Math Library

Version 8.7

Neil Toronto <ntoronto@racket-lang . org> Jens Axel Sggaard <jensaxel @soegaard . net>

November 11, 2022

(require math) package: math-1ib

The math library provides functions and data structures useful for working with numbers
and collections of numbers. These include

¢ math/base: Constants and elementary functions

e math/flonum: Flonum functions, including high-accuracy support

* math/special-functions: Special (i.e. non-elementary) functions

* math/bigfloat: Arbitrary-precision floating-point functions

* math/number-theory: Number-theoretic functions

e math/array: Functional arrays for operating on large rectangular data sets
e math/matrix: Linear algebra functions for arrays

e math/distributions: Probability distributions

e math/statistics: Statistical functions

With this library, we hope to support a wide variety of applied mathematics in Racket, in-
cluding simulation, statistical inference, signal processing, and combinatorics. If you find it
lacking for your variety of mathematics, please

* Visit the Math Library Features wiki page to see what is planned.
* Contact us or post to one of the mailing lists|to make suggestions or submit patches.
This is a Typed Racket library. It is most efficient to use it in Typed Racket, so that

contracts are checked statically. However, almost all of it can be used in untyped Racket.
Exceptions and performance warnings are in bold text.

mailto:ntoronto@racket-lang.org
mailto:jensaxel@soegaard.net
https://pkgs.racket-lang.org/package/math-lib
https://github.com/plt/racket/wiki/Math-Library-Features
http://racket-lang.org/community.html

1 Constants and Elementary Functions

(require math/base) package: math-1ib

For convenience, math/base re-exports racket/math as well as providing the values doc-
ument below.

In general, the functions provided by math/base are elementary functions, or those func-
tions that can be defined in terms of a finite number of arithmetic operations, logarithms,
exponentials, trigonometric functions, and constants. For others, see math/special-
functions and math/distributions.

1.1 Constants

If you need more accurate approximations than the following flonums, see, for example,
phi.bf and bigfloat->rational.

phi.O : Positive-Flonum

An approximation of ¢, the|golden ratio.
> phi.O
1.618033988749895

euler.0 : Positive-Flonum

An approximation of e, or Euler’s number.

> euler.0
2.718281828459045
> (exp 1)
2.718281828459045

gamma.0 : Positive-Flonum

An approximation of y, the Euler-Mascheroni constant.

> gamma.O
0.5772156649015329

catalan.0 : Positive-Flonum

An approximation of G, or Catalan’s constant.

> catalan.O
0.915965594177219

https://pkgs.racket-lang.org/package/math-lib
http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
http://en.wikipedia.org/wiki/Catalan's_constant

1.2 Functions

(float-complex? v) — Boolean
v : Any

Returns #t when v is of type Float-Complex. Analogous to flonum?.

(number->float-complex x) — Float-Complex
x : Number

Returns a new complex number with a flonum real part and a flonum imaginary part. Anal-
ogous to real->double-flonum.

(power-of-two? x) — Boolean
x : Real

Returns #t when x is an integer power of 2.

Examples:

> (power-of-two? 1.0)

#t

> (power-of-two? 1/2)

#t

> (power-of-two? (flnext 2.0))
#E

(asinh z) — Number
z : Number

(acosh z) — Number
z : Number

(atanh z) — Number
z : Number

The inverses of sinh, cosh, and tanh, which are defined in racket/math (and re-exported
by math/base).
(sum xs) — Real

xs : (Listof Real)

Like (apply + xs), but incurs rounding error only once when adding inexact numbers.
(In fact, the inexact numbers in xs are summed separately using f1lsum.)

1.3 Random Number Generation

(random-natural k) — Natural
k : Integer

Returns a random natural number less than k, which must be positive. Use (random-
natural k) instead of (random k) when k could be larger than 4294967087.

(random-integer a b) — Integer
a : Integer
b : Integer

Returns a random integer n such that (<= a n) and (< n b).

(random-bits num) — Natural
num : Integer

Returns a random natural smaller than (expt 2 num); num must be non-negative. For
powers of two, this is faster than using random-natural, which is implemented in terms of
random-bits, using biased rejection sampling.

As an example of use, the significands of the numbers returned by bfrandom are chosen by
(random-bits (bf-precision)).

1.4 Measuring Error

(absolute-error x r) — Real
x : Real
r : Real

Usually computes (abs (- x r)) using exact rationals, but handles non-rational reals
such as +inf . O specially.

Examples:

> (absolute-error 1/2 1/2)

0

> (absolute-error 0.14285714285714285 1/7)
7.93016446160826e-18

> (absolute-error +inf.0 +inf.0)

0.0

> (absolute-error +inf.0 +nan.0)

+inf .0

> (absolute-error 1e-20 0.0)

1le-20

> (absolute-error (- 1.0 (f1 4999999/5000000)) 1/5000000)
5.751132903242251e-18

(relative-error x r) — Real
x : Real
r : Real

Measures how close an approximation x is to the correct value r, relative to the magnitude
of r.

This function usually computes (abs (/ (- x r) r)) using exact rationals, but handles
non-rational reals such as +inf . 0 specially, as well as r = 0.

Examples:

(relative-error 1/2 1/2)

(relative-error 0.14285714285714285 1/7)
.551115123125783e-17

(relative-error +inf.0 +inf.0)

.0

(relative-error +inf.0 +nan.0)

+inf.0

> (relative-error 1e-20 0.0)

+inf .0

> (relative-error (- 1.0 (£f1 4999999/5000000)) 1/5000000)
2.8755664516211255e-11

v © VvV o1 v O V

In the last two examples, relative error is high because the result is near zero. (Compare
the same examples with absolute-error.) Because flonums are particularly dense near
zero, this makes relative error better than absolute error for measuring the error in a flonum
approximation. An even better one is error in ulps; see flulp-error.

2 Flonums

(require math/flonum) package: math-11ib

For convenience, math/flonum re-exports racket/flonum as well as providing the func-
tions document below.

2.1 Additional Flonum Functions

(f1 x) — Flonum
x : Real

Equivalent to (real->double-flonum x), but much easier to read and write.

Examples:

> (£f1 1/2)
0.5

> (f1 0.5)
0.5

> (f1 #i0.5)
0.5

Note that exact->inexact does not always convert a Real to a Flonum:

> (exact->inexact #i0.5)

0.5
> (flabs (exact->inexact #i0.5))

0.5

You should prefer £1 over exact->inexact, especially in Typed Racket code.

(flsgn x) — Flonum
x : Flonum

(fleven? x) — Boolean
x : Flonum

(flodd? x) — Boolean
x : Flonum

Like sgn, even? and odd?, but restricted to flonum input.

Examples:

https://pkgs.racket-lang.org/package/math-lib

> (map flsgn '(-2.0 -0.0 0.0 2.0))
'(-1.0 0.0 0.0 1.0)

> (map fleven? '(2.0 1.0 0.5))
'(#t #f #f)

> (map flodd? '(2.0 1.0 0.5))

"(#f #t #f)

(flrational? x) — Boolean
x : Flonum

(flinfinite? x) — Boolean
x : Flonum

(flnan? x) — Boolean
x : Flonum

(flinteger? x) — Boolean
x : Flonum

Like rational?, infinite?, nan? and integer?, but restricted to flonum input. In Typed
Racket, these are 2-3 times faster as well.

(flhypot x y) — Flonum
x : Flonum
y . Flonum

Computes (flsqrt (+ (x x x) (*x y y))) in way that overflows only when the an-
swer is too large.

Examples:

> (flsqrt (+ (* 1e+200 1e+200) (x 1e+199 1e+199)))
+inf.0

> (flhypot 1e+200 1e+199)

1.0049875621120889e+200

(flsum xs) — Flonum
xs : (Listof Flonum)

Like (apply + xs), but incurs rounding error only once.

Examples:

> (+ 1.0 1le-16)

1.0

> (+ (+ 1.0 1e-16) 1le-16)
1.0

> (flsum '(1.0 le-16 1le-16))
1.0000000000000002

The sum function does the same for heterogenous lists of reals.

Worst-case time complexity is O(n?), though the pathological inputs needed to observe
quadratic time are exponentially improbable and are hard to generate purposely. Expected

time complexity is O(n log(n)).
See flvector-sums for a variant that computes all the partial sums in xs.

(flsinh x) — Flonum
x : Flonum

(flcosh x) — Flonum
x : Flonum

(fltanh x) — Flonum
x : Flonum

Return the hyperbolic sine, cosine and tangent of x, respectively.
Example:

> (plot (list
(function (compose flsinh f1l) #:1label "flsinh x")
(function (compose flcosh fl) #:label "flcosh

x" #:color 2)
(function (compose fltanh fl) #:label "fltanh

x" #:color 3))

#:x-min -2 #:x-max 2 #:y-label #f #:legend-anchor 'bottom-

right)

http://en.wikipedia.org/wiki/Hyperbolic_function

0L £
oL £
flsinh x
flcosh x
i fltanh x i
} } } } } }
-2 -1 1 2

|
I
0
X axis

Maximum observed error is 2 ulps, making these functions (currently) much more accu-
rate than their racket/math counterparts. They also return sensible values on the largest
possible domain.

(flasinh y) — Flonum
y : Flonum

(flacosh y) — Flonum
y @ Flonum

(flatanh y) — Flonum
y . Flonum

Return the [inverse hyperbolic sine, cosine and tangent|of y, respectively.

These functions are as robust and accurate as their corresponding inverses.

(flfactorial n) — Flonum
n : Flonum

http://en.wikipedia.org/wiki/Inverse_hyperbolic_function

(flbinomial n k) — Flonum
n : Flonum
k : Flonum

(flpermutations n k) — Flonum
n : Flonum
k : Flonum

(flmultinomial n ks) — Flonum
n : Flonum
ks : (Listof Flonum)

Like (f1 (factorial (fl->exact-integer n))) and so on, but computed in constant
time. Also, these return +nan. O instead of raising exceptions.

