arity and satisfies procedure-arity?. Any
two normalized arity values that are arity=7 must also be equal?.

Examples:

> (normalized-arity? (arity-at-least 1))

#t

> (normalized-arity? (list (arity-at-least 1)))

#E

> (normalized-arity? (list O (arity-at-least 2)))
#t

> (normalized-arity? (list (arity-at-least 2) 0))
#E

> (normalized-arity? (list O 2 (arity-at-least 3)))
#E

(normalize-arity arity)
— (and/c normalized-arity? (lambda (x) (arity=? x arity)))
arity : procedure-arity?

Produces a normalized form of arity. See also normalized-arity? and arity=".
Examples:

> (normalize-arity 1)

1

> (normalize-arity (list 1))

1

>

(normalize-arity (arity-at-least 2))

(arity-at-least 2)

> (normalize-arity (list (arity-at-least 2)))
(arity-at-least 2)

> (normalize-arity (list 1 (arity-at-least 2)))
(arity-at-least 1)

> (normalize-arity (list (arity-at-least 2) 1))
(arity-at-least 1)

476

> (normalize-arity (list (arity-at-least 2) 3))
(arity-at-least 2)

> (normalize-arity (list 3 (arity-at-least 2)))
(arity-at-least 2)

> (normalize-arity (list (arity-at-least 6) 0 2 (arity-at-
least 4)))

(1ist 0 2 (arity-at-least 4))

(arity=7 a b) — boolean?
a . procedure-arity?
b : procedure-arity?

Returns #true if procedures with arity a and b accept the same numbers of arguments,
and #false otherwise. Equivalent to both (and (arity-includes? a b) (arity-
includes? b a)) and (equal? (normalize-arity a) (normalize-arity b)).

Examples:

> (arity=7 1 1)

#t

> (arity=7 (list 1) 1)

#t

> (arity=? 1 (list 1))

#t

> (arity=7 1 (arity-at-least 1))

#f

> (arity=7 (arity-at-least 1) 1)

#E

> (arity=7? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t

> (arity=7 (list 1 (arity-at-least 2)) (arity-at-least 1))
#t

> (arity=7? (arity-at-least 1) (list 1 (arity-at-least 3)))
#t

> (arity=7 (list 1 (arity-at-least 3)) (arity-at-least 1))
#f

> (arity=7 (list 0 1 2 (arity-at-least 3)) (list (arity-at-
least 0)))

#t

> (arity=7 (list (arity-at-least 0)) (list 0 1 2 (arity-at-
least 3)))

#t

> (arity=7 (list O 2 (arity-at-least 3)) (list (arity-at-
least 0)))

#t

477

> (arity=7 (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))
#f

(arity-includes? a b) — boolean?
a : procedure-arity?
b : procedure-arity?

Returns #true if procedures with arity a accept any number of arguments that procedures
with arity b accept.

Examples:

> (arity-includes? 1 1)

#t

> (arity-includes? (list 1) 1)

#t

> (arity-includes? 1 (list 1))

#t

> (arity-includes? 1 (arity-at-least 1))

#E

> (arity-includes? (arity-at-least 1) 1)

#t

> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t

> (arity-includes? (list 1 (arity-at-least 2)) (arity-at-least 1))
#t

> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 3)))
#t

> (arity-includes? (list 1 (arity-at-least 3)) (arity-at-least 1))
#E

> (arity-includes? (list 0 1 2 (arity-at-least 3)) (list (arity-
at-least 0)))

#t

> (arity-includes? (list (arity-at-least 0)) (list 0 1 2 (arity-
at-least 3)))

#t

> (arity-includes? (list 0 2 (arity-at-least 3)) (list (arity-at-
least 0)))

#f

> (arity-includes? (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))

#t

478

4.18 Void

The constant #<void> is returned by most forms and procedures that have a side-effect and
no useful result.

The #<void> value is always eq? to itself.
(void? v) — boolean?

v : any/c

Returns #t if v is the constant #<void>, #f otherwise.

(void v ...) — void?
v : any/c

Returns the constant #<void>. Each v argument is ignored.

4.19 Undefined

(require racket/undefined) package: base

The bindings documented in this section are provided by the racket/undefined library,
not racket/base or racket.

