
The Typed Racket Reference
Version 8.9

Sam Tobin-Hochstadt ăsamth@racket-lang.orgą,
Vincent St-Amour ăstamourv@racket-lang.orgą,
Eric Dobson ăendobson@racket-lang.orgą,
and Asumu Takikawa ăasumu@racket-lang.orgą

May 7, 2023

This manual describes the Typed Racket language, a sister language of Racket with a static
type-checker. The types, special forms, and other tools provided by Typed Racket are docu-
mented here.

For a friendly introduction, see the companion manual The Typed Racket Guide. For techni-
cal details, refer to the “Bibliography”.

#lang typed/racket/base package: typed-racket-lib
#lang typed/racket

1

mailto:samth@racket-lang.org
mailto:stamourv@racket-lang.org
mailto:endobson@racket-lang.org
mailto:asumu@racket-lang.org
https://pkgs.racket-lang.org/package/typed-racket-lib

1 Type Reference

Any

Any Racket value. All other types are subtypes of Any.

AnyValues

Any number of Racket values of any type.

Nothing

The empty type. No values inhabit this type, and any expression of this type will not evaluate
to a value.

1.1 Base Types

1.1.1 Numeric Types

These types represent the hierarchy of numbers of Racket. The diagram below shows the
relationships between the types in the hierarchy.

2

Complex / Number

Integer

Zero

Exact-Number

Exact-Rational
Positive-Exact-Rational

Negative-Exact-Rational

Float-Zero

Float-Complex

Float
Positive-Float

Negative-Float

Exact-Rational ∪ Float = Real

The regions with a solid border are layers of the numeric hierarchy corresponding to sets of
numbers such as integers or rationals. Layers contained within another are subtypes of the
layer containing them. For example, Exact-Rational is a subtype of Exact-Number.

The Real layer is also divided into positive and negative types (shown with a dotted line).
The Integer layer is subdivided into several fixed-width integers types, detailed later in this
section.

Number
Complex

Number and Complex are synonyms. This is the most general numeric type, including all
Racket numbers, both exact and inexact, including complex numbers.

Integer

Includes Racket’s exact integers and corresponds to the exact-integer? predicate. This is

3

the most general type that is still valid for indexing and other operations that require integral
values.

Float
Flonum

Includes Racket’s double-precision (default) floating-point numbers and corresponds to the
flonum? predicate. This type excludes single-precision floating-point numbers.

Single-Flonum

Includes Racket’s single-precision floating-point numbers and corresponds to the single-
flonum? predicate. This type excludes double-precision floating-point numbers.

Inexact-Real

Includes all of Racket’s floating-point numbers, both single- and double-precision.

Exact-Rational

Includes Racket’s exact rationals, which include fractions and exact integers.

Real

Includes all of Racket’s real numbers, which include both exact rationals and all floating-
point numbers. This is the most general type for which comparisons (e.g. <) are defined.

Exact-Number
Float-Complex
Single-Flonum-Complex
Inexact-Complex
Imaginary
Exact-Complex
Exact-Imaginary
Inexact-Imaginary

These types correspond to Racket’s complex numbers.

Changed in version 1.7 of package typed-racket-lib: Added Imaginary, Inexact-Complex,
Exact-Complex, Exact-Imaginary, Inexact-Imaginary.

The above types can be subdivided into more precise types if you want to enforce tighter
constraints. Typed Racket provides types for the positive, negative, non-negative and non-
positive subsets of the above types (where applicable).

4

Positive-Integer
Exact-Positive-Integer
Nonnegative-Integer
Exact-Nonnegative-Integer
Natural
Negative-Integer
Nonpositive-Integer
Zero
Positive-Float
Positive-Flonum
Nonnegative-Float
Nonnegative-Flonum
Negative-Float
Negative-Flonum
Nonpositive-Float
Nonpositive-Flonum
Float-Negative-Zero
Flonum-Negative-Zero
Float-Positive-Zero
Flonum-Positive-Zero
Float-Zero
Flonum-Zero
Float-Nan
Flonum-Nan
Positive-Single-Flonum
Nonnegative-Single-Flonum
Negative-Single-Flonum
Nonpositive-Single-Flonum
Single-Flonum-Negative-Zero
Single-Flonum-Positive-Zero
Single-Flonum-Zero
Single-Flonum-Nan
Positive-Inexact-Real
Nonnegative-Inexact-Real
Negative-Inexact-Real
Nonpositive-Inexact-Real
Inexact-Real-Negative-Zero
Inexact-Real-Positive-Zero
Inexact-Real-Zero
Inexact-Real-Nan
Positive-Exact-Rational
Nonnegative-Exact-Rational
Negative-Exact-Rational
Nonpositive-Exact-Rational

5

Positive-Real
Nonnegative-Real
Negative-Real
Nonpositive-Real
Real-Zero

Natural and Exact-Nonnegative-Integer are synonyms. So are the integer and exact-
integer types, and the float and flonum types. Zero includes only the integer 0. Real-Zero
includes exact 0 and all the floating-point zeroes.

These types are useful when enforcing that values have a specific sign. However, programs
using them may require additional dynamic checks when the type-checker cannot guarantee
that the sign constraints will be respected.

In addition to being divided by sign, integers are further subdivided into range-bounded
types. The relationships between most of the range-bounded types are shown in this diagram:

Integer

Zero

Positive-Integer

Positive-Fixnum

Positive-Index

Positive-Byte

Negative-Fixnum

Negative-Integer

Like the previous diagram, types nested inside of another in the diagram are subtypes of its

6

containing types.

One
Byte
Positive-Byte
Index
Positive-Index
Fixnum
Positive-Fixnum
Nonnegative-Fixnum
Negative-Fixnum
Nonpositive-Fixnum

One includes only the integer 1. Byte includes numbers from 0 to 255. Index is bounded
by 0 and by the length of the longest possible Racket vector. Fixnum includes all numbers
represented by Racket as machine integers. For the latter two families, the sets of values in-
cluded in the types are architecture-dependent, but typechecking is architecture-independent.

These types are useful to enforce bounds on numeric values, but given the limited amount
of closure properties these types offer, dynamic checks may be needed to check the desired
bounds at runtime.

Examples:

> 7
- : Integer [more precisely: Positive-Byte]
7
> 8.3
- : Flonum [more precisely: Positive-Float-No-NaN]
8.3
> (/ 8 3)
- : Exact-Rational [more precisely: Positive-Exact-Rational]
8/3
> 0
- : Integer [more precisely: Zero]
0
> -12
- : Integer [more precisely: Negative-Fixnum]
-12
> 3+4i
- : Exact-Number
3+4i

ExtFlonum
Positive-ExtFlonum
Nonnegative-ExtFlonum

7

Negative-ExtFlonum
Nonpositive-ExtFlonum
ExtFlonum-Negative-Zero
ExtFlonum-Positive-Zero
ExtFlonum-Zero
ExtFlonum-Nan

80-bit extflonum types, for the values operated on by racket/extflonum exports. These
are not part of the numeric tower.

1.1.2 Other Base Types

Boolean
True
False
String
Keyword
Symbol
Char
Void
Input-Port
Output-Port
Unquoted-Printing-String
Port
Path
Path-For-Some-System
Regexp
PRegexp
Byte-Regexp
Byte-PRegexp
Bytes
Namespace
Namespace-Anchor
Variable-Reference
Null
EOF
Continuation-Mark-Set
Undefined
Module-Path
Module-Path-Index
Resolved-Module-Path
Compiled-Module-Expression
Compiled-Expression

8

Internal-Definition-Context
Pretty-Print-Style-Table
Special-Comment
Struct-Type-Property
Impersonator-Property
Read-Table
Bytes-Converter
Parameterization
Custodian
Inspector
Security-Guard
UDP-Socket
TCP-Listener
Logger
Log-Receiver
Log-Level
Thread
Thread-Group
Subprocess
Place
Place-Channel
Semaphore
FSemaphore
Will-Executor
Pseudo-Random-Generator
Environment-Variables

These types represent primitive Racket data.

Examples:

> #t
- : True
#t
> #f
- : False
#f
> "hello"
- : String
"hello"
> (current-input-port)
- : Input-Port
#<input-port:string>
> (current-output-port)
- : Output-Port

9

#<output-port:string>
> (string->path "/")
- : Path
#<path:/>
> #rx"a*b*"
- : Regexp
#rx"a*b*"
> #px"a*b*"
- : PRegexp
#px"a*b*"
> '#"bytes"
- : Bytes
#"bytes"
> (current-namespace)
- : Namespace
#<namespace>
> #\b
- : Char
#\b
> (thread (lambda () (add1 7)))
- : Thread
#<thread>

Path-String

The union of the Path and String types. Note that this does not match exactly what the
predicate path-string? recognizes. For example, strings that contain the character #\nul
have the type Path-String but path-string? returns #f for those strings. For a complete
specification of which strings path-string? accepts, see its documentation.

1.2 Singleton Types

Some kinds of data are given singleton types by default. In particular, booleans, symbols,
and keywords have types which consist only of the particular boolean, symbol, or keyword.
These types are subtypes of Boolean, Symbol and Keyword, respectively.

Examples:

> #t
- : True
#t
> '#:foo
- : '#:foo
'#:foo

10

> 'bar
- : 'bar
'bar

1.3 Base Type Constructors and Supertypes

(Pairof s t)

Returns a pair type containing s as the car and t as the cdr

Examples:

> (cons 1 2)
- : (Pairof One Positive-Byte)
'(1 . 2)
> (cons 1 "one")
- : (Pairof One String)
'(1 . "one")

(Listof t)

Returns the type of a homogeneous list of t

(List t ...)

Returns a list type with one element, in order, for each type provided to the List type
constructor.

(List t ... trest ... bound)

Returns the type of a list with one element for each of the ts, plus a sequence of elements
corresponding to trest , where bound must be an identifier denoting a type variable bound
with

(List* t t1 ... s)

Is equivalent to (Pairof t (List* t1 ... s)). (List* s) is equivalent to s itself.

Examples:

11

> (list 'a 'b 'c)
- : (List 'a 'b 'c)
'(a b c)
> (plambda: (a ...) ([sym : Symbol] boxes : (Boxof a) ... a)

(ann (cons sym boxes) (List Symbol (Boxof a) ... a)))
- : (All (a ...)

(-> Symbol (Boxof a) ... a (Pairof Symbol (List (Boxof a)
... a))))
#<procedure>
> (map symbol->string (list 'a 'b 'c))
- : (Pairof String (Listof String))
'("a" "b" "c")

(MListof t)

Returns the type of a homogeneous mutable list of t .

(MPairof t u)

Returns the type of a Mutable pair of t and u .

MPairTop

Is the type of a mutable pair with unknown element types and is the supertype of all mutable
pair types. This type typically appears in programs via the combination of occurrence typing
and mpair?.

Example:

> (lambda: ([x : Any]) (if (mpair? x) x (error "not an mpair!")))
- : (-> Any MPairTop)
#<procedure>

(Boxof t)

Returns the type of a box of t

Example:

> (box "hello world")
- : (Boxof String)
'#&"hello world"

12

BoxTop

Is the type of a box with an unknown element type and is the supertype of all box types.
Only read-only box operations (e.g. unbox) are allowed on values of this type. This type
typically appears in programs via the combination of occurrence typing and box?.

Example:

> (lambda: ([x : Any]) (if (box? x) x (error "not a box!")))
- : (-> Any BoxTop)
#<procedure>

(Vectorof t)

Returns the type of a homogeneous vector list of t (mutable or immutable).

(Immutable-Vectorof t)

Returns the type of a homogeneous immutable vector of t .

Added in version 1.9 of package typed-racket-lib.

(Mutable-Vectorof t)

Returns the type of a homogeneous mutable vector of t .

Added in version 1.9 of package typed-racket-lib.

(Vector t ...)

Returns the type of a mutable or immutable vector with one element, in order, for each type
provided to the Vector type constructor.

Example:

> (ann (vector 1 'A) (Vector Fixnum 'A))
- : (U (Immutable-Vector Fixnum 'A) (Mutable-Vector Fixnum 'A))
'#(1 A)

(Immutable-Vector t ...)

Similar to (Vector t ...), but for immutable vectors.

Example:

13

> (vector-immutable 1 2 3)
- : (Immutable-Vector One Positive-Byte Positive-Byte)
'#(1 2 3)

Added in version 1.9 of package typed-racket-lib.

(Mutable-Vector t ...)

Similar to (Vector t ...), but for mutable vectors.

Example:

> (vector 1 2 3)
- : (Mutable-Vector Integer Integer Integer)
'#(1 2 3)

Added in version 1.9 of package typed-racket-lib.

FlVector

An flvector.

Example:

> (flvector 1.0 2.0 3.0)
- : FlVector
(flvector 1.0 2.0 3.0)

ExtFlVector

An extflvector.

Example:

> (extflvector 1.0t0 2.0t0 3.0t0)
- : ExtFlVector
#<extflvector>

FxVector

An fxvector.

Example:

14

> (fxvector 1 2 3)
- : FxVector
(fxvector 1 2 3)

VectorTop

Is the type of a vector with unknown length and element types and is the supertype of all
vector types. Only read-only vector operations (e.g. vector-ref) are allowed on values of
this type. This type typically appears in programs via the combination of occurrence typing
and vector?.

Example:

> (lambda: ([x : Any]) (if (vector? x) x (error "not a vector!")))
- : (-> Any VectorTop)
#<procedure>

Mutable-VectorTop

Is the type of a mutable vector with unknown length and element types.

(HashTable k v)

Returns the type of a mutable or immutable hash table with key type k and value type v .

Example:

> (ann (make-hash '((a . 1) (b . 2))) (HashTable Symbol Integer))
- : (HashTable Symbol Integer)
'#hash((a . 1) (b . 2))

(Immutable-HashTable k v)

Returns the type of an immutable hash table with key type k and value type v .

Example:

> #hash((a . 1) (b . 2))
- : (Immutable-HashTable Symbol Integer)
'#hash((a . 1) (b . 2))

Added in version 1.8 of package typed-racket-lib.

15

(Mutable-HashTable k v)

Returns the type of a mutable hash table that holds keys strongly (see §16.1 “Weak Boxes”)
with key type k and value type v .

Example:

> (make-hash '((a . 1) (b . 2)))
- : (Mutable-HashTable Symbol Integer)
'#hash((a . 1) (b . 2))

Added in version 1.8 of package typed-racket-lib.

(Weak-HashTable k v)

Returns the type of a mutable hash table that holds keys weakly with key type k and value
type v .

Example:

> (make-weak-hash '((a . 1) (b . 2)))
- : (Weak-HashTable Symbol Integer)
'#hash((a . 1) (b . 2))

Added in version 1.8 of package typed-racket-lib.

HashTableTop

Is the type of a hash table with unknown key and value types and is the supertype of all hash
table types. Only read-only hash table operations (e.g. hash-ref) are allowed on values of
this type. This type typically appears in programs via the combination of occurrence typing
and hash?.

Example:

> (lambda: ([x : Any]) (if (hash? x) x (error "not a hash
table!")))
- : (-> Any HashTableTop)
#<procedure>

Mutable-HashTableTop

Is the type of a mutable hash table that holds keys strongly with unknown key and value
types.

16

Weak-HashTableTop

Is the type of a mutable hash table that holds keys weakly with unknown key and value types.

(Setof t)

Returns the type of a hash set of t . This includes custom hash sets, but not mutable hash set
or sets that are implemented using gen:set.

Example:

> (set 0 1 2 3)
- : (Setof Byte)
(set 0 1 2 3)

Example:

> (seteq 0 1 2 3)
- : (Setof Byte)
(seteq 0 1 2 3)

(Channelof t)

Returns the type of a channel on which only ts can be sent.

Example:

> (ann (make-channel) (Channelof Symbol))
- : (Channelof Symbol)
#<channel>

ChannelTop

Is the type of a channel with unknown message type and is the supertype of all channel
types. This type typically appears in programs via the combination of occurrence typing and
channel?.

Example:

> (lambda: ([x : Any]) (if (channel? x) x (error "not a
channel!")))
- : (-> Any ChannelTop)
#<procedure>

17

(Async-Channelof t)

Returns the type of an asynchronous channel on which only ts can be sent.

Examples:

> (require typed/racket/async-channel)
> (ann (make-async-channel) (Async-Channelof Symbol))
- : (Async-Channelof Symbol)
#<async-channel>

Added in version 1.1 of package typed-racket-lib.

Async-ChannelTop

Is the type of an asynchronous channel with unknown message type and is the supertype of
all asynchronous channel types. This type typically appears in programs via the combination
of occurrence typing and async-channel?.

Examples:

> (require typed/racket/async-channel)
> (lambda: ([x : Any]) (if (async-channel? x) x (error "not an
async-channel!")))
- : (-> Any Async-ChannelTop)
#<procedure>

Added in version 1.1 of package typed-racket-lib.

(Parameterof t)
(Parameterof s t)

Returns the type of a parameter of t . If two type arguments are supplied, the first is the type
the parameter accepts, and the second is the type returned.

Examples:

> current-input-port
- : (Parameterof Input-Port)
#<procedure:current-input-port>
> current-directory
- : (Parameterof Path-String Path)
#<procedure:current-directory>

18

(Promise t)

Returns the type of promise of t .

Example:

> (delay 3)
- : (Promise Positive-Byte)
#<promise:eval:52:0>

(Futureof t)

Returns the type of future which produce a value of type t when touched.

(Sequenceof t t ...)

Returns the type of sequence that produces (Values t t ...) on each iteration. E.g.,
(Sequenceof String) is a sequence of strings, (Sequenceof Number String) is a se-
quence which produces two values—a number and a string—on each iteration, etc.

SequenceTop

Is the type of a sequence with unknown element type and is the supertype of all se-
quences. This type typically appears in programs via the combination of ocurrence typing
ang sequence?.

Example:

> (lambda: ([x : Any]) (if (sequence? x) x (error "not a
sequence!")))
- : (-> Any SequenceTop)
#<procedure>

Added in version 1.10 of package typed-racket-lib.

(Custodian-Boxof t)

Returns the type of custodian box of t .

(Thread-Cellof t)

Returns the type of thread cell of t .

19

Thread-CellTop

Is the type of a thread cell with unknown element type and is the supertype of all thread cell
types. This type typically appears in programs via the combination of occurrence typing and
thread-cell?.

Example:

> (lambda: ([x : Any]) (if (thread-cell? x) x (error "not a thread
cell!")))
- : (-> Any Thread-CellTop)
#<procedure>

(Weak-Boxof t)

Returns the type for a weak box whose value is of type t .

Examples:

> (make-weak-box 5)
- : (Weak-Boxof Integer)
#<weak-box>
> (weak-box-value (make-weak-box 5))
- : (U False Integer)
5

Weak-BoxTop

Is the type of a weak box with an unknown element type and is the supertype of all weak
box types. This type typically appears in programs via the combination of occurrence typing
and weak-box?.

Example:

> (lambda: ([x : Any]) (if (weak-box? x) x (error "not a box!")))
- : (-> Any Weak-BoxTop)
#<procedure>

(Ephemeronof t)

Returns the type of an ephemeron whose value is of type t .

(Evtof t)

20

A synchronizable event whose synchronization result is of type t .

Examples:

> always-evt
- : (Rec x (Evtof x))
#<always-evt>
> (system-idle-evt)
- : (Evtof Void)
#<system-idle-evt>
> (ann (thread (λ () (displayln "hello world"))) (Evtof Thread))
- : (Evtof Thread)
hello world
#<thread>

1.4 Syntax Objects

The following type constructors and types respectively create and represent syntax objects
and their content.

(Syntaxof t)

Returns the type of syntax object with content of type t . Applying syntax-e to a value of
type (Syntaxof t) produces a value of type t .

Identifier

A syntax object containing a symbol. Equivalent to (Syntaxof Symbol).

Syntax

A syntax object containing only symbols, keywords, strings, byte strings, characters,
booleans, numbers, boxes containing Syntax, vectors of Syntax, or (possibly improper)
lists of Syntax. Equivalent to (Syntaxof Syntax-E).

Syntax-E

The content of syntax objects of type Syntax. Applying syntax-e to a value of type Syn-
tax produces a value of type Syntax-E.

(Sexpof t)

Returns the recursive union of t with symbols, keywords, strings, byte strings, characters,
booleans, numbers, boxes, vectors, and (possibly improper) lists.

21

Sexp

Applying syntax->datum to a value of type Syntax produces a value of type Sexp. Equiv-
alent to (Sexpof Nothing).

Datum

Applying datum->syntax to a value of type Datum produces a value of type Syntax.
Equivalent to (Sexpof Syntax).

1.5 Control

The following type constructors and type respectively create and represent prompt tags and
keys for continuation marks for use with delimited continuation functions and continuation
mark functions.

(Prompt-Tagof s t)

Returns the type of a prompt tag to be used in a continuation prompt whose body produces
the type s and whose handler has the type t . The type t must be a function type.

The domain of t determines the type of the values that can be aborted, using abort-
current-continuation, to a prompt with this prompt tag.