For factorial-like functions that return sensible values for non-integers, see gamma and beta.

(fllog-factorial n) — Flonum
n : Flonum
(fllog-binomial n k) — Flonum
n : Flonum
k : Flonum
(fllog-permutations n k) — Flonum
n : Flonum
k : Flonum
(fllog-multinomial n ks) — Flonum
n : Flonum
ks : (Listof Flonum)

Like (fllog (flfactorial n)) and so on, but more accurate and without unnecessary
overflow.

For log-factorial-like functions that return sensible values for non-integers, see log-gamma
and log-beta.

(flloglp x) — Flonum
x : Flonum

(flexpml x) — Flonum
x : Flonum

Like (fl1log (+ 1.0 x)) and (- (flexp x) 1.0),butaccurate when x is small (within
1 ulp).

For example, one difficult input for (fllog (+ 1.0 x)) and (- (flexp x) 1.0) is x
= le-14, which f11oglp and flexpml compute correctly:

> (fllog (+ 1.0 le-14))
9.992007221626358e-15

10

> (flloglp le-14)

9.99999999999995e-15

> (- (flexp le-14) 1.0)
9.992007221626409e-15

> (flexpml le-14)

1.0000000000000049e-14

These functions are mutual inverses:

> (plot (list

(function (1 (x) x) #:color O #:style 'long-dash)
(function (compose flloglp fl) #:label "flloglp x")
(function (compose flexpml f1l) #:label "flexpml

x" #:color 2))

#:x-min -4 #:x-max 4 #:y-min -4 #:y-max 4)

4 =

flloglp x

flexpml x

t T t T t 7

Notice that both graphs pass through the origin. Thus, inputs close to 0.0, around which
flonums are particularly dense, result in outputs that are also close to 0.0. Further, both

|
1
0
X axis

11

functions are approximately the identity function near 0. 0, so the output density is approxi-
mately the same.

Many flonum functions defined in terms of £11og and flexp become much more accurate
when their defining expressions are put in terms of f1loglp and flexpml. The functions
exported by this module and by math/special-functions use them extensively.

One notorious culprit is (flexpt (- 1.0 x) y), when x is near 0.0. Computing it di-
rectly too often results in the wrong answer:

> (flexpt (- 1.0 1e-20) 1e+20)
1.0

We should expect that multiplying a number just less than 1.0 by itself that many times
would result in something less than 1.0. The problem comes from subtracting such a small
number from 1.0 in the first place:

> (- 1.0 1e-20)
1.0

Fortunately, we can compute this correctly by putting the expression in terms of £11loglp,
which avoids the error-prone subtraction:

> (flexp (* 1e+20 (flloglp (- 1e-20))))
0.36787944117144233

But see flexpt1p, which is more accurate still.

(flexptlp x y) — Flonum
x : Flonum
y @ Flonum

Like (flexpt (+ 1.0 x) y), butaccurate for any x and y.

(flexpt+ x1 x2 y) — Flonum
x1 : Flonum
x2 : Flonum
y @ Flonum

Like (flexpt (+ x1 x2) y), but more accurate.
(flexp2 x) — Nonnegative-Flonum
x : Flonum

Equivalent to (flexpt 2.0 x), but faster when x is an integer.

12

(fllog2 x) — Flonum
x : Flonum

Computes the base-2 log of x more accurately than (/ (fllog x) (fllog 2.0)). In
particular, (f1log2 x) is correct for any power of two x.

Examples:

> (fllog2 4.5)

2.169925001442312

> (/ (fllog (flexp2 -1066.0)) (fllog 2.0))
-1066.0000000000002

> (fllog2 (flexp2 -1066.0))

-1066.0

Maximum observed error is 0.5006 ulps, but is almost always no more than 0.5 (i.e. it is
almost always correct).

(fllogb b x) — Flonum
b : Flonum
x : Flonum

Computes the base-b log of x more accurately than (/ (fllog x) (fllog b)), and
handles limit values correctly.
Example:

> (plot3d (contour-intervals3d (4 (b x) (fllogb (f1 b) (fl x))) 0 4 0 4)
#:x-label "b" #:y-label "x")

13

Maximum observed error is 2.1 ulps, but is usually less than 0.7 (i.e. near rounding error).

Except possibly at limit values (such as 0.0 and +inf .0, and b = 1.0) and except when

the inner expression underflows or overflows, f11logb approximately meets these identities
forb > 0.0:

e Leftinverse: (fllogb b (flexpt b y)) =y

* Right inverse: (flexpt b (fllogb b x)) = x whenx > 0.0

Unlike with flexpt, there is no standard for f11logb’s behavior at limit values. Fortunately,
deriving the following rules (applied in order) is not prohibitively difficult.

Case Condition Value
(f1logb b 1.0) 0.0

(fllogb 1.0 x) +nan.0
(fllogb b x) b < 0.0orx < 0.0 +nan.0

14

Double limits

(f1logb 0.0 0.0) +inf.0
(fllogb 0.0 +inf.0) -inf.0
(fllogb +inf.0 0.0) -inf.0
(fllogb +inf.0 +inf.0) +inf.0
Limits with respect to b

(f1logb 0.0 x) x < 1.0 0.0
(fllogb 0.0 x) x > 1.0 -0.0
(fllogb +inf.0 x) x > 1.0 0.0
(fllogb +inf.0 x) x < 1.0 -0.0
Limits with respect to x

(fllogb b 0.0) b <1.0 +inf.0
(fllogb b 0.0) b >1.0 -inf.0
(fllogb b +inf.0) b >1.0 +inf .0
(fllogb b +inf.0) b < 1.0 -inf.0

Most of these rules are derived by taking limits of the mathematical base-b log function.
Except for (f1logb 1.0 x), when doing so gives rise to ambiguities, they are resolved
using flexpt’s behavior, which follows the IEEE 754 and C99 standards for pow.

For example, consider (f1logb 0.0 0.0). Taking an interated limit, we get co if the outer
limit is with respect to x, or O if the outer limit is with respect to b. This would normally
mean (f1logb 0.0 0.0) = +nan.0.

However, choosing +inf . 0 ensures that these additional left-inverse and right-inverse iden-
tities hold:

(fllogb 0.0 (flexpt 0.0 +inf.0)) = +inf.0
(flexpt 0.0 (fllogb 0.0 0.0)) = 0.0

Further, choosing 0.0 does not ensure that any additional identities hold.

(flbracketed-root f a b) — Flonum
f : (Flonum -> Flonum)
a : Flonum
b : Flonum

Uses the Brent-Dekker method to find a floating-point root of £ (an x : Flonum for which
(f x) is very near a zero crossing) between a and b. The values (f a) and (f b) must
have opposite signs, but a and b may be in any order.

Examples:
> (define (f x) (+ 1.0 (x (+ x 3.0) (sqr (- x 1.0)))))

> (define x0 (flbracketed-root f -4.0 2.0))

15

http://en.wikipedia.org/wiki/Brent%27s_method

> (plot (list (x-axis)
(function f -4 2)
(function-label f x0))

#:y-min -10)

10L& ' } ' } ' } : } : } : 1
51 L

‘5 0 : } : } : | :

>~

51 4

-10 ; | ; | : | :
-4 -1 0 1 2

X axis

> (f (flprev x0))
-7.105427357601002e-15

> (f x0)

6.661338147750939e-16

> (flbracketed-root f -1.0 2.0)
+nan.0

Caveats:

* There is no guarantee that flbracketed-root will find any particular root. More-
over, future updates to its implementation could make it find different ones.

» There is currently no guarantee that it will find the closest x to an exact root.

e It currently runs for at most 5000 iterations.

16

It usually requires far fewer iterations, especially if the initial bounds a and b are tight.

(make-flexpt x) — (Flonum -> Flonum)
x : Real

Equivalent to (1 (y) (flexpt x y)) when x is a flonum, but much more accurate for
large y when x cannot be exactly represented by a flonum.

Suppose we want to compute 7Y, where y is a flonum. If we use flexpt with an approxi-
mation of the irrational base m, the error is low near zero, but grows with distance from the
origin:

(bf-precision 128)

(define y 150.0)

(define pi~y (bigfloat->rational (bfexpt pi.bf (bf y))))
(flulp-error (flexpt pi y) pi~y)

43.12619934359266

vV V V V

Using make-flexpt, the error is near rounding error everywhere:

> (define flexppi (make-flexpt (bigfloat->rational pi.bf)))
> (flulp-error (flexppi y) pi~y)
0.8738006564073412

This example is used in the implementations of zeta and psi.

(flsqrtipml x) — Flonum
x : Flonum

Like (- (flsqrt (+ 1.0 x)) 1.0), butaccurate when x is small.

(flloglpmx x) — Flonum
x : Flonum

Like (- (flloglp x) x),butaccurate when x is small.

(flexpsqr x) — Flonum
x : Flonum

Like (flexp (* x x)),but accurate when x is large.
(flgauss x) — Flonum
x : Flonum

Like (flexp (- (* x x))), butaccurate when x is large.

17

(flexplp x) — Flonum
x : Flonum

Like (flexp (+ 1.0 x)), but accurate when x is near a power of 2.

(flsinpix x) — Flonum
x : Flonum

(flcospix x) — Flonum
x @ Flonum

(fltanpix x) — Flonum
x : Flonum

Like (flsin (* pi x)), (flcos (* pi x)) and (fltan (* pi x)), respectively,
but accurate near roots and singularities. When x = (+ n 0.5) for some integer n,
(fltanpix x) = +nan.O.