The constant undefined can be used as a placeholder value for a value to be installed later,
especially for cases where premature access of the value is either difficult or impossible to
detect or prevent.

The undefined value is always eq? to itself.
Added in version 6.0.0.6 of package base.

undefined : any/c

The “undefined” constant.

479

https://pkgs.racket-lang.org/package/base

5 Structures

A structure type is a record datatype composing a number of fields. A structure, an instance
of a structure type, is a first-class value that contains a value for each field of the structure
type. A structure instance is created with a type-specific constructor procedure, and its field
values are accessed and changed with type-specific accessor and mutator procedures. In
addition, each structure type has a predicate procedure that answers #t for instances of the
structure type and #£ for any other value.

A structure type’s fields are essentially unnamed, though names are supported for error-
reporting purposes. The constructor procedure takes one value for each field of the structure
type, except that some of the fields of a structure type can be automatic fields; the automatic
fields are initialized to a constant that is associated with the structure type, and the corre-
sponding arguments are omitted from the constructor procedure. All automatic fields in a
structure type follow the non-automatic fields.

A structure type can be created as a structure subtype of an existing base structure type. An
instance of a structure subtype can always be used as an instance of the base structure type,
but the subtype gets its own predicate procedure, and it may have its own fields in addition
to the fields of the base type.

A structure subtype “inherits” the fields of its base type. If the base type has m fields, and if
n fields are specified for the new structure subtype, then the resulting structure type has m+n
fields. The value for automatic fields can be different in a subtype than in its base type.

If m’ of the original m fields are non-automatic (where m’<m), and n’ of the new fields
are non-automatic (where n’<n), then m’+n’ field values must be provided to the subtype’s
constructor procedure. Values for the first m fields of a subtype instance are accessed with
selector procedures for the original base type (or its supertypes), and the last n are accessed
with subtype-specific selectors. Subtype-specific accessors and mutators for the first m fields
do not exist.

The struct form and make-struct-type procedure typically create a new structure type,
but they can also access prefab (i.e., previously fabricated) structure types that are glob-
ally shared, and whose instances can be parsed and written by the default reader (see [§1.3]
and printer (see[§1.4 “The Printer’]). Prefab structure types can inherit only
from other prefab structure types, and they cannot have guards (see[§5.2 “Creating Structure]
or properties (see [§5.3 “Structure Type Properties™). Exactly one prefab structure
type exists for each combination of name, supertype, field count, automatic field count, au-
tomatic field value (when there is at least one automatic field), and field mutability.

Two structure values are eqv? if and only if they are eq?. Two structure values are equal?
if they are eq?. By default, two structure values are also equal? if they are instances of
the same structure type, no fields are opaque, and the results of applying struct->vector
to the structs are equal?. (Consequently, equal? testing for structures may depend on the
current inspector.) A structure type can override the default equal? definition through the

480

§5 “Programmer-
Defined Datatypes”
in The Racket Guide
introduces structure
types via struct.

also
provides
information on
reading and writing
structures.

gen:equal+hash generic interface.

5.1 Defining Structure Types: struct

§5 “Programmer-

. . Defined Datatypes”
(struct id maybe-super (field ...) in The Racket Guide
struct-option ...) introduces struct.

maybe-super =
| super-id

field = field-id
| [field-id field-option ...]

struct-option :mutable
:super super-expr
:inspector inspector-expr
rauto-value auto-expr
:guard guard-expr
:property prop-expr val-expr
:transparent
:prefab
rauthentic
:name name-id
:extra-name name-id
:constructor-name constructor-id
:extra-constructor-name constructor-id
:reflection-name symbol-expr
:methods gen:name method-defs
:omit-define-syntaxes
:omit-define-values

HOH OH H H H HHHHEHFHHEHHEH R

E=3

field-option = #:mutable

| #:auto

method-defs = (definition ...)

gen:name : identifier?

Creates a new structure type (or uses a pre-existing structure type if #:prefab is specified),
and binds transformers and variables related to the structure type.

A struct form with n fields defines up to 4+2n names:

e struct:id, a structure type descriptor value that represents the structure type.

