17.1 Running Racket or GRacket
The core Racket run-time system is available in two main variants:
Racket, which provides the primitives libraries on which racket/base is implemented. Under Unix and Mac OS X, the executable is called racket. Under Windows, the executable is called Racket.exe.
GRacket, which extends racket with GUI primitives on which racket/gui/base is implemented. Under Unix, the executable is called gracket. Under Windows, the executable is called GRacket.exe. Under Mac OS X, the gracket script launches GRacket.app.
17.1.1 Initialization
On startup, the top-level environment contains no bindings – not even #%app for function application. Primitive modules with names that start with #% are defined, but they are not meant for direct use, and the set of such modules can change. For example, the '#%kernel module is eventually used to bootstrap the implemetation of racket/base, and '#%mred-kernel is used for racket/gui/base.
The first action of Racket or GRacket is to initialize current-library-collection-paths to the result of (find-library-collection-paths pre-extras extras), where pre-extras is normally null and extras are extra directory paths provided in order in the command line with -S/--search. An executable created from the Racket or GRacket executable can embed paths used as pre-extras.
Racket and GRacket next require racket/init and racket/gui/init, respectively, but only if the command line does not specify a require flag (-t/--require, -l/--lib, or -u/--require-script) before any eval, load, or read-eval-print-loop flag (-e/--eval, -f/--load, -r/--script, -m/--main, or -i/--repl). The initialization library can be changed with the -I configuration option. The 'configure-runtime property of the initialization library’s language is used before the library is instantiated; see Language Run-Time Configuration.
After potentially loading the initialization module, expression evals, files loads, and module requires are executed in the order that they are provided on the command line. If any raises an uncaught exception, then the remaining evals, loads, and requires are skipped. If the first require precedes any eval or load so that the initialization library is skipped, then the 'configure-runtime property of the required module’s library language is used before the module is instantiated; see Language Run-Time Configuration.
After running all command-line expressions, files, and modules, Racket or GRacket then starts a read-eval-print loop for interactive evaluation if no command line flags are provided other than configuration options. If any command-line argument is provided that is not a configuration option, then the read-eval-print-loop is not started, unless the -i/--repl flag is provided on the command line to specifically re-enable it. In addition, just before the command line is started, Racket loads the file (find-system-path 'init-file) and GRacket loads the file (find-graphical-system-path 'init-file) is loaded, unless the -q/--no-init-file flag is specified on the command line.
Finally, before GRacket exists, it waits for all frames to class, all timers to stop, etc. in the main eventspace by evaluating (racket 'yield). This waiting step can be suppressed with the -V/--no-yield command-line flag.
17.1.2 Exit Status
The default exit status for a Racket or GRacket process is non-zero if an error occurs during a command-line eval (via -e, etc.), load (via -f, -r, etc.), or require (via --l, -t, etc.), but only when no read-eval-print loop is started. Otherwise, the default exit status is 0.
In all cases, a call to exit (when the default exit handler is in place) can end the process with a specific status value.
17.1.3 Init Libraries
See also Module-Handling Configuration in Guide: Racket.
The vector '#(racket/language-info get-info #f) is suitable for attaching to a module as its language info to get the same language information as the racket/base language.
The vector #(racket/runtime-config configure #f) is suitable as a member of a list of runtime-configuration specification (as returned by a module’s language-information function for the key 'configure-runtime) to obtain the same runtime configuration as for the racket/base language.
17.1.4 Command Line
The Racket and GRacket executables recognize the following command-line flags:
File and expression options:
-e ‹expr› or --eval ‹expr› : evals ‹expr›. The results of the evaluation are printed via current-print.
-f ‹file› or --load ‹file› : loads ‹file›; if ‹file› is "-", then expressions are read and evaluated from standard input.
-t ‹file› or --require ‹file› : requires ‹file›.
-p ‹package› : requires (planet "‹package›").
Despite its name, --script is not usually used for Unix scripts. See Scripts for more information on scripts.
-r ‹file› or --script ‹file› : loads ‹file› as a script. This flag is like -t ‹file› plus -N ‹file› to set the program name and -- to cause all further command-line elements to be treated as non-flag arguments.
-u ‹file› or --require-script ‹file› : requires ‹file› as a script; This flag is like -t ‹file› plus -N ‹file› to set the program name and -- to cause all further command-line elements to be treated as non-flag arguments.
-k ‹n› ‹m› : Loads code embedded in the executable from file position ‹n› to ‹m›. This option is normally embedded in a stand-alone binary that also embeds Racket code.
-m or --main : Evaluates a call to main as bound in the top-level environment. All of the command-line arguments that are not processed as options (i.e., the arguments put into current-command-line-arguments) are passed as arguments to main. The results of the call are printed via current-print.
The call to main is constructed as an expression (main arg-str ...) where the lexical context of the expression gives #%app and #%datum bindings as #%plain-app and #%datum, but the lexical context of main is the top-level environment.
Interaction options:
-i or --repl : Runs interactive read-eval-print loop, using either read-eval-print-loop (Racket) or graphical-read-eval-print-loop (GRacket) after showing (banner) and loading (find-system-path 'init-file). For GRacket, supply the -z/--text-repl configuration option to use read-eval-print-loop instead of graphical-read-eval-print-loop.