(flcscpix x) — Flonum
x : Flonum

(flsecpix x) — Flonum
x : Flonum

(flcotpix x) — Flonum
x @ Flonum

Like (/ 1.0 (flsinpix x)), (/ 1.0 (flcospix x)) and (/ 1.0 (fltanpix x)),
respectively, but the first two return +nan. O at singularities and flcotpix avoids a double
reciprocal.

2.2 Log-Space Arithmetic

It is often useful, especially when working with probabilities and probability densities, to
represent nonnegative numbers in log space, or as the natural logs of their true values. Gen-
erally, the reason is that the smallest positive flonum is roo large.

For example, say we want the probability density of the standard normal distribution (the
bell curve) at 50 standard deviations from zero:

> (require math/distributions)

> (pdf (normal-dist) 50.0)
0.0

Mathematically, the density is nonzero everywhere, but the density at 50 is less than +min. 0.
However, its density in log space, or its log-density, is representable:

18

> (pdf (normal-dist) 50.0 #t)
-1250.9189385332047

While this example may seem contrived, it is very common, when computing the density of
a vector of data, for the product of the densities to be too small to represent directly.

In log space, exponentiation becomes multiplication, multiplication becomes addition, and
addition becomes tricky. See 1g+ and 1gsum for solutions.

(1g* logx logy) — Flonum
logx : Flonum
logy : Flonum

(1g/ logx logy) — Flonum
logx : Flonum
logy : Flonum

(1gprod logxs) — Flonum
logxs : (Listof Flonum)

Equivalent to (f1+ logx logy), (f1- logx logy) and (flsum logxs), respectively.

(1g+ logx logy) — Flonum
logx : Flonum
logy : Flonum

(1g- logx logy) — Flonum
logx : Flonum
logy : Flonum

Like (fllog (+ (flexp logx) (flexp logy))) and (fllog (- (flexp logx)
(flexp logy))), respectively, but more accurate and less prone to overflow and under-
flow.

When logy > logx, lg- returns +nan.0. Both functions correctly treat -inf .0 as log-
space 0.0.

To add more than two log-space numbers with the same guarantees, use 1gsum.

Examples:

> (1g+ (fllog 0.5) (fllog 0.2))
-0.35667494393873234

> (flexp (lg+ (fllog 0.5) (fllog 0.2)))
0.7000000000000001

> (1g- (fllog 0.5) (fllog 0.2))
-1.203972804325936

> (flexp (lg- (fllog 0.5) (fllog 0.2)))
0.30000000000000004

19

> (1g- (fllog 0.2) (fllog 0.5))
+nan.0

Though more accurate than a naive implementation, both functions are prone to catastrophic
cancellation in regions where they output a value close to 0.0 (or log-space 1.0). While
these outputs have high relative error, their absolute error is very low, and when exponenti-
ated, nearly have just rounding error. Further, catastrophic cancellation is unavoidable when
logx and logy themselves have error, which is by far the common case.

These are, of course, excuses—but for floating-point research generally. There are currently
no reasonably fast algorithms for computing 1g+ and 1g- with low relative error. For now,
if you need that kind of accuracy, use math/bigfloat.

(1gsum logxs) — Flonum
logxs : (Listof Flonum)

Like folding 1g+ over 1ogxs, but more accurate. Analogous to f1sum.

(1gl+ logx) — Flonum
logx : Flonum

(1gl- logx) — Flonum
logx : Flonum

Equivalent to (1g+ (fllog 1.0) logx) and (1g- (fllog 1.0) logx), respectively,
but faster.
(flprobability? x [log?]) — Boolean
x : Flonum
log? : Any = #f

When log? is #f, returns #t when (<= 0.0 x 1.0). When log? is #t, returns #t when
(<= -inf.0 x 0.0).

Examples:

> (flprobability? -0.1)

#f

> (flprobability? 0.5)

#t

> (flprobability? +nan.0 #t)
#E

2.3 Debugging Flonum Functions

The following functions and constants are useful in authoring and debugging flonum func-
tions that must be accurate on the largest possible domain.

20

Suppose we approximate f1lexp using its Taylor series centered at 1. 0, truncated after three
terms (a second-order polynomial):

(define (exp-taylor-1 x)
(let ([x (- x 1.0D)
(x (flexp 1.0) (+ 1.0 x (* 0.5 x x)))))

We can use plot and flstep (documented below) to compare its output to that of flexp
on very small intervals:

> (plot (list (function exp-taylor-1 #:label "exp-taylor-1 x")
(function exp #:color 2 #:label "exp x"))
#:x-min (flstep 1.00002 -40)
#:x-max (flstep 1.00002 40)
#:width 480)

1| exp-taylor-1

>4

exp X _

2.71833619463929

2.71833619463928

E
> 2.71833619463927

2.71833619463926

2.71833619463925

-t
1.000019999999995 1.00002 1.000020000000005

X axis

Such plots are especially useful when centered at a boundary between two different approx-
imation methods.

21

For larger intervals, assuming the approximated function is fairly smooth, we can get a better
idea how close the approximation is using flulp-error:

> (plot (function (4 (x) (flulp-error (exp-taylor-1 x) (exp x))))
#:x-min 0.99998 #:x-max 1.00002 #:y-label "Error (ulps)")
| | | | | | |
' T ' T ' T '

x

o
i

Error (ulps)

0 _— i 1
109998 199999 1 1.00001

X axis

We can infer from this plot that our Taylor series approximation has close to rounding error
(no more than an ulp) near 1.0, but quickly becomes worse farther away.

To get a ground-truth function such as exp to test against, compute the outputs as accurately
as possible using exact rationals or high-precision bigfloats.

2.3.1 Measuring Floating-Point Error

(flulp x) — Flonum
x : Flonum

Returns x’s ulp, or unit in last place: the magnitude of the least significant bit in x.

22

Examples:

> (flulp 1.0)
2.220446049250313e-16

> (flulp 1le-100)
1.2689709186578246e-116
> (flulp 1e+200)
1.6996415770136547e+184

(flulp-error x r) — Flonum
x : Flonum
r : Real

Returns the absolute number of ulps difference between x and r.

For non-rational arguments such as +nan.0, flulp-error returns 0.0 if (eqv? x r);
otherwise it returns +inf . 0.

A flonum function with maximum error 0.5 ulps exhibits only rounding error; it is cor-
rect. A flonum function with maximum error no greater than a few ulps is accurate. Most
moderately complicated flonum functions, when implemented directly, seem to have over a
hundred thousand ulps maximum error.

Examples:

(flulp-error 0.5 1/2)
.0

(flulp-error 0.14285714285714285 1/7)
.2857142857142857

(flulp-error +inf.0 +inf.0)

.0

(flulp-error +inf.0 +nan.0)
+inf.0

> (flulp-error 1e-20 0.0)

+inf.0

> (flulp-error (- 1.0 (£1 4999999/5000000)) 1/5000000)
217271.6580864

vV © vV OV OV

The last example subtracts two nearby flonums, the second of which had already been
rounded, resulting in horrendous error. This is an example of catastrophic cancellation.
Avoid subtracting nearby flonums whenever possible.*

See relative-error for a similar way to measure approximation error when the approxi-
mation is not necessarily represented by a flonum.

23

* You can make an
exception when the
result is to be
exponentiated. If x
has small
absolute-error,
then (exp x) has
small
relative-error
and small
flulp-error.

2.3.2 Flonum Constants

-max.0 : Flonum
-min.0 : Flonum
+min.0 : Flonum
+max.0 : Flonum

The nonzero, rational flonums with maximum and minimum magnitude.

Example:

> (list -max.0 -min.0 +min.0 +max.0)
'(-1.7976931348623157e+308 -5e-324 5e-324 1.7976931348623157e+308)

epsilon.O : Flonum

The smallest flonum that can be added to 1.0 to yield a larger number, or the magnitude of
the least significant bit in 1. 0.

Examples:

> epsilon.0
2.220446049250313e-16
> (flulp 1.0)
2.220446049250313e-16

Epsilon is often used in stopping conditions for iterative or additive approximation methods.
For example, the following function uses it to stop Newton’s method to compute square
roots. (Please do not assume this example is robust.)

(define (newton-sqrt x)
(let loop ([y (x 0.5 x)1)
(define dy (/ (- x (sqr y)) (x 2.0 y)))
(if ((abs dy) . <= . (abs (* 0.5 epsilon.0 y)))
(+ y dy)
(loop (+ y dy)))))

When (<= (abs dy) (abs (* 0.5 epsilon.O y))), adding dy to y rarely results in a
different flonum. The value 0.5 can be changed to allow looser approximations. This is a
good idea when the approximation does not have to be as close as possible (e.g. it is only a
starting point for another approximation method), or when the computation of dy is known
to be inaccurate.

Approximation error is often understood in terms of relative error in epsilons. Number of
epsilons relative error roughly corresponds with error in ulps, except when the approximation
is subnormal.

24

2.3.3 Low-Level Flonum Operations

(flonum->bit-field x) — Natural
x : Flonum

Returns the bits comprising x as an integer. A convenient shortcut for composing integer-
bytes->integer with real->floating-point-bytes.
Examples:

> (number->string (flonum->bit-field -inf.0) 16)

"£££0000000000000"

> (number->string (flonum->bit-field +inf.0) 16)
"7££0000000000000"

> (number->string (flonum->bit-field -0.0) 16)
"8000000000000000"

> (number->string (flonum->bit-field 0.0) 16)

n O n

> (number->string (flonum->bit-field -1.0) 16)
"b££0000000000000"

> (number->string (flonum->bit-field 1.0) 16)
"3££0000000000000"

> (number->string (flonum->bit-field +nan.0) 16)
"7££8000000000000"

(bit-field->flonum i) — Flonum
i : Integer

The inverse of flonum->bit-field.

(flonum->ordinal x) — Integer
x : Flonum

Returns the signed ordinal index of x in a total order over flonums.