481

e constructor-id (which defaults to id), a constructor procedure that takes m ar-
guments and returns a new instance of the structure type, where m is the number of
fields that do not include an #: auto option.

e name-id (which defaults to id), a transformer binding that encapsulates information
about the structure type declaration. This binding is used to define subtypes, and it
also works with the shared and match forms. For detailed information about the
binding of name-id, see|§5.7 “Structure Type Transformer Binding}

The constructor-id and name-id can be the same, in which case name-id per-
forms both roles. In that case, the expansion of name-id as an expression pro-
duces an otherwise inaccessible identifier that is bound to the constructor proce-
dure; the expanded identifier has a 'constructor-for property whose value is an
identifier that is free-identifier=7 to name-id as well as a syntax property ac-
cessible via syntax-procedure-alias-property with an identifier that is free-
identifier=7 to name-id.

e 1d7, a predicate procedure that returns #t for instances of the structure type (con-
structed by constructor-id or the constructor for a subtype) and #f for any other
value.

e id-field-id, for each field; an accessor procedure that takes an instance of the
structure type and extracts the value for the corresponding field.

e set-id-field-id!, for each field thatincludes a #:mutable option, or when the
#:mutable option is specified as a struct-option; a mutator procedure that takes
an instance of the structure type and a new field value. The structure is destructively
updated with the new value, and #<void> is returned.

If super-id is provided, it must have a transformer binding of the same sort bound to
name-id (see[§5.7 “Structure Type Transformer Binding’)), and it specifies a supertype for
the structure type. Alternately, the #:super option can be used to specify an expression
that must produce a structure type descriptor. See for more information on
structure subtypes and supertypes. If both super-id and #: super are provided, a syntax
error is reported.

Examples:

> (struct document (author title content))
> (struct book document (publisher))
> (struct paper (journal) #:super struct:document)

If the #:mutable option is specified for an individual field, then the field can be mutated in
instances of the structure type, and a mutator procedure is bound. Supplying #:mutable as
a struct-option is the same as supplying it for all fields. If #:mutable is specified as
both a field-option and struct-option, a syntax error is reported.

Examples:

482

> (struct cell ([content #:mutable]) #:transparent)
> (define a-cell (cell 0))
> (set-cell-content! a-cell 1)

The #:inspector, #:auto-value, and #:guard options specify an inspector, value for
automatic fields, and guard procedure, respectively. See make-struct-type for more in-
formation on these attributes of a structure type. The #: property option, which is the only
one that can be supplied multiple times, attaches a property value to the structure type; see
[§5.3 "Structure Type Properties | for more information on properties. The #:transparent
option is a shorthand for #: inspector #f.

Examples:

> (struct point (x y) #:inspector #f)
> (point 3 5)
(point 3 5)
> (struct celsius (temp)
#:guard (A (temp name)
(unless (and (real? temp) (>= temp -273.15))
(error "not a valid temperature"))
temp))
> (celsius -275)
not a valid temperature

The #:prefab option obtains a prefab (pre-defined, globally shared) structure type, as op-
posed to creating a new structure type. Such a structure type is inherently transparent and
cannot have a guard or properties, so using #: prefab with #: transparent, #: inspector,
#:guard, #:property, #:authentic, or #:methods is a syntax error. If a supertype is
specified, it must also be a prefab structure type.

Examples:

> (struct prefab-point (x y) #:prefab)
> (prefab-point 1 2)

'"#s(prefab-point 1 2)

> (prefab-point? #s(prefab-point 1 2))
#t

The #:authentic option is a shorthand for #:property prop:authentic #t, which
prevents instances of the structure type from being impersonated (see impersonate-
struct), chaperoned (see chaperone-struct), or acquiring a non-flat contract (see
struct/c). See prop:authentic for more information. If a supertype is specified, it
must also have the prop:authentic property.

If name-1id is supplied via #:extra-name and it is not id, then both name-id and id are
bound to information about the structure type. Only one of #:extra-name and #:name can

483

Use the
prop:procedure
property to
implement an
applicable structure,
use prop:evt to
create a structure
type whose
instances are
synchronizable
events, and so on.
By convention,
property names
start with prop:.

be provided within a struct form, and #: extra-name cannot be combined with #:omit-
define-syntaxes.