Example:

> (make-continuation-prompt-tag 'prompt-tag)
- : (Prompt-Tagof Any Any)
#<continuation-prompt-tag:prompt-tag>

Prompt-TagTop

is the type of a prompt tag with unknown body and handler types and is the supertype of all
prompt tag types. This type typically appears in programs via the combination of occurrence
typing and continuation-prompt-tag?.

Example:

> (lambda: ([x : Any]) (if (continuation-prompt-
tag? x) x (error "not a prompt tag!")))
- : (-> Any Prompt-TagTop)
#<procedure>

22

(Continuation-Mark-Keyof t)

Returns the type of a continuation mark key that is used for continuation mark operations
such as with-continuation-mark and continuation-mark-set->list. The type t
represents the type of the data that is stored in the continuation mark with this key.

Example:

> (make-continuation-mark-key 'mark-key)
- : (Continuation-Mark-Keyof Any)
#<continuation-mark-key>

Continuation-Mark-KeyTop

Is the type of a continuation mark key with unknown element type and is the supertype of all
continuation mark key types. This type typically appears in programs via the combination
of occurrence typing and continuation-mark-key?.

Example:

> (lambda: ([x : Any]) (if (continuation-mark-
key? x) x (error "not a mark key!")))
- : (-> Any Continuation-Mark-KeyTop)
#<procedure>

1.6 Other Type Constructors

(-> dom ... rng opt-proposition)
(-> dom ... rest * rng)
(-> dom ... rest ooo bound rng)
(dom ... -> rng opt-proposition)
(dom ... rest * -> rng)
(dom ... rest ooo bound -> rng)

23

ooo = ...

dom = type
| mandatory-kw
| opt-kw

rng = type
| (Some (a ...) type : #:+ proposition)
| (Values type ...)

mandatory-kw = keyword type

opt-kw = [keyword type]

opt-proposition =
| : type
| : pos-proposition

neg-proposition
object

pos-proposition =
| #:+ proposition ...

neg-proposition =
| #:- proposition ...

object =
| #:object index

proposition = Top
| Bot
| type
| (! type)
| (type @ path-elem ... index)
| (! type @ path-elem ... index)
| (and proposition ...)
| (or proposition ...)
| (implies proposition ...)

path-elem = car
| cdr

index = positive-integer
| (positive-integer positive-integer)
| identifier

24

The type of functions from the (possibly-empty) sequence dom to the rng type.

Examples:

> (λ ([x : Number]) x)
- : (-> Number Number)
#<procedure>
> (λ () 'hello)
- : (-> 'hello)
#<procedure>

The second form specifies a uniform rest argument of type rest , and the third form specifies
a non-uniform rest argument of type rest with bound bound . The bound refers to the type
variable that is in scope within the rest argument type.

Examples:

> (λ ([x : Number] y : String *) (length y))
- : (-> Number String * Index)
#<procedure>
> ormap
- : (All (a c b ...)

(-> (-> a b ... b c) (Listof a) (Listof b) ... b (U False
c)))
#<procedure:ormap>

In the third form, the ... introduced by ooo is literal, and bound must be an identifier
denoting a type variable.

The doms can include both mandatory and optional keyword arguments. Mandatory keyword
arguments are a pair of keyword and type, while optional arguments are surrounded by a pair
of parentheses.

Examples:

> (:print-type file->string)
(-> Path-String [#:mode (U 'binary 'text)] String)
> (: is-zero? : (-> Number #:equality (-> Number Number Any) [#:zero Number] Any))
> (define (is-zero? n #:equality equality #:zero [zero 0])

(equality n zero))
> (is-zero? 2 #:equality =)
- : Any
#f
> (is-zero? 2 #:equality eq? #:zero 2.0)
- : Any
#f

25

When opt-proposition is provided, it specifies the proposition for the function type (for
an introduction to propositions in Typed Racket, see §5.2 “Propositions and Predicates”).
For almost all use cases, only the simplest form of propositions, with a single type after a :,
are necessary:

Example:

> string?
- : (-> Any Boolean : String)
#<procedure:string?>

The proposition specifies that when (string? x) evaluates to a true value for a conditional
branch, the variable x in that branch can be assumed to have type String. Likewise, if the
expression evaluates to #f in a branch, the variable does not have type String.

In some cases, asymmetric type information is useful in the propositions. For example, the
filter function’s first argument is specified with only a positive proposition:

Example:

> filter
- : (All (a b)

(case->
(-> (-> a Any : #:+ b) (Listof a) (Listof b))
(-> (-> a Any) (Listof a) (Listof a))))

#<procedure:filter>

The use of #:+ indicates that when the function applied to a variable evaluates to a true
value, the given type can be assumed for the variable. However, the type-checker gains no
information in branches in which the result is #f.

Conversely, #:- specifies that a function provides information for the false branch of a con-
ditional.

The other proposition cases are rarely needed, but the grammar documents them for com-
pleteness. They correspond to logical operations on the propositions.

The type of functions can also be specified with an infix -> which comes immediately before
the rng type. The fourth through sixth forms match the first three cases, but with the infix
style of arrow.

Examples:

> (: add2 (Number -> Number))
> (define (add2 n) (+ n 2))

Currently, because
explicit packing
operations for
existential types are
not supported,
existential type
results are only
used to annotate
accessors for
Struct-Property

26

(Some (a ...) type : #:+ proposition) for rng specifies an existential type re-
sult, where the type variables a ... may appear in type and opt-proposition . Un-
packing the existential type result is done automatically while checking application of the
function.

Changed in version 1.12 of package typed-racket-lib: Added existential type results

(->* (mandatory-dom ...) optional-doms rest rng)

mandatory-dom = type
| keyword type

optional-doms =
| (optional-dom ...)

optional-dom = type
| keyword type

rest =
| #:rest type
| #:rest-star (type ...)

Constructs the type of functions with optional or rest arguments. The first list of
mandatory-doms correspond to mandatory argument types. The list optional-doms , if
provided, specifies the optional argument types.

Examples:

> (: append-bar (->* (String) (Positive-Integer) String))
> (define (append-bar str [how-many 1])

(apply string-append str (make-list how-many "bar")))

If provided, the #:rest type specifies the type of elements in the rest argument list.

Examples:

> (: +all (->* (Integer) #:rest Integer (Listof Integer)))
> (define (+all inc . rst)

(map (λ ([x : Integer]) (+ x inc)) rst))
> (+all 20 1 2 3)
- : (Listof Integer)
'(21 22 23)

A #:rest-star (type ...) specifies the rest list is a sequence of types which occurs 0
or more times (i.e. the Kleene closure of the sequence).

Examples:

27

> (: print-name+ages (->* () #:rest-star (String Natural) Void))
> (define (print-name+ages . names+ages)

(let loop ([names+ages : (Rec x (U Null (List* String Natural x))) names+ages])
(when (pair? names+ages)

(printf "„a is „a years old!\n"
(first names+ages)
(second names+ages))

(loop (cddr names+ages))))
(printf "done printing „a ages" (/ (length names+ages) 2)))

> (print-name+ages)
done printing 0 ages
> (print-name+ages "Charlotte" 8 "Harrison" 5 "Sydney" 3)
Charlotte is 8 years old!
Harrison is 5 years old!
Sydney is 3 years old!
done printing 3 ages

Both the mandatory and optional argument lists may contain keywords paired with types.

Examples:

> (: kw-f (->* (#:x Integer) (#:y Integer) Integer))
> (define (kw-f #:x x #:y [y 0]) (+ x y))

The syntax for this type constructor matches the syntax of the ->* contract combinator, but
with types instead of contracts.

Top
Bot

These are propositions that can be used with ->. Top is the propositions with no information.
Bot is the propositions which means the result cannot happen.

Procedure

is the supertype of all function types. The Procedure type corresponds to values that sat-
isfy the procedure? predicate. Because this type encodes only the fact that the value is a
procedure, and not its argument types or even arity, the type-checker cannot allow values of
this type to be applied.

For the types of functions with known arity and argument types, see the -> type constructor.

Examples:

> (: my-list Procedure)

28

> (define my-list list)
> (my-list "zwiebelkuchen" "socca")
eval:91:0: Type Checker: cannot apply a function with
unknown arity;

function `my-list' has type Procedure which cannot be
applied

in: "socca"

(U t ...)

is the union of the types t

Example:

> (λ ([x : Real]) (if (> 0 x) "yes" 'no))
- : (-> Real (U 'no String))
#<procedure>

(X t ...)

is the intersection of the types t

Example:

> ((λ #:forall (A) ([x : (X Symbol A)]) x) 'foo)
- : 'foo
'foo

(case-> fun-ty ...)

is a function that behaves like all of the fun-tys, considered in order from first to last. The
fun-tys must all be non-dependent function types (i.e. no preconditions or dependencies
between arguments are currently allowed).

Example:

> (: add-map : (case->
[(Listof Integer) -> (Listof Integer)]
[(Listof Integer) (Listof Integer) -> (Listof Integer)]))

For the definition of add-map look into case-lambda:.

(t t1 t2 ...)

29

is the instantiation of the parametric type t at types t1 t2 ...

(All (a ...) t)
(All (a ... a ooo) t)

is a parameterization of type t , with type variables a If t is a function type constructed
with infix ->, the outer pair of parentheses around the function type may be omitted.

Examples:

> (: list-length : (All (A) (Listof A) -> Natural))
> (define (list-length lst)

(if (null? lst)
0
(add1 (list-length (cdr lst)))))

> (list-length (list 1 2 3))
- : Integer [more precisely: Nonnegative-Integer]
3

(Some (a ...) t)

See existential type results.

Added in version 1.10 of package typed-racket-lib.

(Values t ...)

Returns the type of a sequence of multiple values, with types t This can only appear
as the return type of a function.

Example:

> (values 1 2 3)
- : (values Integer Integer Integer) [more precisely: (Values One
Positive-Byte Positive-Byte)]
1
2
3

Note that a type variable cannot be instantiated with a (Values) type. For example,
the type (All (A) (-> A)) describes a thunk that returns exactly one value.

v

30

where v is a number, boolean or string, is the singleton type containing only that value

(quote val)

where val is a Racket value, is the singleton type containing only that value

i

where i is an identifier can be a reference to a type name or a type variable

(Rec n t)

is a recursive type where n is bound to the recursive type in the body t

Examples:

> (define-type IntList (Rec List (Pair Integer (U List Null))))
> (define-type (List A) (Rec List (Pair A (U List Null))))

(Struct st)

is a type which is a supertype of all instances of the potentially-polymorphic structure type
st . Note that structure accessors for st will not accept (Struct st) as an argument.

(Struct-Type st)

is a type for the structure type descriptor value for the structure type st . Values of this type
are used with reflective operations such as struct-type-info.

Examples:

> struct:arity-at-least
- : (StructType arity-at-least)
#<struct-type:arity-at-least>
> (struct-type-info struct:arity-at-least)
- : (values

Symbol
Integer
Integer
(-> arity-at-least Nonnegative-Integer Any)
(-> arity-at-least Nonnegative-Integer Nothing Void)
(Listof Nonnegative-Integer)
(U False Struct-TypeTop)

31

Boolean)
[more precisely: (values

Symbol
Nonnegative-Integer
Nonnegative-Integer
(-> arity-at-least Nonnegative-Integer Any)
(-> arity-at-least Nonnegative-Integer Nothing

Void)
(Listof Nonnegative-Integer)
(U False Struct-TypeTop)
Boolean)]

'arity-at-least
1
0
#<procedure:arity-at-least-ref>
#<procedure:arity-at-least-set!>
'(0)
#f
#f

Struct-TypeTop

is the supertype of all types for structure type descriptor values. The corresponding structure
type is unknown for values of this top type.

Example:

> (struct-info (arity-at-least 0))
- : (values (U False Struct-TypeTop) Boolean)
#<struct-type:arity-at-least>
#f

(Prefab key type ...)

Describes a prefab structure with the given (implicitly quoted) prefab key key and specified
field types.

Prefabs are more-or-less tagged polymorphic tuples which can be directly serialized and
whose fields can be accessed by anyone. Subtyping is covariant for immutable fields and
invariant for mutable fields.

When a prefab struct is defined with struct the struct name is bound at the type-level to the
Prefab type with the corresponding key and field types and the constructor expects types
corresponding to those declared for each field. The defined predicate, however, only tests
whether a value is a prefab structure with the same key and number of fields, but does not
inspect the fields’ values.

32

Examples:

> (struct person ([name : String]) #:prefab)
> person
- : (-> String person)
#<procedure:person>
> person?
- : (-> Any Boolean : (Prefab person Any))
#<procedure:person?>
> person-name
- : (All (x) (case-> (-> (Prefab person x) x) (-> (Prefab person
Any) Any)))
#<procedure:person-name>
> (person "Jim")
- : (Prefab person String)
'#s(person "Jim")
> (ann '#s(person "Dwight") person)
- : (Prefab person String)
'#s(person "Dwight")
> (ann '#s(person "Pam") (Prefab person String))
- : person
'#s(person "Pam")
> (ann '#s(person "Michael") (Prefab person Any))
- : (Prefab person Any)
'#s(person "Michael")
> (person 'Toby)
eval:112:0: Type Checker: type mismatch

expected: String
given: 'Toby
in: Toby

> (ann #s(person Toby) (Prefab person String))
eval:113:0: Type Checker: type mismatch

expected: person
given: (Prefab person 'Toby)
in: String

> (ann '#s(person Toby) (Prefab person Symbol))
- : (Prefab person Symbol)
'#s(person Toby)
> (person? '#s(person "Michael"))
- : True
#t
> (person? '#s(person Toby))
- : True
#t
> (struct employee person ([schrute-bucks : Natural]) #:prefab)
> (employee "Oscar" 10000)

33

- : (Prefab (employee person 1) String Nonnegative-Integer)
'#s((employee person 1) "Oscar" 10000)
> (ann '#s((employee person 1) "Oscar" 10000) employee)
- : (Prefab (employee person 1) String Nonnegative-Integer)
'#s((employee person 1) "Oscar" 10000)
> (ann '#s((employee person 1) "Oscar" 10000)

(Prefab (employee person 1) String Natural))
- : employee
'#s((employee person 1) "Oscar" 10000)
> (person? '#s((employee person 1) "Oscar" 10000))
- : True
#t
> (employee? '#s((employee person 1) "Oscar" 10000))
- : True
#t
> (employee 'Toby -1)
eval:123:0: Type Checker: type mismatch

expected: String
given: 'Toby
in: -1

> (ann '#s((employee person 1) Toby -1)
(Prefab (employee person 1) Symbol Integer))

- : (Prefab (employee person 1) Symbol Integer)
'#s((employee person 1) Toby -1)
> (person? '#s((employee person 1) Toby -1))
- : True
#t
> (employee? '#s((employee person 1) Toby -1))
- : True
#t

(PrefabTop key field-count)

Describes all prefab types with the (implicitly quoted) prefab-key key and field-count
many fields.

For immutable prefabs this is equivalent to (Prefab key Any ...) with field-count
many occurrences of Any. For mutable prefabs, this describes a prefab that can be read from
but not written to (since we do not know at what type other code may have the fields typed
at).

Examples:

> (struct point ([x : Number] [y : Number])
#:prefab
#:mutable)

34

> point
- : (-> Number Number point)
#<procedure:point>
> point-x
- : (All (a b)

(case->
(-> (Prefab (point #(0 1)) a b) a)
(-> (PrefabTop (point #(0 1)) 2) Any)))

#<procedure:point-x>
> point-y
- : (All (a b)

(case->
(-> (Prefab (point #(0 1)) a b) b)
(-> (PrefabTop (point #(0 1)) 2) Any)))

#<procedure:point-y>
> point?
- : (-> Any Boolean : (PrefabTop (point #(0 1)) 2))
#<procedure:point?>
> (define (maybe-read-x p)

(if (point? p)
(ann (point-x p) Any)
'not-a-point))

> (define (read-some-x-num p)
(if (point? p)

(ann (point-x p) Number)
-1))

eval:133:0: Type Checker: Polymorphic function `point-x'
could not be applied to arguments:
Types: (PrefabTop (point #(0 1)) 2) -ą Any
Arguments: (PrefabTop (point #(0 1)) 2)
Expected result: Number

in: -1

Added in version 1.7 of package typed-racket-lib.

(Struct-Property ty)

Describes a property that can be attached to a structure type. The property value must match
the type ty .

Example:

> (:print-type prop:input-port)
(Struct-Property (U Exact-Nonnegative-Integer Input-Port))

35

Added in version 1.10 of package typed-racket-lib.

Self

This type can only appear in a Struct-Property type. A struct property value is attached
to an instance of a structure type; the Self type refers to this instance.

Example:

> (:print-type prop:custom-write)
(Struct-Property (-> Self Output-Port (U Boolean One Zero) AnyVal-
ues))

Added in version 1.10 of package typed-racket-lib.

Imp

This type can only appear in a Struct-Property type. An Imp value may be a structure
subtype of the Self value, or another instance created by the same struct constructor.

Example:

> (:print-type prop:equal+hash)
(Struct-Property
(List
(-> Self Imp (-> Any Any Boolean) Any)
(-> Self (-> Any Integer) Integer)
(-> Self (-> Any Integer) Integer)))

Added in version 1.10 of package typed-racket-lib.

(Has-Struct-Property prop)

This type describes an instance of a structure type associcated with a Struct-Property
named prop .

Union

An alias for U.

Intersection

An alias for X.

36

Ñ

An alias for ->.

caseÑ

An alias for case->.

@

An alias for All.

1.7 Other Types

(Option t)

Either t or #f

(Opaque t)

A type constructed using the #:opaque clause of require/typed.

37

2 Special Form Reference

Typed Racket provides a variety of special forms above and beyond those in Racket. They
are used for annotating variables with types, creating new types, and annotating expressions.

2.1 Binding Forms

loop , f , a , and var are names, type is a type. e is an expression and body is a block.

(let maybe-tvars (binding ...) maybe-ret . body)
(let loop maybe-ret (binding ...) . body)

binding = [var e]
| [var : type e]

maybe-tvars =
| #:forall (tvar ...)
| #:@ (tvar ...)

maybe-ret =
| : type0

Local bindings, like let, each with associated types.

In the first form, maybe-ret can only appear with maybe-tvars , so if you only want to
specify the return type, you should set maybe-tvars to #:forall ().

Examples:

> (let ([x : Zero 0]) x)
- : Integer [more precisely: Zero]
0
> (let #:forall () ([x : Zero 0]) : Natural x)
- : Integer [more precisely: Zero]
0
> (let ([x : Zero 0]) : Natural x)
eval:4:0: :: bad syntax

in: :

If polymorphic type variables are provided, they are bound in the type expressions for vari-
able bindings.

Example:

38

> (let #:forall (A) ([x : A 0]) x)
- : Integer [more precisely: Zero]
0

In the second form, type0 is the type of the result of loop (and thus the result of the entire
expression as well as the final expression in body). Type annotations are optional.

Examples:

> (: filter-even (-> (Listof Natural) (Listof Natural) (Listof Natural)))
> (define (filter-even lst accum)

(if (null? lst)
accum
(let ([first : Natural (car lst)]

[rest : (Listof Natural) (cdr lst)])
(if (even? first)

(filter-even rest (cons first accum))
(filter-even rest accum)))))

> (filter-even (list 1 2 3 4 5 6) null)
- : (Listof Nonnegative-Integer)
'(6 4 2)

Examples:

> (: filter-even-loop (-> (Listof Natural) (Listof Natural)))
> (define (filter-even-loop lst)

(let loop : (Listof Natural)
([accum : (Listof Natural) null]
[lst : (Listof Natural) lst])

(cond
[(null? lst) accum]
[(even? (car lst)) (loop (cons (car lst) accum) (cdr lst))]
[else (loop accum (cdr lst))])))

> (filter-even-loop (list 1 2 3 4))
- : (Listof Nonnegative-Integer)
'(4 2)

(letrec (binding ...) . body)
(let* (binding ...) . body)
(let-values ([(var+type ...) e] ...) . body)
(letrec-values ([(var+type ...) e] ...) . body)
(let*-values ([(var+type ...) e] ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-
values. As with let, type annotations are optional.

39

(let/cc v : t . body)
(let/ec v : t . body)

Type-annotated versions of let/cc and let/ec. As with let, the type annotation is op-
tional.

2.2 Anonymous Functions

(lambda maybe-tvars formals maybe-ret . body)

formals = (formal ...)
| (formal rst)

formal = var
| [var default-expr]
| [var : type]
| [var : type default-expr]
| keyword var
| keyword [var : type]
| keyword [var : type default-expr]

rst = var
| [var : type *]
| [var : type ooo bound]

maybe-tvars =
| #:forall (tvar ...)
| #:@ (tvar ...)
| #:forall (tvar ... ooo)
| #:@ (tvar ... ooo)

maybe-ret =
| : type

Constructs an anonymous function like the lambda form from racket/base, but allows
type annotations on the formal arguments. If a type annotation is left out, the formal will
have the type Any.