When inputs are not +nan.O0, this function is monotone and symmetric; i.e. if (fl<=
x y) then (<= (flonum->ordinal x) (flonum->ordinal y)), and (= (flonum-
>ordinal (- x)) (- (flonum->ordinal x))).

Examples:

> (flonum->ordinal -inf.0)
-9218868437227405312

> (flonum->ordinal +inf.0)
9218868437227405312

25

> (flonum->ordinal -0.0)
0
> (flonum->ordinal 0.0)
0
>

(flonum->ordinal -1.0)
-4607182418800017408
> (flonum->ordinal 1.0)
4607182418800017408
> (flonum->ordinal +nan.0)
9221120237041090560

These properties mean that £1onum->ordinal does not distinguish -0.0 and 0. 0.

(ordinal->flonum i) — Flonum
i : Integer

The inverse of flonum->ordinal.

(flonums-between x y) — Integer
x : Flonum
y . Flonum

Returns the number of flonums between x and y, excluding one endpoint. Equivalent to (-
(flonum->ordinal y) (flonum->ordinal x)).

Examples:

> (flonums-between 0.0 1.0)
4607182418800017408

> (flonums-between 1.0 2.0)
4503599627370496

> (flonums-between 2.0 3.0)
2251799813685248

> (flonums-between 1.0 +inf.0)
4611686018427387904

(flstep x n) — Flonum
x @ Flonum
n : Integer

Returns the flonum n flonums away from x, according to flonum->ordinal. If x is
+nan. O, returns +nan. 0.

Examples:

26

> (flstep 0.0 1)

5e-324

> (flstep (flstep 0.0 1) -1)
0.0

> (flstep 0.0 -1)

-5e-324

> (flstep +inf.0 1)

+inf.0

> (flstep +inf.0 -1)
1.7976931348623157e+308
> (flstep -inf.0 -1)
-inf.0

> (flstep -inf.0 1)
-1.7976931348623157e+308
> (flstep +nan.0 1000)
+nan.0

(flnext x) — Flonum
x : Flonum
(flprev x) — Flonum
x : Flonum
Equivalent to (f1step x 1) and (flstep x -1), respectively.
(flsubnormal? x) — Boolean
x : Flonum

Returns #t when x is asubnormal number.

Though flonum operations on subnormal numbers are still often implemented by software
exception handling, the situation is improving. Robust flonum functions should handle sub-
normal inputs correctly, and reduce error in outputs as close to zero ulps as possible.

-max-subnormal.O : Flonum
+max-subnormal.O : Flonum

The maximum positive and negative subnormal flonums. A flonum x is subnormal when it
is not zero and (<= (abs x) +max-subnormal.O).

Example:

> +max-subnormal.O
2.225073858507201e-308

27

http://en.wikipedia.org/wiki/Denormal_number

2.4 Double-Double Operations

For extra precision, floating-point computations may use two nonoverlapping flonums to
represent a single number. Such pairs are often called double-double numbers. The exact
sum of the pair is the number it represents. (Because they are nonoverlapping, the floating-
point sum is equal to the largest.)

For speed, especially with arithmetic operations, there is no data type for double-double
numbers. They are always unboxed: given as two arguments, and received as two values. In
both cases, the number with higher magnitude is first.

Inputs are never checked to ensure they are sorted and nonoverlapping, but outputs are guar-
anteed to be sorted and nonoverlapping if inputs are.

(f12 x) — (Values Flonum Flonum)
x : Real

(f12 x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

Converts a real number or the sum of two flonums into a double-double.

Examples:

(f1 1/7)

.14285714285714285

(relative-error (f1 1/7) 1/7)

.551115123125783e-17

(define-values (x2 x1) (f12 1/7))

(1ist x2 x1)

(0.14285714285714285 7.93016446160826e-18)

> (fl1 (relative-error (+ (inexact->exact x2)
(inexact->exact x1))

1/7))
3.0814879110195774e-33

-V Vv Oorv OV

Notice that the exact sum of x2 and x1 in the preceeding example has very low relative error.

If x is not rational, £12 returns (values x 0.0).

(fl2->real x2 x1) — Real
x2 : Flonum
x1 : Flonum

Returns the exact sum of x2 and x1 if x2 is rational, x2 otherwise.

Examples:

28

> (define-values (x2 x1) (£f12 1/7))
> (fl2->real x2 x1)
46359793379775246683308002939465/324518553658426726783156020576256

(f12? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

When x2 is rational, returns #t when (flabs x2) > (flabs x1) and x2 and x1 are
nonoverlapping. When x2 is not rational, returns (f1= x1 0.0).

Examples:

> (define-values (x2 x1) (£f12 1/7))

> (£f127 x2 x1)

#t

> (£f127 0.14285714285714285 0.07692307692307693)
#£f

> (f127 +inf.0 0.0001)

#f

This function is quite slow, so it is used only for testing.

(fl+/error x y) — (Values Flonum Flonum)
x : Flonum
y @ Flonum

(fl-/error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(flx/error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(f1//error x y) — (Values Flonum Flonum)
x : Flonum
y : Flonum

(flsqr/error x) — (Values Flonum Flonum)
x : Flonum

(flsqrt/error x) — (Values Flonum Flonum)
x : Flonum

(flexp/error x) — (Values Flonum Flonum)
x : Flonum

(flexpml/error x) — (Values Flonum Flonum)
x : Flonum

Compute the same values as (f1+ x y), (f1- x y), (f1*x x y), (f1/ x y), (f1%
x x), (flsqrt x), (flexp x) and (flexpml x), but return the normally rounded-off
low-order bits as the second value. The result is an unboxed double-double.

29

Use these functions to generate double-double numbers directly from the results of floating-
point operations.

Examples:

V © V V V V

For

(define x1 (f1 1/7))

(define x2 (£f1 1/13))

(define z* (bigfloat->real (bfexp (bf* (bf x1) (bf x2)))))
(relative-error (flexp (fl* x1 x2)) z%)

.755408946378402e-17

(let*-values ([(y2 y1) (fl*/error x1 x2)]
[(z2 z1) (fl2exp y2 y1)1)
(f1 (relative-error (f12->real z2 zl) z*)))

.890426935548821e-33

flexp/error and flexpml/error, the largest observed error is 3 ulps. (See £12ulp.)

For the rest, the largest observed error is 0.5 ulps.

(fl2zero? x2 x1) — Boolean

x2 . Flonum
x1 : Flonum

(fl2rational? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(f12positive? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(f12negative? x2 x1) — Boolean
x2 : Flonum
x1 : Flonum

(fl2infinite? x2 x1) — Boolean

x2 : Flonum
x1 : Flonum

(fl2nan? x2 x1) — Boolean

x2 : Flonum
x1 : Flonum

Like zero?, rational?, positive?, negative?, infinite? and nan?, but for double-
double flonums.

(f12+ x2 x1 y2 [y1]) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0

30

(f12- x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(f12*% x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(f12/ x2 x1 y2 [y1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum = 0.0
(fl2abs x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0
(f12sqr x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0
(f12sqrt x2 [x1]) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum = 0.0

Arithmetic and square root for double-double flonums.

For arithmetic, error is less than 8 ulps. (See £12ulp.) For £12sqr and £12sqrt, error is
less than 1 ulp, and £12abs is exact.

(f12= x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12> x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12< x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum

31

(f12>= x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum
(f12<= x2 x1 y2 y1) — (Values Flonum Flonum)
x2 : Flonum
x1 : Flonum
y2 : Flonum
y1 : Flonum

Comparison functions for double-double flonums.

(fl2exp x2 x1) — (Values Flonum Flonum)
x2 : Flonum

x1 : Flonum
(f121log x2 x1) — (Values Flonum Flonum)

x2 : Flonum

x1 : Flonum
(f12expml x2 x1) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum
(f12loglp x2 x1) — (Values Flonum Flonum)

x2 : Flonum
x1 : Flonum

Like flexp, f1log, flexpml and £11loglp, but for double-double flonums.

For £12exp and fl2expml, error is less than 3 ulps. (See f12ulp.) For £f12log and
f£121oglp, error is less than 2 ulps.

2.4.1 Debugging Double-Double Functions

(f12ulp x2 x1) — Flonum
x2 : Flonum
x1 : Flonum
(f12ulp-error x2 x1 r) — Flonum
x2 : Flonum
x1 : Flonum
r : Real

Like £1ulp and flulp-error, but for double-double flonums.

The unit in last place of a double-double is that of the higher-order of the pair, shifted 52 bits
right.

32

Examples:

> (£f12ulp 1.0 0.0)

4.930380657631324e-32

> (let-values ([(x2 x1) (£f12 1/7)1)
(fl2ulp-error x2 x1 1/7))

0.07142857142857142

+max.hi : Flonum
+max.lo : Flonum
-max.hi : Flonum
-max.lo : Flonum

The maximum-magnitude, unboxed double-double flonums.

+max-subnormal.hi : Flonum
-max-subnormal.hi : Flonum

The high-order flonum of the maximum-magnitude, subnormal double-double flonums.

> +max-subnormal.O
2.225073858507201e-308
> +max-subnormal.hi
1.0020841800044864e-292

Try to avoid computing with double-doubles in the subnormal range in intermediate compu-
tations.

24.2 Low-Level Double-Double Operations

The following syntactic forms are fast versions of functions like £1+/error. They are fast
because they make assumptions about the magnitudes of and relationships between their
arguments, and do not handle non-rational double-double flonums properly.

(fast-mono-fl+/error x y)
(fast-mono-fl-/error x y)

Return two values: (fl1+ x y) or (fl1- x y), and its rounding error. Both assume
(flabs x) > (flabs y). The values are unspecified when x or y is not rational.

(fast-fl+/error x y)
(fast-fl-/error x y)

33

Like fast-mono-fl+/error and fast-mono-fl-/error, but do not assume (flabs x)
> (flabs y).