Examples:

> (struct ghost (color name) #:prefab #:extra-name GHOST)
> (match (ghost 'red 'blinky)

[(GHOST ¢ n) cl)
'red

If constructor-id is supplied, then the transformer binding of name-id records
constructor-id as the constructor binding; as a result, for example, struct-out in-
cludes constructor-id as an export. If constructor-id is supplied via #:extra-
constructor-name and it is not id, applying object-name on the constructor produces
the symbolic form of id rather than constructor-id. If constructor-id is supplied
via #:constructor-name and it is not the same as name-id, then name-id does not
serve as a constructor, and object-name on the constructor produces the symbolic form
of constructor-id. Only one of #:extra-constructor-name and #:constructor-
name can be provided within a struct form.

Examples:

> (struct color (r g b) #:constructor-name -color)

> (struct rectangle (w h color) #:extra-constructor-name rect)
> (rectangle 13 50 (-color 192 157 235))

#<rectangle>

> (rect 50 37 (-color 35 183 252))

#<rectangle>

If #:reflection-name symbol-expr is provided, then symbol-expr must produce a
symbol that is used to identify the structure type in reflective operations such as struct-
type-info. It corresponds to the first argument of make-struct-type. Structure printing
uses the reflective name, as do the various procedures that are bound by struct.

Examples:

> (struct circle (radius) #:reflection-name '<circle>)
> (circle 15)
#<<circle>>
> (circle-radius "bad")
<circle>-radius: contract violation
expected: <circle>?
given: "bad"

If #:methods gen:name method-defs is provided, then gen:name must be a trans-
former binding for the static information about a generic interface produced by define-

484

generics. The method-defs define the methods of the gen:name interface. A de-
fine/generic form or auxiliary definitions and expressions may also appear in method-
defs.

Examples:

> (struct constant-stream (val)
#:methods gen:stream
[(define (stream-empty? stream) #f)
(define (stream-first stream)
(constant-stream-val stream))
(define (stream-rest stream) stream)])
> (stream-ref (constant-stream 'forever) 0)
'forever
> (stream-ref (constant-stream 'forever) 50)
'forever

If the #:omit-define-syntaxes option is supplied, then name-id (and id, if #:extra-
name is specified) is not bound as a transformer. If the #:omit-define-values option is
supplied, then none of the usual variables are bound, but id is bound. If both are supplied,
then the struct form is equivalent to (begin).

Examples:

> (struct square (side) #:omit-define-syntaxes)
> (match (square 5)
; fails to match because syntax is omitted
[(struct square x) x])
eval:28:0: match: square does not refer to a structure
definition
at: square
in: (struct square x)
> (struct ellipse (width height) #:omit-define-values)
> ellipse-width
ellipse-width: undefined;
cannot reference an identifier before its definition
in module: top-level

If #:auto is supplied as a field-option, then the constructor procedure for the structure
type does not accept an argument corresponding to the field. Instead, the structure type’s
automatic value is used for the field, as specified by the #: auto-value option, or as defaults
to #f when #:auto-value is not supplied. The field is mutable (e.g., through reflective
operations), but a mutator procedure is bound only if #:mutable is specified.

If a field includes the #:auto option, then all fields after it must also include #:auto,
otherwise a syntax error is reported. If any field-option or struct-option keyword is
repeated, other than #: property, a syntax error is reported.

485

Expressions
supplied to
#:auto-value are
evaluated once and
shared between
every instance of
the structure type.
In particular,
updates to a
mutable
#:auto-value
affect all current
and future
instances.

Examples:

(struct posn (x y [z #:auto #:mutable])
#:auto-value 0
#:transparent)

> (posn 1 2)

(posn 1 2 0)

> (posn? (posn 1 2))
#t

> (posn-y (posn 1 2))
2

> (posn-z (posn 1 2))
0

(struct color-posn posn (hue) #:mutable)
(define cp (color-posn 1 2 "blue"))

> (color-posn-hue cp)
llbluell

> cp

(color-posn 1 2 0 ...)
> (set-posn-z! cp 3)

For serialization, see define-serializable-struct.

Changed in version 6.9.0.4 of package base: Added #:authentic.

(struct-field-index field-id)

This form can only appear as an expression within a struct form; normally, it is used with
#:property, especially for a property like prop:procedure. The result of a struct-
field-index expression is an exact, non-negative integer that corresponds to the position
within the structure declaration of the field named by field-id.