Examples:

> (lambda ([x : String]) (string-append x "bar"))
- : (-> String String)
#<procedure>

40

> (lambda (x [y : Integer]) (add1 y))
- : (-> Any Integer Integer)
#<procedure>
> (lambda (x) x)
- : (-> Any Any)
#<procedure>

Type annotations may also be specified for keyword and optional arguments:

Examples:

> (lambda ([x : String "foo"]) (string-append x "bar"))
- : (->* () (String) (String : (Top | Bot)))
#<procedure:eval:15:0>
> (lambda (#:x [x : String]) (string-append x "bar"))
- : (-> #:x String String)
#<procedure:eval:16:0>
> (lambda (x #:y [y : Integer 0]) (add1 y))
- : (-> Any [#:y Integer] Integer)
#<procedure:eval:17:0>
> (lambda ([x 'default]) x)
- : (->* () (Any) Any)
#<procedure:eval:18:0>

The lambda expression may also specify polymorphic type variables that are bound for the
type expressions in the formals.

Examples:

> (lambda #:forall (A) ([x : A]) x)
- : (All (A) (-> A A))
#<procedure>
> (lambda #:@ (A) ([x : A]) x)
- : (All (A) (-> A A))
#<procedure>

In addition, a type may optionally be specified for the rest argument with either a uniform
type or using a polymorphic type. In the former case, the rest argument is given the type
(Listof type) where type is the provided type annotation.

Examples:

> (lambda (x . rst) rst)
- : (-> Any Any * (Listof Any))
#<procedure>

41

> (lambda (x rst : Integer *) rst)
- : (-> Any Integer * (Listof Integer))
#<procedure>
> (lambda #:forall (A ...) (x rst : A ... A) rst)
- : (All (A ...) (-> Any A ... A (List A ... A)))
#<procedure>

(λ maybe-tvars formals maybe-ret . body)

An alias for the same form using lambda.

(case-lambda maybe-tvars [formals body] ...)

A function of multiple arities. The formals are identical to those accepted by the lambda
form except that keyword and optional arguments are not allowed.

Polymorphic type variables, if provided, are bound in the type expressions in the formals.

Note that each formals must have a different arity.

Example:

> (define add-map
(case-lambda
[([lst : (Listof Integer)])
(map add1 lst)]

[([lst1 : (Listof Integer)]
[lst2 : (Listof Integer)])

(map + lst1 lst2)]))

To see how to declare a type for add-map, see the case-> type constructor.

2.3 Loops

(for void-ann-maybe (for-clause ...) void-ann-maybe expr ...+)

42

void-ann-maybe =
| : Void

type-ann-maybe =
| : u

for-clause = [id : t seq-expr]
| [(binding ...) seq-expr]
| [id seq-expr]
| #:when guard

binding = id
| [id : t]

Like for from racket/base, but each id has the associated type t . The latter ann-maybe
will be used first, and then the previous one. Since the return type is always Void , annotating
the return type of a for form is optional. Type annotations in clauses are optional for all for
variants.

Examples:

> (for ([i '()]) i)
> (for : Void ([i '()]) i)
> (for ([i '()]) : Void i)
> (for : Void ([i '()]) : Void i)
> (for ([i '()]) : Any i)
eval:29:0: :: bad syntax

in: :
> (for/or : False ([i '()]) : False #f)
- : False
#f
> (for/or : Boolean ([i '()]) : False #f)
- : Boolean
#f
> (for/or : False ([i '()]) : Boolean #f)
eval:32:0: Type Checker: type mismatch

expected: False
given: Boolean
in: #f

(for/list type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/hash type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/hasheq type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for/hasheqv type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)

43

(for/hashalw type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for/vector type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for/or type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/sum type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/product type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for/last type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/set type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/list type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/hash type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/hasheq type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for*/hasheqv type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for*/hashalw type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for*/vector type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for*/or type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/sum type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/product type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)
(for*/last type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/set type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)

These behave like their non-annotated counterparts, with the exception that #:when clauses
can only appear as the last for-clause . The return value of the entire form must be of type
u. For example, a for/list form would be annotated with a Listof type. All annotations
are optional.

(for/and type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for/first type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/and type-ann-maybe (for-clause ...) type-ann-maybe expr ...+)
(for*/first type-ann-maybe (for-clause ...) type-ann-
maybe expr ...+)

Like the above, except they are not yet supported by the typechecker.

(for/lists type-ann-maybe
([id : t] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)

44

(for/fold type-ann-maybe
([id : t init-expr] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)
(for/foldr type-ann-maybe

([id : t init-expr] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)

maybe-result =
| #:result result-expr

These behave like their non-annotated counterparts. Unlike the above, #:when clauses can
be used freely with these.

Changed in version 1.11 of package typed-racket-lib: Added the #:result form.

Changed in version 1.12 of package typed-racket-lib: Added for/foldr.

(for* void-ann-maybe (for-clause ...) void-ann-maybe expr ...+)
(for*/lists type-ann-maybe

([id : t] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)
(for*/fold type-ann-maybe

([id : t init-expr] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)
(for*/foldr type-ann-maybe

([id : t init-expr] ... maybe-result)
(for-clause ...)
type-ann-maybe

expr ...+)

maybe-result =
| #:result result-expr

These behave like their non-annotated counterparts.

Changed in version 1.11 of package typed-racket-lib: Added the #:result form.

Changed in version 1.12 of package typed-racket-lib: Added for*/foldr.

45

(do : u ([id : t init-expr step-expr-maybe] ...)
(stop?-expr finish-expr ...)

expr ...+)

step-expr-maybe =
| step-expr

Like do from racket/base, but each id having the associated type t , and the final body
expr having the type u . Type annotations are optional.

2.4 Definitions

(define maybe-tvars v maybe-ann e)
(define maybe-tvars header maybe-ann . body)

header = (function-name . formals)
| (header . formals)

formals = (formal ...)
| (formal rst)

formal = var
| [var default-expr]
| [var : type]
| [var : type default-expr]
| keyword var
| keyword [var : type]
| keyword [var : type default-expr]

rst = var
| [var : type *]
| [var : type ooo bound]

maybe-tvars =
| #:forall (tvar ...)
| #:@ (tvar ...)
| #:forall (tvar ... ooo)
| #:@ (tvar ... ooo)

maybe-ann =
| : type

Like define from racket/base, but allows optional type annotations for the variables.

46

The first form defines a variable v to the result of evaluating the expression e . The variable
may have an optional type annotation.

Examples:

> (define foo "foo")
> (define bar : Integer 10)

If polymorphic type variables are provided, then they are bound for use in the type annota-
tion.

Example:

> (define #:forall (A) mt-seq : (Sequenceof A) empty-sequence)

The second form allows the definition of functions with optional type annotations on any
variables. If a return type annotation is provided, it is used to check the result of the function.

Like lambda, optional and keyword arguments are supported.

Examples:

> (define (add [first : Integer]
[second : Integer]) : Integer

(+ first second))
> (define #:forall (A)

(poly-app [func : (A A -> A)]
[first : A]
[second : A]) : A

(func first second))

The function definition form also allows curried function arguments with corresponding type
annotations.

Examples:

> (define ((addx [x : Number]) [y : Number]) (+ x y))
> (define add2 (addx 2))
> (add2 5)
- : Number
7

Note that unlike define from racket/base, define does not bind functions with keyword
arguments to static information about those functions.

47

2.5 Structure Definitions

(struct maybe-type-vars name-spec ([f : t] ...) options ...)

maybe-type-vars =
| (v ...)

name-spec = name-id
| name-id parent

options = #:transparent
| #:mutable
| #:prefab
| #:constructor-name constructor-id
| #:extra-constructor-name constructor-id
| #:property property-id property-expr
| #:type-name type-id

Defines a structure with the name name-id , where the fields f have types t , similar to the
behavior of struct from racket/base.

Examples:

> (struct camelia-sinensis ([age : Integer]))
> (struct camelia-sinensis-assamica camelia-sinensis ())

If type-id is not specified, name-id will be used for the name of the type associated with
instances of the declared structure. Otherwise, type-id will be used for the type name, and
using name-id in this case will cause a type error.

Examples:

> (struct apple () #:type-name BigApple)
> (ann (apple) BigApple)
- : BigApple
#<apple>
> (ann (apple) apple)
eval:45:0: Type Checker: parse error in type;

type name `apple' is unbound
in: apple

type-id can be also used as an alias to name-id , i.e. it will be a transformer binding that
encapsulates the same structure information as name-id does.

Examples:

48

> (struct avocado ([amount : Integer]) #:type-name Avocado)
> (struct hass-avocado Avocado ())
> (struct-copy Avocado (avocado 0) [amount 42])
- : Avocado
#<avocado>

When parent is present, the structure is a substructure of parent .

When maybe-type-vars is present, the structure is polymorphic in the type variables v .
If parent is also a polymorphic struct, then there must be at least as many type variables
as in the parent type, and the parent type is instantiated with a prefix of the type variables
matching the amount it needs.

Examples:

> (struct (X Y) 2-tuple ([first : X] [second : Y]))
> (struct (X Y Z) 3-tuple 2-tuple ([third : Z]))

Options provided have the same meaning as for the struct form from racket/base (with
the exception of #:type-name, as described above).

A prefab structure type declaration will bind the given name-id or type-id to a Pre-
fab type. Unlike the struct form from racket/base, a non-prefab structure type cannot
extend a prefab structure type.

Examples:

> (struct a-prefab ([x : String]) #:prefab)
> (:type a-prefab)
(Prefab a-prefab String)
> (struct not-allowed a-prefab ())
eval:53:0: Type Checker: Error in macro expansion -- parent
type not a valid structure name: a-prefab

in: ()

Changed in version 1.4 of package typed-racket-lib: Added the #:type-name option.

(define-struct maybe-type-vars name-spec ([f : t] ...) options ...)

49

maybe-type-vars =
| (v ...)

name-spec = name-id
| (name-id parent)

options = #:transparent
| #:mutable
| #:type-name type-id

Legacy version of struct, corresponding to define-struct from racket/base.

Changed in version 1.4 of package typed-racket-lib: Added the #:type-name option.

2.6 Names for Types

(define-type name t maybe-omit-def)
(define-type (name v ...) t maybe-omit-def)

maybe-omit-def = #:omit-define-syntaxes
|

The first form defines name as type, with the same meaning as t . The second form defines
name to be a type constructor, whose parameters are v ... and body is t . If no parameters
are declared, the defined type constructor is equivalent to (define-type name t maybe-
omit-def). Type names may refer to other types defined in the same or enclosing scopes.

Examples:

> (define-type IntStr (U Integer String))
> (define-type (ListofPairs A) (Listof (Pair A A)))

If #:omit-define-syntaxes is specified, no definition of name is created. In this case,
some other definition of name is necessary.

If the body of the type definition refers to itself, then the type definition is recursive. Recur-
sion may also occur mutually, if a type refers to a chain of other types that eventually refers
back to itself.

Examples:

> (define-type BT (U Number (Pair BT BT)))
> (let ()

(define-type (Even A) (U Null (Pairof A (Odd A))))

50

(define-type (Odd A) (Pairof A (Even A)))
(: even-lst (Even Integer))
(define even-lst '(1 2))
even-lst)

- : (Even Integer)
'(1 2)

However, the recursive reference is only allowed when it is passed to a productive type
constructor:

Examples:

> (define-type Foo Foo)
eval:58:0: Type Checker: Error in macro expansion -- parse
error in type;

not in a productive position
variable: Foo
in: Foo

> (define-type Bar (U Bar False))
eval:59:0: Type Checker: Error in macro expansion -- parse
error in type;

not in a productive position
variable: Bar
in: False

> (define-type Bar (U (Listof Bar) False))

2.7 Generating Predicates Automatically

(make-predicate t)

Evaluates to a predicate for the type t , with the type (Any -> Boolean : t). t may
not contain function types, or types that may refer to mutable data such as (Vectorof
Integer).

(define-predicate name t)

Equivalent to (define name (make-predicate t)).

2.8 Type Annotation and Instantiation

(: v t)
(: v : t)

51

This declares that v has type t . The definition of v must appear after this declaration. This
can be used anywhere a definition form may be used.

Examples:

> (: var1 Integer)
> (: var2 String)

The second form allows type annotations to elide one level of parentheses for function types.

Examples:

> (: var3 : -> Integer)
> (: var4 : String -> Integer)

(provide: [v t] ...)

This declares that the vs have the types t , and also provides all of the vs.

#{v : t}

This declares that the variable v has type t . This is legal only for binding occurrences of v .

If a dispatch macro on #\{ already exists in the current readtable, this syntax will be disabled.

(ann e t)

Ensure that e has type t , or some subtype. The entire expression has type t . This is legal
only in expression contexts.

#{e :: t}

A reader abbreviation for (ann e t).

If a dispatch macro on #\{ already exists in the current readtable, this syntax will be disabled.

(cast e t)

The entire expression has the type t , while e may have any type. The value of the entire
expression is the value returned by e , protected by a contract ensuring that it has type t .
This is legal only in expression contexts.

Examples:

52

> (cast 3 Integer)
- : Integer
3
> (cast 3 String)
broke its own contract

promised: string?
produced: 3
in: string?
contract from: cast
blaming: cast

(assuming the contract is correct)
at: eval:66:0

> (cast (lambda ([x : Any]) x) (String -> String))
- : (-> String String)
#<procedure:val>
> ((cast (lambda ([x : Any]) x) (String -> String)) "hello")
- : String
"hello"

The value is actually protected with two contracts. The second contract checks the new type,
but the first contract is put there to enforce the old type, to protect higher-order uses of the
value.

Examples:

> ((cast (lambda ([s : String]) s) (Any -> Any)) "hello")
- : Any
"hello"
> ((cast (lambda ([s : String]) s) (Any -> Any)) 5)
contract violation

expected: string?
given: 5
in: the 1st argument of

(-ą string? any)
contract from: typed-world
blaming: cast

(assuming the contract is correct)
at: eval:70:0

castwill wrap the value e in a contract which will affect the runtime performance of reading
and updating the value. This is needed when e is a complex data type, such as a hash table.
However, when the type of the value can be checked using a simple predicate, consider using
assert instead.

(inst e t ...)
(inst e t ... t ooo bound)

53

Instantiate the type of e with types t ... or with the poly-dotted types t ... t ooo
bound . e must have a polymorphic type that can be applied to the supplied number of type
variables. For non-poly-dotted functions, however, fewer arguments can be provided and the
omitted types default to Any. inst is legal only in expression contexts.

Examples:

> (foldl (inst cons Integer Integer) null (list 1 2 3 4))
- : (Listof Integer)
'(4 3 2 1)
> (: my-cons (All (A B) (-> A B (Pairof A B))))
> (define my-cons cons)
> (: foldl-list : (All (α) (Listof α) -> (Listof α)))
> (define (foldl-list lst)

(foldl (inst my-cons α (Listof α)) null lst))
> (foldl-list (list "1" "2" "3" "4"))
- : (Listof String)
'("4" "3" "2" "1")
> (: foldr-list : (All (α) (Listof α) -> Any))
> (define (foldr-list lst)

(foldr (inst my-cons α) null lst))
> (foldr-list (list "1" "2" "3" "4"))
- : Any
'("1" "2" "3" "4")
> (: my-values : (All (A B ...) (A B ... -> (values A B ... B))))
> (define (my-values arg . args)

(apply (inst values A B ... B) arg args))

(row-inst e row)

Instantiate the row-polymorphic type of e with row . This is legal only in expression con-
texts.

Examples:

> (: id (All (r #:row)
(-> (Class #:row-var r) (Class #:row-var r))))

> (define (id cls) cls)
> ((row-inst id (Row (field [x Integer])))

(class object% (super-new) (field [x : Integer 0])))
- : (Class (field (x Integer)))
#<class:eval:84:0>

#{e @ t ...}

A reader abbreviation for (inst e t ...).

54

#{e @ t ... t ooo bound}

A reader abbreviation for (inst e t ... t ooo bound).

2.9 Require

Here, m is a module spec, pred is an identifier naming a predicate, and maybe-renamed is
an optionally-renamed identifier.

(require/typed m rt-clause ...)

rt-clause = [maybe-renamed t]
| [#:struct maybe-tvars name-id ([f : t] ...)

struct-option ...]
| [#:struct maybe-tvars (name-id parent) ([f : t] ...)

struct-option ...]
| [#:opaque t pred]
| [#:signature name ([id : t] ...)]

maybe-renamed = id
| (orig-id new-id)

maybe-tvars =
| (type-variable ...)

struct-option = #:constructor-name constructor-id
| #:extra-constructor-name constructor-id
| #:type-name type-id

This form requires identifiers from the module m, giving them the specified types.

The first case requires maybe-renamed , giving it type t .

The second and third cases require the struct with name name-id and creates a new type
with the name type-id, or name-id if no type-id is provided, with fields f ..., where
each field has type t . The third case allows a parent structure type to be specified. The
parent type must already be a structure type known to Typed Racket, either built-in or via
require/typed. The structure predicate has the appropriate Typed Racket filter type so
that it may be used as a predicate in if expressions in Typed Racket.

Examples:

> (module UNTYPED racket/base

55

(define n 100)

(struct IntTree
(elem left right))

(provide n (struct-out IntTree)))
> (module TYPED typed/racket

(require/typed 'UNTYPED
[n Natural]
[#:struct IntTree

([elem : Integer]
[left : IntTree]
[right : IntTree])]))

The fourth case defines a new opaque type t using the function pred as a predicate. (Module
m must provide pred and pred must have type (Any -> Boolean).) The type t is defined
as precisely those values that pred returns #t for. Opaque types must be required lexically
before they are used.

Examples:

> (require/typed racket/base
[#:opaque Evt evt?]
[alarm-evt (Real -> Evt)]
[sync (Evt -> Any)])

> evt?
- : (-> Any Boolean : Evt)
#<procedure:evt?>
> (sync (alarm-evt (+ 100 (current-inexact-milliseconds))))
- : Any
#<alarm-evt>

The #:signature keyword registers the required signature in the signature environment.
For more information on the use of signatures in Typed Racket see the documentation for
typed/racket/unit.

In all cases, the identifiers are protected with contracts which enforce the specified types. If
this contract fails, the module m is blamed.

Some types, notably the types of predicates such as number?, cannot be converted to con-
tracts and raise a static error when used in a require/typed form. Here is an example of
using case-> in require/typed.

(require/typed racket/base
[file-or-directory-modify-seconds
(case->

56

[String -> Exact-Nonnegative-Integer]
[String (Option Exact-Nonnegative-Integer)

->
(U Exact-Nonnegative-Integer Void)]

[String (Option Exact-Nonnegative-
Integer) (-> Any)

->
Any])])

file-or-directory-modify-seconds has some arguments which are optional, so we
need to use case->.

Changed in version 1.4 of package typed-racket-lib: Added the #:type-name option.
Changed in version 1.6: Added syntax for struct type variables, only works in unsafe requires.
Changed in version 1.12: Added default type Any for omitted inst args.

(require/typed/provide m rt-clause ...)

Similar to require/typed, but also provides the imported identifiers. Uses outside of a
module top-level raise an error.

Examples:

> (module evts typed/racket
(require/typed/provide racket/base

[#:opaque Evt evt?]
[alarm-evt (Real -> Evt)]
[sync (Evt -> Any)]))

> (require 'evts)
> (sync (alarm-evt (+ 100 (current-inexact-milliseconds))))
- : Any
#<alarm-evt>

2.10 Other Forms

with-handlers

Identical to with-handlers from racket/base but provides additional annotations to as-
sist the typechecker.

with-handlers*

Identical to with-handlers* from racket/base but provides additional annotations to
assist the typechecker.

Added in version 1.12 of package typed-racket-lib.

57

(default-continuation-prompt-tag)
Ñ (-> (Prompt-Tagof Any (Any -> Any)))

Identical to default-continuation-prompt-tag, but additionally protects the resulting
prompt tag with a contract that wraps higher-order values, such as functions, that are com-
municated with that prompt tag. If the wrapped value is used in untyped code, a contract
error will be raised.

Examples:

> (module typed typed/racket
(provide do-abort)
(: do-abort (-> Void))
(define (do-abort)

(abort-current-continuation
; typed, and thus contracted, prompt tag
(default-continuation-prompt-tag)
(λ: ([x : Integer]) (+ 1 x)))))

> (module untyped racket
(require 'typed)
(call-with-continuation-prompt

(λ () (do-abort))
(default-continuation-prompt-tag)
; the function cannot be passed an argument
(λ (f) (f 3))))

> (require 'untyped)
default-continuation-prompt-tag: broke its own contract

Attempted to use a higher-order value passed as `Any` in
untyped code: #ăprocedureą

in: the range of
(-ą (prompt-tag/c Any #:call/cc Any))

contract from: untyped
blaming: untyped

(assuming the contract is correct)

(#%module-begin form ...)

Legal only in a module begin context. The #%module-begin form of typed/racket
checks all the forms in the module, using the Typed Racket type checking rules. All provide
forms are rewritten to insert contracts where appropriate. Otherwise, the #%module-begin
form of typed/racket behaves like #%module-begin from racket.