(fast-fl*/error x y)
(fast-fl//error x y)
(fast-flsqr/error x)

Like f1*/error, £1//error and flsqr/error, but faster, and may return garbage when
an argument is subnormal or nearly infinite.

(flsplit x)
Returns nonoverlapping (values y2 y1), each with 26 bits precision, with

(flabs y2) > (flabs y1), such that (f1+ y2 y1) = x. For (flabs x) >
1.3393857490036326e+300, returns (values +nan.0 +nan.0).

Used to implement double-double multiplication.

2.5 Additional Flonum Vector Functions

(build-flvector n proc) — FlVector
n : Integer
proc : (Index -> Flonum)

Creates a length-n flonum vector by applying proc to the indexes from 0 to (- n 1).
Analogous to build-vector.

Example:

> (build-flvector 10 f1)
(flvector 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0)

(inline-build-flvector n proc)

n : Integer

proc : (Index -> Flonum)

Like build-flvector, but always inlined. This increases speed at the expense of code size.

(flvector-map proc xs xss ...) — FlVector
proc : (Flonum Flonum ... -> Flonum)
xs . FlVector
xss : FlVector

34

Applies proc to the corresponding elements of xs and xss. Analogous to vector-map.

The proc is meant to accept the same number of arguments as the number of its following
flonum vector arguments. However, a current limitation in Typed Racket requires proc
to accept any number of arguments. To map a single-arity function such as £1+ over the
corresponding number of flonum vectors, for now, use inline-flvector-map.

(inline-flvector-map proc xs xss ...)

proc : (Flonum Flonum ... -> Flonum)
xs : FlVector

xss : FlVector

Like flvector-map, but always inlined.

(flvector-copy! dest
dest-start
src
[src-start
src-end]) — Void
dest : FlVector
dest-start : Integer
src : FlVector
src-start : Integer = 0
src-end : Integer = (flvector-length src)

Like vector-copy!, but for flonum vectors.

(list->flvector vs) — FlVector
vs : (Listof Real)
(flvector->list xs) — (Listof Flonum)
xs : FlVector
(vector->flvector vs) — FlVector
vs : (Vectorof Real)
(flvector->vector xs) — (Vectorof Flonum)
xs : FlVector

Convert between lists and flonum vectors, and between vectors and flonum vectors.

(flvector+ xs ys) — FlVector
xs : FlVector
ys : FlVector

(flvector* xs ys) — FlVector
xs : FlVector
ys : FlVector

35

(flvector- xs) — FlVector
xs : FlVector
(flvector- xs ys) — FlVector
xs : FlVector
ys : FlVector
(flvector/ xs) — FlVector
xs : FlVector
(flvector/ xs ys) — FlVector
xs : FlVector
ys : FlVector
(flvector-scale xs y) — FlVector
xs : FlVector
y : Flonum
(flvector-abs xs) — FlVector
xs : FlVector
(flvector-sqr xs) — FlVector
xs : FlVector
(flvector-sqrt xs) — FlVector
xs : FlVector
(flvector-min xs ys) — FlVector
xs @ FlVector
ys : FlVector
(flvector-max xs ys) — FlVector
xs : FlVector
ys : FlVector

Arithmetic lifted to operate on flonum vectors.
(flvector-sum xs) — Flonum

xs : FlVector

Like f1sum, but operates on flonum vectors. In fact, f1sum is defined in terms of f1vector-
sum.

(flvector-sums xs) — FlVector
xs . FlVector

Computes the partial sums of the elements in xs in a way that incurs rounding error only
once for each partial sum.
Example:

> (flvector-sums
(flvector 1.0 le-16 1le-16 le-16 1le-16 1e+100 -1e+100))
(flvector

36

o O O

.0000000000000002
.0000000000000002
1.0000000000000004
1e+100
1.0000000000000004)

1
1
1
1

Compare the same example computed by direct summation:

> (rest
(reverse
(foldl (A (x xs) (cons (+ x (first xs)) xs))
(1list 0.0)
'(1.0 le-16 1le-16 le-16 1e-16 1e+100 -1e+100))))
'(1.0 1.0 1.0 1.0 1.0 1e+100 0.0)

37

3 Special Functions

(require math/special-functions) package: math-1ib

The term “special function” has no formal definition. However, for the purposes of the math
library, a special function is one that is not elementary.

The special functions are split into two groups: [§3.1 “Real Functions”| and [§3.2 “Flonum|
Functions that accept real arguments are usually defined in terms of their flonum
counterparts, but are different in two crucial ways:

* Many return exact values for certain exact arguments.

e When applied to exact arguments outside their domains, they raise an
exn:fail:contract instead of returning +nan. 0.

Currently, math/special-functions does not export any functions that accept or return
complex numbers. Mathematically, some of them could return complex numbers given real
numbers, such hurwitz-zeta when given a negative second argument. In these cases, they
raise an exn:fail:contract (for an exact argument) or return +nan.O (for an inexact
argument).

Most real functions have more than one type, but they are documented as having only one.
The documented type is the most general type, which is used to generate a contract for uses
in untyped code. Use :print-type to see all of a function’s types.

A function’s types state theorems about its behavior in a way that Typed Racket can under-
stand and check. For example, lambert has these types:

(case-> (Zero -> Zero)
(Flonum -> Flonum)
(Real -> (U Zero Flonum)))

Because lambert : Zero -> Zero, Typed Racket proves during typechecking that one of
its exact cases is (lambert 0) = 0.

Because the theorem lambert : Flonum -> Flonum is stated as a type and proved by
typechecking, Typed Racket’s optimizer can transform the expressions around its use into
bare-metal floating-point operations. For example, (+ 2.0 (lambert 3.0)) is trans-
formed into (unsafe-fl1+ 2.0 (lambert 3.0)).

The most general type Real -> (U Zero Flonum) is used to generate lambert’s contract
when it is used in untyped code. Except for this discussion, this the only type documented
for lambert.

38

https://pkgs.racket-lang.org/package/math-lib

3.1 Real Functions

(gamma x) — (U Positive-Integer Flonum)
x : Real

Computes the gamma function, a generalization of the factorial function to the entire real
line, except nonpositive integers. When x is an exact integer, (gamma x) is exact.

Examples:

> (plot (list (function (4 (x) (gamma (+ 1 x))) 0 4.5
#:label "gamma(x+1)")
(function (1 (x) (factorial (truncate x))) #:color 2
;*@!leabell "factoriall(floor(x))")I))

i ' | ! I ! I
50—+ gamma(x+1) B
| | factorial(floor(x))
40+ -+
. 304 -+
E
g i
20+ -+
10+ -+
. 1 | \ | , |
T I ! I ' I ' I
0 1 2 3 4

X axis

> (plot (function gamma -2.5 5.5) #:y-min -50 #:y-max 50)

39

http://en.wikipedia.org/wiki/Gamma_function

40+

y axis
T
|

220

-40-L

-2 0 2

> (gamma 5)

24

> (gamma 5.0)

24.0

> (factorial 4)

24

> (gamma -1)

gamma: contract violation
expected: Real, not Zero or Negative-Integer
given: -1

> (gamma -1.0)

+nan.0

> (gamma 0.0)

+inf.0

> (gamma -0.0)

-inf.0

> (gamma 172.0)

+inf.0

> (bf (gamma 172))

40

(bf "1.241018070217667823424840524103103992618e309")

Error is no more than 10 ulps everywhere that has been tested, and is usually no more than 4
ulps.

(log-gamma x) — (U Zero Flonum)
x : Real

Like (log (abs (gamma x))), but more accurate and without unnecessary overflow. The
only exact cases are (log-gamma 1) = 0and (log-gamma 2) = O.

Examples:

> (plot (list (function log-gamma -5.5 10.5 #:label "log-
gamma (x) ")
(function (A (x) (log (abs (gamma x))))
#:color 2 #:style 'long-dash #:width 2
#:1label "log(abs(gamma(x)))")))
| ' ' ' ' | ' ' ' ' | ' ' ' ' |
L Y B L B

log-gamma(x)

" [log(abs(gamma(x))) — — —

10+ 1

y axis
(9]
|
I
|
I

5 0 5 10

41

> (log-gamma 5)
3.1780538303479458
> (log (abs (gamma 5)))
3.1780538303479458
> (log-gamma -1)
log-gamma: contract violation
expected: Real, not Zero or Negative-Integer

given: -1
> (log-gamma -1.0)
+inf.0
> (log-gamma 0.0)
+inf.0
> (log (abs (gamma 172.0)))
+inf.0

> (log-gamma 172.0)
711.71472580229

Error is no more than 11 ulps everywhere that has been tested, and is usually no more than 2
ulps. Error reaches its maximum near negative roots.

(psi0 x) — Flonum
x : Real

Computes the ldigamma function, the logarithmic derivative of the gamma function.
Examples:

> (plot (function psiO -2.5 4.5) #:y-min -5 #:y-max 5)

42

http://en.wikipedia.org/wiki/Digamma_function

y axis
T
!

2

> (psi0 0)

psi0: contract violation
expected: Real, not Zero or Negative-Integer
given: 0

> (psiO 1)

-0.5772156649015329

> (- gamma.O)

-0.5772156649015329

Except near negative roots, maximum observed error is 2 ulps, but is usually no more than
1.

Near negative roots, which occur singly between each pair of negative integers, psiO ex-
hibits catastrophic cancellation from using the reflection formula, meaning that relative
error is effectively unbounded. However, maximum observed absolute-error is (* 5
epsilon.0). This is the best we can do for now, because there are currently no reasonably
fast algorithms for computing psiO near negative roots with low relative error.

If you need low relative error near negative roots, use bfpsio.