Examples:

(struct mood-procedure (base rating)
#:property prop:procedure (struct-field-index base))
(define happy+ (mood-procedure addl 10))

> (happy+ 2)

3

> (mood-procedure-rating happy+)
10

486

(define-struct id-maybe-super (field ...)
struct-option ...)

id-maybe-super = id
| (id super-id)

Like struct, except that the syntax for supplying a super-id is different, and a
constructor-id that has a make- prefix on id is implicitly supplied via #:extra-
constructor-name if neither #:extra-constructor-name nor #:constructor-name
is provided.

This form is provided for backwards compatibility; struct is preferred.

Examples:

(define-struct posn (x y [z #:auto])
#:auto-value O
#:transparent)

> (make-posn 1 2)

(posn 1 2 0)

> (posn? (make-posn 1 2))
#t

> (posn-y (make-posn 1 2))
2

(define-struct/derived (id . rest-form)
id-maybe-super (field ...) struct-option ...)

The same as define-struct, but with an extra (id . rest-form) sub-form that is
treated as the overall form for syntax-error reporting and otherwise ignored. The only
constraint on the sub-form for error reporting is that it starts with id. The define-
struct/derived form is intended for use by macros that expand to def ine-struct.

Examples:

(define-syntax (define-xy-struct stx)
(syntax-case stx (O
[(ds name . rest)
(with-syntax ([orig stx])
#' (define-struct/derived orig name (x y) . rest))]))

> (define-xy-struct posn)

> (posn-x (make-posn 1 2))
1

487

> (define-xy-struct posn #:mutable)
> (set-posn-x! (make-posn 1 2) 0)
; this next line will cause an error due to a bad keyword
> (define-xy-struct posn #:bad-option)
eval:54:0: define-xy-struct: unrecognized
struct-specification keyword
at: #:bad-option
in: (define-xy-struct posn #:bad-option)

5.2 Creating Structure Types

(make-struct-type name
super-type
init-field-cnt
auto-field-cnt
[auto-v
props
inspector
proc-spec
immutables
guard
constructor-name])

— struct-type?
struct-constructor-procedure?
struct-predicate-procedure?
struct-accessor-procedure?
struct-mutator-procedure?

name : symbol?

super-type : (or/c struct-type? #f)

init-field-cnt : exact-nonnegative-integer?
auto-field-cnt : exact-nonnegative-integer?

auto-v : any/c = #f

props : (listof (cons/c struct-type-property? = null

any/c))
inspector : (or/c inspector? #f 'prefab) = (current-inspector)
proc-spec : (or/c procedure? = #f
exact-nonnegative-integer?

#£)
immutables : (listof exact-nonnegative-integer?) = null
guard : (or/c procedure? #f) = #f
constructor-name : (or/c symbol? #f) = #f

Creates a new structure type, unless inspector is 'prefab, in which case make-struct-
type accesses a prefab structure type. The name argument is used as the type name. If

488

super-type is not #f, the resulting type is a subtype of the corresponding structure type.

The resulting structure type has init-field-cnt+auto-field-cnt fields (in addition to
any fields from super-type), but only init-field-cnt constructor arguments (in addi-
tion to any constructor arguments from super-type). The remaining fields are initialized
with auto-v. The total field count (including super-type fields) must be no more than
32768.

The props argument is a list of pairs, where the car of each pair is a structure type property
descriptor, and the cdr is an arbitrary value. A property can be specified multiple times in
props (including properties that are automatically added by properties that are directly in-
cluded in props) only if the associated values are eq?, otherwise the exn:fail:contract
exception is raised. See[§5.3 “Structure Type Properties”| for more information about prop-
erties. When inspector is 'prefab, then props must be null.

The inspector argument normally controls access to reflective information about the struc-
ture type and its instances; see [§14.9 “Structure Inspectors”| for more information. If in-
spector is 'prefab, then the resulting prefab structure type and its instances are always
transparent. If inspector is #£, then the structure type’s instances are transparent.

If proc-spec is an integer or procedure, instances of the structure type act as procedures.
See prop:procedure for further information. Providing a non-#£ value for proc-spec is
the same as pairing the value with prop:procedure at the end of props, plus including
proc-spec in immutables when proc-spec is an integer.