(#%top-interaction . form)

Performs type checking of forms entered at the read-eval-print loop. The #%top-
interaction form also prints the type of form after type checking.

58

2.11 Special Structure Type Properties

prop:procedure : struct-type-property?

Unlike many other structure type properties, prop:procedure does not have predefined
types for its property values. When a structure is assocatied with prop:procedure, its
constructors’ return type is an intersection type of the structure type and a function type
specified by the property value.

Examples:

> (struct animal ([a : Number] [b : (-> Number Number)])
#:property prop:procedure
(struct-field-index b))

> (animal 2 add1)
- : (X (-> Number Number) animal)
#<procedure:add1>
> (struct plant ([a : Number])

#:property prop:procedure
(lambda ([me : plant] [a1 : String]) : Number

(+ (plant-a me) (string-length a1))))
> (plant 31)
- : (X (-> String Number) plant)
#<procedure:plant>

In other words, a
variable that refers
to a function is not
allowed

Unlike in Racket, only one of the following types of expressions are allowed in Typed
Racket: a nonnegative literal, (struct-index-field field-name), or a lambda expres-
sion. Note that in the last case, if the type annotation on the codomain is not supplied, the
type checker will use Any as the return type.

Similar to other structure type properties, when a structure’s base structure specifies a value
for prop:procedure, the structure inherits that value if it does not specify its own.

Examples:

> (struct cat animal ([c : Number]))
> (cat 2 add1 42)
- : (X (-> Number Number) cat)
#<procedure:add1>
> (struct a-cat cat ())
> (a-cat 2 add1 42)
- : (X (-> Number Number) a-cat)
#<procedure:add1>

Function types for procedural structures do not enforce subtyping relations. A substructure
can specify a different field index or a procedure that has a arity and/or types different from
its base structures for prop:procedure.

59

Examples:

> (struct b-cat cat ([d : (-> Number String)])
#:property prop:procedure (struct-field-index d))

> (b-cat 2 add1 42 number->string)
- : (X (-> Number String) b-cat)
#<procedure:number->string>

60

3 Libraries Provided With Typed Racket

The typed/racket language corresponds to the racket language—that is, any identifier
provided by racket, such as modulo, is available by default in typed/racket.

#lang typed/racket
(modulo 12 2)

The typed/racket/base language corresponds to the racket/base language.

Some libraries have counterparts in the typed collection, which provide the same exports as
the untyped versions. Such libraries include srfi/14, net/url, and many others.

#lang typed/racket
(require typed/srfi/14)
(char-set= (string->char-set "hello")

(string->char-set "olleh"))

Other libraries can be used with Typed Racket via require/typed.

#lang typed/racket
(require/typed version/check

[check-version (-> (U Symbol (Listof Any)))])
(check-version)

The following libraries are included with Typed Racket in the typed collection:

Typed for typed/file/gif

(require typed/file/gif) package: typed-racket-more

GIF-Stream

Describe a GIF stream, as produced by gif-start and accepted by the other functions from
file/gif.

GIF-Colormap

Type alias for a list of three-element (R,G,B) vectors representing an image.

61

https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/file/md5

(require typed/file/md5) package: typed-racket-lib

Typed for typed/file/sha1

(require typed/file/sha1) package: typed-racket-lib

Typed for typed/file/tar

(require typed/file/tar) package: typed-racket-lib

Typed for typed/framework

(require typed/framework) package: typed-racket-more

Typed for typed/json

(require typed/json) package: typed-racket-more

Unlike the untyped json library, typed/json always uses 'null to represent the JSON
“null” value. The functions exported by typed/json do not accept a #:null argument,
and they are not sensitive to the current value of the json-null parameter. The json-null
binding itself is not exported by typed/json.

JSExpr

Describes a jsexpr, where 'null is always used to represent the JSON “null” value.

Typed for typed/mred/mred

(require typed/mred/mred) package: typed-racket-more

Typed for typed/net/base64

(require typed/net/base64) package: typed-racket-more

62

https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/net/cgi

(require typed/net/cgi) package: typed-racket-more

Typed for typed/net/cookies

(require typed/net/cookies) package: typed-racket-more

Typed for typed/net/cookies/common

(require typed/net/cookies/common)
package: typed-racket-more

Added in version 1.10 of package typed-racket-lib.

Typed for typed/net/cookies/server

(require typed/net/cookies/server)
package: typed-racket-more

Cookie

Describes a server-side RFC 6265 HTTP cookie, as implemented by
net/cookies/server.

Added in version 1.10 of package typed-racket-lib.

Typed for typed/net/cookie

(require typed/net/cookie) package: typed-racket-more

NOTE: This library is deprecated; use typed/net/cookies, instead. This
library is deprecated for the same reasons that net/cookie is deprecated.

Cookie

Describes an HTTP cookie as implemented by net/cookie, which is deprecated in favor of
net/cookies.

63

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://tools.ietf.org/html/rfc6265.html
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/net/dns

(require typed/net/dns) package: typed-racket-more

Typed for typed/net/ftp

(require typed/net/ftp) package: typed-racket-more

FTP-Connection

Describes an open FTP connection.

Typed for typed/net/gifwrite

(require typed/net/gifwrite) package: typed-racket-more

Typed for typed/net/git-checkout

(require typed/net/git-checkout)
package: typed-racket-more

Typed for typed/net/head

(require typed/net/head) package: typed-racket-more

Typed for typed/net/http-client

(require typed/net/http-client) package: typed-racket-more

HTTP-Connection

Describes an HTTP connection, corresponding to http-conn?.

Typed for typed/net/imap

(require typed/net/imap) package: typed-racket-more

64

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

IMAP-Connection

Describes an IMAP connection.

Typed for typed/net/mime

(require typed/net/mime) package: typed-racket-more

Typed for typed/net/nntp

(require typed/net/nntp) package: typed-racket-more

Typed for typed/net/pop3

(require typed/net/pop3) package: typed-racket-more

Typed for typed/net/qp

(require typed/net/qp) package: typed-racket-more

Typed for typed/net/sendmail

(require typed/net/sendmail) package: typed-racket-more

Typed for typed/net/sendurl

(require typed/net/sendurl) package: typed-racket-more

Typed for typed/net/smtp

(require typed/net/smtp) package: typed-racket-more

65

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/net/uri-codec

(require typed/net/uri-codec) package: typed-racket-more

Typed for typed/net/url-connect

(require typed/net/url-connect) package: typed-racket-more

Typed for typed/net/url-structs

(require typed/net/url-structs) package: typed-racket-more

Path/Param

Describes the path/param struct from net/url-structs.

URL

Describes an url struct from net/url-structs.

Typed for typed/net/url

(require typed/net/url) package: typed-racket-more

In addition to defining the following types, this module also provides the HTTP-Connection
type defined by typed/net/http-client, and the URL and Path/Param types from
typed/net/url-structs.

URL-Exception

Describes exceptions raised by URL-related functions; corresponds to url-exception?.

PortT

Describes the functions head-pure-port, delete-pure-port, get-impure-port,
head-impure-port, and delete-impure-port.

PortT/Bytes

Like PortT, but describes the functions that make POST and PUT requests, which require
an additional byte-string argument for POST or PUT data.

66

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/openssl

(require typed/openssl) package: typed-racket-more

SSL-Protocol

Describes an SSL protocol, is an alias for (U 'auto 'sslv2-or-v3 'sslv2 'sslv3
'tls 'tls11 'tls12).

SSL-Server-Context
SSL-Client-Context

Describes an OpenSSL server or client context.

SSL-Context

Supertype of OpenSSL server and client contexts.

SSL-Listener

Describes an SSL listener, as produced by ssl-listen.

SSL-Verify-Source

Describes a verification source usable by ssl-load-verify-source! and the ssl-
default-verify-sources parameter.

Typed for typed/openssl/md5

(require typed/openssl/md5) package: typed-racket-more

Typed for typed/openssl/sha1

(require typed/openssl/sha1) package: typed-racket-more

67

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/racket/async-channel

(require typed/racket/async-channel)
package: typed-racket-more

Added in version 1.1 of package typed-racket-lib.

Typed for typed/racket/date

(require typed/racket/date) package: typed-racket-lib

Typed for typed/racket/draw

(require typed/racket/draw) package: typed-racket-more

LoadFileKind

Is an alias for (U 'unknown 'unknown/mask 'unknown/alpha 'gif 'gif/mask
'gif/alpha 'jpeg 'jpeg/alpha 'png 'png/mask 'png/alpha 'xbm
'xbm/alpha 'xpm 'xpm/alpha 'bmp 'bmp/alpha).

Typed for typed/racket/extflonum

(require typed/racket/extflonum)
package: typed-racket-more

(for/extflvector type-ann-maybe (for-clause ...) expr ...+)
(for*/extflvector type-ann-maybe (for-clause ...) expr ...+)

Typed for typed/racket/flonum

(require typed/racket/flonum) package: typed-racket-more

(for/flvector maybe-length (for-clause ...) expr ...+)
(for*/flvector maybe-length (for-clause ...) expr ...+)

68

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/racket/gui

(require typed/racket/gui) package: typed-racket-more

Edit-Op

Is an alias for (U 'undo 'redo 'clear 'cut 'copy 'paste 'kill 'select-all
'insert-text-box 'insert-pasteboard-box 'insert-image).

Read/Write-Format

Is an alias for (U 'standard 'text 'text-force-cr).

File-Format

Is an alias for (U 'guess 'same 'copy Read/Write-Format).

Threshold

Is an alias for (U 'no-caret 'show-inactive-caret 'show-caret).

Draw-Caret

Is an alias for (U Threshold (Pairof Natural Natural)).

Typed for typed/racket/gui/no-check

(require typed/racket/gui/no-check)
package: typed-racket-more

Typed for typed/racket/random

(require typed/racket/random) package: typed-racket-more

Added in version 1.5 of package typed-racket-lib.

Typed for typed/racket/sandbox

(require typed/racket/sandbox) package: typed-racket-more

69

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/racket/snip

(require typed/racket/snip) package: typed-racket-more

Image-Kind

Is an alias for (U 'unknown 'unknown/mask 'unknown/alpha 'gif 'gif/mask
'gif/alpha 'jpeg 'png 'png/mask 'png/alpha 'xbm 'xpm 'bmp 'pict).

Typed for typed/racket/system

(require typed/racket/system) package: typed-racket-lib

Typed for typed/rackunit/docs-complete

(require typed/rackunit/docs-complete)
package: rackunit-typed

Typed for typed/rackunit/gui

(require typed/rackunit/gui) package: rackunit-typed

Typed for typed/rackunit/text-ui

(require typed/rackunit/text-ui) package: rackunit-typed

Typed for typed/rackunit

(require typed/rackunit) package: rackunit-typed

Typed for typed/srfi/14

(require typed/srfi/14) package: typed-racket-more

Char-Set

70

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/rackunit-typed
https://pkgs.racket-lang.org/package/rackunit-typed
https://pkgs.racket-lang.org/package/rackunit-typed
https://pkgs.racket-lang.org/package/rackunit-typed
https://pkgs.racket-lang.org/package/typed-racket-more

Describes a character set usable by the srfi/14 functions.

Cursor

Describes a cursor for iterating over character sets.

Typed for typed/srfi/19

(require typed/srfi/19) package: typed-racket-more

Time
Date

Describes an SRFI 19 time or date structure.

Typed for typed/syntax/stx

(require typed/syntax/stx) package: typed-racket-more

Typed for typed/web-server/configuration/responders

(require typed/web-server/configuration/responders)
package: typed-racket-more

Typed for typed/web-server/http

(require typed/web-server/http) package: typed-racket-more

Changed in version 1.10 of package typed-racket-lib: Updated to reflect web-server/http version 1.3.
Changed in version 1.11: Updated to reflect web-server/http version 1.4.
Changed in version 1.13: Updated to reflect web-server/http version 1.6.

Typed for typed/db

(require typed/db) package: typed-racket-more

71

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

Typed for typed/db/base

(require typed/db/base) package: typed-racket-more

Typed for typed/db/sqlite3

(require typed/db/sqlite3) package: typed-racket-more

In some cases, these typed adapters may not contain all of exports of the original module, or
their types may be more limited.

Other libraries included in the main distribution that are either written in Typed Racket or
have adapter modules that are typed:

(require math) package: math-lib

(require plot) package: plot-gui-lib

Typed for typed/pict

(require typed/pict) package: typed-racket-more

(require images/flomap) package: images-lib

Typed for typed/images/logos

(require typed/images/logos) package: typed-racket-more

Typed for typed/images/icons

(require typed/images/icons) package: typed-racket-more

Typed for typed/images/compile-time

(require typed/images/compile-time)
package: typed-racket-more

72

https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/math-lib
https://pkgs.racket-lang.org/package/plot-gui-lib
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/images-lib
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more
https://pkgs.racket-lang.org/package/typed-racket-more

3.1 Porting Untyped Modules to Typed Racket

To adapt a Racket library not included with Typed Racket, the following steps are required:

• Determine the data manipulated by the library, and how it will be represented in Typed
Racket.

• Specify that data in Typed Racket, using require/typed and #:opaque and/or
#:struct.

• Use the data types to import the various functions and constants of the library.

• Provide all the relevant identifiers from the new adapter module.

For example, the following module adapts the untyped racket/bool library:

#lang typed/racket
(require/typed racket/bool

[true Boolean]
[false Boolean]
[symbol=? (Symbol Symbol -> Boolean)]
[boolean=? (Boolean Boolean -> Boolean)]
[false? (Any -> Boolean)])

(provide true false symbol=? boolean=? false?)

More substantial examples are available in the typed collection.

73

4 Typed Classes

Warning: the features described in this section are experimental and may not work correctly.
Some of the features will change by the next release. In particular, typed-untyped interaction
for classes will not be backwards compatible so do not rely on the current semantics.

Typed Racket provides support for object-oriented programming with the classes and objects
provided by the racket/class library.

4.1 Special forms

(require typed/racket/class) package: typed-racket-lib

The special forms below are provided by the typed/racket/class and typed/racket
modules but not by typed/racket/base. The typed/racket/class module additional
provides all other bindings from racket/class.

(class superclass-expr
maybe-type-parameters
class-clause ...)

74

https://pkgs.racket-lang.org/package/typed-racket-lib

class-clause = (inspect inspector-expr)
| (init init-decl ...)
| (init-field init-decl ...)
| (init-rest id/type)
| (field field-decl ...)
| (inherit-field field-decl ...)
| (public maybe-renamed/type ...)
| (pubment maybe-renamed/type ...)
| (override maybe-renamed/type ...)
| (augment maybe-renamed/type ...)
| (private id/type ...)
| (inherit id ...)
| method-definition
| definition
| expr
| (begin class-clause ...)

maybe-type-parameters =
| #:forall (type-variable ...)
| #:@ (type-variable ...)

init-decl = id/type
| [renamed]
| [renamed : type-expr]
| [maybe-renamed default-value-expr]
| [maybe-renamed : type-expr default-value-expr]

field-decl = (maybe-renamed default-value-expr)
| (maybe-renamed : type-expr default-value-expr)

id/type = id
| [id : type-expr]

maybe-renamed/type = maybe-renamed
| [maybe-renamed : type-expr]

maybe-renamed = id
| renamed

renamed = (internal-id external-id)

Produces a class with type annotations that allows Typed Racket to type-check the methods,
fields, and other clauses in the class.

The meaning of the class clauses are the same as in the class form from the racket/class
library with the exception of the additional optional type annotations. Additional class clause

75

forms from class that are not listed in the grammar above are not currently supported in
Typed Racket.

Examples:

> (define fish%
(class object%

(init [size : Real])

(: current-size Real)
(define current-size size)

(super-new)

(: get-size (-> Real))
(define/public (get-size)

current-size)

(: grow (Real -> Void))
(define/public (grow amt)

(set! current-size (+ amt current-size)))

(: eat ((Object [get-size (-> Real)]) -> Void))
(define/public (eat other-fish)

(grow (send other-fish get-size)))))
> (define dory (new fish% [size 5.5]))

Within a typed class form, one of the class clauses must be a call to super-new. Failure to
call super-new will result in a type error. In addition, dynamic uses of super-new (e.g.,
calling it in a separate function within the dynamic extent of the class form’s clauses) are
restricted.

Example:

> (class object%
; Note the missing `super-new`
(init-field [x : Real 0] [y : Real 0]))

racket/collects/racket/private/class-undef.rkt:46:6: Type
Checker: ill-formed typed class;

must call `super-new' at the top-level of the class
in: (#%expression (#%app compose-class (quote eval:4:0)

object% (#%app list) (#%app current-inspector) (quote #f)
(quote #f) (quote 2) (quote (x y)) (quote ()) (quote ())
(quote ()) (quote ()) (quote ()) (quote ()) (quote ())
(quote ()) (quote ()) (quote ()...

If any identifier with an optional type annotation is left without an annotation, the type-

76

checker will assume the type Any (or Procedure for methods) for that identifier.

Examples:

> (define point%
(class object%

(super-new)
(init-field x y)))

> point%
- : (Class (init (x Any) (y Any)) (field (x Any) (y Any)))
#<class:point%>

When type-variable is provided, the class is parameterized over the given type variables.
These type variables are in scope inside the body of the class. The resulting class can be
instantiated at particular types using inst.

Examples:

> (define cons%
(class object%

#:forall (X Y)
(super-new)
(init-field [car : X] [cdr : Y])))

> cons%
- : (All (X Y) (Class (init (car X) (cdr Y)) (field (car X) (cdr
Y))))
#<class:cons%>
> (new (inst cons% Integer String) [car 5] [cdr "foo"])
- : (Object (field (car Integer) (cdr String)))
(object:cons% ...)

Initialization arguments may be provided by-name using the new form, by-position using the
make-object form, or both using the instantiate form.

As in ordinary Racket classes, the order in which initialization arguments are declared de-
termines the order of initialization types in the class type.

Furthermore, a class may also have a typed init-rest clause, in which case the class
constructor takes an unbounded number of arguments by-position. The type of the init-
rest clause must be either a List type, Listof type, or any other list type.

Examples:

> (define point-copy%
; a point% with a copy constructor
(class object%

77

(super-new)
(init-rest [rst : (U (List Integer Integer)

(List (Object (field [x Integer]
[y Integer]))))])

(field [x : Integer 0] [y : Integer 0])
(match rst

[(list (? integer? *x) *y)
(set! x *x) (set! y *y)]

[(list (? (negate integer?) obj))
(set! x (get-field x obj))
(set! y (get-field y obj))])))

> (define p1 (make-object point-copy% 1 2))
> (make-object point-copy% p1)
- : (Object (field (x Integer) (y Integer)))
(object:point-copy% ...)

(define/public id expr)
(define/public (id . formals) body ...+)

Like define/public from racket/class, but uses the binding of define from Typed
Racket.

The formals may specify type annotations as in define.

(define/override id expr)
(define/override (id . formals) body ...+)

Like define/override from racket/class, but uses the binding of define from Typed
Racket.

The formals may specify type annotations as in define.

(define/pubment id expr)
(define/pubment (id . formals) body ...+)

Like define/pubment from racket/class, but uses the binding of define from Typed
Racket.

The formals may specify type annotations as in define.

(define/augment id expr)
(define/augment (id . formals) body ...+)

Like define/augment from racket/class, but uses the binding of define from Typed
Racket.

The formals may specify type annotations as in define.

78

(define/private id expr)
(define/private (id . formals) body ...+)

Like define/private from racket/class, but uses the binding of define from Typed
Racket.

The formals may specify type annotations as in define.

(init init-decl ...)
(init-field init-decl ...)
(field field-decl ...)
(inherit-field field-decl ...)
(init-rest id/type)
(public maybe-renamed/type ...)
(pubment maybe-renamed/type ...)
(override maybe-renamed/type ...)
(augment maybe-renamed/type ...)
(private id/type ...)
(inherit maybe-renamed/type ...)

These forms are mostly equivalent to the forms of the same names from the racket/class
library and will expand to them. However, they also allow the initialization argument, field,
or method names to be annotated with types as described above for the class form.

4.2 Types

(Class class-type-clause ...)

class-type-clause = name+type
| (init init-type ...)
| (init-field init-type ...)
| (init-rest name+type)
| (field name+type ...)
| (augment name+type ...)
| #:implements type-alias-id
| #:implements/inits inits-id
| #:row-var row-var-id

init-type = name+type
| [id type #:optional]

name+type = [id type]

79

The type of a class with the given initialization argument, method, and field types.

Example:

> (: food% (Class (init [liquid? Boolean])
(field [nutrition Integer])
[get-nutrition (-> Integer)]))

The types of methods are provided either without a keyword, in which case they correspond
to public methods, or with the augment keyword, in which case they correspond to a method
that can be augmented.

An initialization argument type specifies a name and type and optionally a #:optional
keyword. An initialization argument type with #:optional corresponds to an argument
that does not need to be provided at object instantiation.