43

(psi m x) — Flonum
m : Integer

x . Real

Computes a polygamma function, or the mth logarithmic derivative of the gamma function.
The order m must be a natural number, and x may not be zero or a negative integer. Note

that (psi 0 x) = (psiO x).
Examples:

> (plot (for/list ([m

(in-range 4)]1)

(function (A (x) (psi m x)) -2.5 2.5

#:color m #:style m #:label (format "psi~a(x)" m)))
#:y-min -300 #:y-max 300 #:legend-anchor 'top-right)
| | | |

200

!
|
[
[
[
[
[
[
[
[

|
|
|
|
|
|
|
|
|
|
|
|
[
)

y axis

-200-

LR | T
Vool
[|
Vo I
Vi I
Ul I
A '

v

|
|
|
|
|
|
|
|
|
|
\
|
\
|
|
|
\
\
|
\
|
\
\
\
\
\
\

psiO(x)

> (psi -1 2.3)

psi: contract violation
expected: Natural
given: -1

44

http://en.wikipedia.org/wiki/Polygamma_function

argument position: 1st
other arguments...:
2.3
> (psi 0 -1.1)
10.154163959143848
> (psi0 -1.1)
10.154163959143848

From spot checks with m > O, error appears to be as with psiO: very low except near
negative roots. Near negative roots, relative error is apparently unbounded, but absolute
error is low.

(erf x) — Real

x : Real
(erfc x) — Real
x : Real

Compute the error function and complementary error function, respectively. The only exact
cases are (erf 0) = Oand (erfc 0) = 1.

Examples:

> (plot (list (function erf -2 2 #:label "erf(x)")
(function erfc #:color 2 #:label "erfc(x)")))

45

http://en.wikipedia.org/wiki/Error_function

y axis

(erf 0)

(erf 1)
.8427007929497148
(- 1 (erfc 1))
.8427007929497148
(erf -1)
-0.8427007929497149
> (- (erfc 1) 1)
-0.8427007929497148

vV O Vv OV OV

Mathematically, erfc(x) = 1 - erf(x), but having separate implementations can help maintain
accuracy. To compute an expression containing erf, use erf for x near 0. 0. For positive x
away from 0.0, manipulate (- 1.0 (erfc x)) and its surrounding expressions to avoid
the subtraction:

> (define x 5.2)
> (bf-precision 128)
> (define log-erf-x (bigfloat->rational (bflog (bferf (bf x)))))

46

> (flulp-error (log (erf x)) log-erf-x)
873944876280.6095

> (flulp-error (log (- 1.0 (erfc x))) log-erf-x)
873944876280.6095

> (flulp-error (flloglp (- (erfc x))) log-erf-x)
1.609486456125461

For negative x away from 0.0, do the same with (- (erfc (- x)) 1.0).

For erf, error is no greater than 2 ulps everywhere that has been tested, and is almost always
no greater than 1. For erfc, observed error is no greater than 4 ulps, and is usually no greater
than 2.

(lambert x) — (U Zero Flonum)

x : Real
(lambert- x) — Flonum
x : Real

Compute the Lambert W function, or the inverse of x = (* y (exp y)).

This function has two real branches. The 1ambert variant computes the upper branch, and is
defined for x >= (- (exp -1)). The lambert- variant computes the lower branch, and
is defined for negative x >= (- (exp -1)). The only exact case is (Lambert 0) = 0.

Examples:

> (plot (list (function lambert (- (exp -1)) 1)
(function lambert- (- (exp -1)) -min.0 #:color 2))
#:y-min -4)

47

http://en.wikipedia.org/wiki/Lambert_W_function

2L -
_3__ -
-4 } } I I !
-.25 0 25 5 75 1
X axis

> (lambert 0)

0

> (lambert (- (exp -1)))

-1.0

> (lambert -1/2)

lambert: contract violation
expected: Real >= (- (exp -1))
given: -1/2

> (lambert- 0)

lambert-: contract violation
expected: Negative-Real >= (- (exp -1))
given: 0

> (define yO (lambert -0.1))

> (define y1 (lambert- -0.1))

> y0

-0.11183255915896297

>yl

-3.577152063957297

> (x yO (exp y0))

48

-0.1
> (x y1 (exp y1))
-0.10000000000000002

The Lambert W function often appears in solutions to equations that contain n log(n), such
as those that describe the running time of divide-and-conquer algorithms.

For example, suppose we have a sort that takest = (x ¢ n (log n)) time, and we mea-
sure the time it takes to sort an n = 10000-element list at t = 0.245 ms. Solving for c,
we get

(define n 10000)

(define t 0.245)

(define ¢ (/ t (x n (log n))))
c

.6600537016574172e-6

NV V V Vv

Now we would like to know how many elements we can sort in 100ms. We solve for n and
use the solution to define a function time->sort-size:

> (define (time->sort-size t)
(exact-floor (exp (lambert (/ t c)))))

> (time->sort-size 100)

2548516

Testing the solution, we get

> (define 1st2 (build-list 2548516 values))

> (time (sort 1st2 <))

cpu time: 80 real time: 93 gc time: O
For both branches, error is no more than 2 ulps everywhere tested.

(zeta x) — Real

x : Real

Computes the Riemann zeta function. If x is a nonpositive exact integer, (zeta x) is exact.
Examples:

> (plot (function zeta -2 10) #:y-min -4 #:y-max 4)

49

http://en.wikipedia.org/wiki/Riemann_zeta_function

T
2L £
.5 0. 1

>

o1 £

-4 f f f f
0 2.5 5 7.5 10

X axis

> (plot (function zeta -14 -2))

50

-.025-t

y axis

-.075-

> (zeta 0)

-1/2

> (zeta 1)

zeta: contract violation
expected: Real, not One

given: 1
> (zeta 1.0)
-inf.0
> (zeta -1)
-1/12

> (define num 1000000)
> (define num-coprime

(for/sum ([_ (in-range num)])

(if (coprime? (random-bits 16) (random-bits 16)) 1 0)))

(f1 (/ num-coprime num))
.607901
(/ 1 (zeta 2))
.6079271018540264

O Vv OV

51

When s is an odd, negative exact integer, (zeta s) computes (bernoulli (- 1 s)),
which can be rather slow.

Maximum observed error is 6 ulps, but is usually 3 or less.
(eta x) — Real
x : Real
Computes the Dirichlet eta function. If x is a nonpositive exact integer, (eta x) is exact.
Examples:

> (plot (function eta -10 6))
f f f f] f f f f f f f f
—

7.5+ 1

y axis

2.5+ 4

> (eta 0)

1/2

> (eta -1)

1/4

> (eta 1)
0.6931471805599453

52

http://en.wikipedia.org/wiki/Dirichlet_eta_function

> (log 2)
0.6931471805599453

When s is an odd, negative exact integer, (eta s) computes (bernoulli (- 1 s)),
which can be rather slow.

Maximum observed error is 11 ulps, but is usually 4 or less.

(hurwitz-zeta s gq) — Real
s : Real
q : Real

Computes the Hurwitz zeta function/for s > 1andq > 0. Whens = 1.00orq = 0.0,
(hurwitz-zeta s q) = +inf.0.

Examples:

> (plot (list (function zeta 1.5 5)
(function (A (s) (hurwitz-zeta s 1))
#:color 2 #:style 'long-dash #:width 2)))
] |] |] |
i y i y i y]

2.5 -+

y axis

http://en.wikipedia.org/wiki/Hurwitz_zeta_function

> (hurwitz-zeta 1 1)
hurwitz-zeta: contract violation

expected: Real > 1

given: 1

argument position: 1st

other arguments...:

)

> (hurwitz-zeta 1.0 1.0)
+inf .0
> (hurwitz-zeta 2 1/4)
17.197329154507113
> (+ (sqr pi) (* 8 catalan.0))
17.19732915450711

While hurwitz-zeta currently raises an exception for s < 1, it may in the future return
real values.

Maximum observed error is 6 ulps, but is usually 2 or less.

(beta x y) — (U Exact-Rational Flonum)
x : Real
y : Real

Computes the beta function| for positive real x and y. Like (/ (* (gamma x) (gamma
y)) (gamma (+ x y))),but more accurate.

Examples:

> (plot3d (contour-intervals3d beta 0.25 2 0.25 2) #:angle 250)

54

http://en.wikipedia.org/wiki/Beta_function

> (beta 0 0)

beta: contract violation
expected: positive Real
given: 0
argument position: 1st
other arguments...:

0

> (beta 1 5)

1/5

> (beta 1.0 5.0)

0.2

(log-beta x y) — (U Zero Flonum)
x . Real
v : Real

Like (log (beta x y)), but more accurate and without unnecessary overflow. The only
exact case is (log-beta 1 1) = O.

55

(gamma-inc k x [upper? regularized?]) — Flonum
k : Real
x : Real
upper? : Any = #f
regularized? : Any = #f

Computes the [incomplete gamma integral for k > 0 and x >= 0. When upper? = #f, it
integrates from zero to x; otherwise it integrates from x to infinity.

If you are doing statistical work, you should probably use gamma-dist instead, which is
defined in terms of gamma-inc and is more flexible (e.g. it allows negative x).