The immutables argument provides a list of field positions. Each element in the list must
be unique, otherwise exn:fail:contract exception is raised. Each element must also fall
in the range O (inclusive) to init-field-cnt (exclusive), otherwise exn:fail:contract
exception is raised.

The guard argument is either a procedure of n+1 arguments or #f, where n is the number of
arguments for the new structure type’s constructor (i.e., init-field-cnt plus constructor
arguments implied by super-type, if any). If guard is a procedure, then the procedure is
called whenever an instance of the type is constructed, or whenever an instance of a subtype
is created. The arguments to guard are the values provided for the structure’s first n fields,
followed by the name of the instantiated structure type (which is name, unless a subtype is
instantiated). The guard result must be n values, which become the actual values for the
structure’s fields. The guard can raise an exception to prevent creation of a structure with
the given field values. If a structure subtype has its own guard, the subtype guard is applied
first, and the first n values produced by the subtype’s guard procedure become the first n
arguments to guard. When inspector is 'prefab, then guard must be #f.

If constructor-name is not #f£, it is used as the name of the generated constructor proce-
dure as returned by object-name or in the printed form of the constructor value.

The result of make-struct-type is five values:

489

* a structure type descriptor,
* a constructor procedure,
* a predicate procedure,

* an accessor procedure, which consumes a structure and a field index between O (in-
clusive) and init-field-cnt+auto-field-cnt (exclusive), and

* a mutator procedure, which consumes a structure, a field index, and a field value.

Examples:

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type 'a #f 2 1 'uninitialized))
(define an-a (make-a 'x 'y))

> (a-ref an-a 1)

'y

> (a-ref an-a 2)

'uninitialized

> (define a-first (make-struct-field-accessor a-ref 0))
> (a-first an-a)

'x

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type 'b struct:a 1 2 'b-uninitialized))
(define a-b (make-b 'x 'y 'z))

> (a-ref a-b 1)
'y

> (a-ref a-b 2)
'uninitialized

> (b-ref a-b 0)
'z

> (b-ref a-b 1)
'b-uninitialized
> (b-ref a-b 2)
'b-uninitialized

(define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type
'c struct:b 0 O #f null (make-inspector) #f null
; guard checks for a number, and makes it inexact
(lambda (al a2 bl name)
(unless (number? a2)
(error (string->symbol (format "make-~a" name))

490

"second field must be a number"))
(values al (exact->inexact a2) b1))))

> (make-c 'x 'y 'z)

make-c: second field must be a number
> (define a-c (make-c 'x 2 'z))
> (a-ref a-c 1)

2.0

(define pl #s(p a b c))
(define-values (struct:p make-p p? p-ref p-set!)
(make-struct-type 'p #f 3 0 #f null 'prefab #f '(0 1 2)))

> (p? pl)

#t

> (p-ref pl 0)

'a

> (make-p 'x 'y 'z)
'#s(p x y 2)

(make-struct-field-accessor accessor-proc
field-pos
[field-name]) — procedure?
accessor-proc . struct-accessor-procedure?
field-pos : exact-nonnegative-integer?
field-name : (or/c symbol? #f)
= (symbol->string (format "field~a" field-pos))

Returns a field accessor that is equivalent to (lambda (s) (accessor-proc s field-
pos)). The accessor-proc must be an accessor returned by make-struct-type. The
name of the resulting procedure for debugging purposes is derived from field-name and
the name of accessor-proc’s structure type if field-name is a symbol.

For examples, see make-struct-type.

(make-struct-field-mutator mutator-proc
field-pos
[field-name]) — procedure?
mutator-proc : struct-mutator-procedure?
field-pos : exact-nonnegative-integer?
field-name : (or/c symbol? #f)
= (symbol->string (format "field~a" field-pos))

Returns a field mutator that is equivalent to (lambda (s v) (mutator-proc s field-
pos v)). The mutator-proc must be a mutator returned by make-struct-type. The

491

name of the resulting procedure for debugging purposes is derived from field-name and
the name of mutator-proc’s structure type if field-name is a symbol.

For examples, see make-struct-type.

5.3 Structure Type Properties
[nterfaces™ provide
A structure type property allows per-type information to be associated with a structure type a high-level API on

(as opposed to per-instance information associated with a structure value). A property value top of structure type
is associated with a structure type through the make-struct-type procedure (see [§3.2] properties.
[*Creating Structure Types™)) or through the #: property option of struct. Subtypes inherit

the property values of their parent types, and subtypes can override an inherited property

value with a new value.