Example:

> (: drink% (Class (init [color String]
[carbonated? Boolean]
[viscosity Positive-Real #:optional])))

The order of initialization arguments in the type is significant, because it determines the
types of by-position arguments for use with make-object and instantiate. A given
Class type may also only contain a single init-rest clause.

Examples:

> (define drink%
(class object%

(super-new)
; The order of `color' and `carbonated?' cannot be swapped
(init color carbonated? [viscosity 1.002])))

; The order of initialization matches the order in the type
> (make-object drink% "purple" #t)
- : (Object)
(object:drink% ...)

When type-alias-id is provided, the resulting class type includes all of the method and
field types from the specified type alias (which must be an alias for a class type). This
is intended to allow a type for a subclass to include parts of its parent class type. The
initialization argument types of the parent, however, are not included because a subclass
does not necessarily share the same initialization arguments as its parent class.

Initialization argument types can be included from the parent by providing inits-id with
the #:implements/inits keyword. This is identical to the #:implements clause except

80

for the initialization argument behavior. Only a single #:implements/inits clause may
be provided for a single Class type. The initialization arguments copied from the parent
type are appended to the initialization arguments specified via the init and init-field
clauses.

Multiple #:implements clauses may be provided for a single class type. The types for the
#:implements clauses are merged in order and the last type for a given method name or
field is used (the types in the Class type itself takes precedence).

Examples:

> (define-type Point<%> (Class (field [x Real] [y Real])))
> (: colored-point% (Class #:implements Point<%>

(field [color String])))

When row-var-id is provided, the class type is an abstract type that is row polymorphic.
A row polymorphic class type can be instantiated at a specific row using inst. Only a single
#:row-var clause may appear in a class type.

ClassTop

The supertype of all class types. A value of this type cannot be used for subclassing, object
creation, or most other class functions. Its primary use is for reflective operations such as
is-a?.

(Object object-type-clause ...)

object-type-clause = name+type
| (field name+type ...)

The type of an object with the given field and method types.

Examples:

> (new object%)
- : (Object)
(object)
> (new (class object% (super-new) (field [x : Real 0])))
- : (Object (field (x Real)))
(object:eval:20:0 ...)

(Instance class-type-expr)

The type of an object that corresponds to class-type-expr .

81

This is the same as an Object type that has all of the method and field types from class-
type-expr . The types for the augment and init clauses in the class type are ignored.

Examples:

> (define-type Point% (Class (init-field [x Integer] [y Integer])))
> (: a-point (Instance Point%))
> (define a-point

(new (class object%
(super-new)
(init-field [x : Integer 0] [y : Integer 0]))))

(Row class-type-clause ...)

Represents a row, which is used for instantiating row-polymorphic function types. Accepts
all clauses that the Class form accepts except the keyword arguments.

Rows are not types, and therefore cannot be used in any context except in the row-inst
form. See row-inst for examples.

82

5 Typed Units

Warning: the features described in this section are experimental and may not work correctly.
Some of the features may change by the next release.

Typed Racket provides support for modular programming with the units and signatures pro-
vided by the racket/unit library.

5.1 Special forms

(require typed/racket/unit) package: typed-racket-lib

The special forms below are provided by the typed/racket/unit and typed/racket
modules, but not by typed/racket/base. The typed/racket/unit module additionally
provides all other bindings from racket/unit.

(define-signature id extension-decl
(sig-elem ...))

extension-decl =
| extends sig-id

sig-elem = [id : type]

Binds an identifier to a signature and registers the identifier in the signature environment with
the specified type bindings. Sigantures in Typed Racket allow only specifications of variables
and their types. Variable and syntax definitions are not allowed in the define-signature
form. This is only a limitation of the define-signature form in Typed Racket.

As in untyped Racket, the extends clause includes all elements of extended signature and
any implementation of the new signature can be used as an implementation of the extended
signature.

(unit
(import sig-spec ...)
(export sig-spec ...)
init-depends-decl
unit-body-expr-or-defn
...)

83

https://pkgs.racket-lang.org/package/typed-racket-lib

sig-spec = sig-id
| (prefix id sig-spec)
| (rename sig-spec (id id) ...)
| (only sig-spec id ...)
| (except sig-spec id ...)

init-depends-decl =
| (init-depend sig-id ...)

The typed version of the Racket unit form. Unit expressions in Typed Racket do not support
tagged signatures with the tag keyword.

(invoke-unit unit-expr)
(invoke-unit unit-expr (import sig-spec ...))

The typed version of the Racket invoke-unit form.

(define-values/invoke-unit unit-expr
(import def-sig-spec ...)
(export def-sig-spec ...))

def-sig-spec = sig-id
| (prefix id def-sig-spec)
| (rename def-sig-spec (id id) ...)

The typed version of the Racket define-values/invoke-unit form. In Typed Racket
define-values/invoke-unit is only allowed at the top-level of a module.

(compound-unit
(import link-binding ...)
(export link-id ...)
(link linkage-decl ...))

link-binding = (link-id : sig-id)

linkage-decl = ((link-binding ...) unit-expr link-id ...)

The typed version of the Racket compound-unit form.

(define-unit unit-id
(import sig-spec ...)
(export sig-spec ...)
init-depends-decl
unit-body-expr-or-defn
...)

84

The typed version of the Racket define-unit form.

(compound-unit/infer
(import infer-link-import ...)
(export infer-link-export ...)
(link infer-linkage-decl ...))

infer-link-import = sig-id
| (link-id : sig-id)

infer-link-export = link-id
| sig-id

infer-linkage-decl = ((link-binding ...) unit-id
tagged-link-id ...)

| unit-id

The typed version of the Racket compound-unit/infer form.

(define-compound-unit id
(import link-binding ...)
(export link-id ...)
(link linkage-decl ...))

The typed version of the Racket define-compound-unit form.

(define-compound-unit/infer id
(import link-binding ...)
(export infer-link-export ...)
(link infer-linkage-decl ...))

The typed version of the Racket define-compound-unit/infer form.

(invoke-unit/infer unit-spec)

unit-spec = unit-id
| (link link-unit-id ...)

The typed version of the Racket invoke-unit/infer form.

(define-values/invoke-unit/infer maybe-exports unit-spec)

maybe-exports =
| (export sig-sepc ...)

unit-spec = unit-id
| (link link-unit-id ...)

85

The typed version of the Racket define-values/invoke-unit/infer form. Like the
define-values/invoke-unit form above, this form is only allowed at the toplevel of a
module.
(unit-from-context sig-spec)

The typed version of the Racket unit-from-context form.

(define-unit-from-context id sig-spec)

The typed version of the Racket define-unit-from-context form.

5.2 Types

(Unit
(import sig-id ...)
(export sig-id ...)
optional-init-depend-clause
optional-body-type-clause)

optional-init-depend-clause =
| (init-depend sig-id ...)

optional-body-type-clause =
| type
| (Values type ...)

The type of a unit with the given imports, exports, initialization dependencies, and body
type. Omitting the init-depend clause is equivalent to an init-depend clause that contains
no signatures. The body type is the type of the last expression in the unit’s body. If a unit
contains only definitions and no expressions its body type is Void. Omitting the body type
is equivalent to specifying a body type of Void.

Example:

> (module Unit-Types typed/racket
(define-signature fact^ ([fact : (-> Natural Natural)]))
(: use-fact@ (Unit (import fact^)

(export)
Natural))

(define use-fact@ (unit (import fact^) (export) (fact 5))))

UnitTop

The supertype of all unit types. Values of this type cannot be linked or invoked. The primary
use of is for the reflective operation unit?

86

5.3 Interacting with Untyped Code

(require/typed m rt-clause ...)

rt-clause = [maybe-renamed t]
| [#:struct name ([f : t] ...)

struct-option ...]
| [#:struct (name parent) ([f : t] ...)

struct-option ...]
| [#:opaque t pred]
| [#:signature name ([id : t] ...)]

maybe-renamed = id
| (orig-id new-id)

struct-option = #:constructor-name constructor-id
| #:extra-constructor-name constructor-id

The #:signature clause of require/typed requires the given signature and registers it in
the signature environment with the specified bindings. Unlike other identifiers required with
require/typed, signatures are not protected by contracts. Signatures are not

runtime values and
therefore do not
need to be protected
by contracts.

Examples:

> (module UNTYPED-1 racket
(provide a^)
(define-signature a^ (a)))

> (module TYPED-1 typed/racket
(require/typed 'UNTYPED-1

[#:signature a^ ([a : Integer])])
(unit (import a^) (export) (add1 a)))

Typed Racket will infer whether the named signature extends another signature. It is an
error to require a signature that extends a signature not present in the signature environment.

Examples:

> (module UNTYPED-2 racket
(provide a-sub^)
(define-signature a^ (a1))
(define-signature a-sub^ extends a^ (a2)))

> (module TYPED-2 typed/racket
(require/typed 'UNTYPED-2

[#:signature a-sub^
([a1 : Integer]
[a2 : String])]))

87

eval:6:0: Type Checker: Error in macro expansion -- required
signature extends an untyped signature

required signature: a-sub^
extended signature: a^
in: UNTYPED-2

Requiring a signature from an untyped module that contains variable definitions is an error
in Typed Racket.

Examples:

> (module UNTYPED racket
(provide bad^)
(define-signature bad^ (bad (define-values (bad-

ref) (car bad)))))
> (module TYPED typed/racket

(require/typed 'UNTYPED
[#:signature bad^

([bad : (Pairof Integer Integer)]
[bad-ref : Integer])]))

eval:8:0: Type Checker: Error in macro expansion -- untyped
signatures containing definitions are prohibited

in: UNTYPED

5.4 Limitations

5.4.1 Signature Forms

Unlike Racket’s define-signature form, in Typed Racket define-signature only sup-
ports one kind of signature element that specifies the types of variables in the signature.
In particular Typed Racket’s define-signature form does not support uses of define-
syntaxes, define-values, or define-values-for-export . Requiring an untyped sig-
nature that contains definitions in a typed module will result in an error.

Examples:

> (module UNTYPED racket
(provide bad^)
(define-signature bad^ ((define-values (bad) 13))))

> (module TYPED typed/racket
(require/typed 'UNTYPED

[#:signature bad^ ([bad : Integer])]))
eval:10:0: Type Checker: Error in macro expansion -- untyped
signatures containing definitions are prohibited

in: UNTYPED

88

5.4.2 Contracts and Unit Static Information

Unit values that flow between typed and untyped contexts are wrapped in unit/c contracts
to guard the unit’s imports, exports, and result upon invocation. When identifers that are
additionally bound to static information about a unit, such as those defined by define-
unit, flow between typed and untyped contexts contract application can result the static
information becoming inaccessible.

Examples:

> (module UNTYPED racket
(provide u@)
(define-unit u@ (import) (export) "Hello!"))

> (module TYPED typed/racket
(require/typed 'UNTYPED

[u@ (Unit (import) (export) String)])
(invoke-unit/infer u@))

eval:12:0: untyped-invoke-unit/infer: unknown unit
definition

at: u@
in: (untyped-invoke-unit/infer u@)

When an identifier bound to static unit information flows from a typed module to an untyped
module, however, the situation is worse. Because unit static information is bound to an
identifier as a macro definition, any use of the typed unit is disallowed in untyped contexts.

Examples:

> (module TYPED typed/racket
(provide u@)
(define-unit u@ (import) (export) "Hello!"))

> (module UNTYPED racket
(require 'TYPED)
u@)

eval:14:0: Type Checker: Macro u@ from typed module used in
untyped code

in: u@

5.4.3 Signatures and Internal Definition Contexts

Typed Racket’s define-signature form is allowed in both top-level and internal definition
contexts. As the following example shows, defining signatures in internal definiition contexts
can be problematic.

Example:

89

> (module TYPED typed/racket
(define-signature a^ ())
(define u@

(let ()
(define-signature a^ ())
(unit (import a^) (export) (init-depend a^) 5)))

(invoke-unit u@ (import a^)))
eval:15:0: Type Checker: type mismatch

expected: (Unit (import a^) (export) (init-depend a^)
AnyValues)

given: (Unit (import a^) (export) (init-depend a^)
Positive-Byte)

in: a^

Even though the unit imports a signature named a^, the a^ provided for the import refers to
the top-level a^ signature and the type system prevents invoking the unit. This issue can be
avoided by defining signatures only at the top-level of a module.

5.4.4 Tagged Signatures

Various unit forms in Racket allow for signatures to be tagged to support the definition of
units that import or export the same signature multiple times. Typed Racket does not support
the use of tagged signatures, using the tag keyword, anywhere in the various unit forms
described above.

5.4.5 Structural Matching and Other Unit Forms

Typed Racket supports only those unit forms described above. All other bindings exported
by racket/unit are not supported in the type system. In particular, the structural matching
forms including unit/new-import-export and unit/s are unsupported.

90

6 Utilities

Typed Racket provides some additional utility functions to facilitate typed programming.

(assert v) Ñ A
v : (U #f A)

(assert v p?) Ñ B
v : A
p? : (A -> Any : B)

Verifies that the argument satisfies the constraint. If no predicate is provided, simply checks
that the value is not #f.

See also the cast form.

Examples:

> (define: x : (U #f String) (number->string 7))
> x
- : (U False String)
"7"
> (assert x)
- : String
"7"
> (define: y : (U String Symbol) "hello")
> y
- : (U String Symbol)
"hello"
> (assert y string?)
- : String
"hello"
> (assert y boolean?)
Assertion #ăprocedure:boolean?ą failed on "hello"

(with-asserts ([id maybe-pred] ...) body ...+)

maybe-pred =
| predicate

Guard the body with assertions. If any of the assertions fail, the program errors. These
assertions behave like assert.

(defined? v) Ñ boolean?
v : any/c

A predicate for determining if v is not #<undefined>.

91

(index? v) Ñ boolean?
v : any/c

A predicate for the Index type.

(typecheck-fail orig-stx maybe-msg maybe-id)

maybe-msg =
| msg-string

maybe-id =
| #:covered-id id

Explicitly produce a type error, with the source location or orig-stx . If msg-string is
present, it must be a literal string, it is used as the error message, otherwise the error message
"Incomplete case coverage" is used. If id is present and has type T, then the message
"missing coverage of T" is added to the error message.

Examples:

> (define-syntax (cond* stx)
(syntax-case stx ()

[(_ x clause ...)
#`(cond clause ... [else (typecheck-fail #,stx "incomplete

coverage"
#:covered-

id x)])]))
> (define: (f [x : (U String Integer)]) : Boolean

(cond* x
[(string? x) #t]
[(exact-nonnegative-integer? x) #f]))

eval:10:0: Type Checker: incomplete coverage; missing
coverage of Negative-Integer

in: #f

(assert-typecheck-fail body-expr)
(assert-typecheck-fail body-expr #:result result-expr)

Explicitly produce a type error if body-expr does not produce a type error. If result-
expr is provided, it will be the result of evaluating the expression, otherwise (void) will
be returned. If there is an expected type, that type is propagated as the expected type when
checking body-expr .

Added in version 1.7 of package typed-racket-lib.

92

6.1 Ignoring type information

In some contexts, it is useful to have the typechecker forget type information on particular
expressions. Any expression with the shape (#%expression sub) that has a true value
for the syntax property 'typed-racket:ignore-type-information will have the type
Any, and the type checker won’t learn anything about the expression for use in refining other
types.

Added in version 1.7 of package typed-racket-lib.

The expression sub must still type check, but can have any single-valued type.

This is similar to (ann sub Any), but differs in whether the typechecker can use this to
refine other types, and can be used in context that do not depend on Typed Racket.

6.2 Untyped Utilities

(require typed/untyped-utils) package: typed-racket-lib

These utilities help interface typed with untyped code, particularly typed libraries that use
types that cannot be converted into contracts, or export syntax transformers that must expand
differently in typed and untyped contexts.

Changed in version 1.14 of package typed-racket-lib: The module moved from typed-racket-more to
typed-racket-lib.

(require/untyped-contract maybe-begin module [name subtype] ...)

maybe-begin =
| (begin expr ...)

Use this form to import typed identifiers whose types cannot be converted into contracts, but
have subtypes that can be converted into contracts.

For example, suppose we define and provide the Typed Racket function

(: negate (case-> (-> Index Fixnum)
(-> Integer Integer)))

(define (negate x) (- x))

Trying to use negate within an untyped module will raise an error because the cases cannot
be distinguished by arity alone.

If the defining module for negate is "my-numerics.rkt", it can be imported and used in
untyped code this way:

93

https://pkgs.racket-lang.org/package/typed-racket-lib

(require/untyped-contract
"my-numerics.rkt"
[negate (-> Integer Integer)])

The type (-> Integer Integer) is converted into the contract used for negate.

The require/untyped-contract form expands into a submodule with language
typed/racket/base. Identifiers used in subtype expressions must be either in Typed
Racket’s base type environment (e.g. Integer and Listof) or defined by an expres-
sion in the maybe-begin form, which is spliced into the submodule. For example, the
math/matrix module imports and reexports matrix-expt, which has a case-> type, for
untyped use in this way:

(provide matrix-expt)

(require/untyped-contract
(begin (require "private/matrix/matrix-types.rkt"))
"private/matrix/matrix-expt.rkt"
[matrix-expt ((Matrix Number) Integer -> (Matrix Number))])

The (require "private/matrix/matrix-types.rkt") expression imports the Ma-
trix type.

If an identifier name is imported using require/untyped-contract, reexported, and im-
ported into typed code, it has its original type, not subtype . In other words, subtype is
used only to generate a contract for name , not to narrow its type.

Because of limitations in the macro expander, require/untyped-contract cannot cur-
rently be used in typed code.

(define-typed/untyped-identifier name typed-name untyped-name)
(define-typed/untyped-identifier name deep-name untyped-name shallow-
name optional-name)

Defines an identifier name that expands to one of the following identifiers depending on
context. When two identifiers are provided, name expands to typed-name in typed contexts
and to untyped-name in untyped contexts (more precisely, everywhere else). When four
identifiers are provided, name expands to deep-name in Deep-typed contexts, to untyped-
name in untyped contexts, to shallow-name in Shallow-typed contexts, and to optional-
name in Optionally-typed contexts. §8 “Deep, Shallow, and Optional Semantics” explains
these different contexts.

Suppose we define and provide a Typed Racket function with this type:

(: my-filter (All (a) (-> (-> Any Any : a) (Listof Any) (Listof a))))

94

This type cannot be converted into a contract because it accepts a predicate. Worse,
require/untyped-contract does not help because (All (a) (-> (-> Any Any)
(Listof Any) (Listof a))) is not a subtype.

In this case, we might still provide my-filter to untyped code using

(provide my-filter)

(define-typed/untyped-identifier my-filter
typed:my-filter
untyped:my-filter)

where typed:my-filter is the original my-filter, but imported using prefix-in, and
untyped:my-filter is either a Typed Racket implementation of it with type (All (a)
(-> (-> Any Any) (Listof Any) (Listof a))) or an untyped Racket implementa-
tion.

Avoid this if possible. Use only in cases where a type has no subtype that can be converted
to a contract; i.e. cases in which require/untyped-contract cannot be used.

(syntax-local-typed-context?) Ñ boolean?

Returns #t if called while expanding code in a typed context; otherwise #f.

This is the nuclear option, provided because it is sometimes, but rarely, useful. Avoid.

95

7 Exploring Types

In addition to printing a summary of the types of REPL results, Typed Racket provides
interactive utilities to explore and query types. The following bindings are only available at
the Typed Racket REPL.

(:type maybe-verbose t)

maybe-verbose =
| #:verbose

Prints the type t . If t is a type alias (e.g., Number), then it will be expanded to its rep-
resentation when printing. Any further type aliases in the type named by t will remain
unexpanded.

If #:verbose is provided, all type aliases are expanded in the printed type.

Examples:

> (:type Number)
(U Exact-Number Imaginary Inexact-Complex Real)
[can expand further: Exact-Number Inexact-Complex Imaginary Real]
> (:type Real)
(U Negative-Real Nonnegative-Real)
[can expand further: Negative-Real Nonnegative-Real]
> (:type #:verbose Number)
(U 0

1
Byte-Larger-Than-One
Exact-Complex
Exact-Imaginary
Float-Complex
Float-Imaginary
Float-Nan
Float-Negative-Zero
Float-Positive-Zero
Negative-Fixnum
Negative-Float-No-NaN
Negative-Integer-Not-Fixnum
Negative-Rational-Not-Integer
Negative-Single-Flonum-No-Nan
Positive-Fixnum-Not-Index
Positive-Float-No-NaN
Positive-Index-Not-Byte
Positive-Integer-Not-Fixnum
Positive-Rational-Not-Integer

96

Positive-Single-Flonum-No-Nan
Single-Flonum-Complex
Single-Flonum-Imaginary
Single-Flonum-Nan
Single-Flonum-Negative-Zero
Single-Flonum-Positive-Zero)

(:print-type e)

Prints the type of e , which must be an expression. This prints the whole type, which can
sometimes be quite large.