The following identities should hold:

e (gamma-inc k 0) =0
* (gamma-inc k +inf.0) = (gamma k)

* (+ (gamma-inc k x #f) (gamma-inc k x #t)) = (gamma k) (approxi-
mately)

e (gamma-inc k x upper? #t) = (/ (gamma-inc k x upper? #f) (gamma
k)) (approximately)

e (gamma-inc k +inf.0 #t #t) = 1.0

e (+ (gamma-inc k x #f #t) (gamma-inc k x #t #t)) = 1.0 (approxi-
mately)

Examples:

> (list
(plot3d (contour-intervals3d gamma-inc 0.1 4.5 0 10)
#:x-label "k" #:y-label "x" #:width 210 #:height 210)
(plot3d (contour-intervals3d
(1 (k x) (gamma-inc k x #t)) 0.1 4.5 0 10)
#:x-label "k" #:y-label "x" #:width 210 #:height 210))

56

http://en.wikipedia.org/wiki/Incomplete_gamma_function

XXX X
SO
- 4
SRS
SRR
10 RS
Sstteleleteties
N S
"w&&&awk%ﬁﬁﬁﬁkﬁkw%v
e S ST A SIS ™
RS
ESRESESS 4

> (plot3d (contour-intervals3d
(1 (k x) (gamma-inc k x #f #t)) 0.1 20 0 20)
#:x-label "k" #:y-label "x")

> (gamma 4.0)

57

+ (gamma-inc 4.0 0.5 #f) (gamma-inc 4.0 0.5 #t))

gamma-inc 4.0 +inf.0)

DV OO VO
O~ O ~ O

> (/ (gamma-inc 200.0 50.0 #f) (gamma 200.0))
+nan.0
> (gamma-inc 200.0 50.0 #f #t)
2.0247590148473565e-57
> (gamma-inc 0 5.0)
gamma-inc: contract violation
expected: Positive-Real
given: 0
argument position: 1st
other arguments...:
5.0
> (gamma-inc 0.0 5.0)
+inf .0

(log-gamma-inc k x [upper? regularized?]) — Flonum
k : Real
x : Real
upper? : Any = #f
regularized? : Any = #f

Like (log (gamma-inc k x upper? regularized?)), but more accurate and without
unnecessary overflow.

(beta-inc a b x [upper? regularized?]) — Flonum

a : Real
b : Real
x : Real

upper? : Any = #f
regularized? : Any = #f

Computes thelincomplete beta integrallffora > 0,b > 0Oand0 <= x <= 1. When upper?
= #f, it integrates from zero to x; otherwise, it integrates from x to one.

If you are doing statistical work, you should probably use beta-dist instead, which is
defined in terms of beta-inc and is more flexible (e.g. it allows negative x).

Similar identities should hold as with gamma-inc.
Example:

> (plot3d (isosurfaces3d (1 (a b x) (beta-inc a b x #f #t))

58

http://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function

0.1 2.5 0.1 2.5 0 1 #:1abel "beta(a,b,x)")
#:x-label "a" #:y-label "b" #:z-label "x"
#:angle 20 #:altitude 20 #:legend-anchor 'top)

X beta(a,b,x)=.8 [|
I beta(a,b,x)=.6 []
T beta(a,b,x)=.4 []
beta(a,b,x)=.2 [|

X
VY /7
W

.
G

(log-beta-inc a b x [upper? regularized?]) — Flonum

a : Real
b : Real
X : Real

upper? : Any = #f
regularized? : Any = #f

Like (log (beta-inc a b x upper? regularized?)), but more accurate and with-
out unnecessary overflow.

While most areas of this function have error less than 5e-15, when a and b have very
dissimilar magnitudes (e.g. 1e-16 and 1e+16), it exhibits catastrophic cancellation. We are
working on it.

59

(Fresnel-S x) — Real

x : Real

(Fresnel-C x) — Real
x : Real

(Fresnel-RS x) — Real
x : Real

(Fresnel-RC x) — Real
x : Real

Compute the Fresnel integralsl Where

* (Fresnel-S x) calculates [sin(xt?/2) |0->x
¢ (Fresnel-C x) calculates /cos(nt2/2) [0->x
¢ (Fresnel-RS x) calculates fsin(tz) |0->x

* (Fresnel-RC x) calculates [cos(t?) [0->x

The first two are sometimes also referred to as the natural Fresnel integrals.
Examples:

> (plot (list (function Fresnel-RS O 5 #:label "Fresnel-RS(x)")
(function Fresnel-RC O 5 #:color 2 #:label "Fresnel-

RC(x)")))

60

https://en.wikipedia.org/wiki/Fresnel_integral

y axis

] ']
| VAN |

| | Fresnel-RS(x) | ———

Fresnel-RC(x)

X axis

> (plot (parametric (1 (t) (list (Fresnel-C t) (Fresnel-
S t))) -5 5 #:label "Euler spiral"))

61

] ' ' ' ' ' ' ' ' 1
T t t t t t t t t

Euler spiral

y axis

|
T
0

X axis

> (Fresnel-RS 1)

0.31026830172338116

> (x (sqrt (/ pi 2)) (Fresnel-S (x (sqrt (/ 2 pi)) 1))

0.31026830172338116

Spot-checks within the region 0<=x<=150 sugest that the error is no greater than le-14
everywhere that has been tested, and usually is lower than 2e-15.

3.2 Flonum Functions

(flgamma x) — Flonum
x : Flonum

(fllog-gamma x) — Flonum
x : Flonum

62

(flpsi0 x) — Flonum
x : Flonum

(flpsi m x) — Flonum
m : Integer
x : Flonum

(flerf x) — Flonum
x : Flonum

(flerfc x) — Flonum
x : Flonum

(fllambert x) — Flonum
x : Flonum

(fllambert- x) — Flonum
x : Flonum

(flzeta x) — Flonum
x : Flonum

(fleta x) — Flonum
x : Flonum

(flhurwitz-zeta s q) — Flonum
s . Flonum
g : Flonum

(flbeta x y) — Flonum
x : Flonum
y . Flonum

63

(fllog-beta x y) — Flonum
x : Flonum
y : Flonum

(flgamma-inc k x upper? regularized?) — Flonum
k : Flonum
x : Flonum
upper? : Any
regularized? : Any

(fllog-gamma-inc k x upper? regularized?) — Flonum
k : Flonum
x : Flonum
upper? : Any
regularized? : Any

(flbeta-inc a b x upper? regularized?) — Flonum
a : Flonum
b : Flonum
x @ Flonum
upper? : Any
regularized? : Any

(fllog-beta-inc a b x upper? regularized?) — Flonum
a : Flonum
b : Flonum
x : Flonum
upper? : Any
regularized? : Any

(f1Fresnel-S x) — Flonum
x : Flonum

(flFresnel-C x) — Flonum
x : Flonum

Flonum versions of the above functions. These return +nan. O instead of raising errors and
do not have optional arguments. They can be a little faster to apply because they check fewer
special cases.

64

4 Number Theory

(require math/number-theory) package: math-1ib

4.1 Congruences and Modular Arithmetic
Wikipedia: Divisor

(divides? m n) — Boolean
m : Integer
n : Integer

Returns #t if m divides n, #f otherwise.

Formally, an integer m divides an integer n when there exists a unique integer k such that (*
m k) = n.

Examples:

> (divides? 2 9)
#£f
> (divides? 2 8)
#t

Note that 0 cannot divide anything:

> (divides? 0 5)
#f
> (divides? 0 0)
#£f

Practically, if (divides? m n) is #t, then (/ n m) will return an integer and will not

raise exn:fail:contract:divide-by-zero. Wikipedia:
Bezout’s Identity

(bezout a b ¢ ...) — (Listof Integer)
a : Integer
b : Integer

c : Integer

Givenintegersa b c¢ ... returns a list of integers (1ist u v w ...) suchthat (gcd a
bc ...) = xau (xbwv) (xcw ...).

Examples:

65

https://pkgs.racket-lang.org/package/math-lib
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/B%C3%A9zout's_identity

> (bezout 6 15)
"'(-2 1)

> (+ (x -2 6) (x 1 15))
3
> (ged 6 15)
3
(coprime? a b ...) — Boolean
a . Integer
b : Integer
Returns #t if the integers a b ... are coprime. Formally, a set of integers is considered

coprime (also called relatively prime) if their greatest common divisor is 1.
Example:

> (coprime? 2 6 15)
#t

(pairwise-coprime? a b ...) — Boolean
a : Integer
b : Integer

Returns #t if the integers a b ... are pairwise coprime, meaning that each pair of integers
is coprime.

The numbers 2, 6 and 15 are coprime, but not pairwise coprime, because 6 and 15 share the
factor 3:

> (pairwise-coprime? 2 6 15)
#E

(solve-chinese as ns) — Natural
as : (Listof Integer)
ns : (Listof Integer)

Given a length-k list of integers as and a length-k list of coprime moduli ns, (solve-
chinese as ns) returns the least natural number x that is a solution to the equations

X aq (mod n1)

ax (mod ny)

o]
1]

66

Wikipedia:
Coprime.

Wikipedia:
Pairwise Coprime

Wikipedia: Chinese
Remainder
Theorem

http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Pairwise_coprime
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem

The solution x is less than (* ny ... ng).
The moduli ns must all be positive.

What is the least number x that when divided by 3 leaves a remainder of 2, when divided by
5 leaves a remainder of 3, and when divided by 7 leaves a remainder of 2?

> (solve-chinese '(2 3 2) '(3 5 7))
23
Wikipedia:
Quadratic Residue
(quadratic-residue? a n) — Boolean
a : Integer
n : Integer

Returns #t if a is a quadratic residue modulo n, otherwise #f. The modulus n must be
positive, and a must be nonnegative.

Formally, a is a quadratic residue modulo n if there exists a number x such that (x x x) =
a (mod n). In other words, (quadratic-residue? a n) is #t when a is a perfect square
modulo n.

Examples:

> (quadratic-residue? 0 4)
#E
> (quadratic-residue? 1 4)
#t
> (quadratic-residue? 2 4)
#f
> (quadratic-residue? 3 4)
#E
Wikipedia:
Legendre Symbol
(quadratic-character a p) — (U -1 0 1)
a : Integer
p : Integer

Returns the value of the quadratic character modulo the prime p. That is, for a non-zero
a the number 1 is returned when a is a quadratic residue, and -1 is returned when a is a
non-residue. If a is zero, then O is returned.

If a is negative or p is not positive, quadratic-character raises an error. If p is not
prime, (quadratic-character a p) is indeterminate.