(make-struct-type-property name
[guard
supers
can-impersonate?])
— struct-type-property?

procedure?

procedure?
name : symbol?
guard : (or/c procedure? #f 'can-impersonate) = #f
supers : (listof (comns/c struct-type-property? = null

(any/c . -> . any/c)))
can-impersonate? : any/c = #f

Creates a new structure type property and returns three values:

* a structure type property descriptor, for use with make-struct-type and struct;

* a property predicate procedure, which takes an arbitrary value and returns #t if the
value is a descriptor or instance of a structure type that has a value for the property, #£f
otherwise;

* a property accessor procedure, which returns the value associated with the struc-
ture type given its descriptor or one of its instances; if the structure type does
not have a value for the property, or if any other kind of value is provided, the
exn:fail:contract exception is raised unless a second argument, failure-
result, is supplied to the procedure. In that case, if failure-result is a pro-
cedure, it is called (through a tail call) with no arguments to produce the result of
the property accessor procedure; otherwise, failure-result is itself returned as the
result.

492

If the optional guard is supplied as a procedure, it is called by make-struct-type before
attaching the property to a new structure type. The guard must accept two arguments: a
value for the property supplied to make-struct-type, and a list containing information
about the new structure type. The list contains the values that struct-type-info would
return for the new structure type if it skipped the immediate current-inspector control check
(but not the check for exposing an ancestor structure type, if any; see|§14.9 “Structure In-|

spectors).

The result of calling guard is associated with the property in the target structure type, instead
of the value supplied to make-struct-type. To reject a property association (e.g., because
the value supplied to make-struct-type is inappropriate for the property), the guard
can raise an exception. Such an exception prevents make-struct-type from returning a
structure type descriptor.

If guard is 'can-impersonate, then the property’s accessor can be redirected through
impersonate-struct. This option is identical to supplying #t as the can-impersonate?
argument and is provided for backwards compatibility.

The optional supers argument is a list of properties that are automatically associated with
some structure type when the newly created property is associated to the structure type. Each
property in supers is paired with a procedure that receives the value supplied for the new
property (after it is processed by guard) and returns a value for the associated property
(which is then sent to that property’s guard, of any).

The optional can-impersonate? argument determines if the structure type property can
be redirected through impersonate-struct. If the argument is #£, then redirection is not
allowed. Otherwise, the property accessor may be redirected by a struct impersonator.

Examples:

> (define-values (prop:p p? p-ref) (make-struct-type-property 'p))
> (define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type 'a #f 2 1 'uninitialized

(1ist (cons prop:p 8))))
> (p? struct:a)
#t
> (p? 13)
#f
> (define an-a (make-a 'x 'y))
> (p? an-a)
#t
> (p-ref an-a)
8
> (define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type 'b #f 0 0 #f))
> (p? struct:b)
#f

493

\

(define-values (prop:q q7? q-ref) (make-struct-type-property
'q (lambda (v si) (addl v))
(1ist (cons prop:p sqrt))))
(define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type 'c #f 0 O 'uninit
(list (cons prop:q 8))))

A\

(g-ref struct:c)

(p-ref struct:c)

W VvV © Vv

(struct-type-property? v) — boolean?
v : any/c

Returns #t if v is a structure type property descriptor value, #f otherwise.

(struct-type-property-accessor-procedure? v) — boolean?
v : any/c

Returns #t if v is an accessor procedure produced by make-struct-type-property, #f
otherwise.

5.4 Generic Interfaces

(require racket/generic) package: [base

A generic interface allows per-type methods to be associated with generic functions. Generic
functions are defined using a def ine-generics form. Method implementations for a struc-
ture type are defined using the #:methods keyword (see [§5.1 “Defining Structure 1ypes:|

FEzuct).

(define-generics id
generics-opt
[method-id . kw-formals*]
generics-opt ...)