Examples:

> (:print-type (+ 1 2))
Positive-Index
> (:print-type map)
(All (c a b ...)

(case->
(-> (-> a c) (Pairof a (Listof a)) (Pairof c (Listof c)))
(-> (-> a b ... b c) (Listof a) (Listof b) ... b (Listof c))))

(:query-type/args f t ...)

Given a function f and argument types t , shows the result type of f .

Example:

> (:query-type/args + Integer Number)
(-> Integer Number Number)

(:query-type/result f t)

Given a function f and a desired return type t , shows the arguments types f should be given
to return a value of type t .

Examples:

> (:query-type/result + Integer)
(-> Integer * Integer)
> (:query-type/result + Float)
(case->
(-> Flonum Flonum * Flonum)
(-> Real Real Flonum Real * Flonum)
(-> Real Flonum Real * Flonum)
(-> Flonum Real Real * Flonum))

97

(:kind e)

Prints the kind of a well-kinded type-level expression e . When e is a type, it prints *. When
e is a type constructor, -> following the open parenthesis in the printed result indicates e is
productive and -o indicates otherwise.

Examples:

> (:kind Integer)
*
> (:kind Listof)
(-> * *)
> (:kind Pairof)
(-> * * *)
> (:kind U)
(-o * ... *)

Added in version 1.15 of package typed-racket-lib.

98

8 Deep, Shallow, and Optional Semantics

typed/racket/deep

#lang typed/racket/deep package: typed-racket-lib

typed/racket/base/deep

#lang typed/racket/base/deep package: typed-racket-lib

typed/racket/shallow

#lang typed/racket/shallow package: typed-racket-lib

typed/racket/base/shallow

#lang typed/racket/base/shallow package: typed-racket-lib

typed/racket/optional

#lang typed/racket/optional package: typed-racket-lib

typed/racket/base/optional

#lang typed/racket/base/optional package: typed-racket-lib See also: §6
“Typed-Untyped
Interaction” in the
Typed Racket
Guide.

Typed Racket allows the combination of both typed and untyped code in a single program.
Untyped code can freely import typed identifiers. Typed code can import untyped identifiers
by giving them types (via require/typed).

Allowing typed/untyped combinations raises questions about whether and how types should
constrain the behavior of untyped code. On one hand, strong type constraints are useful be-
cause they can detect when a typed-untyped interaction goes wrong. On the other hand, con-
straints must be enforced with run-time checks, which affect run-time performance. Stronger
constraints generally impose a higher performance cost.

By default, Typed Racket provides Deep types that strictly constrain the behavior of untyped
code. But because these constraints can be expensive, Typed Racket offers two alternatives:

99

https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib
https://pkgs.racket-lang.org/package/typed-racket-lib

Shallow and Optional types. All three use the same static types and static checks, but they
progressively weaken the run-time behavior of types.

• Deep types enforce strong, compositional guarantees. If a value is annotated with
a Deep type, then all of its interactions with other code must match the type. For
example, a value with the type (Listof String) must be a list that contains only
strings; otherwise, Typed Racket raises an error.

Available in: typed/racket, typed/racket/base, typed/racket/deep, and
typed/racket/base/deep.

• Shallow types enforce the outer shape of values. For example, the Shallow type
(Listof String) checks only for lists — it does not check whether the list ele-
ments are strings. This enforcement may seem weak at first glance, but Shallow types
can work together to provide a decent safety net. If Shallow-typed code gets an ele-
ment from a list and expects a String, then another check will make sure the element
is really a string.

Available in: typed/racket/shallow, and typed/racket/base/shallow.

• Optional types enforce nothing and add zero run-time cost. These types are useful for
finding bugs in typed code at compile-time, but they cannot detect interaction errors
at run-time.

Available in: typed/racket/optional, and typed/racket/base/optional.

8.1 Example Interactions

The examples below show how Deep, Shallow, and Optional change the run-time behavior
(or, the semantics) of types.

8.1.1 Checking Immutable Data: Importing a List

When typed code imports an untyped list:

• Deep types check each element of the list at the boundary to untyped code;

• Shallow types check for a list, and check elements when they are accessed; and

• Optional types check nothing.

The following examples import the function string->list, which returns a list of charac-
ters, and use an incorrect type that expects a list of strings. Both Deep and Shallow types
catch the error at some point. Optional types do not catch the error.

100

Deep types prevent a list of characters from entering typed code with the type (Listof
String):

#lang typed/racket ; or #lang typed/racket/deep

(require/typed racket/base
[string->list (-> String (Listof String))])

(string->list "racket")
string-ąlist: broke its own contract

promised: string?
produced: #zr
in: an element of

the range of
(-ą any/c (listof string?))

contract from: (interface for string-ąlist)
blaming: (interface for string-ąlist)

(assuming the contract is correct)
at: eval:1:0

Shallow types allow a list of characters to have the type (Listof String), but detect an
error if typed code reads an element from the list:

#lang typed/racket/shallow

(require/typed racket/base
[string->list (-> String (Listof String))])

(define lst (string->list "racket"))

(first lst)
shape-check: value does not match expected type

value: #zr
type: String
lang: 'typed/racket/shallow
src: '(eval 3 0 3 1)

Optional types do not detect any error in this example:

#lang typed/racket/optional

(require/typed racket/base
[string->list (-> String (Listof String))])

(define lst (string->list "racket"))

101

(first lst)
- : String
#\r

8.1.2 Checking Mutable Data: Importing a Vector

When typed code imports an untyped vector:

• Deep types wrap the vector in a contract that checks future reads and writes;

• Shallow types check for a vector at the boundary, and check elements on demand
(same as for lists); and

• Optional types check nothing.

The following example imports make-vector with an incorrect type that expects a vector
of strings as its output. When make-vector returns a vector of numbers instead, both Deep
and Shallow types catch the error when reading from the vector. Optional types do not catch
the error.

Deep catches a bad vector element:

#lang typed/racket ; or #lang typed/racket/deep

(require/typed racket/base
[make-vector (-> Integer (Vectorof String))])

(define vec (make-vector 10))

(vector-ref vec 0)
make-vector: broke its own contract

promised: string?
produced: 0
in: an element of

the range of
(-ą any/c (vectorof string?))

contract from: (interface for make-vector)
blaming: (interface for make-vector)

(assuming the contract is correct)
at: eval:3:0

Shallow catches a bad vector element:

102

#lang typed/racket/shallow

(require/typed racket/base
[make-vector (-> Integer (Vectorof String))])

(define vec (make-vector 10))

(vector-ref vec 0)
shape-check: value does not match expected type

value: 0
type: String
lang: 'typed/racket/shallow
src: '(eval 6 0 6 1)

Optional does not catch a bad element:

#lang typed/racket/optional

(require/typed racket/base
[make-vector (-> Integer (Vectorof String))])

(define vec (make-vector 10))

(vector-ref vec 0)
- : String
0

8.1.3 Checking Functions that Cross Multiple Boundaries

Deep types can detect some errors that Shallow types miss, especially when a program con-
tains several modules. This is because every module in a program can trust that every Deep
type is a true claim, but only the one module that defines a Shallow type can depend on the
type. In short, Deep types are permanent whereas Shallow types are temporary.

The following example uses three modules to create a situation where Deep types catch
an error that Shallow types miss. First, the untyped module racket/base provides the
standard string-length function. Second, a typed interface module imports string-
length with an incorrect type and reprovides with a new name: strlen. Third, a typed
client module imports strlen with a correct type and calls it on a string.

Deep types raise an error when strlen is called because of the incorrect type in the interface:

#lang typed/racket ; or #lang typed/racket/deep

103

(module interface typed/racket
(require/typed racket/base

[string-length (-> String Void)])
(define strlen string-length)
(provide strlen))

(require/typed 'interface
[strlen (-> String Natural)])

(strlen "racket")
string-length: broke its own contract

promised: void?
produced: 6
in: (-ą any/c void?)
contract from: (interface for string-length)
blaming: (interface for string-length)

(assuming the contract is correct)
at: eval:6:0

Shallow types do not raise an error because the interface type is not enforced for the outer
client module:

#lang typed/racket/shallow

(module interface typed/racket/shallow
(require/typed racket/base

[string-length (-> String Void)])
(define strlen string-length)
(provide strlen))

(require/typed 'interface
[strlen (-> String Natural)])

(strlen "racket")
- : Integer [more precisely: Nonnegative-Integer]
6

Optional types do not raise an error either:

#lang typed/racket/optional

(module interface typed/racket/optional
(require/typed racket/base

104

[string-length (-> String Void)])
(define strlen string-length)
(provide strlen))

(require/typed 'interface
[strlen (-> String Natural)])

(strlen "racket")
- : Integer [more precisely: Nonnegative-Integer]
6

8.2 Forms that Depend on the Behavior of Types

The following Typed Racket forms use types to create run-time checks. Consequently, their
behavior changes depending on whether types are Deep, Shallow, or Optional.

Across these forms, the changes are roughly the same. Deep types get enforced as (higher-
order) contracts, Shallow types get enforced as shape checks, and Optional types get en-
forced with nothing. The key point to understand is which types get enforced at run-time.

• require/typed imports bindings from another module and attaches types to the
bindings. The attached types get enforced.

• cast assigns a type to an expression. The assigned type gets enforced.

• with-type creates a typed region in untyped code. Types at the boundary between
this region and untyped code get enforced.

The following forms modify the contracts that Deep Typed Racket generates. Uses of these
forms may need to change to accommodate Shallow and Optional clients.

• require/untyped-contract brings an identifier from Deep-typed code to untyped
code using a subtype of its actual type. If the required identifier travels from untyped
code to a Shallow or Optional client, this client must work with the subtype. A Deep
client would be able to use the normal type.

• define-typed/untyped-identifier accepts four identifiers to fine-tune its be-
havior for Deep, untyped, Shallow, and Optional clients.

8.2.1 Example: Casts in Deep, Shallow, and Optional

To give one example of a form that depends on the behavior of types, cast checks full types
in Deep mode, checks shapes in Shallow mode, and checks nothing in Optional mode.

105

Deep detects a bad cast:

; #lang typed/racket
; or #lang typed/racket/deep
> (cast (list 42) (Listof String))
broke its own contract

promised: string?
produced: 42
in: an element of

(listof string?)
contract from: cast
blaming: cast

(assuming the contract is correct)
at: eval:9:0

Shallow allows one bad cast but detects a shape-level one:

; #lang typed/racket/shallow
> (cast (list 42) (Listof String))
- : (Listof String)
'(42)
> (cast (list 42) Number)
shape-check: value does not match expected type

value: '(42)
type: Number
lang: 'typed/racket/shallow
src: '(eval 11 0 11 1)

Optional lets any cast succeed:

; #lang typed/racket/optional
> (cast (list 42) (Listof String))
- : (Listof String)
'(42)
> (cast (list 42) Number)
- : Number
'(42)

8.3 How to Choose Between Deep, Shallow, and Optional

Deep, Shallow, and Optional types have complementary strengths and weaknesses. Deep
types give strong type guarantees and enable full type-directed optimizations, but may pay
a high cost at boundaries. In particular, the costs for higher-order types are high. Examples
include HashTable, ->*, and Object. Shallow types give weak guarantees, but come at a

106

lower cost. The cost is constant-time for many types, including HashTable and ->*, and
linear-time for a few others such as U and Object. Optional types give no guarantees, but
come at no cost.

Based on these tradeoffs, this section offers some advice about when to choose one style
over the others.

8.3.1 When to Use Deep Types

Deep types are best in the following situations:

• For large blocks of typed code, to take full advantage of type-directed optimizations
within each block.

• For tightly-connected groups of typed modules, because Deep types pay no cost to
interact with one another.

• For modules in which you want the types to be fully enforced, perhaps for predicting
the behavior of typed-untyped interactions or for debugging.

8.3.2 When to Use Shallow Types

Shallow types are best in the following situations:

• For typed code that frequently interacts with untyped code, especially when it sends
large immutable values or higher-order values (vectors, functions, etc.) across bound-
aries.

• For large blocks of typed code that primarily uses basic values (numbers, strings, etc.)
or monomorphic data structures. In such cases, Shallow types get the full benefit of
type-directed optimizations and few run-time costs.

• For boundaries where Deep enforcement (via contracts) is too restrictive. For example,
Deep code can never call a function that has the type Procedure, but Shallow can after
a cast.

• For boundaries where Deep cannot convert the types to contracts, such as for a higher-
order syntax object such as (Syntaxof (Boxof Real)).

8.3.3 When to Use Optional Types

Optional types are best in the following situations:

107

• For typed-to-untyped migrations where performance needs to be predictable, because
an Optionally-typed program behaves just like a Racket program that ignores all the
types.

• For boundaries that neither Deep nor Shallow can express. For example, only Optional
can use occurrence types at a boundary.

• For prototyping; that is, for testing whether an idea can type-check without testing
whether it interacts well with untyped code.

8.3.4 General Tips

• Deep, Shallow, and Optional use the same compile-time type checks, so switching a
module from one style to another is usually a one-line change (to the #lang line).

• When converting a Racket program to Typed Racket, try Deep types at first and change
to Shallow if run-time performance becomes a bottleneck (or, if contract wrappers
raise a correctness issue).

8.4 Related Gradual Typing Work

Shallow Typed Racket implements the Transient semantics for gradual languages
[Programming-2022, PLDI-2022], which was invented by Michael M. Vitousek [RP:DLS-
2014, RP:POPL-2017, RP:Vitousek-2019, RP:DLS-2019]. Transient protects typed code by
rewriting it to defensively check the shape of values whenever it calls a function, reads from
a data structure, or otherwise receives input that may have come from an untyped source.
Because of the rewriting, Transient is able to enforce type soundness without higher-order
contracts.

Deep Typed Racket implements the standard semantics for gradual languages, which is
known variously as Guarded [RP:POPL-2017], Natural [TOPLAS-2009], and Behavioral
[KafKa-2018]. This Guarded semantics eagerly checks untyped values when possible and
otherwise creates wrappers to defer checks.

Typed Racket uses the names “Shallow” and “Deep” rather than “Transient” and “Guarded”
to emphasize the guarantees that such types provide instead than the method used to im-
plement these guarantees. Shallow types provide a type soundness guarantee; Deep types
provide type soundness and complete monitoring [OOPSLA-2019].

Optional types are a widely-used approach to gradual typing, despite their unsound support
for typed-untyped interactions. Optionally-typed languages include the following: Type-
Script, Flow, mypy, and Typed Clojure [ESOP-2016, Bonnaire-Sergeant-2019].

108

https://www.typescriptlang.org
https://www.typescriptlang.org
https://flow.org
http://mypy-lang.org

9 Typed Racket Syntax Without Type Checking

#lang typed/racket/no-check package: typed-racket-lib
#lang typed/racket/base/no-check

On occasions where the Typed Racket syntax is useful, but actual typechecking is
not desired, the typed/racket/no-check and typed/racket/base/no-check lan-
guages are useful. They provide the same bindings and syntax as typed/racket and
typed/racket/base, but do no type checking.

Examples:

#lang typed/racket/no-check
(: x Number)
(define x "not-a-number")

109

https://pkgs.racket-lang.org/package/typed-racket-lib

10 Typed Regions

The with-type form allows for localized Typed Racket regions in otherwise untyped code.

(with-type result-spec fv-clause body ...+)
(with-type export-spec fv-clause body ...+)

fv-clause =
| #:freevars ([id fv-type] ...)

result-spec = #:result type

export-spec = ([export-id export-type] ...)

The first form, an expression, checks that body ...+ has the type type . If the last expres-
sion in body ...+ returns multiple values, type must be a type of the form (values t
...). Uses of the result values are appropriately checked by contracts generated from type .

The second form, which can be used as a definition, checks that each of the export-ids
has the specified type. These types are also enforced in the surrounding code with contracts.

The ids are assumed to have the types ascribed to them; these types are converted to con-
tracts and checked dynamically.

Examples:

> (with-type #:result Number 3)
3
> ((with-type #:result (Number -> Number)

(lambda: ([x : Number]) (add1 x)))
#f)

.../contract/region.rkt:764:62: contract violation
expected: number?
given: #f
in: the 1st argument of

(-ą number? any)
contract from: (region typed-region)
blaming: top-level

(assuming the contract is correct)
> (let ([x "hello"])

(with-type #:result String
#:freevars ([x String])
(string-append x ", world")))

"hello, world"
> (let ([x 'hello])

(with-type #:result String

110

#:freevars ([x String])
(string-append x ", world")))

x: broke its own contract
promised: string?
produced: 'hello
in: string?
contract from: top-level
blaming: top-level

(assuming the contract is correct)
at: eval:5:0

> (with-type ([fun (Number -> Number)]
[val Number])

(define (fun x) x)
(define val 17))

> (fun val)
17

111

11 Optimization in Typed Racket

1

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster.

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

The optimizer is also disabled if the environment variable PLT_TR_NO_OPTIMIZE is set (to
any value) or if the current code inspector (see §14.10 “Code Inspectors”) is insufficiently
powerful to access racket/unsafe/ops, for example when executing in a sandbox (see
§14.12 “Sandboxed Evaluation”). This prevents untrusted code from accessing these opera-
tions by exploiting errors in the type system.

11.1 Contract Optimization

Typed Racket generates contracts for its exports to protect them against untyped code. By
default, these contracts do not check that typed code obeys the types. If you want to gen-
erate contracts that check both sides equally (for analysis, for teaching, etc.) then set the
environment variable PLT_TR_NO_CONTRACT_OPTIMIZE to any value and recompile.

1See §7 “Optimization in Typed Racket” in the guide for tips to get the most out of the optimizer.

112

12 Unsafe Typed Racket operations

(require typed/racket/unsafe) package: typed-racket-lib

Warning: the operations documented in this section are unsafe, meaning that they can cir-
cumvent the invariants of the type system. Unless the #:no-optimize language option is
used, this may result in unpredictable behavior and may even crash Typed Racket.

(unsafe-require/typed m rt-clause ...)

This form requires identifiers from the module m with the same import specifications as
require/typed.

Unlike require/typed, this form is unsafe and will not generate contracts that correspond
to the specified types to check that the values actually match their types.

Examples:

> (require typed/racket/unsafe)
; import with a bad type
> (unsafe-require/typed racket/base [values (-> String Integer)])
; unchecked call, the result type is wrong
> (values "foo")
- : Integer
"foo"

Added in version 1.3 of package typed-racket-lib.
Changed in version 1.6: Added support for struct type variables

(unsafe-provide provide-spec ...)

This form declares exports from a module with the same syntax as the provide form.

Unlike provide, this form is unsafe and Typed Racket will not generate any contracts that
correspond to the specified types. This means that uses of the exports in other modules
may circumvent the type system’s invariants. In particular, one typed module may unsafely
provide identifiers imported from another typed module.

Additionally, importing an identififer that is exported with unsafe-provide into another
typed module, and then re-exporting it with provide will not cause contracts to be gener-
ated.

Uses of the provided identifiers in other typed modules are not affected by unsafe-
provide—in these situations it behaves identically to provide. Furthermore, other typed
modules that use a binding that is in an unsafe-provide will still have contracts generated
as usual.

113

https://pkgs.racket-lang.org/package/typed-racket-lib

Examples:

> (module t typed/racket/base
(require typed/racket/unsafe)
(: f (-> Integer Integer))
(define (f x) (add1 x))
; unsafe export, does not install checks
(unsafe-provide f))

> (module u racket/base
(require 't)
; bad call that's unchecked
(f "foo"))

> (require 'u)
add1: contract violation

expected: number?
given: "foo"

Added in version 1.3 of package typed-racket-lib.
Changed in version 1.8: Added support for re-provided typed variables

(unsafe-require/typed/provide m rt-clause ...)

Like require/typed/provide except that this form is unsafe and will not generate con-
tracts that correspond to the specified types to check that the values actually match their
types.

114

13 Legacy Forms

The following forms are provided by Typed Racket for backwards compatibility.

(lambda: formals maybe-ret . body)

maybe-ret =
| : type

formals = ([v : t] ...)
| ([v : t] ... v : t *)
| ([v : t] ... v : t ooo bound)

A function of the formal arguments v , where each formal argument has the associated type.
If a rest argument is present, then it has type (Listof t).

(λ: formals maybe-ret . body)

An alias for the same form using lambda:.

(plambda: (a ...) formals maybe-ret . body)
(plambda: (a ... b ooo) formals maybe-ret . body)

A polymorphic function, abstracted over the type variables a . The type variables a are
bound in both the types of the formal, and in any type expressions in the body .

(opt-lambda: formals maybe-ret . body)

formals = ([v : t] ... [v : t default] ...)
| ([v : t] ... [v : t default] ... v : t *)
| ([v : t] ... [v : t default] ... v : t ooo bound)

A function with optional arguments.

(popt-lambda: (a ...) formals maybe-ret . body)
(popt-lambda: (a ... a ooo) formals maybe-ret . body)

A polymorphic function with optional arguments.

case-lambda:

An alias for case-lambda.

(pcase-lambda: (a ...) [formals body] ...)
(pcase-lambda: (a ... b ooo) [formals body] ...)