This function is also known as the Legendre symbol.

67

http://en.wikipedia.org/wiki/Quadratic_residue
http://en.wikipedia.org/wiki/Legendre_symbol

> (quadratic-character 0 5)
0
> (quadratic-character 1 5)
1
>

(quadratic-character 2 5)
-1
> (quadratic-character 3 5)
-1
Wikipedia: Jacobi
Symbol

(jacobi-symbol a n) — (U -1 0 1)
a . Nonnegative-Integer
n : Positive-Integer

Computes the Jacobi symbol for any nonnegative integer a and any positive odd integer n.
If n is not an odd positive integer, (jacobi-symbol a n) throws an exception.

> (jacobi-symbol 1 1)
1
> (jacobi-symbol 8 11)
-1

(jacobi-symbol 39 27)

>
0
> (jacobi-symbol 22 59)
1
>

(jacobi-symbol 32 8)
jacobi: contract violation

expected: odd?

given: 8

argument position: 2nd

other arguments...:

32

Wikipedia:
Multiplicative

Inverse
(modular-inverse a n) — Natural

a : Integer
n : Integer

Returns the inverse of a modulo n if a and n are coprime, otherwise raises an error. The
modulus n must be positive, and a must be nonzero.

Formally, if a and n are coprime, b = (modular-inverse a n) is the unique natural
number less than n such that (* a b) = 1 (mod n).

68

http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse

(modular-inverse 2 5)

(modulo (¥ 2 3) 5)

= VvV W Vv

(modular-expt a b n) — Natural
a : Integer
b : Integer
n : Integer

Computes (modulo (expt a b) n), but much more efficiently. The modulus n must be
positive.

Examples:

> (modulo (expt -6 523) 19)
13
> (modular-expt -6 523 19)
13
(modular-expt 9 158235208 19)

>
4
> (modular-expt 2 -1 11)
6
>

; don't try this at home!
(modulo (expt 9 158235208) 19)
4

4.1.1 Parameterized Modular Arithmetic
Wikipedia:
Modular Arithmetic
The math/number-theory library supports modular arithmetic parameterized on a current

modulus. For example, the code
(with-modulus n
((modexpt a b) . mod= . c))
corresponds with the mathematical statement ab =¢ (mod n).

The current modulus is stored in a parameter that, for performance reasons, can only be
set using with-modulus. (The basic modular operators cache parameter reads, and this
restriction guarantees that the cached values are current.)

(with-modulus n body ...)

n : Integer

69

http://en.wikipedia.org/wiki/Modular_arithmetic

Alters the current modulus within the dynamic extent of body. The expression n must
evaluate to a positive integer.

By default, the current modulus is 1, meaning that every modular arithmetic expression that
does not raise an error returns 0.

(current-modulus) — Positive-Integer

Returns the current modulus.
Examples:

(current-modulus)

>

1

> (with-modulus 5 (current-modulus))
5

(mod x) — Natural
x : Exact-Rational

Converts a rational number x to a natural number less than the current modulus.

If x is an integer, this is equivalent to (modulo x n). If x is a fraction, an integer input is
generated by multiplying its numerator by its denominator’s modular inverse.

Examples:

(with-modulus 7 (mod (* 218 7)))
(with-modulus 7 (mod 3/2))

(with-modulus 7 (mod/ 3 2))

gV o0 v OV

> (with-modulus 7 (mod 3/7))
modular-inverse: expected argument that is coprime to
modulus 7; given 7

(mod+ a ...) — Natural
a . Integer
(mod* a ...) — Natural

a : Integer

Equivalent to (modulo (+ a ...) (current-modulus)) and (modulo (*x a ...)
(current-modulus)), respectively, but generate smaller intermediate values.

70

(modsqr a) — Natural
a : Integer

(modexpt a b) — Natural
a : Integer
b : Integer

Equivalent to (mod* a a) and (modular-expt a b (current-modulus)), respec-
tively.

(mod- a b ...) — Natural
a : Integer
b : Integer
Equivalent to (modulo (- a b ...) (current-modulus)), but generates smaller in-

termediate values. Note that (mod- a) = (mod (- a)).

(mod/ a b ...) — Natural
a : Integer
b : Integer

Divides a by (* b ...), by multiplying a by the multiplicative inverse of (* b ...).
The one-argument variant returns the modular inverse of a.

Note that (mod/ a b ...) is not equivalent to (modulo (/ a b ...) (current-
modulus)); see mod= for a demonstration.

(mod= a b ...) — Boolean
a : Integer
b : Integer
(mod< a b ...) — Boolean
a . Integer
b : Integer
(mod<= a b ...) — Boolean
a : Integer
b : Integer
(mod> a b ...) — Boolean
a : Integer
b : Integer
(mod>= a b ...) — Boolean
a : Integer
b : Integer
Each of these is equivalent to (op (mod a) (mod b) ...), where op is the correspond-

ing numeric comparison function. Additionally, when given one argument, the inequality
tests always return #t.

71

Suppose we wanted to know why 17/4 = 8 (mod 15), but 51/12 (mod 15) is undefined, even
though normally 51/12 = 17/4. In code,

> (with-modulus 15 (mod/ 17 4))

8

> (/ 51 12)

17/4

> (with-modulus 15 (mod/ 51 12))
modular-inverse: expected argument that is coprime to
modulus 15; given 12

We could try to divide by brute force: find, modulo 15, all the numbers a for which (mod*
a 4) is 17, then find all the numbers b for which (mod* a 12) is 51.

> (with-modulus 15
(for/list ([a (in-range 15)]
#:when (mod= (mod* a 4) 17))
a))
'(8)
> (with-modulus 15
(for/list ([b (in-range 15)]
#:when (mod= (mod* b 12) 51))
b))
'(3 8 13)

So the problem isn’t that b doesn’t exist, it’s that b isn’t unique.

4.2 Primes
Wikipedia: Prime
Number

(prime? z) — Boolean
z : Integer
Returns #t if z is a prime, #f otherwise.
Formally, an integer z is prime when the only positive divisors of z are 1 and (abs z).
The positive primes below 20 are:
> (filter prime? (range 1 21))

'(2 357 11 13 17 19)

The corresponding negative primes are:

72

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number

> (filter prime? (range 1 -21 -1))
'(-2 -3 -5 -7 -11 -13 -17 -19)

(odd-prime? z) — Boolean
z : Integer

Returns #t if z is a odd prime, #f otherwise.

> (odd-prime? 2)
#f
> (odd-prime? 3)
#t

(nth-prime n) — Natural
n : Integer

Returns the nth positive prime; n must be nonnegative.

> (nth-prime 0)
2

> (nth-prime 1)
3

> (nth-prime 2)
5

(random-prime n) — Natural
n : Integer

Returns a random prime smaller than n, which must be greater than 2.
The function random-prime picks random numbers below n until a prime is found.

(random-prime 10)
(random-prime 10)

>
3
>
2
> (random-prime 10)
3

(next-prime z) — Integer
z . Integer

Returns the first prime larger than z.

73

(next-prime 4)

>
5
> (next-prime 5)
7

(prev-prime z) — Integer
z : Integer
Returns the first prime smaller than z.

(prev-prime 4)

>
3
> (prev-prime 5)
3

(next-primes z n) — (Listof Integer)
z . Integer
n : Integer

Returns list of the next n primes larger than z; n must be nonnegative.

> (next-primes 2 4)
'(357 11)

(prev-primes z n) — (Listof Integer)
z : Integer
n : Integer

Returns list of the next n primes smaller than z; n must be nonnegative.

> (prev-primes 13 4)
'(11 7 5 3)

(factorize n) — (Listof (List Natural Natural))
n : Natural

Returns the factorization of a natural number n. The factorization consists of a list of corre-
sponding primes and exponents. The primes will be in ascending order.
The prime factorization of 600 = 23 * 3/A1 * 5/2:

> (factorize 600)
'((2 3) (31) (52))

74

Wikipedia: Integer
Factorization

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Integer_factorization

(defactorize f) — Natural
f : (Listof (List Natural Natural))

Returns the natural number, whose factorization is given by f. The factorization f is repre-
sented as described in factorize.

> (defactorize '((2 3) (3 1) (5 2)))
600

(divisors z) — (Listof Natural)
z : Integer

Returns a list of all positive divisors of the integer z. The divisors appear in ascending order.

> (divisors 120)
'(1 234568 10 12 15 20 24 30 40 60 120)
> (divisors -120)
'(1 234568 10 12 15 20 24 30 40 60 120)

(prime-divisors z) — (Listof Natural)
z : Natural

Returns a list of all positive prime divisors of the integer z. The divisors appear in ascending
order.

> (prime-divisors 120)
'(2 3 5)

(prime-exponents z) — (Listof Natural)
z : Natural

Returns a list of the exponents of in a factorization of the integer z.

> (define z (¥ 2 2 2 3 5 5))
> (prime-divisors z)

'(2 3 5)

> (prime-exponents z)
'(312)

4.3 Roots

(integer-root n m) — Natural
n : Natural
m : Natural

75

Returns the mth integer root of n. This is the largest integer r such that (expt r m) <= n.

(integer-root (expt 3 4) 4)

>
3
> (integer-root (+ (expt 3 4) 1) 4)
3

(integer-root/remainder n m) — Natural Natural
n : Natural
m : Natural

Returns two values. The first, r, is the mth integer root of n. The second is n-r~m.

> (integer-root/remainder (expt 3 4) 4)

3

0

> (integer-root/remainder (+ (expt 3 4) 1) 4)
3

1

4.4 Powers

(max-dividing-power a b) — Natural
a : Integer
b : Integer

Returns the largest exponent, n, of a power with base a that divides b.

That is, (expt a n) divides b but (expt a (+ n 1)) does not divide b.

(max-dividing-power 3 (expt 3 4))

>

4

> (max-divi