494

https://pkgs.racket-lang.org/package/base

generics-opt = #:defaults ([default-pred? default-impl ...] ...)

| #:fast-defaults ([fast-pred? fast-impl ...l ...)

| #:fallbacks [fallback-impl ...]

| #:defined-predicate defined-pred-id

| #:defined-table defined-table-id

| #:derive-property prop-expr prop-value-expr
kw-formals* = (arg* ...)

| (arg* ...+ . rest-id)

| rest-id

arg* arg-id

keyword arg-id

| [arg-id]
|
| keyword [arg-id]

Defines the following names, plus any specified by keyword options.

* gen:id as a transformer binding for the static information about a new generic inter-
face;

e 1d7 as a predicate identifying instances of structure types that implement this generic
group; and

e each method-id as a generic method that calls the corresponding method on values
where id? is true. Each method-id’s kw-formals* must include a required by-
position argument that is free-identifier=7 to id. That argument is used in the
generic definition to locate the specialization.

e id/c as a contract combinator that recognizes instances of structure types which im-
plement the gen:id generic interface. The combinator takes pairs of method-ids
and contracts. The contracts will be applied to each of the corresponding method im-
plementations. The id/c combinator is intended to be used to contract the range of a
constructor procedure for a struct type that implements the generic interface.

The #:defaults option may be provided at most once. When it is provided, each generic
function uses default-pred?s to dispatch to the given default method implementations,
default-impls, if dispatching to the generic method table fails. The syntax of the
default-impls is the same as the methods provided for the #:methods keyword for
struct.

The #:fast-defaults option may be provided at most once. It works the same as
#:defaults, except the fast-pred?s are checked before dispatching to the generic method
table. This option is intended to provide a fast path for dispatching to built-in datatypes, such
as lists and vectors, that do not overlap with structures implementing gen: id.

495

The #:fallbacks option may be provided at most once. When it is provided, the
fallback-impls define fallback method implementations that are used for any instance
of the generic interface that does not supply a specific implementation. The syntax of the
fallback-impls is the same as the methods provided for the #:methods keyword for
struct.

The #:defined-predicate option may be provided at most once. When it is provided,
defined-pred-id is defined as a procedure that reports whether a specific instance of the
generic interface implements a given set of methods. Specifically, (defined-pred-id v
'name ...) produces #t if v has implementations for each method name, not counting
#:fallbacks implementations, and produces #f otherwise. This procedure is intended for
use by higher-level APIs to adapt their behavior depending on method availability.

The #:defined-table option may be provided at most once. When it is provided,
defined-table-id is defined as a procedure that takes an instance of the generic interface
and returns an immutable hash table that maps symbols corresponding to method names
to booleans representing whether or not that method is implemented by the instance. This
option is deprecated; use #:defined-predicate instead.

The #:derive-property option may be provided any number of times. Each time it is pro-
vided, it specifies a structure type property via prop-expr and a value for the property via
prop-value-expr. All structures implementing the generic interface via #:methods au-
tomatically implement this structure type property using the provided values. When prop-
value-expr is executed, each method-id is bound to its specific implementation for the
structure type.

If a value v satisfies id 7, then v is a generic instance of gen: id.

If a generic instance v has a corresponding implementation for some method-id pro-
vided via #:methods in struct or via #:defaults or #:fast-defaults in define-
generics, then method-id is an implemented generic method of v.

If method-id is not an implemented generic method of a generic instance v, and method-
id has a fallback implementation that does not raise an exn:fail: support exception when
given v, then method-id is a supported generic method of v.

(raise-support-error name v) — none/c
name : symbol?
v : any/c

Raises an exn:fail:support exception for a generic method called name that does not
support the generic instance v.
Example:

> (raise-support-error 'some-method-name '("arbitrary" "instance" "value"))
some-method-name: not implemented for '("arbitrary”

496

"o

"instance" "value")
(struct exn:fail:support exn:fail ()
#:transparent)

Raised for generic methods that do not support the given generic instance.

(define/generic local-id method-id)

local-id : identifier?

method-id : identifier?

When used inside the method definitions associated with the #:methods keyword, binds
local-id to the generic for method-id. This form is useful for method specializations to
use generic methods (as opposed to the local specialization) on other values.

Using the define/generic form outside a #:methods specification in struct (or
define-struct) is an syntax error.

Examples:

> (define-generics printable
(gen-print printable [port])
(gen-port-print port printable)
(gen-print* printable [port] #:width width #:height [height])
#:defaults ([string?
(define/