115

A polymorphic function of multiple arities.

(let: ([v : t e] ...) . body)
(let: loop : t0 ([v : t e] ...) . body)

Local bindings, like let, each with associated types. In the second form, t0 is the type of
the result of loop (and thus the result of the entire expression as well as the final expression
in body). Type annotations are optional.

Examples:

> (: filter-even : (Listof Natural) (Listof Natural) -> (Listof Natural))
> (define (filter-even lst accum)

(if (null? lst)
accum
(let: ([first : Natural (car lst)]

[rest : (Listof Natural) (cdr lst)])
(if (even? first)

(filter-even rest (cons first accum))
(filter-even rest accum)))))

> (filter-even (list 1 2 3 4 5 6) null)
- : (Listof Nonnegative-Integer)
'(6 4 2)

Examples:

> (: filter-even-loop : (Listof Natural) -> (Listof Natural))
> (define (filter-even-loop lst)

(let: loop : (Listof Natural)
([accum : (Listof Natural) null]
[lst : (Listof Natural) lst])

(cond
[(null? lst) accum]
[(even? (car lst)) (loop (cons (car lst) accum) (cdr lst))]
[else (loop accum (cdr lst))])))

> (filter-even-loop (list 1 2 3 4))
- : (Listof Nonnegative-Integer)
'(4 2)

(plet: (a ...) ([v : t e] ...) : t0 . body)

A polymorphic version of let:, abstracted over the type variables a . The type variables a
are bound in both the types of the formal, and in any type expressions in the body . Does not
support the looping form of let.

116

(letrec: ([v : t e] ...) . body)
(let*: ([v : t e] ...) . body)
(let-values: ([([v : t] ...) e] ...) . body)
(letrec-values: ([([v : t] ...) e] ...) . body)
(let*-values: ([([v : t] ...) e] ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-
values. As with let:, type annotations are optional.

(let/cc: v : t . body)
(let/ec: v : t . body)

Type-annotated versions of let/cc and let/ec. As with let:, the type annotation is op-
tional.
(define: v : t e)
(define: (a ...) v : t e)
(define: (a ... a ooo) v : t e)
(define: (f . formals) : t . body)
(define: (a ...) (f . formals) : t . body)
(define: (a ... a ooo) (f . formals) : t . body)

These forms define variables, with annotated types. The first form defines v with type t and
value e . The second form does the same, but allows the specification of type variables. The
third allows for polydotted variables. The fourth, fifth, and sixth forms define a function f
with appropriate types. In most cases, use of : is preferred to use of define:.

Examples:

> (define: foo : Integer 10)
> (define: (A) mt-seq : (Sequenceof A) empty-sequence)
> (define: (add [first : Integer]

[rest : Integer]) : Integer
(+ first rest))

> (define: (A) (poly-app [func : (A A -> A)]
[first : A]
[rest : A]) : A

(func first rest))

(define-struct/exec name-spec ([f : t] ...) [e : proc-t] maybe-type-
name)

name-spec = name-id
| (name-id parent)

maybe-type-name =
| #:type-name type-id

117

Equivalent to using define-struct to define a structure with the property
prop:procedure supplied with the procedure e of type proc-t .

Changed in version 1.13 of package typed-racket-lib: Deprecated

Changed in version 1.4 of package typed-racket-lib: Added the #:type-name option.

struct:

An alias for struct.

define-struct:

An alias for define-struct.

define-struct/exec:

An alias for define-struct/exec.

for:

An alias for for.

for*/and:
for*/first:
for*/flvector:
for*/extflvector:
for*/fold:
for*/foldr:
for*/hash:
for*/hasheq:
for*/hasheqv:
for*/hashalw:
for*/last:
for*/list:
for*/lists:
for*/set:
for*/or:
for*/product:
for*/sum:
for*/vector:
for*:
for/and:

118

for/first:
for/flvector:
for/extflvector:
for/fold:
for/foldr:
for/hash:
for/hasheq:
for/hasheqv:
for/hashalw:
for/last:
for/list:
for/lists:
for/set:
for/or:
for/product:
for/sum:
for/vector:

Aliases for the same iteration forms without a :.

Changed in version 1.12 of package typed-racket-lib: Added for/foldr: and for*/foldr:.

do:

An alias for do.

define-type-alias

Equivalent to define-type.

define-typed-struct

Equivalent to define-struct:

require/opaque-type

Similar to using the opaque keyword with require/typed.

require-typed-struct

Similar to using the struct keyword with require/typed.

119

require-typed-struct/provide

Similar to require-typed-struct, but also provides the imported identifiers.

pdefine:

Defines a polymorphic function.

(pred t)

Equivalent to (Any -> Boolean : t).

Un

An alias for U.

mu

An alias for Rec.

Tuple

An alias for List.

Parameter

An alias for Parameterof.

Pair

An alias for Pairof.

values

An alias for Values.

120

14 Compatibility Languages

#lang typed/scheme package: typed-racket-compatibility
#lang typed/scheme/base
#lang typed-scheme

Typed versions of the

#lang scheme

and

#lang scheme/base

languages. The

#lang typed-scheme

language is equivalent to the

#lang typed/scheme/base

language.

(require/typed m rt-clause ...)

rt-clause = [r t]
| [struct name ([f : t] ...)

struct-option ...]
| [struct (name parent) ([f : t] ...)

struct-option ...]
| [opaque t pred]

struct-option = #:constructor-name constructor-id
| #:extra-constructor-name constructor-id

Similar to require/typed, but as if #:extra-constructor-name make-name was sup-
plied.

require-typed-struct

Similar to using the struct keyword with require/typed.

121

https://pkgs.racket-lang.org/package/typed-racket-compatibility

15 Experimental Features

These features are currently experimental and subject to change.

(declare-refinement id)

Declares id to be usable in Refinement types.

(Refinement id)

Includes values that have been tested with the predicate id , which must have been specified
with declare-refinement. These predicate-based refinements are distinct from Typed
Racket’s more general Refine form.

(define-typed-struct/exec forms ...)

Defines an executable structure.

(define-new-subtype name (constructor t))

Defines a new type name that is a subtype of t . The constructor is defined as a function
that takes a value of type t and produces a value of the new type name . A define-new-
subtype definition is only allowed at the top level of a file or module.

This is purely a type-level distinction, with no way to distinguish the new type from the base
type at runtime. Predicates made by make-predicate won’t be able to distinguish them
properly, so they will return true for all values that the base type’s predicate would return
true for. This is usually not what you want, so you shouldn’t use make-predicate with
these types.

Examples:

> (module m typed/racket
(provide Radians radians f)
(define-new-subtype Radians (radians Real))
(: f : [Radians -> Real])
(define (f a)

(sin a)))
> (require 'm)
> (radians 0)
- : Real [more precisely: Radians]
0
> (f (radians 0))
- : Real
0

122

15.1 Logical Refinements and Linear Integer Reasoning

Typed Racket allows types to be ‘refined’ or ‘constrained’ by logical propositions. These
propositions can mention certain program terms, allowing a program’s types to depend on
the values of terms.

(Refine [id : type] proposition)

proposition = Top
| Bot
| (: symbolic-object type)
| (! symbolic-object type)
| (and proposition ...)
| (or proposition ...)
| (when proposition proposition)
| (unless proposition proposition)
| (if proposition proposition proposition)
| (linear-comp symbolic-object symbolic-object)

linear-comp = <
| <=
| =
| >=
| >

symbolic-object = exact-integer
| symbolic-path
| (+ symbolic-object ...)
| (- symbolic-object ...)
| (* exact-integer symbolic-object)

symbolic-path = id
| (path-elem symbolic-path)

path-elem = car
| cdr
| vector-length

(Refine [v : t] p) is a refinement of type t with logical proposition p, or in other words
it describes any value v of type t for which the logical proposition p holds.

Example:

> (ann 42 (Refine [n : Integer] (= n 42)))
- : Integer [more precisely: (Refine (x0 : Integer) (= 42 x0))]
42

123

Note: The identifier in a refinement type is in scope inside the proposition, but not the type.

(: o t) used as a proposition holds when symbolic object o is of type t.

(! sym-obj type)

This is the dual of (: o t), holding when o is not of type t.

Propositions can also describe linear inequalities (e.g. (<= x 42) holds when x is less than
or equal to 42), using any of the following relations: <=, <, =, >=, >.

The following logical combinators hold as one would expect depending on which of their
subcomponents hold: and, or, if, not.

(when p q) is equivalent to (or (not p) (and p q)).

(unless p q) is equivalent to (or p q).

In addition to reasoning about propositions regarding types (i.e. something is or is not of
some particular type), Typed Racket is equipped with a linear integer arithmetic solver that
can prove linear constraints when necessary. To turn on this solver (and some other refine-
ment reasoning), you must add the #:with-refinements keyword when specifying the
language of your program:

#lang typed/racket #:with-refinements

With this language option on, type checking the following primitives will produce more
specific logical info (when they are being applied to 2 or 3 arguments): *, +, -, <, <=, =, >=,
>, and make-vector.

This allows code such as the following to type check:

(if (< 5 4)
(+ "Luke," "I am your father")
"that's impossible!")

i.e. with refinement reasoning enabled, Typed Racket detects that the comparison is guaran-
teed to produce #f, and thus the clearly ill-typed ‘then’-branch is ignored by the type checker
since it is guaranteed to be dead code.

15.2 Dependent Function Types

Typed Racket supports explicitly dependent function types:

124

(-> ([id : opt-deps arg-type] ...)
opt-pre
range-type
opt-props)

opt-deps =
| (id ...)

opt-pre =
| #:pre (id ...) prop

opt-props =
| opt-pos-prop opt-neg-prop opt-obj

opt-pos-prop =
| #:+ prop

opt-neg-prop =
| #:- prop

opt-obj =
| #:object obj

The syntax is similar to Racket’s dependent contracts syntax (i.e. ->i).

Each function argument has a name, an optional list of identifiers it depends on, an argument
type. An argument’s type can mention (i.e. depend on) other arguments by name if they
appear in its list of dependencies. Dependencies cannot be cyclic.

A function may have also have a precondition. The precondition is introduced with the
#:pre keyword followed by the list of arguments on which it depends and the proposition
which describes the precondition.

A function’s range may depend on any of its arguments.

The grammar of supported propositions and symbolic objects (i.e. prop and obj) is the
same as the proposition and symbolic-object grammars from Refine’s syntax.

For example, here is a dependently typed version of Racket’s vector-ref which eliminates
vector bounds errors during type checking instead of at run time:

> (require racket/unsafe/ops)
> (: safe-ref1 (All (A) (-> ([v : (Vectorof A)]

[n : (v) (Refine [i : Natural]
(< i (vector-

length v)))])
A)))

125

> (define (safe-ref1 v n) (unsafe-vector-ref v n))
> (safe-ref1 (vector "safe!") 0)
- : String
"safe!"
> (safe-ref1 (vector "not safe!") 1)
eval:10:0: Type Checker: Polymorphic function `safe-ref1'
could not be applied to arguments:
Argument x0 (position 1):

Expected: (Vectorof A)
Given: (Mutable-Vector String)

Argument y0 (position 2):
Expected: (Refine (z0 : Nonnegative-Integer) (ă z0

(vector-length x0)))
Given: (Refine (z0 : One) (= 1 z0))

in: 1

Here is an equivalent type that uses a precondition instead of a refinement type:

> (: safe-ref2 (All (A) (-> ([v : (Vectorof A)]
[n : Natural])

#:pre (v n) (< n (vector-length v))
A)))

> (define (safe-ref2 v n) (unsafe-vector-ref v n))
> (safe-ref2 (vector "safe!") 0)
- : String
"safe!"
> (safe-ref2 (vector "not safe!") 1)
eval:14:0: Type Checker: could not apply function;

unable to prove
precondition: (ă= 2 (vector-length a))
in: 1

Using preconditions can provide more detailed type checker error messages, i.e. they can
indicate when the arguments were of the correct type but the precondition could not be
proven.

126

Bibliography

[DLS-2006] Sam Tobin-Hochstadt and Matthias Felleisen, “Interlanguage Mi-
gration: from Scripts to Programs,” Dynamic Languages Sympo-
sium, 2006. https://www2.ccs.neu.edu/racket/pubs/dls06-
tf.pdfPresents the original model for module-level gradual typing. In
the model, one typed module may interact with any number of untyped
modules. A type soundness theorem guarantees the integrity of all typed
code.

[SFP-2007] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt, “Ad-
vanced Macrology and the Implementation of Typed Scheme,”
Workshop on Scheme and Functional Programming, 2007.
https://www2.ccs.neu.edu/racket/pubs/scheme2007-
ctf.pdfDescribes the key macros that enabled Typed Racket.

[POPL-2008] Sam Tobin-Hochstadt and Matthias Felleisen, “The De-
sign and Implementation of Typed Scheme,” Sympo-
sium on Principles of Programming Languages, 2008.
https://www2.ccs.neu.edu/racket/pubs/popl08-
thf.pdfContains a model of core Typed Racket (with a simple
form of occurrence typing) and an extended discussion about scaling the
model to a language.

[ESOP-2009] T. Stephen Strickland, Sam Tobin-Hochstadt, and
Matthias Felleisen, “Practical Variable-Arity Polymor-
phism,” European Symposium on Programming, 2009.
https://www2.ccs.neu.edu/racket/pubs/esop09-
sthf.pdfExplains how to type-check a polymorphic function that
accepts any number of arguments (such as map).

[TOPLAS-2009] Jacob Matthews and Robert Bruce Findler, “Operational
Semantics for Multi-Language Programs,” ACM Trans-
actions on Programming Languages and Systems, 2009.
https://users.cs.northwestern.edu/„robby/pubs/papers/toplas09-
mf.pdf

[ICFP-2010] Sam Tobin-Hochstadt and Matthias Felleisen, “Logical Types for Un-
typed Languages,” International Conference on Functional Program-
ming, 2010. https://www2.ccs.neu.edu/racket/pubs/icfp10-
thf.pdfPresents a compositionas occurrence typing system and com-
ments on its implementation in Typed Racket.

[Tobin-Hochstadt] Sam Tobin-Hochstadt, “Typed Scheme: From
Scripts to Programs,” Ph.D. dissertation, 2010.
https://www2.ccs.neu.edu/racket/pubs/dissertation-
tobin-hochstadt.pdf

127

https://www2.ccs.neu.edu/racket/pubs/dls06-tf.pdf
https://www2.ccs.neu.edu/racket/pubs/dls06-tf.pdf
https://www2.ccs.neu.edu/racket/pubs/scheme2007-ctf.pdf
https://www2.ccs.neu.edu/racket/pubs/scheme2007-ctf.pdf
https://www2.ccs.neu.edu/racket/pubs/popl08-thf.pdf
https://www2.ccs.neu.edu/racket/pubs/popl08-thf.pdf
https://www2.ccs.neu.edu/racket/pubs/esop09-sthf.pdf
https://www2.ccs.neu.edu/racket/pubs/esop09-sthf.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/toplas09-mf.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/toplas09-mf.pdf
https://www2.ccs.neu.edu/racket/pubs/icfp10-thf.pdf
https://www2.ccs.neu.edu/racket/pubs/icfp10-thf.pdf
https://www2.ccs.neu.edu/racket/pubs/dissertation-tobin-hochstadt.pdf
https://www2.ccs.neu.edu/racket/pubs/dissertation-tobin-hochstadt.pdf

[PLDI-2011] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen, “Languages as Libraries,” Confer-
ence on Programming Language Design and Implementation,
2011. https://www2.ccs.neu.edu/racket/pubs/pldi11-
thacff.pdfMotivates the use of macros to define a language and
summarizes the Typed Racket type checker and optimizer.

[OOPSLA-2012] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas,
Sam Tobin-Hochstadt, and Matthias Felleisen, “Gradual Typ-
ing for First-Class Classes,” Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2012.
https://www2.ccs.neu.edu/racket/pubs/oopsla12-
tsdthf.pdfPresents a model of typed classes that can interact with
untyped classes through method calls, inheritance, and mixins.

[PADL-2012] Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and
Matthias Felleisen, “Typing the Numeric Tower,” International
Symposium on Practical Aspects of Declarative Languages,
2012. https://www2.ccs.neu.edu/racket/pubs/padl12-
stff.pdfMotivates the built-in types for numbers and numeric
primitives.

[ESOP-2013] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-
Hochstadt, “Constraining Delimited Control with Con-
tracts,” European Symposium on Programming, 2013.
https://www2.ccs.neu.edu/racket/pubs/esop13-
tsth.pdfShows how to type check the % and fcontrol operators
in the presence of continuation marks.

[RP:DLS-2014] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek,
and Jim Baker, “Design and Evaluation of Gradual Typ-
ing for Python,” Dynamic Languages Symposium, 2014.
https://dl.acm.org/doi/10.1145/2775052.2661101

[ECOOP-2015] Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce
Findler, Matthew Flatt, Sam Tobin-Hochstadt, and Matthias
Felleisen, “Toward Practical Gradual Typing,” Euro-
pean Conference on Object-Oriented Programming, 2015.
https://www2.ccs.neu.edu/racket/pubs/ecoop2015-
takikawa-et-al.pdfPresents an implementation, experience report,
and performance evaluation for gradually-typed first-class classes.

[ESOP-2016] Ambrose Bonnaire–Sergeant, Rowan Davies, and Sam
Tobin-Hochstadt, “Practical Optional Types for Clo-
jure,” European Symposium on Programming, 2016.
https://link.springer.com/chapter/10.1007/978-3-662-
49498-1_4

[PLDI-2016] Andrew Kent and Sam Tobin-Hochstadt, “Occurrence
Typing Modulo Theories,” Conference on Program-
ming Language Design and Implementation, 2016.
https://dl.acm.org/citation.cfm?id=2908091Adds linear
integer constraints to Typed Racket’s compositional occurrence typing.

128

https://www2.ccs.neu.edu/racket/pubs/pldi11-thacff.pdf
https://www2.ccs.neu.edu/racket/pubs/pldi11-thacff.pdf
https://www2.ccs.neu.edu/racket/pubs/oopsla12-tsdthf.pdf
https://www2.ccs.neu.edu/racket/pubs/oopsla12-tsdthf.pdf
https://www2.ccs.neu.edu/racket/pubs/padl12-stff.pdf
https://www2.ccs.neu.edu/racket/pubs/padl12-stff.pdf
https://www2.ccs.neu.edu/racket/pubs/esop13-tsth.pdf
https://www2.ccs.neu.edu/racket/pubs/esop13-tsth.pdf
https://dl.acm.org/doi/10.1145/2775052.2661101
https://www2.ccs.neu.edu/racket/pubs/ecoop2015-takikawa-et-al.pdf
https://www2.ccs.neu.edu/racket/pubs/ecoop2015-takikawa-et-al.pdf
https://link.springer.com/chapter/10.1007/978-3-662-49498-1_4
https://link.springer.com/chapter/10.1007/978-3-662-49498-1_4
https://dl.acm.org/citation.cfm?id=2908091

[Takikawa] Asumu Takikawa, “The Design, Implementation,
and Evaluation of a Gradual Type System for Dy-
namic Class Composition,” Ph.D. dissertation, 2016.
https://www2.ccs.neu.edu/racket/pubs/dissertation-
takikawa.pdf

[RP:POPL-2017] Michael M. Vitousek, Cameron Swords, and Jeremy G.
Siek, “Big Types in Little Runtime: Open-World Sound-
ness and Collaborative Blame for Gradual Type Systems,”
Symposium on Principles of Programming Languages, 2017.
https://dl.acm.org/doi/abs/10.1145/3009837.3009849

[POPL-2017] Stephen Chang, Alex Knauth, and Emina Torlak, “Sym-
bolic Types for Lenient Symbolic Execution,” Sympo-
sium on Principles of Programming Languages, 2017.
https://www2.ccs.neu.edu/racket/pubs/popl18-
ckt.pdfPresents a typed version of Rosette that distinguishes between
concrete and symbolic values. The type system supports occurrence
typing.

[SNAPL-2017] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler,
Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent St-Amour,
T. Stephen Strickland, and Asumu Takikawa, “Migratory Typing:
Ten Years Later,” Summit oN Advances in Programming Lan-
guages, 2017. https://www2.ccs.neu.edu/racket/pubs/typed-
racket.pdfReflects on origins and successes; looks ahead to current and
future challenges.