-n or --no-lib : Skips requiring the initialization library (i.e., racket/init or racket/gui/init, unless it is changed with the -I flag) when not otherwise disabled.
-v or --version : Shows (banner).
-K or --back : GRacket, Mac OS X only; leave application in the background.
-V --no-yield : Skips final (yield 'wait) action, which normally waits until all frames are closed, etc. in the main eventspace before exiting.
-c or --no-compiled : Disables loading of compiled byte-code ".zo" files, by initializing current-compiled-file-paths to null.
-q or --no-init-file : Skips loading (find-system-path 'init-file) for -i/--repl.
-z or --text-repl : GRacket only; changes -i/--repl to use textual-read-eval-print-loop instead of graphical-read-eval-print-loop.
-I ‹path› : Sets (lib "‹path›") as the path to require to initialize the namespace, unless namespace initialization is disabled.
-X ‹dir› or --collects ‹dir› : Sets ‹dir› as the path to the main collection of libraries by making (find-system-path 'collects-dir) produce ‹dir›.
-S ‹dir› or --search ‹dir› : Adds ‹dir› to the default library collection search path after the main collection directory. If the -S/--dir flag is supplied multiple times, the search order is as supplied.
-U or --no-user-path : Omits user-specific paths in the search for collections, C libraries, etc. by initializing the use-user-specific-search-paths parameter to #f.
-N ‹file› or --name ‹file› : sets the name of the executable as reported by (find-system-path 'run-file) to ‹file›.
-j or --no-jit : Disables the native-code just-in-time compiler by setting the eval-jit-enabled parameter to #f.
-d or --no-delay : Disables on-demand parsing of compiled code and syntax objects by setting the read-on-demand-source parameter to #f.
-b or --binary : Requests binary mode, instead of text mode, for the process’s input, out, and error ports. This flag currently has no effect, because binary mode is always used.
-W ‹level› or --warn ‹level› : Sets the logging level for writing events to the original error port. The possible ‹level› values are the same as for the PLTSTDERR environment variable. See Logging for more information.
-L ‹level› or --syslog ‹level› : Sets the logging level for writing events to the system log. The possible ‹level› values are the same as for the PLTSYSLOG environment variable. See Logging for more information.
Meta options:
If at least one command-line argument is provided, and if the first one after any configuration option is not a flag, then a -u/--require-script flag is implicitly added before the first non-flag argument.
If no command-line arguments are supplied other than configuration options, then the -i/--repl flag is effectively added.
For GRacket under X11, the follow flags are recognized when they appear at the beginning of the command line, and they count as configuration options (i.e., they do not disable the read-eval-print loop or prevent the insertion of -u/--require-script):
-geometry ‹arg›, -bg ‹arg›, -background ‹arg›, -fg ‹arg›, -foreground ‹arg›, -fn ‹arg›, -font ‹arg›, -iconic, -name ‹arg›, -rv, -reverse, +rv, -selectionTimeout ‹arg›, -synchronous, -title ‹arg›, -xnllanguage ‹arg›, or -xrm ‹arg› : Standard X11 arguments that are mostly ignored but accepted for compatibility with other X11 programs. The -synchronous and -xrm flags behave in the usual way.
-singleInstance : If an existing GRacket is already running on the same X11 display, if it was started on a machine with the same hostname, and if it was started with the same name as reported by (find-system-path 'run-file) – possibly set with the -N/--name command-line argument – then all non-option command-line arguments are treated as filenames and sent to the existing GRacket instance via the application file handler (see application-file-handler).
Similarly, under Mac OS X, a leading switch starting with -psn_ is treated as a special configuration option. It indicates that Finder started the application, so the current input, output, and error output are redirected to a GUI window.
Multiple single-letter switches (the ones preceded by a single -) can be collapsed into a single switch by concatenating the letters, as long as the first switch is not --. The arguments for each switch are placed after the collapsed switches (in the order of the switches). For example,
-ifve ‹file› ‹expr›
and
-i -f ‹file› -v -e ‹expr›
are equivalent. If a collapsed -- appears before other collapsed switches in the same collapsed set, it is implicitly moved to the end of the collapsed set.
Extra arguments following the last option are available from the current-command-line-arguments parameter.
17.1.5 Language Run-Time Configuration
See also Module-Handling Configuration in Guide: Racket.
When a module is implemented using #lang, the language after #lang can specify configuration actions to perform when a module using the language is the main module of a program. The language specifies run-time configuration by
attaching a 'module-language syntax property to the module as read from its source (see module and module-compiled-language-info);
having the function indicated by the 'module-language syntax property recognize the 'configure-runtime key, for which it returns a list of vectors; each vector must have the form (vector mp name val) where mp is a module path, name is a symbol, and val is an arbitrary value; and
having each function called as ((dynamic-require mp name) val) configure the run-time environment, typically by setting parameters such as current-print.
A 'configure-runtime query returns a list of vectors, instead of directly configuring the environment, so that the indicated modules to be bundled with a program when creating a stand-alone executable; see raco exe: Creating Stand-Alone Executables.
For information on defining a new #lang language, see syntax/module-reader.