[KafKa-2018] Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli,
and Jan Vitek, “KafKa: Gradual Typing for Objects,” Eu-
ropean Conference on Object-Oriented Programming, 2018.
https://drops.dagstuhl.de/opus/volltexte/2018/9217/

[Kent-2019] Andrew M. Kent, “Advanced Logical Type Systems
for Untyped Languages,” Ph.D. dissertation, 2019.
https://pnwamk.github.io/docs/dissertation.pdf

[RP:Vitousek-2019] Michael M. Vitousek, “Gradual Typing for Python, Unguarded,” Ph.D.
dissertation, 2019. https://hdl.handle.net/2022/23172

[OOPSLA-2019] Ben Greenman, Matthias Felleisen, and Christos Dimoulas, “Com-
plete Monitors for Gradual Types,” Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2019.
https://www2.ccs.neu.edu/racket/pubs/oopsla19-gfd.pdf

[RP:DLS-2019] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri, “Optimizing
and Evaluating Transient Gradual Typing,” Dynamic Languages Sympo-
sium, 2019. https://dl.acm.org/doi/10.1145/3359619.3359742

[Bonnaire-Sergeant-2019] Ambrose Bonnaire–Sergeant, “Typed Clojure in
Theory and Practice,” Ph.D. dissertation, 2019.
https://scholarworks.iu.edu/dspace/handle/2022/23207

[Greenman-2020] Ben Greenman, “Deep and Shallow Types,” Ph.D. dissertation, 2020.
http://hdl.handle.net/2047/D20398329

129

https://www2.ccs.neu.edu/racket/pubs/dissertation-takikawa.pdf
https://www2.ccs.neu.edu/racket/pubs/dissertation-takikawa.pdf
https://dl.acm.org/doi/abs/10.1145/3009837.3009849
https://www2.ccs.neu.edu/racket/pubs/popl18-ckt.pdf
https://www2.ccs.neu.edu/racket/pubs/popl18-ckt.pdf
https://emina.github.io/rosette
https://www2.ccs.neu.edu/racket/pubs/typed-racket.pdf
https://www2.ccs.neu.edu/racket/pubs/typed-racket.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/9217/
https://pnwamk.github.io/docs/dissertation.pdf
https://hdl.handle.net/2022/23172
https://www2.ccs.neu.edu/racket/pubs/oopsla19-gfd.pdf
https://dl.acm.org/doi/10.1145/3359619.3359742
https://scholarworks.iu.edu/dspace/handle/2022/23207
http://hdl.handle.net/2047/D20398329

[Programming-2022] Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias
Felleisen, “A Transient Semantics for Typed Racket,” The
Art, Science, and Engineering of Programming 6.2, 2022.
https://www2.ccs.neu.edu/racket/pubs/programming-
gldf.pdfReports on the difficulties of adapting the Transient semantics
of Reticulated Python to the rich migratory type system and established
complier infrastructure of Typed Racket.

[PLDI-2022] Ben Greenman, “Deep and Shallow Types for Gradual Languages,”
Conference on Programming Language Design and Implementation,
2022. http://cs.brown.edu/„bgreenma/publications/apples-
to-apples/g-pldi-2022.pdfPresents a language design that com-
bines Deep and Shallow types, and reports on its implementation in Typed
Racket.

130

https://www2.ccs.neu.edu/racket/pubs/programming-gldf.pdf
https://www2.ccs.neu.edu/racket/pubs/programming-gldf.pdf
http://cs.brown.edu/~bgreenma/publications/apples-to-apples/g-pldi-2022.pdf
http://cs.brown.edu/~bgreenma/publications/apples-to-apples/g-pldi-2022.pdf

Index
!, 124
#%module-begin, 58
#%top-interaction, 58
->, 23
->*, 27
:, 51
:kind, 98
:print-type, 97
:query-type/args, 97
:query-type/result, 97
:type, 96
All, 30
ann, 52
Anonymous Functions, 40
Any, 2
AnyValues, 2
assert, 91
assert-typecheck-fail, 92
Async-Channelof, 18
Async-ChannelTop, 18
augment, 79
Base Type Constructors and Supertypes, 11
Base Types, 2
Binding Forms, 38
Boolean, 8
Bot, 28
Boxof, 12
BoxTop, 13
Byte, 7
Byte-PRegexp, 8
Byte-Regexp, 8
Bytes, 8
Bytes-Converter, 9
case->, 29
case-lambda, 42
case-lambda:, 115
caseÑ, 37
cast, 52
Channelof, 17
ChannelTop, 17

Char, 8
Char-Set, 70
Checking Functions that Cross Multiple

Boundaries, 103
Checking Immutable Data: Importing a List,

100
Checking Mutable Data: Importing a Vector,

102
Class, 79
class, 74
ClassTop, 81
Compatibility Languages, 121
Compiled-Expression, 8
Compiled-Module-Expression, 8
Complex, 3
compound-unit, 84
compound-unit/infer, 85
Continuation-Mark-Keyof, 23
Continuation-Mark-KeyTop, 23
Continuation-Mark-Set, 8
Contract Optimization, 112
Contracts and Unit Static Information, 89
Control, 22
Cookie, 63
Cursor, 71
Custodian, 9
Custodian-Boxof, 19
Date, 71
Datum, 22
declare-refinement, 122
Deep types, 100
Deep, Shallow, and Optional Semantics, 99
default-continuation-prompt-tag, 58
define, 46
define-compound-unit, 85
define-compound-unit/infer, 85
define-new-subtype, 122
define-predicate, 51
define-signature, 83
define-struct, 49
define-struct/exec, 117
define-struct/exec:, 118

131

define-struct:, 118
define-type, 50
define-type-alias, 119
define-typed-struct, 119
define-typed-struct/exec, 122
define-typed/untyped-identifier, 94
define-unit, 84
define-unit-from-context, 86
define-values/invoke-unit, 84
define-values/invoke-unit/infer, 85
define/augment, 78
define/override, 78
define/private, 79
define/public, 78
define/pubment, 78
define:, 117
defined?, 91
Definitions, 46
Dependent Function Types, 124
do, 46
do:, 119
Draw-Caret, 69
Edit-Op, 69
Environment-Variables, 9
EOF, 8
Ephemeronof, 20
Evtof, 20
Exact-Complex, 4
Exact-Imaginary, 4
Exact-Nonnegative-Integer, 5
Exact-Number, 4
Exact-Positive-Integer, 5
Exact-Rational, 4
Example Interactions, 100
Example: Casts in Deep, Shallow, and Op-

tional, 105
existential type result, 27
Experimental Features, 122
Exploring Types, 96
ExtFlonum, 7
ExtFlonum-Nan, 8
ExtFlonum-Negative-Zero, 8

ExtFlonum-Positive-Zero, 8
ExtFlonum-Zero, 8
ExtFlVector, 14
False, 8
field, 79
File-Format, 69
Fixnum, 7
Float, 4
Float-Complex, 4
Float-Nan, 5
Float-Negative-Zero, 5
Float-Positive-Zero, 5
Float-Zero, 5
Flonum, 4
Flonum-Nan, 5
Flonum-Negative-Zero, 5
Flonum-Positive-Zero, 5
Flonum-Zero, 5
FlVector, 14
for, 42
for*, 45
for*/and, 44
for*/and:, 118
for*/extflvector, 68
for*/extflvector:, 118
for*/first, 44
for*/first:, 118
for*/flvector, 68
for*/flvector:, 118
for*/fold, 45
for*/fold:, 118
for*/foldr, 45
for*/foldr:, 118
for*/hash, 44
for*/hash:, 118
for*/hashalw, 44
for*/hashalw:, 118
for*/hasheq, 44
for*/hasheq:, 118
for*/hasheqv, 44
for*/hasheqv:, 118
for*/last, 44

132

for*/last:, 118
for*/list, 44
for*/list:, 118
for*/lists, 45
for*/lists:, 118
for*/or, 44
for*/or:, 118
for*/product, 44
for*/product:, 118
for*/set, 44
for*/set:, 118
for*/sum, 44
for*/sum:, 118
for*/vector, 44
for*/vector:, 118
for*:, 118
for/and, 44
for/and:, 118
for/extflvector, 68
for/extflvector:, 119
for/first, 44
for/first:, 119
for/flvector, 68
for/flvector:, 119
for/fold, 45
for/fold:, 119
for/foldr, 45
for/foldr:, 119
for/hash, 43
for/hash:, 119
for/hashalw, 44
for/hashalw:, 119
for/hasheq, 43
for/hasheq:, 119
for/hasheqv, 43
for/hasheqv:, 119
for/last, 44
for/last:, 119
for/list, 43
for/list:, 119
for/lists, 44
for/lists:, 119

for/or, 44
for/or:, 119
for/product, 44
for/product:, 119
for/set, 44
for/set:, 119
for/sum, 44
for/sum:, 119
for/vector, 44
for/vector:, 119
for:, 118
Forms that Depend on the Behavior of Types,

105
FSemaphore, 9
FTP-Connection, 64
Futureof, 19
FxVector, 14
General Tips, 108
Generating Predicates Automatically, 51
GIF-Colormap, 61
GIF-Stream, 61
Has-Struct-Property, 36
HashTable, 15
HashTableTop, 16
How to Choose Between Deep, Shallow, and

Optional, 106
HTTP-Connection, 64
Identifier, 21
Ignoring type information, 93
Image-Kind, 70
Imaginary, 4
IMAP-Connection, 65
Immutable-HashTable, 15
Immutable-Vector, 13
Immutable-Vectorof, 13
Imp, 36
Impersonator-Property, 9
Index, 7
index?, 92
Inexact-Complex, 4
Inexact-Imaginary, 4
Inexact-Real, 4

133

Inexact-Real-Nan, 5
Inexact-Real-Negative-Zero, 5
Inexact-Real-Positive-Zero, 5
Inexact-Real-Zero, 5
inherit, 79
inherit-field, 79
init, 79
init-field, 79
init-rest, 79
Input-Port, 8
Inspector, 9
inst, 53
Instance, 81
Integer, 3
Interacting with Untyped Code, 87
Internal-Definition-Context, 9
Intersection, 36
invoke-unit, 84
invoke-unit/infer, 85
JSExpr, 62
Keyword, 8
lambda, 40
lambda:, 115
Legacy Forms, 115
let, 38
let*, 39
let*-values, 39
let*-values:, 117
let*:, 117
let-values, 39
let-values:, 117
let/cc, 40
let/cc:, 117
let/ec, 40
let/ec:, 117
let:, 116
letrec, 39
letrec-values, 39
letrec-values:, 117
letrec:, 117
Libraries Provided With Typed Racket, 61
Limitations, 88

List, 11
List*, 11
Listof, 11
LoadFileKind, 68
Log-Level, 9
Log-Receiver, 9
Logger, 9
Logical Refinements and Linear Integer Rea-

soning, 123
Loops, 42
make-predicate, 51
MListof, 12
Module-Path, 8
Module-Path-Index, 8
MPairof, 12
MPairTop, 12
mu, 120
Mutable-HashTable, 16
Mutable-HashTableTop, 16
Mutable-Vector, 14
Mutable-Vectorof, 13
Mutable-VectorTop, 15
Names for Types, 50
Namespace, 8
Namespace-Anchor, 8
Natural, 5
Negative-Exact-Rational, 5
Negative-ExtFlonum, 8
Negative-Fixnum, 7
Negative-Float, 5
Negative-Flonum, 5
Negative-Inexact-Real, 5
Negative-Integer, 5
Negative-Real, 6
Negative-Single-Flonum, 5
Nonnegative-Exact-Rational, 5
Nonnegative-ExtFlonum, 7
Nonnegative-Fixnum, 7
Nonnegative-Float, 5
Nonnegative-Flonum, 5
Nonnegative-Inexact-Real, 5
Nonnegative-Integer, 5

134

Nonnegative-Real, 6
Nonnegative-Single-Flonum, 5
Nonpositive-Exact-Rational, 5
Nonpositive-ExtFlonum, 8
Nonpositive-Fixnum, 7
Nonpositive-Float, 5
Nonpositive-Flonum, 5
Nonpositive-Inexact-Real, 5
Nonpositive-Integer, 5
Nonpositive-Real, 6
Nonpositive-Single-Flonum, 5
Nothing, 2
Null, 8
Number, 3
Numeric Types, 2
Object, 81
One, 7
Opaque, 37
opaque, 56
opaque type, 56
opt-lambda:, 115
Optimization in Typed Racket, 112
Option, 37
Optional types, 100
Other Base Types, 8
Other Forms, 57
Other Type Constructors, 23
Other Types, 37
Output-Port, 8
override, 79
Pair, 120
Pairof, 11
Parameter, 120
Parameterization, 9
Parameterof, 18
Path, 8
Path-For-Some-System, 8
Path-String, 10
Path/Param, 66
pcase-lambda:, 115
pdefine:, 120
Place, 9

Place-Channel, 9
plambda:, 115
plet:, 116
popt-lambda:, 115
Port, 8
Porting Untyped Modules to Typed Racket,

73
PortT, 66
PortT/Bytes, 66
Positive-Byte, 7
Positive-Exact-Rational, 5
Positive-ExtFlonum, 7
Positive-Fixnum, 7
Positive-Float, 5
Positive-Flonum, 5
Positive-Index, 7
Positive-Inexact-Real, 5
Positive-Integer, 5
Positive-Real, 6
Positive-Single-Flonum, 5
pred, 120
Prefab, 32
PrefabTop, 34
PRegexp, 8
Pretty-Print-Style-Table, 9
private, 79
Procedure, 28
Promise, 19
Prompt-Tagof, 22
Prompt-TagTop, 22
prop:procedure, 59
provide:, 52
Pseudo-Random-Generator, 9
public, 79
pubment, 79
Read-Table, 9
Read/Write-Format, 69
Real, 4
Real-Zero, 6
Rec, 31
Refine, 123
Refinement, 122

135

Regexp, 8
Related Gradual Typing Work, 108
Require, 55
require-typed-struct, 119
require-typed-struct, 121
require-typed-struct/provide, 120
require/opaque-type, 119
require/typed, 121
require/typed, 55
require/typed/provide, 57
require/untyped-contract, 93
Resolved-Module-Path, 8
Row, 82
row-inst, 54
Security-Guard, 9
Self, 36
Semaphore, 9
Sequenceof, 19
SequenceTop, 19
Setof, 17
Sexp, 22
Sexpof, 21
Shallow types, 100
signature, 56
Signature Forms, 88
Signatures and Internal Definition Contexts,

89
Single-Flonum, 4
Single-Flonum-Complex, 4
Single-Flonum-Nan, 5
Single-Flonum-Negative-Zero, 5
Single-Flonum-Positive-Zero, 5
Single-Flonum-Zero, 5
Singleton Types, 10
Some, 30
Special Form Reference, 38
Special forms, 74
Special forms, 83
Special Structure Type Properties, 59
Special-Comment, 9
SSL-Client-Context, 67
SSL-Context, 67

SSL-Listener, 67
SSL-Protocol, 67
SSL-Server-Context, 67
SSL-Verify-Source, 67
String, 8
struct, 48
Struct, 31
struct, 55
Struct-Property, 35
Struct-Type, 31
Struct-Type-Property, 9
Struct-TypeTop, 32
struct:, 118
Structural Matching and Other Unit Forms,

90
Structure Definitions, 48
Subprocess, 9
Symbol, 8
Syntax, 21
Syntax Objects, 21
Syntax-E, 21
syntax-local-typed-context?, 95
Syntaxof, 21
Tagged Signatures, 90
TCP-Listener, 9
The Typed Racket Reference, 1
Thread, 9
Thread-Cellof, 19
Thread-CellTop, 20
Thread-Group, 9
Threshold, 69
Time, 71
Top, 28
True, 8
Tuple, 120
Type Annotation and Instantiation, 51
Type Reference, 2
typecheck-fail, 92
Typed Classes, 74
Typed Racket Syntax Without Type Check-

ing, 109
Typed Regions, 110

136

Typed Units, 83
typed-scheme, 121
typed/db, 71
typed/db/base, 72
typed/db/sqlite3, 72
typed/file/gif, 61
typed/file/md5, 62
typed/file/sha1, 62
typed/file/tar, 62
typed/framework, 62
typed/images/compile-time, 72
typed/images/icons, 72
typed/images/logos, 72
typed/json, 62
typed/mred/mred, 62
typed/net/base64, 62
typed/net/cgi, 63
typed/net/cookie, 63
typed/net/cookies, 63
typed/net/cookies/common, 63
typed/net/cookies/server, 63
typed/net/dns, 64
typed/net/ftp, 64
typed/net/gifwrite, 64
typed/net/git-checkout, 64
typed/net/head, 64
typed/net/http-client, 64
typed/net/imap, 64
typed/net/mime, 65
typed/net/nntp, 65
typed/net/pop3, 65
typed/net/qp, 65
typed/net/sendmail, 65
typed/net/sendurl, 65
typed/net/smtp, 65
typed/net/uri-codec, 66
typed/net/url, 66
typed/net/url-connect, 66
typed/net/url-structs, 66
typed/openssl, 67
typed/openssl/md5, 67
typed/openssl/sha1, 67

typed/pict, 72
typed/racket, 1
typed/racket/async-channel, 68
typed/racket/base, 1
typed/racket/base/deep, 99
typed/racket/base/no-check, 109
typed/racket/base/optional, 99
typed/racket/base/shallow, 99
typed/racket/class, 74
typed/racket/date, 68
typed/racket/deep, 99
typed/racket/draw, 68
typed/racket/extflonum, 68
typed/racket/flonum, 68
typed/racket/gui, 69
typed/racket/gui/no-check, 69
typed/racket/no-check, 109
typed/racket/optional, 99
typed/racket/random, 69
typed/racket/sandbox, 69
typed/racket/shallow, 99
typed/racket/snip, 70
typed/racket/system, 70
typed/racket/unit, 83
typed/racket/unsafe, 113
typed/rackunit, 70
typed/rackunit/docs-complete, 70
typed/rackunit/gui, 70
typed/rackunit/text-ui, 70
typed/scheme, 121
typed/scheme/base, 121
typed/srfi/14, 70
typed/srfi/19, 71
typed/syntax/stx, 71
typed/untyped-utils, 93
typed/web-
server/configuration/responders,
71

typed/web-server/http, 71
Types, 79
Types, 86
U, 29

137

UDP-Socket, 9
Un, 120
Undefined, 8
Union, 36
Unit, 86
unit, 83
unit-from-context, 86
UnitTop, 86
Unquoted-Printing-String, 8
Unsafe Typed Racket operations, 113
unsafe-provide, 113
unsafe-require/typed, 113
unsafe-require/typed/provide, 114
Untyped Utilities, 93
URL, 66
URL-Exception, 66
Utilities, 91
values, 120
Values, 30
Variable-Reference, 8
Vector, 13
Vectorof, 13
VectorTop, 15
Void, 8
Weak-Boxof, 20
Weak-BoxTop, 20
Weak-HashTable, 16
Weak-HashTableTop, 17
When to Use Deep Types, 107
When to Use Optional Types, 107
When to Use Shallow Types, 107
Will-Executor, 9
with-asserts, 91
with-handlers, 57
with-handlers*, 57
with-type, 110
Zero, 5
λ, 42
λ:, 115
Ñ, 37
@, 37
X, 29

138

	1 Type Reference
	1.1 Base Types
	1.1.1 Numeric Types
	1.1.2 Other Base Types

	1.2 Singleton Types
	1.3 Base Type Constructors and Supertypes
	1.4 Syntax Objects
	1.5 Control
	1.6 Other Type Constructors
	1.7 Other Types

	2 Special Form Reference
	2.1 Binding Forms
	2.2 Anonymous Functions
	2.3 Loops
	2.4 Definitions
	2.5 Structure Definitions
	2.6 Names for Types
	2.7 Generating Predicates Automatically
	2.8 Type Annotation and Instantiation
	2.9 Require
	2.10 Other Forms
	2.11 Special Structure Type Properties

	3 Libraries Provided With Typed Racket
	3.1 Porting Untyped Modules to Typed Racket

	4 Typed Classes
	4.1 Special forms
	4.2 Types

	5 Typed Units
	5.1 Special forms
	5.2 Types
	5.3 Interacting with Untyped Code
	5.4 Limitations
	5.4.1 Signature Forms
	5.4.2 Contracts and Unit Static Information
	5.4.3 Signatures and Internal Definition Contexts
	5.4.4 Tagged Signatures
	5.4.5 Structural Matching and Other Unit Forms

	6 Utilities
	6.1 Ignoring type information
	6.2 Untyped Utilities

	7 Exploring Types
	8 Deep, Shallow, and Optional Semantics
	8.1 Example Interactions
	8.1.1 Checking Immutable Data: Importing a List
	8.1.2 Checking Mutable Data: Importing a Vector
	8.1.3 Checking Functions that Cross Multiple Boundaries

	8.2 Forms that Depend on the Behavior of Types
	8.2.1 Example: Casts in Deep, Shallow, and Optional

	8.3 How to Choose Between Deep, Shallow, and Optional
	8.3.1 When to Use Deep Types
	8.3.2 When to Use Shallow Types
	8.3.3 When to Use Optional Types
	8.3.4 General Tips

	8.4 Related Gradual Typing Work

	9 Typed Racket Syntax Without Type Checking
	10 Typed Regions
	11 Optimization in Typed Racket
	11.1 Contract Optimization

	12 Unsafe Typed Racket operations
	13 Legacy Forms
	14 Compatibility Languages
	15 Experimental Features
	15.1 Logical Refinements and Linear Integer Reasoning
	15.2 Dependent Function Types

	Bibliography
	Index
	Index

